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A B S T R A C T 

Periodograms are widely employed for identifying periodicity in time series data, yet they often struggle to accurately quantify 

the statistical significance of detected periodic signals when the data complexity precludes reliable simulations. We develop a 
data-driven approach to address this challenge by introducing a null-signal template (NST). The NST is created by carefully 

randomizing the period of each cycle in the periodogram template, rendering it non-periodic. It has the same frequentist properties 
as a periodic signal template, and we show with simulations that the distribution of false positives is the same as with the original 
periodic template, regardless of the underlying data. Thus, performing a periodicity search with the NST acts as an ef fecti ve 
simulation of the null (no-signal) hypothesis, without having to simulate the noise properties of the data. We apply the NST 

method to the supermassive black hole binaries (SMBHB) search in the Palomar Transient Factory (PTF), where Charisi et al. 
had previously proposed 33 high signal-to-noise candidates utilizing simulations to quantify their significance. Our approach 

reveals that these simulations do not capture the complexity of the real data. There are no statistically significant periodic signal 
detections abo v e the non-periodic background. To impro v e the search sensitivity, we introduce a Gaussian quadrature based 

algorithm for the Bayes Factor with correlated noise as a test statistic. We show with simulations that this impro v es sensitivity to 

true signals by more than an order of magnitude. Ho we ver, the Bayes Factor approach also results in no statistically significant 
detections in the PTF data. 

Key words: methods: statistical – software: data analysis – quasars: supermassive black holes. 
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 I N T RO D U C T I O N  

etecting periodicity in time series data X is an important task in
any scientific applications, ranging from astronomy to economics. 

n the frequentist approach to hypothesis testing, one constructs a test
tatistic q( X), which is designed to be large only when a periodic
ignal is present in the data. F or e xample, for irre gularly sampled
ime series, the Lomb–Scargle periodogram score is a common test 
tatistic (Lomb 1976 ; Scargle 1982 ; VanderPlas 2018 ). For white
oise containing a sinusoidal signal, the Lomb–Scargle score equals 
he likelihood ratio between the signal and no-signal hypotheses. 
o we v er, for more comple x noise and signals the correspondence to

he likelihood ratio no longer holds, rendering it a sub-optimal test
tatistic. 

A test statistic is calibrated by its distribution under the null 
ypothesis, H 0 , i.e. the hypothesis that there is no signal Fisher
 E-mail: jakob.robnik@gmail.com 

t
e  

(  

2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whic
rovided the original work is properly cited. 
 1955 ). If the p-value = P ( q > q( X) | H 0 ) is not sufficiently small, a
ignal detection cannot be claimed. Typically, multiple simulations 
f the data under the null hypothesis are generated and the p-value
s estimated as the fraction of simulations for which q > q( X).
his approach is robust to the assumptions about the alternative 
 ypothesis, i.e. h ypothesis that the signal is present, and the choice
f the test statistic: sub-optimal choices result in a lower probability
f detecting the signal, but one still can be confident about the
alse positi ve probability. Ho we ver, the approach is not robust to
he assumptions about the null hypothesis. Realistic data sets are 
ften too complex to be accurately simulated (LIGO Scientific 
ollaboration et al. 2004 ; Ricker et al. 2015 ; Jenkins et al. 2017 ),
ften leading to an underestimation of the p-value, which in turn
eads to false detections (see for example Marchini et al. 2004 ;
tott, Stone & Allen 2004 ; Pont, Zucker & Queloz 2006 ; Price
t al. 2006 ). The situation is even worse if one attempts to reduce
he computational complexity and replace simulations with analytic 
stimates. F or e xample, the analytic e xpressions pro vided in Baluev
 2008 , 2013 ) are only valid for independent identically distributed
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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i.i.d.) Gaussian noise. Bayer & Seljak ( 2020 ) and Robnik & Seljak
 2022 ) proposed to estimate the p-value from the Bayes Factor, but
his is also sensitive to assumptions of the underlying model, since
he Bayes Factor depends on it. 

Data-driven approaches to quantify the p-value help to a v oid this
ssue. F or e xample, Bayer, Seljak & Robnik ( 2021 ) estimate the p-
alue of the highest peak in the periodogram using the secondary
eaks in the periodogram. An alternative is to directly use the
ata to create ef fecti ve null ‘simulations’. One such approach is
ootstrapping (Ivezic et al. 2019a ), where each permutation of
he measurements is treated as a different realization of the null.
o we ver, this approach is only valid if the null is composed of

ndependent and identically distributed data. 
In this work, we propose a no v el data-driv en approach for

uantifying the false positive probability in periodicity searches
ased on the modification of the periodic search template, rather
han the data. The null-signal template (NST) is constructed from
he periodic template by stretching and compressing the individual
ycles of the signal. NST will assign low significance to the real
periodic) signal, but will have the same statistical properties as the
riginal template on the null. Analysis with the null-signal template
an therefore be used as an ef fecti ve null simulation. This approach
as been used in other fields. For example, gra vitational wa ves trigger
 coincident detection across multiple detectors, with a small delay,
qual to the light crossing time between the detectors. Therefore, by
xing a large non-physical delay between the detectors, one can be
ure to find only false positives (LIGO Scientific Collaboration et al.
004 ). Their distribution is the same as the false positive distribution
n the original search with coincident detection, and thus the search
ith the modified delay can be used as a substitute for the null
ypothesis simulations. When applying the method to applications
uch as periodograms the challenge is to find NST that reproduces
he same false positive rate as the actual search, while also being
ufficiently orthogonal to the presence of true signals such that the
esulting false positive rate is only weakly affected by the possible
xistence of true signal in the data. 

