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Abstract

Recent studies have demonstrated that tissue homeostasis and metabolic function are dependent on 

distinct tissue-resident immune cells that form functional cell circuits with structural cells. Within 

these cell circuits, immune cells integrate cues from dietary contents and commensal microbes 

in addition to endocrine and neuronal signals present in the tissue microenvironment to regulate 

structural cell metabolism. These tissue-resident immune circuits can become dysregulated during 

inflammation and dietary overnutrition, contributing to metabolic diseases. Here, we review the 

evidence describing key cellular networks within and between the liver, gastrointestinal tract, and 

adipose tissue that control systemic metabolism and how these cell circuits become dysregulated 

during certain metabolic diseases. We also identify open questions in the field that have the 

potential to enhance our understanding of metabolic health and disease.

Abstract

Tissue-resident immune cell interactions with structural cells in metabolic organs influence 

systemic metabolism in health and disease. Li, Hepworth, and O’Sullivan review the key tissue-

resident immune cell circuits that regulate metabolic homeostasis in the liver, gastrointestinal tract, 

and adipose tissue to provide insight into how these circuits communicate between metabolic 

organs to regulate systemic metabolism.

*Correspondence: Timothy E. O’Sullivan, PhD, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, 
BSRB 245F, Los Angeles, CA 90095, Phone: 310-825-4454, tosullivan@mednet.ucla.edu.
#Lead Contact

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Declaration of Interests
The authors declare no competing interests.

HHS Public Access
Author manuscript
Immunity. Author manuscript; available in PMC 2024 June 13.

Published in final edited form as:
Immunity. 2023 June 13; 56(6): 1168–1186. doi:10.1016/j.immuni.2023.05.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Single cell sequencing and spatial transcriptomics studies have changed our perception 

of mammalian organs from structural cell-dominated tissues into complex heterogeneous 

cellular networks incorporating a layered tissue-resident immune system. These studies 

have revealed the interactions between neighboring cells that constitute local tissue niches 

and provide important regulatory signals that dictate cell state, metabolic function, and 

orchestrate organ-wide cellular processes. These combined with functional studies in mice 

have revealed a key role for immune cells in the maintenance of tissue homeostasis1–6. 

Therefore, current evidence suggests that the immune system, in contrast to its classically 

defined role in pathogen defense, is critical for the homeostasis and function of metabolic 

tissues.

We propose that the complete understanding of systemic metabolic homeostasis requires 

deep characterization and validation of tissue-resident immune and structural cell 

interactions that regulate metabolic function locally and systemically. We focus on three 

organs that play important roles in the regulation of systemic metabolism (liver, adipose, 

and gastrointestinal tract), and review the evidence describing tissue-resident cellular circuits 

within and between these organs that act in concert to promote systemic metabolism, or 

that are dysregulated during metabolic diseases. We also identify open questions in the field 

focusing on the regulation of these cell circuits. A network-based approach to systemic 

tissue metabolism will provide the context necessary to interpret metabolic disruptions 

driven by cell type-specific perturbations, providing insight into both mechanisms of 

systemic metabolic homeostasis and the signaling networks that must be restored during 

metabolic diseases.

Liver

The liver plays a key role in regulating metabolic and hormonal balance, systemic immune 

activation, and detoxification of circulating blood. As a primary site of gluconeogenesis, 

glycogen storage, and lipolysis, liver function is critical for the maintenance of systemic 

metabolic homeostasis. Liver metabolism is largely orchestrated by hepatocytes, which 

regulate blood glucose levels in response to insulin by increasing circulating glucose 

through gluconeogenesis or storing it in the form of glycogen7. Hepatocytes also store or 

release triglycerides through a dynamic process of lipogenesis and lipid droplet synthesis, 

frequently in interplay with the uptake or release of triglycerides from the adipose tissue8. 

Disruption of these processes upon liver injury results in both local and systemic metabolic 

dysfunction in settings such as metabolic-associated fatty liver disease (MAFLD) or 

metabolic syndrome, as hepatic lipid accumulation results in the failure of insulin receptor 

signaling and subsequent systemic pathology7,8.

Hepatocyte metabolism is spatially heterogeneous across the liver lobule. The liver 

parenchyma is classically divided into hexagonal lobules of hepatocytes bordered by 

portal triads (hepatic artery branch, portal vein branch, and bile ductule) and surrounding 

a central vein9. Lobules are functionally zonated into periportal, intermediate, and 

pericentral zones. Liver zones experience differential gradients of nutrients, morphogens, 
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and immunomodulatory molecules that integrate to influence zonal hepatocyte metabolism9. 

For example, periportal hepatocytes express higher levels of enzymes responsible for 

gluconeogenesis (glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase 

(PEPCK)) in addition to fatty acid oxidation compared to pericentral hepatocytes displaying 

enriched expression of glycogen and fatty acid synthesis enzymes10. These hepatocytes 

are additionally supported by stromal cells including hepatic stellate cells (HSCs) and 

liver sinusoidal epithelial cells (LSECs) which metabolize and store molecules such as 

vitamin A. Alongside a variety of structural cells and heterogeneous hepatocytes, unique 

liver-resident immune cells conserved between human and mouse livers have been identified 

by recent single-cell RNA sequencing and mouse parabiosis studies: Kupffer cells (KCs), 

plasmacytoid (pDC) and conventional type 1 (cDC1) and type 2 (cDC2) DCs, tissue resident 

αβ and γδ T cells, mucosal-associated invariant T cells (MAITs), and innate lymphoid 

cells (ILCs)11–25. In this section, we will discuss current evidence supporting how structural 

and liver-resident immune populations form distinct cellular circuits to regulate metabolic 

homeostasis (Figure 1).

Hepatocytes maintain systemic glucose homeostasis by acting as a major glycogen store 

and balancing glucose storage and breakdown, a critical role that can be controlled by 

tissue-resident immune cells. IL-6 and IL-1β regulate hepatic glycogen storage by inhibiting 

hepatocyte glycogen synthase and activating glycogen phosphorylase26. IL-6 can also inhibit 

expression of hepatocyte gluconeogenesis enzymes such as glucose-6-phosphatase (G6PC) 

via STAT3 signaling. However, both chronic IL-6 exposure or liver-specific loss of STAT3 

result in insulin resistance due to increased glucose breakdown27–31. While elevated levels 

of IL-6 in circulation may originate from the adipose tissue during obesity32, liver-resident 

sources of these cytokines (including KCs and cDC1s33,34) may also form an active 

circuit with hepatocytes to control insulin-stimulated glycogen deposition. Particularly in 

the periportal region, highly abundant KCs and hepatic DCs may control the local cytokine 

milieu to regulate gluconeogenesis and glycogen synthesis in periportal hepatocytes already 

enzymatically poised for glucose breakdown. Increased levels of proinflammatory IL-6 

during obesity or type 2 diabetes may preferentially engage this periportal circuit to disrupt 

glucose homeostasis.

IL-13 has also been suggested to influence hepatocyte metabolism through STAT6 signaling, 

as IL-13-deficient mice become hyperglycemic and insulin resistant due to increased 

gluconeogenesis enzyme expression35. Hepatocyte stimulation with IL-13 was also found 

to decrease hepatocyte lipid droplet accumulation through STAT6 activation36, suggesting 

that IL-13 may be broadly advantageous for maintaining hepatocyte metabolic homeostasis. 