We apply the method to the search for quasar periodicity, which
an signify the presence of sub-parsec super-massive black hole
inaries (SMBHBs). In recent years, systematic searches in large
amples of quasar light curves from time-domain surv e ys hav e
evealed around 150 candidates. For instance, Graham et al. ( 2015 )
dentified 111 candidates in a sample of around 250 000 quasars
rom the Catalina Real-time Transient Surv e y (CRTS), while Charisi
t al. ( 2016 ) identified 33 candidates among around 35 000 quasars
rom the Palomar Transient Factory (PTF). More recent searches in
he Panoramic Survey Telescope and Rapid Response System (Pan-
TARRS), the Dark Energy Surv e y (DES) and the Zwicky Transient
acility (ZTF) detected a few more candidate systems (Liu et al.
019 ; Chen et al. 2020 , 2024 ). For a detailed summary of the current
tatus of quasar periodicity searches, we refer the reader to Charisi
t al. ( 2022 ) and D’Orazio & Charisi ( 2023 ). Here, we apply our new
ethod to reassess the periodicity significance of the 33 SMBHB

andidates identified in PTF. 
In addition to the NST method, which is agnostic to the under-

ying noise properties, we also introduce some impro v ements to
he standard quasar periodicity detection methods, which typically
odel quasar variability as a damped random walk (DRW) (Kelly,
echtold & Siemiginowska 2009 ; Kozłowski et al. 2010 ; MacLeod
t al. 2010 ). Previous searches for quasar periodicity (Graham et al.
015 ; Charisi et al. 2016 ; Chen et al. 2020 ) used periodogram peaks
s their test statistic and then assessed the p-values of the detected
ignals with DRW simulations. Given that the underlying assumption
NRAS 534, 1609–1620 (2024) 
n the periodogram is uncorrelated white noise, this makes the choice
f this statistic sub-optimal, as the noise is correlated. In addition,
riors may also impro v e the search sensitivity, by focusing on the
egions of parameter space with higher prior. The posterior odds,
ften equi v alent to the Bayes Factor, are kno wn to be the optimal
est statistic (Zhang 2017 ; Fowlie 2023 ) in the sense that they
aximize the true positive rate (TPR) at a fixed false positive rate

FPR). Ho we v er, the Bayes F actor with correlated Gaussian noise
as been computed only for a few particularly interesting candidates
D’Orazio, Haiman & Schiminovich 2015 ; Vaughan et al. 2016 ; Zhu
 Thrane 2020 ). This is because the evidence integral is usually

omputed with sampling algorithms such as nested sampling (Zhu &
hrane 2020 ; Witt et al. 2022 ), which is computationally intensive.
ometimes a Bayesian information criterion (BIC) is used as an easy

o e v aluate substitute for the Bayes Factor (Liu, Gezari & Miller
018 ; Witt et al. 2022 ), but BIC does not take into account the
rior information and accounts for the look-elsewhere effect o v erly
implistically leading to a suboptimal analysis (Weakliem 1999 ). 

Exploiting the low dimensionality of the problem, we instead
ompute the Bayes Factor with a Gaussian quadrature scheme
Robnik & Seljak 2022 ), achieving the same accuracy as sampling
ethods at about three orders of magnitude lower computational

ost. Specifically, a single light-curve analysis with our code takes
round half a minute on a single CPU, while in Witt et al. ( 2022 ),
everal CPU hours were used. The speed-up enables the use of the
ayes Factor to search for periodicity in the entire quasar sample,
hich previously would have been prohibitive due to computational
emands. This can be scaled to the even larger samples in future
urv e ys, like the Rubin Observatory (Ivezic et al. 2019b ; Xin &
aiman 2021 ) or the Roman telescope (Haiman et al. 2023 ), which
ill detect millions of quasars. 
In Section 2 , we present the methodology of the no v el data-driv en

pproach to use null-signal templates to create ef fecti ve null simula-
ions. In Section 3 , we validate the method on synthetic light curves.
n Section 4 , we then present the impro v ements to the SMBHB search
n PTF data and apply the NST to calibrate the results. The code with
utorials is available at https:// github.com/ JakobRobnik/ periodax . 

 M E T H O D  

et us consider a time-series X, consisting of measurements { x i } N i= 1 ,
ith measurement errors { σi } N i= 1 , taken at times { t i } N i= 1 , where N 

s the total number of observations. Let T be the time span of the
ata (i.e the baseline of the light curve). The measurements x i are
omposed of noise n i and signal s( t i ), so that 

 i = s( t i ) + n i , (1) 

here the signal 

( t) = A u 

(
t 

P 

− φ

)
(2) 

s periodic, i.e. u ( x + k) = u ( x) for integer k. P is the period,
∈ [0 , 1) the phase, and A the amplitude of the periodic signal.

he standard periodogram corresponds to a simple sinusoidal signal,
 ( x) = sin { 2 πx} . Other examples include exoplanet transit searches,
here u ( x) is a U-shaped transit (Robnik & Seljak 2021 ), or more

omplex SMBHB signals, like sawtooth periodicity (Duffell et al.
020 ; Westernacher-Schneider et al. 2022 ) or periodically repeating
ensing flares (D’Orazio & Stefano 2020 ). 

We would like to know if a periodic signal is present in the data.
he strategy is to design some test statistic q( X). A popular test
tatistic for periodicity detection is the Lomb–Scargle periodogram

https://github.com/JakobRobnik/periodax
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Figure 1. An example of a sinusoidal signal template (teal) and the null 
sinusoidal template (orange) from equation ( 7 ). The individual cycles of the 
null-signal template are marked with arrows. 
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core: 

 LS ( X| s) = max 
A,P ,φ

N ∑ 

i,j= 1 

x i � 

−1 
ij x j − � i � 

−1 
ij � j (3) 

� i ≡ x i − s( t i | A, P , φ) , 

here � is the noise covariance matrix, which is diagonal in the
tandard white Lomb–Scargle periodogram, � ij = δij σ

2 
i , and only 

ccounts for the measurement errors. Another common test statistic 
s the likelihood ratio 

 LR = 2 log 
max z 1 p ( X | H 1 , z 1 ) 
max z 0 p ( X | H 0 , z 0 ) 

, (4) 

here z i are the parameters of the H i hypothesis. Lomb–Scargle 
core is a special case of the likelihood ratio, namely when the noise
s Gaussian and the null has no parameters. While the likelihood ratio
akes the ratio of the likelihoods at the optimal parameters, the Bayes
actor takes the ratio of the pieces of evidence: 