IL-25 treatment was sufficient to protect against diet-induced hepatic steatosis by inducing 

ILC2 responses and activating IL-13/STAT6 signaling36. Subsequent studies confirmed that 

liver ILC2s are a major source of IL-13, capable of suppressing hepatocyte G6PC expression 

and subsequent gluconeogenesis37. Further characterization of a hepatocyte-ILC2 circuit, 

including other non-hepatocyte sources of IL-25 or IL-33, may reveal additional regulators 

of protective hepatocyte IL-13 signaling. For instance, IL-25 can be expressed by Th2 cells 

or circulating CD4+ or CD8+ T cells upon tissue insult38,39.
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Hepatic lipid processing can additionally be modulated by IL-17A signaling. Despite 

gaining more body weight and WAT mass upon high fat diet (HFD) administration, 

IL-17RA−/− mice were ultimately protected against obesity-induced insulin resistance, end-

organ damage, and steatohepatitis40. A separate study found that IL-17A and free fatty acid 

exposure in culture disrupted AKT and IRS-1 activation downstream of insulin signaling and 

exacerbated steatosis, while also stimulating IL-6 production and activation of Th17 cells41. 

IL-17RA-deficient hepatocytes have also been found to decrease cholesterol synthesis after 

induction of steatosis42. In the absence of diet-induced inflammation, homeostatic levels 

of IL-17A may act to tune local hepatocyte lipid accumulation and insulin responsiveness. 

Liver-resident sources of IL-17A can include γδ T cells, MAIT cells, and ILC3s43, though 

the source of activating signals for these cell types requires further study. In other settings, 

DCs secrete IL-23 to activate IL-17 responses including during hepatitis B infection44–47, 

suggesting that a hepatic cDC-type 3 lymphocyte-hepatocyte circuit may regulate hepatocyte 

lipid homeostasis. MAIT cells have been found to exhibit less spatial preference for the 

periportal zone than other resident lymphoid cells and instead are distributed more evenly 

throughout the liver lobule, suggesting that they may interact with lipogenic hepatocytes 

in the pericentric zone48. Collectively, these findings suggest that hepatic metabolism 

can be directed by local immune networks in a spatially distinct manner, consistent 

with the observed functional zonation of the liver. Further functional experiments will be 

needed to validate these potential immune regulatory circuits controlling liver parenchyma 

metabolism.

Due to the liver’s extensive exposure to circulating toxins and metabolites, maintenance of 

hepatocyte integrity is essential to liver homeostasis. Recent studies suggest that the liver’s 

unique ability to regenerate after injury is also regulated in part by immune cells. Upon liver 

damage, crosstalk between neutrophils, KCs, NK cells and/or ILC1s maintains the balance 

of hepatocyte proliferation and survival. KCs, activated by circulating neutrophils recruited 

to the liver, produce IL-6 and TNF-α to promote hepatocyte proliferation and liver repair by 

activating hepatocyte gp130-STAT3 signaling and production of a protective IL-8 ortholog 

and serum amyloid proteins49,50. This regenerative signaling can be counterbalanced by 

NK cell-derived IFN-γ to limit hepatocyte proliferation, as mice treated with mouse 

cytomegalovirus or poly-I:C after partial hepatectomy displayed impaired liver regeneration 

due to NK cell activation in an IFN-γ dependent manner51. TNF-α from KCs in conjunction 

with IL-12 or IL-18 from other sources yet to be identified may differentially stimulate both 

hepatocytes and NK cells, suggesting a self-regulating immune circuit active during liver 

repair. Recently, studies using a model of carbon tetrachloride-induced liver injury revealed 

activation of a cDC1-ILC1-hepatocyte axis. In this setting, resident cDC1s stimulated 

to produce IL-12 through activation of the cGAS-STING pathway to increase IFN-γ 
production by liver-resident ILC1s and to a smaller extent, NK cells52,53. ILC1-derived 

IFN-γ upregulated hepatocyte expression of pro-survival Bcl-xL to limit acute liver injury52. 

These models suggest opposing roles for NK cell and ILC1-derived IFN-γ controlling 

hepatocyte integrity during viral versus toxin-mediated liver injury, and may point to 

additional differences in cytokine secretion, function, or spatial contributions between liver-

resident ILC1s and liver-infiltrating NK cells.
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Clearance of dead cells, a process termed efferocytosis, is important for both the liver’s 

maintenance of systemic homeostasis as well as continued metabolic function of the 

liver itself54,55. Recent studies suggest that impaired efferocytosis of lipid-laden apoptotic 

hepatocytes can contribute to the development of chronic liver inflammation during 

non-alcoholic steatohepatitis (NASH). Overfeeding resulted in loss of the phagocytic 

receptor TREM2 on liver macrophages, impairing efferocytotic capacity and contributing 

to accumulation of steatotic hepatocytes56. While multiple “find-me” and “eat-me” signals 

such as ATP/UTP, lyso-phosphatidyl choline (LPC), CX3CL1, and membrane-exposed 

phosphatidylserine are known to be associated with efferocytosis, S1P-S1PR1 interactions 

were identified to be the major driver for the clearance of lipid-loaded hepatocytes55,56. 

Increased levels of inflammatory TNF-α and IL-1β inhibited TREM2 macrophage 

efferocytosis via shedding of TREM2 receptors by macrophage-expressed ADAM17 

metalloproteinase; while the sources of TNF-α and IL-1β that regulate efferocytosis remain 

to be determined, other studies have suggested cDC1s to be a significant producer of 

IL-1β during NASH33,56. Interestingly, efferocytotic KCs activated by apoptotic cell signals 

like ATP can also release IL-6 and IL-1β upon activation, which could promote the 

differentiation of infiltrating monocyte-derived macrophages during liver injury toward 

an efferocytosis-competent state57–59. Together, these suggest communication between 

efferocytotic KC/liver macrophages, cDC1, and hepatocytes in homeostasis that is disrupted 

by proinflammatory cytokine imbalance during pathology.

During liver injury, damaged hepatocytes can secrete IL-33 or IL-25 to activate ILC2s, 

which may downregulate local hepatocyte gluconeogenesis and lipid storage via IL-13 

secretion as previously described60,61. Indeed, patients with either acute or chronic liver 

injury from various etiologies are at heightened risk of hypoglycemia, pointing to the 

need for tight control of hepatocyte metabolism to regulate systemic glucose balance62. 

Systemic inflammation similarly can result in severe hypoglycemia due to dysregulated 

hepatic metabolism. For example, depletion of hepatic glycogen occurs clinically in 

adverse inflammatory responses to blood infection, referred to as sepsis63. High levels of 

inflammatory cytokines associated with sepsis such as TNF-α and IL-6 directly inhibited 

hepatocyte G6Pase and PEPCK activity, preventing normal hepatocyte-mediated regulation 

of blood glucose levels29,64,65. During sepsis, both systemic and local liver-resident sources 

of inflammatory cytokines such as KCs likely synergize to skew the liver cellular circuitry 

toward metabolic imbalance.

Uncontrolled liver damage results in fibrosis due to activation of HSCs and resultant 

secretion of extracellular matrix (ECM) proteins, a process normally mitigated by protective 

immune cell networks. These ECM-driven changes in local environmental cues drive a 

drastic transcriptional shift in hepatocytes, associated with loss of chromatin accessibility 

and expression in metabolic, bile processing pathway, and hormone synthesis genes66. 

Ligands that were predicted in silico to regulate hepatocyte transcriptional changes during 

fibrosis included TGF-β, HMGB2, and COL4A1 from HSCs and endothelial cells66. 

Consistent with this hypothesis, patients with cirrhosis (a clinically severe presentation of 

liver fibrosis) exhibit dysregulated glucose storage and depleted hepatic glycogen stores 

accompanied by decreased expression of the glucose sensor glucokinase67. HSCs can be 

activated by KC-derived inflammatory molecules such as TNF-α, IL-6, PDGF, and TGF-β 
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as well as IL-17A secreted by MAIT cells or ILC3s34 43. Once activated, HSCs differentiate 

into myofibroblasts with increased expression of NK cell activating ligands such as RAE-1/

NKp46, becoming prime targets for NK cell-mediated clearance68,69.

During NASH, which involves liver inflammation, damage, and eventual fibrosis due to 

fat accumulation, cDC1-derived IL-1β and IL-12 can activate pathogenic CD8+ T cells33. 

Additional studies have identified the presence of autoreactive CXCR6+ liver-resident 

CD8+ T cells in NASH, induced by IL-15 and short-chain fatty acid stimulation to kill 

hepatocytes in an MHC-independent manner70. However, liver CD8+ T cells may also be 

polarized toward a regulatory phenotype, where atypical CD8+ Tregs can activate HSCs via 

production of IL-10 to promote liver fibrosis and subsequent metabolic dysfunction71. While 

the upstream cellular signaling partner inducing CD8+ Treg differentiation remains to be 

identified, previous studies suggest that IL-4 and IL-12 can drive this shift72. Thus, both 

metabolite and toxin mediated liver damage can dysregulate homeostatic liver circuits while 

promoting injury-specific communication, resulting in disruption of total liver metabolism.

Gastrointestinal Tract

Metabolic health is also inherently linked with the gastrointestinal tract. In addition to being 

the primary site of nutrient absorption, the intestinal tract is also host to the commensal 

microbiota, which in turn acts in a mutualistic manner to metabolize complex dietary 

nutrients and regulate the metabolic state of the host. Multiple interconnecting immune 

networks act in concert to orchestrate homeostatic tissue function and metabolic activity 

in the gut, particularly through regulation of the intestinal epithelial barrier. Central to the 

regulation of intestinal metabolic circuits are resident myeloid cells and type 3 lymphocytes 

including group 3 ILC (ILC3), γδ T cells, MAITs and Th17 cells that act predominantly 

via the production of the cytokines IL-17A and IL-22. Another critical determinant of 

metabolic health in the gut is the commensal microbiota, which acts in a mutualistic manner 

to metabolize complex dietary substrates, regulate nutrient availability, and influence the 

metabolic state of the host directly. Moreover, changes in diet can dramatically perturb 

intestinal commensal microbial communities with consequences for metabolic health and 

disease. While the microbiota itself is a key factor in the role of the gastrointestinal tract 

as a metabolic organ, it has been reviewed extensively elsewhere73,74. Here, we discuss the 

key gut-resident immune circuits that regulate barrier integrity and nutrient uptake, circadian 

rhythm, and microbial tolerance (Figure 2).

The intestinal epithelium represents the initial barrier to the outside world and acts to 

determine nutrients absorption from the diet into the bloodstream for subsequent energy 

production. The balance of nutrients absorbed by the gut epithelium is tuned in response 

to features of mammalian feeding including macronutrient diversity, microbial abundance, 

and circadian feeding cues. Immune regulation of gut nutrient uptake heavily focuses 

around interactions between epithelial cells and local cytokine producing subset of myeloid 

and lymphoid cells. Type 3 cytokines, including IL-17A, IL-17F, and IL-22, have been 

attributed roles in regulating systemic metabolism, while emerging evidence suggests they 

may mediate their function via regulation of nutrient absorption in intestinal epithelial cells 

(IEC). While IL-17A and IL-17F have been described to have critical roles in modulating 
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metabolism in metabolically active tissues such as the liver and adipose (reviewed herein 

and previously75), the contribution of these cytokines to nutrient uptake and metabolism 

in the gut is not completely understood. In contrast, the contributions of IL-17A/F to 

epithelial barrier integrity and antimicrobial responses have been extensively defined76,77. 

Here we will focus largely on the role of the IL-22 pathway as an example of a type 

3 cytokine-associated metabolic axis in the gut. Myeloid-derived cues, including IL-1β 
and IL-23, act locally to induce IL-22 production by innate and adaptive lymphocytes2,4. 

IL-22 is a critical determinant of systemic metabolic balance, as mice lacking IL-22 

receptor gained more weight and became glucose intolerant and insulin resistance when 

fed a high fat diet, which could be rescued by administration of a IL-22 fusion protein78. 

ILC3-derived IL-22 exerts direct control of IEC metabolic function by modulating nutrient 

transporter programs in IECs. Mice fed a high carbohydrate diet exhibit a γδ T cell-

mediated suppression of IL-22 from ILC3s, resulting in a switch towards a carbohydrate 

metabolism transcriptional program in IECs79. In similar findings, CD4+ T cells were found 

to suppress IL-22 production and STAT3 signaling in both ILC3 and IEC in neonates as a 

response to microbial colonization following weaning to regulate intestinal metabolic tone, 

IEC lipid transporter expression and lipid absorption80. Loss of CD4+ T cells resulted in 

persistent ILC3 activation and production of IL-22, which decreased gut lipid absorption 

and body fat mass80. ILC3s were also found to regulate the development of cDC2-like cells 

which conversely enhanced lipid uptake by sequestering IL-22 via secreted IL-22 binding 

protein, releasing IL-22-mediated suppression of IEC lipid transporters81. These circuits are 

disrupted during obesity, as HFD-fed mice display loss of IL-22-secreting ILC3s in the 

colon accompanied by increased epithelial permeability and systemic glucose intolerance82. 

Together, these findings suggest communication within a complex circuit of γδ T cells, 

CD4+ T cells, ILC3s, cDC2s, and IECs determines levels of tonic IL-22 that control gut 

carbohydrate metabolism and lipid absorption in response to nutrient availability.

To align the metabolic tone of intestinal structural cells with regular feeding patterns, 

the metabolic and absorptive capacity of IECs is also regulated by intrinsic and extrinsic 

circadian clocks and via an ILC3 and IL-22-dependent circuit83–88. IEC-intrinsic Nfil3 was 

found to imprint diurnal transcriptional activity within the gut, under the control of ILC3-

derived IL-22, and in response to cues from the microbiota87. Mechanistically IL-22 was 

found to gate IEC circadian activity and Nifl3 expression in a STAT3-dependent manner. 

Lack of IEC-intrinsic Nfil3 led to resistance to high fat diet-induced obesity and metabolic 

disease that was associated with decreased expression of genes associated with lipid 

transport and metabolism, preventing lipid uptake from the intestinal lumen and into IECs87. 

Similarly, ILC3 production of IL-22 was found to be regulated by ILC-intrinsic expression 

of the circadian clock, and ILC3 lacking the clock gene Bmal1 exhibited perturbations 

in expression of lipid transporters and metabolic genes and accumulated gonadal and 

subcutaneous fat83. These circadian ILC3 responses can be regulated by the central nervous 

system, specifically the suprachiasmatic nucleus in response to diurnal light cues83, but 

also locally by enteric neuronal circuits in response to feeding events84,89,90. Moreover, 

several studies highlighted vasoactive intestinal peptide (VIP) release by enteric neurons in 

determining IL-22 release by resident ILC3 in response to feeding cues. Food consumption 

was demonstrated to rapidly induce VIP release to modulate IL-22 production84,89,90, and 
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subsequently lipid absorption at the epithelial barrier89. Together these findings suggest that 

a neuronal component interacts with ILC3-IEC circuits to regulate circadian cycling of gut 

nutrient absorption.