 = 

p ( X | H 1 ) 

p ( X | H 0 ) 
, (5) 

hich are the likelihoods averaged over the prior p ( X | H i ) =
 

p ( X | z i ) p ( z ) d z i . Finally, the posterior odds additionally weigh
he Bayes Factor with the prior odds, i.e. the ratio p ( H 1 ) /p ( H 0 ) that
a v ours the data sets where the signal is more probable a priori: 

p ( H 1 | X ) 

p ( H 0 | X ) 
= 

p ( X | H 1 ) 

p ( X | H 0 ) 

p( H 1 ) 

p( H 0 ) 
. (6) 

nce a test statistic is chosen, it is e v aluated on the data q( X) and
s compared to the distribution P ( q| H 0 ) under the null hypothesis.
f the observed value is very unlikely under the null, we can claim a
isco v ery. 
Here, we propose to estimate the null distribution by modifying 

he test statistic q( X ) −→ ̃

 q ( X ), such that the statistical properties of
oth statistics are the same under the null: 

 ( ̃  q | H 0 ) ≈ P ( q| H 0 ) , (C1) 

hile the modified statistic is only weakly triggered on the alternative 

 ( ̃  q | H 1 ) ≈ P ( ̃  q | H 0 ) � P ( q| H 1 ) . (C2) 

 test statistic satisfying Conditions ( C1 ) and ( C2 ) can be used as an
f fecti ve null simulation when applied to the real data, because it is
istributed according to P ( q| H 0 ), regardless of whether the data are
ctually from H 0 or H 1 . This is a purely data driven approach, and
oes not require any simulations to quantify the false positive rate. 
We construct ̃  q by perturbing the signal template of the alternative 

ypothesis H 1 , such that ˜ q ( X) = q( X| ̃  s ). F or e xample, ˜ q LR ( X) is
he ratio of the likelihoods, but the alternative hypothesis uses the 
erturbed template. The null-signal template ˜ s is the same as the 
riginal template on short time-scales, i.e. the period of the signal, 
ut differs significantly on time-scales comparable to the length of 
he light curve. The similarity of the templates on short time scales
nsure that q and ˜ q trigger similarly on the null signal, satisfying
ondition ( C1 ), while long-scale differences ensure that the o v erlap
etween the null-signal template and the original template is small, 
ence satisfying condition ( C2 ). This method thus naturally works
est when the number of signal cycles is large, but we provide an
dditional prescription which makes it valid with as few as two signal
ycles. 

There are multiple ways of modifying the template; in this work, 
e randomize the length of its cycles. The original template is
eriodic, so the n th cycle is the interval [( n − 1) P , nP ]. The null-
ignal template’s cycle n will have length P n , such that the n th
ycle now spans the interval [ 
∑ n −1 

k= 1 P k , 
∑ n 

k= 1 P k ]. Inside each cycle,
he null-signal template equals the stretched or contracted original 
emplate cycle. More formally, the null-signal template is 

 

 ( t) = A u 

(
t − t 0 ( t) 

P i( t) 
− φ

)
, (7) 

here i( t) ≡ max { j | ∑ j 

k= 1 P k < t} and t 0 ( t) ≡
∑ i( t) 

k= 1 P k . Note that,
his template is continuous if u is continuous, but it is not differen-
iable. An example of the null-signal template is shown in Fig. 1 in
range, while the original periodic template is shown in teal. 
It remains to select the lengths P n of cycles. The original template

quation ( 2 ) is a function of the signal period P , so an equi v alent of
he period must also be defined for the null-signal template equation
 7 ). Furthermore, the null-signal template must vary smoothly with
he period. We achieve this by requiring that the null-signal template
t period P has the same number of possibly non-inte ger c ycles as
he original template with period P , which is T /P . This amounts to
he following constraint 

 1 + P 2 + . . . P n + λP n + 1 = T = ( n + λ) P . (8) 

ere, the number of cycles is decomposed into integer and fractional
arts: T /P = � T /P � + frac ( T /P ) ≡ n + λ. The constraint from
quation ( 8 ) is satisfied if we pick 

 n = 

Tp n 

λp n + 1 + 

∑ n 

k= 1 p k 

, (9) 

here { p n } can be any positive numbers. For example, one could
se i.i.d. draws from the Gamma distribution which would result in
eriods being symmetrically Dirichlet distributed. We would like to 
 v oid the tails of the Gamma distribution so we pick the uniform
istribution, p n ∼ U(1 / 

√ 

3 , 
√ 

3 ). 
Having random periods can be problematic if the number of cycles

s very low, because all periods can become very similar to each other
y pure chance. Should this happen, the null-signal template would 
o longer have small overlap with the periodic template and would
iolate Condition ( C2 ). To prevent this from happening, we choose p n 

eterministically for low n . We define the fractional o v erlap between
wo templates as r( s test , s true ) = q LS ( s true | s test ) /q LS ( s true | s true ). This is
he ratio of the Lomb–Scargle scores that the template s test would
ssign to a signal which was actually generated by s true , relative
o the score that we would get using the periodic template s true .
mall values of the fractional o v erlap will ensure that Condition
 C2 ) holds. We can achieve this by optimizing the values p n . We
o this iteratively, starting with p 1 = 1 without loss of generality.
n the n th iteration, p 1 , p 2 , . . . p n have already been fixed. We take
he time span T = ( n + 1) P and optimize p n + 1 such that the o v erlap
( s true , s test ) is minimized. To make the optimized values more robust
o the possible gaps in the data, we try n different gap options,
MNRAS 534, 1609–1620 (2024) 
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M