While immune pathways can control the absorption of nutrients and response to diet 

in a direct manner, resident immune circuits of the healthy intestinal tract must also 

orchestrate immunologic tolerance to the commensal microbiota. The microbiota in turn 

provides important metabolic capacity to the mammalian host through the breakdown of 

complex dietary derived nutrients and acts to suppress inflammation and tissue damage 

by eliciting regulatory metabolites such as short chain fatty acids. Moreover, changes 

in microbial composition, or loss of barrier function and microbial translocation, have 

been extensively described to lead to worsen metabolic disease and obesity73,91. Disrupted 

homeostatic gut-resident circuitry can exacerbate perturbations to the microbiome, with 

studies implicating significant alterations in intestinal MAIT distribution and effector 

function in obesity and type 2 diabetes92,93. While clinical studies primarily suggest a loss 

of circulating MAITs, concurrent with enrichment of adipose-resident MAITs, contribute 

to metabolic dysfunction, studies of HFD-fed and ob/ob mice showed that obesity also 

results in increased inflammatory IL-17A-producing MAITs in the ileum94. Inflammatory 

MAITs contributed to loss of intestinal barrier integrity and changes in gut microbiome, 

while altered fecal microbial content due to increased MAITs in HFD-fed Vα19+/− was 

sufficient to confer increased gut leakiness and decreased ileal Tregs in obese wild-type 

mice receiving fecal matter transplant. Conversely, transfer of fecal matter from obese mice 

lacking MAITs resulted in decreased permeability and increased ileal ILC2 and ILC3. 

However, inflammatory MAIT-associated dysbiosis was not sufficient to induce insulin 

resistance. Thus, inflammatory MAITs in obesity likely act through both the gut and 

adipose as well as inter-organ crosstalk to produce systemic metabolic dysfunction. Future 

studies will be necessary to reveal the downstream regulators of MAIT-IL-17A-IEC gut 

permeability control, microbial homeostasis, and crosstalk with ILC3s.

In line with the complex interplay between diet, microbiota, and immune homeostasis, these 

immune axes are also sensitive to perturbations in nutrients. For example, mice fed a diet 

lacking Vitamin A exhibit a dramatic loss of ILC3 in the gut95,96. Similarly, the microbiota 

required to promote Vitamin A metabolism by intestinal myeloid cells maintain their niche 

via an immune regulatory loop. Microbial signals act to promote IL-1β by myeloid cells, 

which in turn activate ILC3 to produce GM-CSF97. ILC3 provision of GM-CSF in turn 

stimulates myeloid cells to produce retinoic acid from Vitamin A, as well as IL-10, to induce 

FoxP3+ Tregs that ultimately maintain a tolerogenic state in the gut.

Tripartite circuits between myeloid cells, ILC3 and T cell subsets have increasingly 

been implicated in the maintenance of intestinal tissue homeostasis and suppression of 

inflammation against the diet or commensal microbiota. In addition to secreting IL-22 and 

IL-17A, ILC3 have increasingly been demonstrated to regulate barrier tissue health via other 

effector molecules. For example, ILC3 may additionally promote a regulatory environment 

in the gut via the provision of IL-2, which in turn supports intestinal Tregs which 

preferentially express the high affinity IL-2Ra98, and antagonise inflammatory signals that 

drive epithelial cell death via production of heparin-binding epidermal growth factor (HB-
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EGF)99. In addition to soluble factors, ILC3 are increasingly appreciated to fine-tune the 

priming, polarization, and activity of CD4+ T helper cell subsets, most likely after primary 

antigen-presentation by classical antigen presenting cells such as DCs and macrophages. 

In this regard, a subset of CCR6+ LTi-like ILC3 express major histocompatibility complex 

(MHC) II in the intestine and associated lymphoid where they are ideally co-localized 

within tissue microenvironments to modulate T cell responses100–106. In the absence of 

ILC3-intrinsic MHCII expression, CD4+ T cells were found to become increasingly pro-

inflammatory within the intestinal tract driven by response to the commensal microbiota, 

which resulted in colitis and contributed to progression of colorectal cancer101,102,107. ILC3 

can further tune the adaptive immune response by providing auxiliary modulatory signals 

such as OX40L108–111, or modulate interactions between DCs, T cells and B cells to regulate 

the induction of B cell responses and IgA responses to mediate tolerogenic control of the 

gut-resident microbiota104,112–114. Interestingly, recent advances have expanded on these 

findings to suggest a heterogeneous group of RORγt-expressing antigen presenting cells of 

both myeloid (cDC2 and Thetis cells) and lymphoid lineage (ILC3 and AIRE-expressing 

eTACs) act to induce Treg responses to the microbiota115–120. Together these findings reveal 

the layered nature of the regulatory immune system in the gut and highlight the resources 

dedicated by the host to maintaining mutualism with the commensal microbiota.

Adipose Tissue

Adipose tissue is an essential organ that regulates the storage of excess caloric energy in the 

form of lipid droplets, energy homeostasis and systemic insulin sensitivity. In mammals, 

adipose tissue mainly consists of both subcutaneous and visceral white adipose tissue 

(WAT) depots that are predominantly composed of white adipocytes, smooth muscle cells, 

endothelial cells, mesothelial cells, neurons, and fibroblast-lineage cells that are composed 

of a complex mixture of adipocyte progenitor and preadipocyte populations (hereafter called 

adipocyte progenitor cells). The primary function of these structural cells in the WAT is to 

coordinate signals influenced by systemic energy levels to regulate the balance of fatty acid 

uptake (lipogenesis) and fatty acid release (lipolysis), in addition to expansion or contraction 

of the total adipose tissue mass. As these topics have been recently reviewed in detail121,122, 

we will not discuss adipose tissue metabolic function, structure, and adipocyte plasticity in 

greater depth.

Recent high parameter single-cell RNA sequencing studies from mice and human 

adipose tissues have significantly challenged the previously perceived simplicity of 

cellular composition of the WAT. These studies, in addition to mouse parabiosis 

and intravenous antibody labeling experiments, have shown that healthy lean WAT is 

composed of conserved populations of adipose-resident perivascular macrophages (PVMs), 

lipid-associated macrophages (LAMs), cDC1s, cDC2s, γδ T cells, Tregs, ILCs, and 

MAITs123–128. In this section, we will discuss our current knowledge of how these tissue-

resident immune cell circuits collaborate to regulate critical functions of the WAT to 

promote systemic metabolic homeostasis and how these circuits are modified in settings 

of metabolic disease (Figure 3).
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During ontogeny, yolk-sac derived myeloid progenitors and fetal monocytes populate 

peripheral mouse organs and become tissue resident macrophages129,130. In healthy 

lean adipose tissue of mice and humans, most adipose-resident macrophages have a 

transcriptional and cell surface phenotype consistent with PVMs124,125,131,132. Recent 

spatial sequencing analysis of the human WAT revealed that PVMs localize closely with 

adipocyte progenitor cells123, suggesting that PVMs may form critical regulatory cell 

circuits with adipocyte lineage cells. Indeed, previous studies have shown that adipocyte 

lineage cells produce CSF-1 to maintain the CFSR-1+ PVM niche124,133,134, and adipocytes 

can release extracellular vesicles (EVs) containing lipids and mitochondria to regulate PVM 

function135,136. These results are supported by various mouse models of global macrophage 

deficiency or macrophage function which suggest that tissue-resident macrophages regulate 

weight gain, energy storage, and systemic metabolism127,132,137–139. Specifically, PVM-

derived platelet-derived growth factor c (PDGFc) was found to promote WAT weight 

in newborn mice and mice fed a high fat diet through regulation of genes associated 

with lipid synthesis and storage in adipocytes, resulting in adipocyte hypertrophy132. 

However, whether this mechanism involves PVM to adipocyte progenitor signaling, or 

another responding cell type in vivo remains unclear. Single cell RNA sequencing analyses 

also suggest that human WAT PVMs express genes critical for efferocytosis (MERTK, 

C1QA)124, and are likely the main cell type responsible for initiating the clearance of dead 

or dying adipocytes in the WAT during homeostasis. However, in silico trajectory analyses 

in obese human WAT and fate-mapping experiments in HFD-fed mice demonstrate that 

recruited monocytes can differentiate into TREM2+ LAMs that express genes associated 

with lipolysis (LIPA, LPL, PPARG) to potentially “digest” cell membrane associated lipid 

from phagocytosed apoptotic cells124,127. Of course, further experiments will be necessary 

to more precisely define the cellular source of WAT LAMs during human obesity, and future 

experiments will be necessary to test the intrinsic functional capacity of adipose PVMs and 

LAMs for efferocytosis and lipolysis in vivo.

Studies from the past decade have also collectively revealed that a cell circuit consisting 

of adipose-resident ILC2s, PVMs, neurons and adipocyte progenitor cells regulate 

insulin sensitivity and adipose tissue homeostasis. Mechanistically, norepinephrine is 

produced in sympathetic neuronal circuits derived from the periventricular nucleus of 

the hypothalamus and prevertebral sympathetic ganglion. Norepinephrine-activated ADRB2-

expressing adipocyte progenitor cells increase the expression of GDNF, which can activate 

RET+ ILC2s to produce IL-13 and IL-5140. IL-13 acts as a critical upstream regulatory 

signal for PVM maintenance and function in addition to its direct effects on adipocyte 

progenitor cells141–143. IL-5 functions to enhance eosinophils survival and proliferation, 

leading to IL-4 production that regulates WAT PVM maintenance and function in addition 

to regulation of adipocyte progenitor cells141,144,145. Importantly, genetic loss of these 

pathways, or a reduction in WAT ILC2s or eosinophils in mice results in increased systemic 

metabolic dysfunction in mice fed a high fat diet140,143–146. However, whether these 

phenotypes are due to metabolic disruption in the adipose tissue versus other metabolic 

organs is difficult to dissect given the use of whole-body knockout mice. Given the critical 

importance of this adipose-resident cell circuit in WAT homeostasis and insulin sensitivity, 

future studies will be necessary to define additional ILC2 and PVM-derived signals that 

Li et al. Page 10

Immunity. Author manuscript; available in PMC 2024 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can directly regulate adipocyte or adipocyte precursor function, and how this cell circuit 

is controlled by the sympathetic nervous system during feeding and fasting cycles, chronic 

stress, and fight or flight responses.

As adipocytes expand in response to increase dietary lipid storage, oxygen and essential 

nutrients become limiting, and stimulate enhanced vascularization of the adipose tissue 

to activate adipocyte progenitor differentiation to pre-adipocytes and mature adipocytes to 

expand the adipose tissue in a process called adipogenesis122. PVMs may serve as important 

regulators of adipogenesis by serving as sources of extracellular matrix components to 

provide a structural substrate for pre-adipocytes and newly formed adipocytes, in addition 

to expression of the pro-angiogenic factor VEGF-A147,148. In contrast, IL-17A derived 

from either WAT γδ T cells or MAITs has been shown to either inhibit or promote 

adipogenesis in vivo149–151. The discrepancies between these studies can likely be explained 

by the fact that IL-17A has complex role in regulation of systemic metabolism due to 

tissue and diet-dependent activities. For instance, while IL-17RA−/− mice weigh more than 

controls on a low fat diet149, genetic deficiency of IL-17RA in ~50% of adipocytes leads 

to decreased weight gain during high fat diet feeding in mice150. These results suggest 

that WAT-resident sources of IL-17A may promote adipogenesis in the context of increased 

dietary fat intake. However, IL-17A-deficiency has been shown to limit lipid accumulation 

in the liver75 and can lead to dysregulation of the commensal microbiota and resulting 

dysbiosis152, suggesting that analysis of adipogenesis in whole body knockout mice has 

important caveats. Irrespective of these points, IL-17A has been shown to directly regulate 

the phosphorylation of PPARγ and can regulate the expression of genes associated with 

adipogenesis in adipocyte cell lines in vitro150,153. Thus, while IL-17A has been suggested 

to have a direct role in adipocytes, the role of IL-17A on adipogenesis in vivo is complex 

and will require more precise investigation to uncouple its tissue and diet-specific functions 

in systemic metabolism.

Subcutaneous WAT and brown adipose tissue (BAT) tissues undergo thermogenesis to 

increase energy expenditure in order to generate heat for the host after exposure to cold 

temperatures. This is achieved in part in the WAT by stimulating greater expression of 

uncoupling protein 1 (UCP-1) in white adipocytes to differentiate into beige adipocytes, 

as has been reviewed in detail previously154. In response to cold stress, IL-33 can be 

produced by endothelial cells, mesothelial cells, or adipocyte progenitor cells to increase 

adipose-resident ILC2 production of IL-13142,155–157. IL-13 in addition to IL-4 produced by 

eosinophils has been shown to directly promote the differentiation of PDGRα+ adipocyte 

progenitor cells into UCP-1+ beige fat cells141. In a separate proposed mechanism, 

IL-33-activated ILC2s can produce methionine-enkephalin peptides to directly increase the 

expression of UCP-1 in white adipocytes158. However, exogenous IL-33 treatment has 

also been recently shown not to increase UCP-1 expression in the WAT or BAT of adult 

mice159, and IL-33 can directly regulate mitochondrial respiration of brown adipocytes in 

the absence of ILC2s160. These results suggest that further studies are necessary to more 

completely understand the role of these cell circuits in beige versus brown fat during 

thermogenesis. Similarly, the signals that regulate IL-33 production in structural cells 

during thermogenesis will require further investigation in vivo. However, it is tempting 

to speculate that sympathetic neuronal production of norepinephrine may also regulate the 
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IL-33 pathway, as this cell circuit is reported to be suppressed during cold exposure by 

experimentally induced sympathetic denervation in mice161.

Although adipocytes have tremendous plasticity in their ability to accommodate excess 

energy as triglycerides, there are limits to their cell size. Once adipocyte size limits are 

surpassed because of chronic overnutrition during obesity, adipocyte-intrinsic stress and 

hypoxic responses occur and results in the production of inflammatory mediators and 

adipocyte cell death162. In obesity, chronic low-grade inflammation of the WAT is associated 

with systemic metabolic dysfunction that can lead to the development of type 2 diabetes163. 