Figur e 2. Lomb–Scar gle periodogram score with the null-signal template 
(NST) relative to the score with the periodic template, i.e. fractional overlap 
r( s NST , s periodic ). The data here are just the periodic template with no noise. 
Lower is better, because it ensures NST has small o v erlap with the periodic 
template and consequently obeys Condition ( C2 ). The red line corresponds 
to NST if all periods are drawn from the uniform distribution. The blue 
line uses the fixed first seven periods that minimize the overlap and random 

other periods, as described in Section 2 . Time sampling is 20 equally spaced 
points/cycle and the frequency grid for the NST is 1000 logarithmically 
spaced frequencies in the range [ P / 10 , 10 P ]. The solid lines are medians 
o v er two hundred NST period randomness realizations. The stronger and the 
weaker band correspond to 25–75 and 10–90 quantiles, respectively. As can 
be seen, the optimized periods (blue) correspond to the best possible case of 
the random periods (red) and reduce the o v erlap to 60 per cent even at only 
two signal cycles. 
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the x -axis (but with different scales for different time samplings), the dots 
indicate times where measurements are taken. From the top to the bottom: 
equally spaced, equally spaced with gaps, randomly spaced. The bottom row 

is an example PTF time sampling for a quasar SDSS J085037.61 + 201337.1. 
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ach co v ering one signal c ycle. The function that we then minimize
s r , maximized o v er the gap choice. To compute the o v erlap, we
se a sinusoidal template with an almost continuous time sampling
20 equally spaced points/cycle) and a dense grid for the periodic
emplate trial frequencies (1000 logarithmically spaced frequencies
n the range [ P / 10 , 10 P ]). We optimize for the first 7 p n and
ormalize them to unit average to match the scale of p n> 7 . These
re then fixed throughout the paper. Fig. 2 shows that this procedure
ields small o v erlaps, ev en when the time span of the data is not
uch larger than the period of the signal. 
Note that, this method only ensures that the fractional o v erlap

etween the periodic template and the NST is small, but not its
bsolute value. Therefore, the presence of a very large alternative
ypothesis signal can compromise the first equality in condition
 C2 ). In this case, it may be better to perform iterative analysis, such
s subtracting the best-fitting signal from the data and compute the
odified test statistic on residuals, otherwise the p-value estimate
ould be conserv ati ve. Either way this case is easy to identify, and
ill not be an issue for the current work, since as we will show no
eriodic signal candidates surpass the NST baseline. 

 VA LIDATION  

e now test Conditions ( C1 ) and ( C2 ) in a variety of synthetic exam-
les where exact null simulations can be performed and compared
o the NST ef fecti ve null simulations. The examples are chosen to
rovide some variety of noise properties and time samplings. We
onsider three different noise distributions: 

(i) i.i.d. standard Gaussian, 
(ii) i.i.d. Cauchy, 
(iii) correlated Gaussian with a DRW kernel, τ = T / 20, 
= 1 and measurement errors σi = 0 . 2. T is the time span of the

ight curve. 
NRAS 534, 1609–1620 (2024) 
with three different time samplings: 

(i) 1000 equally spaced observations, t k = k, 
(ii) equally spaced with some observations missing. We select four

arge regions where the data are missing and additionally indepen-
ently remo v e each measurement with 10 per cent probability. This
ime sampling somewhat resembles Kepler space telescope sampling
Jenkins et al. 2017 ) 

(iii) 1000 uniformly random sampled t k ∼ U(0 , 1). 

Time samplings are shown in Fig. 3 . For each of the 9 combinations
f time samplings and noise, we do 8192 simulations. For the
est statistic, we use the floating mean periodogram score from
ppendix A , maximized o v er the trial frequencies { k/T } N/ 2 

k= 1 . The
esulting cumulative distribution with the sinusoidal and the null
emplate are shown in Figs 4 and 5 . In Fig. 4 , we perform noise-only
imulations and show a perfect match between the two templates.
hus Condition ( C1 ) is satisfied and is not sensitive to the noise or

ime sampling properties. In Fig. 5 , we inject a sinusoidal signal in the
ata. In each realization, the signal phase φ ∼ U(0 , 1) and frequency
 /P ∼ U(1 /T , N/ 2 T ) are drawn from a uniform distribution. The
mplitude of the injected signal is chosen for each combination of
ime sampling and noise separately, such that it significantly perturbs
he distribution of the test statistic in Fig. 4 . On the injected sinusoidal
ata, the null-signal template (teal) gives a significantly lower score
o the periodic template (orange) and almost perfectly matches
he pure-noise simulations with the periodic template (black). This
eans that Condition ( C2 ) is also satisfied and as before is not

ensitive to the noise or time sampling properties. We will further
est these conditions in the next section with simulations tailored to
he SMBHB search in the PTF data. 

 SMBHB  SEARCH  IN  PTF  DATA  

.1 PTF light cur v es 

e extract quasar light curves obtained by PTF (Law et al. 2009 ) and
pply the same cuts as in Charisi et al. ( 2016 ) to obtain a sample of
5 383 spectroscopically confirmed quasars. An example of a typical
ime sampling is shown in Fig. 3 . 

Following Charisi et al. ( 2016 ), we model the null hypothesis as a
amped random walk (DRW) with additional Gaussian measurement
oise and a constant offset to represent the mean magnitude. A DRW
s a correlated Gaussian noise with covariance matrix 

 

( D R W ) 
ij = σ 2 e −| t i −t j | /τ , (10) 

here σ is the strength of the DRW noise and τ its correlation time.
e adopt a log-normal prior for both parameters, 

log σ ∼ N ( log 0 . 1 , 0 . 2) log τ ∼ N ( log 120 days , 0 . 9) , (11) 

ollowing fig. 9 from Charisi et al. ( 2016 ) and MacLeod et al.
 2010 ). The total noise is a combination of the DRW process and
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Figure 4. On noise-only simulations, the p-value with the null-signal template (coloured) agrees perfectly with the periodic template (black). A grid with all 
possibilities of time sampling and noise distribution from Section 3 is shown. This demonstrates that validity of Condition ( C1 ) is not sensitive to the noise 
and time sampling properties. Note the large case to case differences in the signal scores. The shaded bands are statistical one σ uncertainties due to the finite 
number of simulations, obtained with bootstraping. 

Figure 5. On noise with injected signal simulations, the score distribution with the null-signal template (teal) differs significantly from the periodic signal 
(orange) and matches almost perfectly the distribution with the periodic template on noise-only simulations (black). This demonstrates that validity of Condition 
( C2 ) is not sensitive to the noise and time sampling properties. A grid with all possibilities of time sampling and noise distribution from Section 3 is shown. 
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he measurement noise, thus the total covariance matrix is 

 ij = � 

( D R W ) 
ij + σ 2 

i δij . (12) 

We first remo v e the outliers as follows: we identify the data point
 as an outlier if it deviates from the Gaussian Process (GP) fit to the
ata by more than 3 standard deviations, 

 x i − μGP ( t i ) | > 3 
√ 

σ 2 
i + σ 2 

GP ( t i ) , (13) 

here μGP and σ 2 
GP are the GP posterior mean and variance,

espectively. We take the GP with the kernel from equation ( 12 )
ith fixed σ = 0 . 1 and τ = 100 d. We iteratively fit the GP to the

ight curves and identify the outliers for each new fit, repeating the
rocedure 5 times. We then bin together the observations taken on
he same night, as in Charisi et al. ( 2016 ). 