The cellular composition of both the mouse and human WAT are dramatically remodeled 

during obesity, with increased density of cDC1s, cDC2s, MAITs, PVMs, CCR2+ monocytes 

that can differentiate into inflammatory macrophages (IMs) and CD9+Trem2+ LAMs 

(collectively referred to as M1 in previous studies), and loss of ILC2s124,125,127,158. Visceral 

white adipose tissue ILC2s, MAITs and Tregs have been shown to be decreased during 

mouse models of obesity94,158,164,165, supporting studies in healthy obese WAT predicting 

a loss of lean homeostatic communication networks in silico124. However, loss of WAT 

MAITs and Tregs during mammalian obesity is likely WAT depot specific, as healthy obese 

patients display an increase in subcutaneous WAT Tregs and MAITs124. While WAT-resident 

Tregs have been shown to have a metabolically protective phenotype during homeostasis in 

mice164,166, likely through promotion of efferocytosis or inhibition of IL-1β processing in 

macrophages as shown in other mouse models167,168, IL-10 derived from Tregs can drive 

systemic metabolic dysfunction during obesity through suppression of adipocyte beiging and 

decreased energy expenditure through IL-10R signaling in adipocytes169,170. Thus, further 

research will be necessary to determine the precise signals that lead to loss of WAT ILC2s 

during obesity, and to better uncouple the role of Tregs and Treg-derived signals in specific 

WAT depots and responder cells to regulate systemic metabolic dysfunction during obesity.

While the precise role of adipose-resident dendritic cell subsets remain unclear in the 

WAT during obesity171, IMs largely drive chronic low grade inflammation in the WAT and 

contribute to systemic metabolic dysfunction in mice through production of TNF-α, IL-1β, 

and extracellular vesicles containing miRNAs172–178. IM differentiation is dependent on 

IFN-γ signaling in mice and humans, which is predominantly produced by adipose-resident 

ILC1 early during obesity and subsequently by infiltrating NK cells in response to increased 

levels of IL-12 and NKG2D ligands in the WAT124,128,179,180. Trem2+ LAMs have been 

suggested to have a metabolically protective role during obesity, as Trem2−/− mice have 

increased metabolic dysfunction during diet-induced obesity127. However, given that Trem2 

is required for efferocytosis by LAMs in the liver during NASH56, the suggested protective 

effect of LAMs may be through limiting inflammation caused by defects in efferocytosis 

of dead or dying adipocytes during obesity. However, both IM and LAMs endogenously 

produce TNF-α and IL-1β in obese human WAT124, which can inhibit efferocytosis through 

upregulation of CD47 on dead or dying cells or can signal directly in adipocyte lineage 

cells to decrease insulin signaling178,181,182. Thus, while inflammatory mediators produced 

by WAT macrophages, MAITs, and ILC1s have been shown to be detrimental to systemic 

metabolic homeostasis during obesity in mice, the relative contribution of adipose Tregs and 

LAMs to protective versus pathologic responses to systemic metabolic function will require 

further investigation.
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Aging is associated with an increase in total fat mass accumulation and chronic low grade 

inflammation observed in various peripheral organs183. Inflammation of the WAT and 

systemic metabolic dysfunction are also associated with age in mice and humans183,184. 

While aged mouse WAT displays a similar increase in IMs as obesity185, the frequency 

of PVMs is reduced159. Furthermore, aged PVM function in peripheral organs may 

be compromised by either induction of cellular senescence and acquisition of a pro-

inflammatory senescence-associated secretory phenotype or aging-associated functional 

impairment in efferocytosis186–188. Similar to high fat diet-induced obesity in mice, aged 

WAT contains less ILC2s159,189. Aged WAT ILC2s were also found to be functionally 

deficient, with adoptive transfer of young ILC2s able to rescue aged mice from cold-

stress induced mortality159. The proposed mechanism for decreased ILC2s was based on 

an observed increase in soluble IL-33R expression in aged WAT, likely limiting IL-33 

bioavailability for ILC2 homeostasis. However, aged WAT shows an enrichment of IL-33R+ 

Tregs that potentiate metabolic dysfunction in an unknown mechanism190, and Tregs do 

not compete with ILC2s for available IL-33 in the WAT159, suggesting that increases in 

soluble IL-33R may not fully explain the loss of ILC2s in the aged WAT. Together these 

studies suggest that key regulatory cell circuits consisting of WAT PVMs, Tregs, and ILC2s 

are functionally impaired during aging, and may contribute to aging-associated metabolic 

dysfunction.

Everything, everywhere, all at once: Inter-organ communication networks 

regulate systemic metabolism

The influence of tissue-resident immune circuits is not limited to regulating local metabolic 

activity. Increasingly, emerging evidence suggests that inter-organ crosstalk takes place 

alongside local communication, integrating resident immune networks across organs to 

coordinate systemic metabolism. Here, we discuss recent evidence supporting major 

immune-structural cell communication linking the adipose, liver, and intestinal tract.

The liver can modulate systemic glucose and lipid balance not only by regulating 

hepatocyte-intrinsic metabolism, but also by communicating with other tissues through the 

production of hepatokines. Of these hepatocyte-derived protein hormones, FGF21 is well 

studied. Recombinant FGF21 treatment has been shown to improve insulin sensitivity and 

glucose tolerance largely by targeting the adipose tissue, as adipocyte-specific loss of the 

FGF21 receptor abrogates the metabolic benefits of FGF21 treatment191. Mechanistically, 

FGF21 enhances the activity of PPARγ in the adipose tissue, modulating adipocyte lipolysis 

as well as the production of the adipokine adiponectin which exerts pleiotropic metabolic 

effects on peripheral tissues191. FGF21 production can be regulated by liver resident 

circuits in response to multiple stimuli. For example, bacterial components sampled from 

the gut microbiome can stimulate KC IL-1β production to suppress hepatocyte FGF21 

production and subsequent lipolysis in the adipose tissue192. Accordingly, depletion of 

KCs resulted in hyperlipidemia and weight loss due to increased FGF21-driven lipolysis. 

Similarly, as discussed above, commensal bacteria immune circuits including IL-22 in 

the gut to regulate lipid uptake from the diet in the intestine193, while changes to gut 

barrier integrity, commensal microbial composition or diet can precipitate inflammation in 
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the liver to alter metabolic function. These linked tissue-resident circuits may represent a 

method of coordinating lipid metabolism between the gut, liver, and adipose in specific 

bacterial contexts, perhaps in response to microbiota that specifically metabolize dietary 

fats or become enriched upon increased dietary fat availability. Conversely, KCs can 

stimulate hepatocyte FGF21 production during high fat diet-induced inflammation by 

increasing infiltration of circulating monocytes via KC-derived CCL2194. Heightened 

levels of MAPK-p38 signaling in infiltrating monocyte-derived macrophage were found 

to attenuate IL-12 production and maintain hepatic FGF21 expression, leading to increased 

brown fat thermogenesis in an attempt increase energy expenditure during increased dietary 

fat intake. While loss of myeloid p38 signaling inhibited FGF21 production and brown 

fat thermogenesis, overactive p38 activity promoted hepatic steatosis, suggesting that tight 

control of macrophage infiltration and activation is necessary for balancing systemic 

metabolic control against liver homeostasis.