.2 Signal prior 

he alternative hypothesis ( H 1 ) is a sinusoidal signal with period P .
n the quasar reference frame, the period is expected to be distributed
s p( P RF ) ∝ P 

α
RF , with α = 8 / 3, assuming that SMBHBs are inspi-

aling on circular orbits and their evolution is driven by gravitational
aves only (Haiman, Kocsis & Menou 2009 ). The observed period

s related to the reference frame period by P = P RF (1 + z), where
 is the redshift of the quasar. Therefore, the observed period is
lso distributed as p( P ) ∝ P 

α . We will enforce an upper limit on
he period of P < P cut = T /n min to ensure that at least a minimal
umber of signal cycles n min = 2 are observed, otherwise periodicity
etection cannot be claimed. Note that, previous searches imposed
 more relaxed requirement of only 1.5 cycles, which may also
ontribute to the detection of false positives. 

The probability that a given quasar has a signal with a period in
he desired range of 0 < P < P cut is 

 ( H 1 ) ∝ 

∫ P cut / (1 + z) 

0 
p( P RF ) d P RF ∝ 

P 

α+ 1 
cut 

(1 + z) α+ 1 
, (14) 

here P cut / (1 + z) is the period cutoff translated to the quasar ref-
rence frame. The prior odds P ( H 1 ) /P ( H 0 ) penalizes quasars with
arger redshift and shorter data span, because the required number of
bserv ed c ycles limits the allowed observ ed period which translates
o a smaller range of reference-frame periods. The proportionality
onstant in equation ( 14 ) further depends on quasar’s brightness,
ecause brighter quasars with more massi ve putati ve binaries chirp
aster, and so spend less time at some fixed period (Peters 1964 ). We
ill ignore this effect here and assume the proportionality constant

s the same for all quasars. We will fix this constant to a value
hat ensures 

∑ 

i P ( H 1 | quasar i ) = 

∑ 

i P ( H 0 | quasar i ). This is in line
ith the standard practice in hypothesis testing, i.e. that no hypothesis

s preferred a priori. The choice of the constant has no effect on the
osterior odds as a test statistic, because it just shifts all scores
y a constant. Finally, to make the prior smooth at the edges, we
ultiply p( log P ) by the cosine-tapered window which has a value

f 1 for P < P min / 1 . 2 and 0 for P > P min . This makes it easier
o maximize the posterior density during the computation of the
ayes Factor and also better aligns with our prior beliefs, which
ictate a smooth prior. For the phase, we adopt the uniform prior
∼ U(0 , 1). For the amplitude, we also adopt the uniform prior, but

o not specify its upper bound and ignore the trials factor associated
ith the amplitude. This only amounts to a constant shift of the test

tatistic which has no rele v ance for the Bayes Factor as a test statistic
Robnik & Seljak 2022 ). 
NRAS 534, 1609–1620 (2024) 
.3 Test statistics 

e try several test statistics: 

(i) Standard (uncorrelated) peridogram score, equation ( 3 ). 
(ii) Likelihood ratio, equation ( 4 ) 
(iii) Bayes Factor, equation ( 5 ) 
(iv) Posterior odds, equation ( 6 ) 

We show how these can be efficiently computed in Appendices A
nd B . In Fig. 6 , we show the receiver operating characteristic (ROC)
urve for these test statistics. For this, we generated mock light
urves by taking the PTF quasar data, described in Section 4.1 and
eplacing the magnitude measurements with realizations of DRW,
hose parameters are drawn from the prior, as in equation ( 11 ). A

ignal with amplitude A = 2 σ and phase and period drawn from
he priors in Section 4.2 is randomly injected in some light curves.
he signal is injected according to the prior odds, so in around
alf of the light curves, but with higher probability where the prior
dds are larger. To compute the ROC curve for a given test statistic,
he detection threshold is varied and at each value the fraction of
eco v ered true signals (i.e. true positive probability) is plotted against
he fraction of identified false signals (i.e. false positive probability).

Fig. 6 shows that the posterior odds (yellow) are optimal in the
ense that they maximize the true positive probability at a fixed
alse positive probability. This is the content of the Neyman–Pearson
emma for the composite hypothesis (Zhang 2017 ; Fowlie 2023 ), so
e have here numerically confirmed it. Posterior odds are almost

ndistinguishable from the Bayes Factor (teal), meaning that the
rior odds do not play a significant role in this application. The
ikelihood ratio (orange), which accounts for the correlated noise,
ut does not marginalize o v er the unknown parameters and does not
ake into account the prior distribution, closely follows the posterior
dds and the Bayes Factor but is slightly less optimal. The standard
eriodogram score (red), which assumes white noise, is significantly
uboptimal: at 0.001 false positive probability, it has a 20 times
ower chance of detecting a periodic signal, because it needs a higher
etection threshold to keep the number of false positives low. Most
f the false positives arise from the correlated signal of the quasar
ight curves, which this test statistic ignores. 

The tak e-aw ay message is that the detection efficiency benefits
ignificantly from incorporating the noise correlations in the test
tatistic. Because the Bayes Factor and posterior odds perform almost
dentically and the Bayes Factor is the standard choice, we will use
he Bayes Factor in the remainder of the paper. Note that, one would
ot benefit significantly in terms of computational cost by using
he likelihood-ratio instead. This is because the Gaussian quadrature
ntegration is cheaper than the optimization, which is needed to
dentify the optimal parameters and is needed for both test statistics.

.4 Null-signal template validation 

ext, we repeat the test for Conditions ( C1 ) and ( C2 ), as in Section 3 ,
ut specifically for the SMBHB search in PTF. For this, we take
he PTF light curves from Section 4.1 and replace the magnitude

easurements with realizations of DRW, whose parameters are
rawn from the prior in equation ( 11 ). These light curves serve
s simulations of the null hypothesis H 0 . As explained in 4.3 , we
hen use the Bayes Factor as our test statistic. In Fig. 7 , we show
hat the p-value computations with the periodic signal template
black) and the null-signal template (brown) agree perfectly, thus
emonstrating Condition ( C1 ). We also inject a sinusoidal signal in
ll light curves, with properties as in the previous section, i.e. with
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Figure 6. True positive probability as a function of false positive probability (ROC curve) for the periodicity search in the PTF data is shown for the test 
statistics from Section 4.3 . The shaded regions are 1 σ confidence bands obtained by bootstrapping. The posterior odds and the Bayes Factor perform best and 
are closely followed by the log-likelihood ratio. White periodogram score performs much worse. 

Figure 7. Cumulative number of detections as a function of the Bayes Factor 
test statistic on a simulation of the SMBHB search in PTF data. On noise-only 
simulation (DRW), the null-signal template (brown) and the periodic template 
(black) match perfectly, thus Condition ( C1 ) is satisfied. On simulations of 
the noise with injected signal, the null template (orange) yields significantly 
lower scores than the periodic template (red) and matches the noise-only 
simulations. Thus Condition ( C2 ) is also satisfied. 
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n amplitude of A = 2 σ , and phase and period drawn from their
rior (Section 4.2 ). These light curv es serv e as simulations of the
lternative hypothesis H 1 . Fig. 7 shows that the NST distribution
orange) produces significantly lower scores than the periodic signal 
red), and thus Condition ( C2 ) is satisfied. 

.5 Results 

inally, we apply all the proposed impro v ements for the periodicity
earch in the PTF light curves. In Figs 8 and 9 , we show the results of
his periodicity search, respectively using the Bayes Factor and white 
eriodogram score as the test statistic. All the 33 SMBHB candidates 
roposed in Charisi et al. ( 2016 ) achieve log B < 11, so they are no
onger among the top candidates when the Bayes Factor is used as
 test statistic. The top ranking candidates achieve log B > 20. The
wo test statistics are not highly correlated, especially in the tails:
igh value of the Bayes factor does not imply a high value of the
hite periodogram score, as shown in the right panel of Fig. 9 . This

s because the Bayes factor is considerably better at not triggering on
he correlated noise and achieves a higher detection sensitivity. The 
mpact on the detection results is significant. 

Based solely on the raw Bayes Factor values, one might be
nclined to confirm the top candidates, as even after accounting 
or the multiplicity of trials, B ≈ exp 20 / 35383 ≈ 10 4 , where we
ave treated all quasars equally. This is much larger than 100, a
ecisi ve e vidence limit by the Jeffrey’s interpretation scale (Jeffreys
998 ). Similarly, 100 DRW noise-only simulations of the entire data
et analysis yield significantly lower scores than the results on the
eal data, see Fig. 8 . DRW kernel parameters were drawn from the
rior. This would suggest the p-value for these candidates is below 1
er cent. 

Ho we ver, both of these approaches suffer from poor modelling of
he null hypothesis. This is demonstrated with the NST method, 
hich is more robust and agnostic to the assumptions for the
nderlying noise. Bayes Factors and white periodogram scores, esti- 
ated with the NST, reveal that there are no statistically significant

eriodicity detections, compared to the non-periodic background. 
ST reveals much higher Bayes Factors than DRW simulations, 
emonstrating that the latter are a poor representation of the real
ariability of quasars. 

In fact, NST yields higher Bayes Factor scores than the periodic
emplate, demonstrating that there might be even more non-periodic 
han periodic signal data. In other words, a non-periodic signal would
ave been a better alternative hypothesis than a periodic signal. 
In contrast, by injecting a periodic signal in the real data, we show

n Fig. 10 that the periodic template would trigger a significantly
igher detection than the NST. As a signal model, we take the top
0 quasars from Fig. 8 . The reason why these quasars rank so highly
ight be some corruption of their data, so we extract the optimal

ignal from these quasars and inject them in 30 among the lower
anking quasars, which will here act as realistic null simulations. To
nsure that the signal is injected in a similar environment, we select
his second set of 30 quasars to match the original quasars in terms
f the time span of the data, number of observational nights, and
MNRAS 534, 1609–1620 (2024) 
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M

Figure 8. The results of SMBHB search in PTF data. Cumulative count of detections as a function of the detection threshold is shown. The periodic template 
results (teal) are to be compared with the null-signal template results (orange), which act as a null simulation. Detection does not exceed the null baseline, 
so a disco v ery cannot be claimed. In contrast, DRW simulations (black) yield significantly lower scores, which w ould lead to a f alse signal claim. We have 
performed 100 simulations of the entire data set analysis and sorted the candidates in each analysis by their score. The percentiles are then computed for each 
rank separately. 

Figure 9. Left: The results of SMBHB search in PTF data with the standard white Lomb–Scargle periodogram test statistic q LS from equation ( 3 ). The 
cumulative count of detections as a function of the detection threshold is shown. The periodic template results (teal) are to be compared with the null-signal 
template results (orange), which act as a null simulation. Periodic template results do not exceed the null baseline in a statistically significant manner, so a 
disco v ery cannot be claimed. The confidence regions are the quartiles obtained by bootstrapping. Here, even the (100) DRW simulations come very close to the 
null signal template results, showing that the majority of false positives are a result of the test statistic not incorporating the DRW noise. Right: the correlation 
between the white periodogram score and the Bayes factor for all the quasars, using the periodic template. Two test statistics are not highly correlated, especially 
in the tails: a high value of the Bayes factor does not imply high value of the white periodogram score. In particular, the candidate with the highest white 
periodogram score (marked in red) causes a slight deviation between the NST and periodic template results in the left panel, but has a low value of the Bayes 
factor. Thus, it is most likely caused by DRW not being properly modelled in the white periodogram. 
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arameters of the DRW kernel. We are able to match all of these
arameters to less than 10 per cent deviations in 90 per cent of cases.
e thus obtain 30 simulations of the alternative hypothesis which

re similar to the claimed SMBHB candidates. We then analyse these
ata sets both with the periodic template and the NST. Fig. 10 shows
hat the NST gives lower scores than the periodic template, so such
n SMBHB population would have been detectable if it were present
n the real data. 