In addition to regulating gut-intrinsic nutrient absorption and circadian rhythm, immune 

circuits in the gastrointestinal tract have been shown to coordinate multi-organ metabolic 

patterns. Diurnal patterns of microbial abundance in the gut mucosa correspond to circadian 

transcriptional patterns of intestinal epithelial clock genes and metabolic pathways195. These 

transcriptional rhythms are sensitive to diet-induced changes to microbiota, as mice fed 

HFD or transferred with HFD feces exhibited similar aberrations in normal intestinal 

circadian behavior196. Loss of commensal gut microbes disrupted these homeostatic 

rhythms systemically, as multiple studies show antibiotic-treated or germ-free mice exhibit 

disruptions in liver clock genes such as Bmal1, Cry1, Rev-erba, Per1, and Per2 as well 

as altered transcriptional cycling of PPARγ-driven pathways involving amino acid and fat 

metabolism compared to mice bearing normal gut microbiome195,197. Moreover, modulation 

of the microbiota via the circadian production of the mucosal antibody IgA exerts immune 

pressure on the composition, rhythmicity and metabolic functions of the microbiota and 

can be dysregulated in mice fed HFD198. IgA also acts to determine nutrient uptake into 

systemic tissues such as the liver and adipose199. Disruptions in the microbial populations 

corresponded to abnormal circadian cycling of circulating molecules including free fatty 

acids, bilirubin, high density lipoprotein-bound cholesterol, and FGF21197. Furthermore, 

transfer of gut microbiota is sufficient to confer systemic metabolic changes associated with 

HFD. Fecal transplant of HFD mouse stool into chow-fed recipients induced increased fat 

mass and liver lipid content200. Analysis of liver Bmal1, Rev-erba, and Per2 expression 

revealed shifts that were consistent with HFD mice without fecal transplant, and both HFD 

stool recipient and HFD mice exhibited drastic PPARγ-driven metabolic changes driving 

lipogenic pathway expression and hepatic lipid accumulation200. Dysregulation of the gut 

microbiota can also modulate cytokine-producing circuits in the liver, as the microbiome 

has been shown to regulate IL-17A-producing hepatic γδ T cells. During homeostasis, this 

was likely through commensal microbial production of lipid antigens presented to γδ T 

cells by CD1d+ antigen presenting cells18. Alterations to the microbiome due to MAFLD 

or mutations in biliary transport proteins like Mdr2 subsequently resulted in increased 

hepatic IL-17A production that exacerbated liver damage201. Increased hepatic IL-17A due 

to microbiome disruption would likely also increase hepatocyte lipid accumulation and 

insulin resistance, further worsening liver pathology. These gut-liver pathways suggest that 
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the type 3 intestinal immune circuits regulating barrier integrity and tolerance to commensal 

microbes are in fact critical for maintaining homeostasis of immune circuits that control liver 

metabolism.

In addition to its role in energy storage and release, the adipose tissue functions as a critical 

endocrine organ through the production of adipokines (e.g. leptin and adiponectin), lipids, 

metabolites, and EVs containing mitochondria and miRNAs that can regulate systemic 

metabolic homeostasis136,173,202–206. Recent studies have provided evidence that WAT 

macrophage-derived EVs can improve metabolic dysfunction when injected into obese mice 

by increasing insulin sensitivity in the WAT, muscle, and liver in an unknown mechanism173. 

In contrast, obesity associated changes in macrophage composition and activation changes 

the composition of miRNAs in macrophage-derived EVs, leading to miR-155-mediated 

suppression of insulin signaling through decreased PPARγ levels in peripheral tissues in 

recipient lean mice173. However, over 500 different miRNAs were detected in macrophage-

derived EVs173, suggesting that their effect on systemic metabolism is complex and will 

require further mechanistic investigation. During high fat diet feeding in mice, reduction 

of adipocyte iron levels through genetic deletion of the transferrin receptor in adipocytes 

can improve systemic metabolism by promoting iron uptake in the liver and limiting lipid 

uptake by enterocytes in the gastrointestinal tract203. Reduction of adipocyte iron levels led 

to both changes in the adipocyte secretome, composition of adipocyte-derived EVs, and 

the microbiome, suggesting that the underlying molecular mechanisms for this phenotype 

are likely complex. However, CSFR1+ myeloid cells have recently been implicated in 

the control of adipocyte iron levels either through control of iron turnover in the WAT 

during high fat diet feeding or through direct control of iron release in adipocytes in 
vitro207. Although these results are derived from transgenic mice with overexpression of 

MitoNEET (an iron-binding outer mitochondrial membrane protein) in CSFR1+ myeloid 

cells, WAT myeloid cell-adipocyte crosstalk through regulation of intracellular iron levels 

in adipocytes may serve as a critical feedback mechanism to the gastrointestinal tract in 

order to prevent nutrient overload in adipocytes. Of course, future studies will be necessary 

to fully understand how immune-structural cell crosstalk between metabolic organs can 

regulate systemic metabolism during homeostasis and disease (Figure 4).

Concluding Remarks

High-parameter single cell sequencing of mouse and human tissues has fundamentally 

altered the way we approach biological questions. Using single-cell sequencing datasets 

combined with computational tools to predict cell-cell interactions, unbiased and clinical 

evidence-based hypotheses can be generated for direct functional testing in vitro and in 
vivo208–210. While some studies have harnessed these tools to characterize cellular circuits 

involved in processes like dementia and cancer211,212, future studies and analyses of existing 

datasets will be invaluable to address open questions in systemic tissue immunometabolism. 

For example, activating ligands upstream of ILC2s, γδ T cells, and MAITs in the liver 

have yet to be defined. Conversely, in silico cellular communication networks may also 

reveal shifts in signaling nodes from tissue-resident cells, such as KCs during homeostasis, 

toward infiltrating circulating immune cells that may provide more critical proinflammatory 

signals upstream of changes in gene expression during disease. Furthermore, the complete 
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molecular mechanisms that regulate adipose-resident cell circuits such as PVM-mediated 

adipogenesis, PVM or LAM-mediated efferocytosis of adipocyte lineage cells, and WAT 

beiging remain incomplete.

Future studies will also be required to clarify species-specific immune cell functions. For 

example, while extensive mouse studies reflect the importance of ILC3s in gut integrity 

and homeostasis, similar experiments using human tissue will be necessary to parse the 

differential contributions of human ILC3s versus Th17 to these type 3 circuits. While 

we have limited our discussion to circuits involving cell types conserved between mouse 

and human, these comparisons can be confounded by the interspecies differences such as 

species-specific transcriptional signatures in ILCs. Further clarification of these processes 

will depend on direct study of these rare cell types in humans to determine how mouse 

studies can be translated to treatment modalities for human metabolic diseases. Furthermore, 

the precise systemic metabolic effects of certain cytokines remain elusive. Increased IL-17A 

signaling is broadly detrimental to host metabolism, yet IL-17RA-null mice paradoxically 

accumulate more fat mass during development. Similarly, IL-10 production from Tregs 

can be protective or detrimental to host metabolism depending on certain contexts. For 

instance, Treg-derived IL-10 can promote the tolerance of commensal microbiota in the gut 

and liver, while Tregs can also exacerbate liver fibrosis and metabolic dysfunction in the 

aged adipose tissue. These results suggest that metabolic responses to the local cytokine 

milieu are complex and tissue-specific, as well as indicating a particular role for certain 

tissue-resident cytokine circuits in modulating local structural cell metabolism rather than 

exerting systemic control.

Beyond the local cytokine environment, the balance of metabolic control between central 

neuronal and endocrine signals versus local immune circuits remains to be examined deeply. 