Thus whatever the source of the NST giving a higher Bayes Factor
han the periodic signal is, it cannot be caused by the presence of
NRAS 534, 1609–1620 (2024) 
eal periodic signal in the data, as it would cause an opposite effect
o what we found. It is ho we ver possible that the NST signal being
bo v e the periodic signal is caused by the presence of quasi-periodic
ignals in the data that have templates similar to the NST. Ho we ver,
nvestigating this hypothesis would require a more detailed analysis
hich is beyond the scope of this paper, where we only focus on
eriodic signals. 
In appendix C , we additionally show that one can make the

ST template more similar to the periodic template, such that
oth trigger indistinguishably on the real data, and yet the periodic
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Figure 10. A demonstration that the null-signal template gives a lower 
significance to the periodic signal. The signal from the top 30 quasars from 

Fig. 8 is taken and injected in the light curves of 30 other similar quasars, as 
described in Section 4.5 . We thus obtained a simulated data set with properties 
similar to the claimed SMBHB candidates. We analyse this data set both with 
the periodic template (teal) and the null-signal template (orange). We show 

that NST gives lower scores than the periodic template, so such an SMBHB 

population would have been detectable. 
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emplate triggers more significant detections than the NST template 
n periodic template injections. This test further reinforces the 
tatement that there are no periodic detections abo v e the non-periodic
ackground. 
In Fig. 11 , we show 5 light curves with the highest Bayes Factor,

oth with the periodic and the null-signal template. In most cases, 
he light curves are similar, suggesting the periodic candidates are 
alse positives. 

 SUMMARY  

e proposed a no v el method to impro v e the accuracy of detecting
eriodic signals in complex time series data by modifying the 
eriodogram template to create a non-periodic null-signal template 
NST). Since anything detected by the NST is by default a false pos-
ti ve, this allo ws us to use the real data as ef fecti ve null simulations,
 v oiding the need for potentially inaccurate data simulations. This is
igure 11. Top: 5 quasars with highest Bayes Factors for the SMBHB periodic sig
s measured relative to MJD 54 903 d. Bottom: same, but with the NST. Both per
ight curves, i.e. leaving no systematic residuals. Their significance appears similar,
ackground cannot be claimed. 
articularly useful in fields like astronomy, where the data complexity 
nd the noise patterns are challenging to model accurately. 

We validated our method through synthetic examples and applied 
t to the search for quasar periodicity, which have been suggested
o track the presence of SMBHBs, in ∼35 000 quasar light curves
rom PTF. Our results showed that NST provides a robust estimate
f the false positive rate, and revealed that previously proposed 
MBHB candidates are likely false positives. The false positive 
ate in previous analyses was likely underestimated due to the 
ssumption of DRW variability; simulations of DRW light curves 
annot reproduce the NST distribution, which indicates that the DRW 

odel may be a limited description of quasar variability, for example
hat its correlation time may be longer than expected, or that the
istribution is non-Gaussian. Since all the systematic searches for 
uasar periodicity to date assume DRW model for quasar variability 
Graham et al. 2015 ; Liu et al. 2019 ; Chen et al. 2020 , 2024 ), many of
he identified candidates in these searches may also be false positives,
nd would need to be validated with the NST method. We plan to
pply our method to light curves from other surv e ys, like CRTS and
TF. 
Additionally, we compared several test statistics (periodogram 

core, Bayes Factor, posterior odds, and log likelihood ratio). We 
emonstrated that the Bayes Factor (and posterior odds) outperform 

he periodogram score, enhancing the sensitivity of periodicity 
earches by a factor of 20. This indicates that including the correlated
oise in the test statistic is beneficial. In the future work, the test
tatistic could have been impro v ed further, by computing the Bayes
actor against the true null hypothesis, which is not captured by
RW, as suggested by our results. 
We also introduced a faster algorithm for computing the Bayes 

actor of sinusoidal SMBHB signals against the DRW quasar noise, 
nabling its application to large data sets, like the upcoming LSST
f the Rubin Observatory. 
Looking towards future applications of NST, it is worth repeating 

he analysis with non-sinusodial periodic templates, as well as 
ith quasi-periodic templates. The challenge of these applications 

s again to find NSTs that satisfy conditions C1 and C2 . Fur-
hermore, while we have applied NST to a problem concerning 
MBHB, the method will be useful in any application where 
ne is searching for periodic signals, for example in exoplanet 
MNRAS 534, 1609–1620 (2024) 

nal hypothesis. Time series data and the best-fitting models are shown. Time 
iodic and NST templates visually appear a good fit to their corresponding 
 reaffirming the statement that periodicity detection abo v e the quasi-periodic 
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PPENDI X  A :  P E R I O D O G R A M  A S  A  M AT C H E D  

ILTER  

he likelihood of the Gaussian data under the null hypothesis is 

− 2 log p( x | �) = x T � 

−1 x + log det 2 π� (A1) 

nd 

− 2 log p( x | z , �) = −2 log p( x − s ( z ) | �) (A2) 

nder the alternative hypothesis. � is the noise covariance matrix
hich we will assume to be known in this section. z are the parameters
f the signal. Let the signal depend on the first M parameters linearly,
e will call these parameters the amplitudes and denote them by a .
he signal template is then of the form 

s = 

M ∑ 

i= 1 

a i s i ( z >M 

) ≡ a i s i ( z >M 

) . (A3) 

s in the second step, Einstein’s convention will be used from now
n: whenever there are repeated indices, the sum 

∑ M 

1 is implied. 
We are mainly be interested in the floating mean periodogram,

here 

s 1 ( t) = sin 2 π t/P (A4) 

s 2 ( t) = cos 2 π t/P 

s 3 ( t) = 1 

nd z 4 = P is the period of the signal. 
We would like to maximize the log-likelihood ratio between the

wo hypotheses 

χ2 = 2 log p ( x | z , �) /p ( x | �) = 〈 x | x 〉 − 〈 x − s | x − s 〉 , (A5) 

here we have introduced a scalar product 〈 x | y 〉 = x T � 

−1 y . Let’s
efine the metric 

 ij = 〈 s i | s j 〉 (A6) 

nd its inverse g ij , such that g ij g jk = δi 
k . We only consider problems

ith a low number of linear parameters, so inverting the metric is
heap. Let’s define the components of the data along the signal
ectors as 

 i = 〈 x | s i 〉 . (A7) 

ith this notation the score is 

χ2 = 2 a i x i − a i a j g ij . (A8) 
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Maximization o v er the linear parameters can be performed ana- 
ytically: 

∂ �χ2 

∂ a i 

∣∣∣∣
̂ a 

= 2 x i − 2 g ij ̂  a i = 0 , (A9) 

hich gives the optimal amplitudes 

 

 

i = g ij x j . (A10) 

he score �χ2 at the optimal parameters is 

χ2 = 2 g ij x i x j − g ij g kl x j x k g ik = g ij x i x j . (A11) 

his is the matched filter: the data are matched against the templates
 i and inverse weighted with the noise power, here included in the 
efinition of the scalar product. Most of the searches to date ignore
he inverse covariance matrix weighting, resulting in a sub-optimal 
atched filter analysis. 
The strategy for finding the optimal parameters z is to compute 

he score from equation ( A11 ) on a grid of non-linear parameters and
dentify the highest score. 

The main cost of equation ( A11 ) is in computing the scalar
roducts 〈 ·| ·〉 . If noise is stationary with measurements taken on a
egular grid, the computation can be simplified significantly, but we 
o not make these assumptions here. The scalar product is computed 
s 〈 u | v 〉 = u · ˜ v , where · is the standard scalar product and ˜ v is
he solution of the linear system � ̃

 v = v . Since the covariance
atrix is positive definite, we can decompose it using a Cholesky

ecomposition as � = LL 

T , where L is lower triangular. Once the
holesky decomposition is computed, solving the linear system is 
asy: first one solves L v ′ = v for v ′ and then L 

T ˜ v = v ′ for ̃  v . 

PPENDIX  B:  EFFICIENT  BAY ES  FAC TO R  

O M P U TAT I O N  

he difficulty in computing the Bayes Factor (equation 5 ) is in doing
he evidence integrals 

 ( X | H i ) = 

∫ 
p ( X | z i ) p ( z ) d z i . (B1) 

inear parameters have a Gaussian posterior so can be integrated 
ut of equation ( B1 ) analytically. They contribute a constant that
epends only on the prior volume of the linear parameters and will
herefore be irrele v ant if the Bayes Factor is not taken at a face
alue, but as a test statistic (Robnik & Seljak 2022 ). What remains
s therefore to integrate over the non-linear parameters at optimal 
mplitude parameters a ( x , z >M 

): 

˜ 
 ( x| H 1 ) = 

∫ 
p( x | ̂  a ( x , z >M 

) , z >M 

) p( z >M 

) d z >M 

. (B2) 

ecause the number of non-linear parameters is low, we can a v oid
he cost of MCMC by using the Gaussian quadrature scheme. Our 
trategy is to find the parameters which maximize the posterior 
ensity and compute the Hessian of the ne gativ e log posterior at those
arameters. This is the Lapalace approximation to the posterior. It 
s used to set out the Gaussian quadrature scheme and integrate the
osterior (Robnik & Seljak 2022 ). In Section 4 , the null has two non-
inear parameters and the alternative has one additional non-linear 
arameter. We will use quadrature schemes of order 6 and 7 from
troud & Secrest ( 1963 ). We have compared these computations
ith pocoMC (Karamanis et al. 2022 ), which is a state of the art
CMC method. Both methods agree to within the MCMC error but

uadrature uses 12 log-posterior e v aluations in two dimensions and
7 e v aluations in three dimensions, while pocoMC uses 2 × 10 5 in
ts default setting and still several thousand calls if specialized to the
imple low dimensional targets. 

Thus, the procedure for computing the Bayes Factor is 

(i) Maximize the null log-posterior to find the optimal parameters 
f the null and the Hessian at the peak. 
(ii) Using the Gaussian quadrature scheme, compute the evidence 

or the null. 
(iii) Take the optimal null parameters in the matched filter pe- 

iodogram from Section A and find the optimal parameters of the
lternative hypothesis. 

(iv) Maximize the alternative hypothesis log-posterior over all pa- 
ameters of the alternative hypothesis (including the null parameters). 

(v) Using the Gaussian quadrature scheme, compute the evidence 
or the alternative. 

PPENDI X  C :  I NTERPOLATI ON  F RO M  T H E  

U L L  TO  T H E  PERI ODI C  TEMPLATE  

n Fig. 8 , we saw that the NST yields higher scores than the periodic
emplate. This suggests that there is more non-periodic than periodic 
eatures in the data. As an additional test, we here make the NST
erturbation from periodicity less drastic. We introduce a family 
f null-signal templates, parametrized by the mixture parameter β. 
STs in this family are of the form described in Section 2 and have 

 n = β p 

(optimal) 
n + (1 − β) , (C1) 

here p 

(optimal) 
n are the values from Section 2 . Thus, this family

moothly interpolates between the periodic template ( β = 0) and the
ST from Section 2 ( β = 1). In Fig. C1 , we reanalyse the real data

equi v alent of Fig. 8 in the main text) and real data with injected
ignal (equi v alent of Fig. 10 in the main text) with NST that has
= 0 . 2. The real data analysis shows that the NST gives the same

est statistic distribution as the periodic template. The injected data 
emonstrates that if the periodic signal is present in the data, NST
ields lower scores. 
MNRAS 534, 1609–1620 (2024) 
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Figure C1. Detection count as a function of the Bayes Factor detection threshold. Left: periodic template and the null-signal template are compared on real 
data, as in Fig. 8 , but with the addition of the β = 0 . 2 NST. β = 0 . 2 template yields a distribution which is practically indistinguishable from the distribution 
with the periodic template. Right: same but with periodic signal injection in the real data, equi v alent to Fig. 10 . Even at β = 0 . 2, NST yields noticeably lower 
scores than the periodic template, so such a population of periodic signals would have been detectable. 
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