Systemic metabolism is heavily determined by neuroendocrine feedback, but the relative 

contribution of immune regulatory circuits versus structural cells directly responding to 

neuroendocrine signals remains to be determined. However, neuroendocrine signaling likely 

represents a key mode of systemic metabolic integration between disparate organs in the 

body. As immune cells can respond to a repertoire of hormones and neurotransmitters, 

central control of metabolism must balance both direct signaling with structural metabolic 

cells as well as modulation of tissue-resident immune circuits213–218. It is possible that 

tissue-resident circuits in metabolic organs serve to fine-tune the broad systemic metabolic 

state established by central regulatory molecules, offering an additional layer of regulation 

in response to perturbations to metabolic homeostasis of the organism. In the future, in 
vivo models of cell-specific receptor knockouts will be necessary to parse the direct and 

indirect hormonal and neuronal signals that maintain metabolic function considering these 

tissue-resident immune regulatory cell circuits.
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Figure 1. Liver-resident immune circuits regulate homeostasis and disease.
a) Hepatocytes and liver-resident immune cells are spatially heterogeneous in function. 

In the periportal zone, hepatocytes display higher levels of gluconeogenic enzymes and 

decreased glycogen synthesis. which may be controlled by IL-6 and IL-1β from KCs 

or cDCs, as well as IL-13 secretion from ILC2s. ILC2 activation may be mediated by 

hepatocyte or Th2 cell-derived IL-25 or IL-33. In lipogenic pericentric hepatocytes, lipid 

accumulation can be regulated by IL-17A from MAITs, γδT cells, or ILC3s, potentially 

by cDC-derived IL-23. Activated hepatocytes can secrete IL-6 and stimulate IL-17A from 

Th17 cells, generating a positive feedback loop. b) Hepatocyte integrity is maintained by 

immune cell regulation of proliferation, efferocytosis, and survival. Neutrophil-activated 

KCs secrete IL-6 and TNF-α to promote hepatocyte proliferation and serum amyloid 

protein production to support liver regeneration, which is inhibited by NK-derived IFN-

γ. Apoptotic hepatocytes are cleared by TREM2+ macrophages, which are activated by 
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S1P-S1PR interactions with dying hepatocytes. Activated efferocytotic macrophages may 

also secrete IL-6 to induce efferocytotic capacity in neighboring phagocytes. Hepatocyte 

DNA released after liver injury may also be detected by cGAS-STING activation in cDC1, 

resulting in cDC1 IL-12 production and stimulation of IFN-γ from ILC1s to promote 

hepatocyte pro-survival signaling. c) Disrupted immune cell-hepatocyte circuits result in 

metabolic imbalance during liver injury. In NASH, hepatic cDC1s produce TNF-α and 

IL-1β to upregulate ADAM17-mediated cleavage of TREM2 on efferocytotic macrophages, 

inhibiting clearance of lipid-laden apoptotic hepatocytes. cDC1s also stimulate killing of 

hepatocytes via autoreactive CXCR6+ CD8+ T cells. Liver damage induces inflammatory 

cytokines such as ILC2-derived IL-13 or systemic IL-6 and TNF-α during sepsis to inhibit 

hepatocyte gluconeogenesis, leading to systemic hypoglycemia. Additionally, HSCs are 

activated by cytokines produced by KCs, MAITs, ILC3s, and Tregs to secrete extracellular 

matrix and stimulate metabolic changes in hepatocytes to decrease glycogen, hormone, and 

bile synthesis.
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Figure 2. Gut regulation of intestinal barrier homeostasis and microbiota.
a) Dietary composition can activate Jag2-Notch interactions between intestinal epithelial 

cells (IECs) and γδT cells to inhibit IL-22 production from ILC3s. Decreased IL-22 

leads to increased carbohydrate metabolism in IECs. ILC3 production of IL-22 can be 

stimulated by commensal microbiota or monocyte-derived IL-23 to inhibit expression 

of IEC lipid transporters and maintain barrier integrity. During dietary changes upon 

weaning, Tregs inhibit monocyte-derived IL-23 while Th17 cells regulate microbiota-

induced activation of ILC3s, leading to inhibition of ILC3-derived IL-22 and increased 

lipid uptake. cDC2-derived IL-22 binding protein (IL-22BP) can also control local IL-22 

levels by sequestering free IL-22, thereby increasing intestinal lipid uptake. b) ILC3-derived 

IL-22 maintains diurnal metabolic activity in IECs in response to microbes, light cues via 

the suprachiasmatic nucleus (SCN), feeding cues, and vasoactive intestinal peptide (VIP) 

from enteric neurons. Both Nfil1-driven IEC and Bmal1-driven ILC3 intrinsic circadian 
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signaling are required for metabolic homeostasis. c) Immune circuitry maintains tolerance 

to gut microbiota. Activated mononuclear phagocytes (MNPs) secrete IL-1β to stimulate 

GM-CSF production from ILC3s, signaling back to MNPs to produce retinoic acid (RA) and 

IL-10 to activate Tregs. RORγt+ cells such as cDC2s also maintain Treg function to support 

local immune tolerance. ILC3s also directly activate Tregs via IL-2 production, supporting 

immune tolerance to commensal microbes, as well as inhibiting plasma cell secretory IgA 

responses against commensal microbes. Presentation of microbial antigens by MHCII+ 

ILC3s to CD4+ T cells in the absence of costimulation also inhibits immune response to 

commensals. Overabundance of MAITs can disrupt gut microbial homeostasis by increasing 

epithelial permeability and altering microbial content, possibly via IL17 secretion.
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Figure 3. Adipose-resident circuits in homeostasis, cold stress, and obesity and aging.
a) In homeostasis, norepinephrine (NE) from the sympathetic innervation can activate 

adipocyte progenitor cells (APCs) to secrete GDNF, activating adventitial ILC2s to produce 

IL-13 and IL-5. ILC2-derived IL-13 as well as IL-4 from recruited neutrophils both directly 

support perivascular macrophage (PVM) maintenance and enhance adipocyte insulin 

sensitivity. PVMs additionally secrete PDGFc to support adipocyte growth and metabolism, 

and likely differentiate into TREM2+ lipid-associated macrophages (LAMs) to efferocytose 

apoptotic adipocytes. IL-33-activated Tregs also serve to suppress local inflammation under 

homeostatic conditions. b) Under cold stress, APCs and other structural cells secrete IL-33 

to activate ILC2s and directly increase adipocyte mitochondrial respiration. ILC2-derived 

IL-5 recruits neutrophils, and both secrete IL-13 and IL-4 to support upregulation of 

uncoupling protein 1 (UCP-1) and beiging of white adipocytes. ILC2s may also secrete 

methionine-enkephalin peptides (MENK) to directly support beiging of white adipose. c) 
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In obese WAT, ILC1s are activated by IL-12 potentially from resident cDCs to produce 

IFN-γ, activating inflammatory macrophages (IMs). IM-derived TNF-α and IL-1β as 

well as IL-10 from Tregs inhibits WAT beiging and insulin sensitivity. Efferocytosis is 

also potentially disrupted in TNF-α- stimulated TREM2+ LAMs. d) Aged WAT displays 

decreased ILC2s, possibly due to sequestering of IL-33 by soluble IL-33 receptor, as well as 

the presence of senescent or dysfunctional aged ILC2s and PVMs. Aged PVMs may impair 

adipocyte function via acquisition and release of senescence-associated secretory phenotype 

(SASP) proteins. Increased Tregs may also augment adipocyte dysfunction by unknown 

mechanisms.
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Figure 4. Inter-organ communication between immune-resident circuits.
a) Broadly, the gut, liver, and adipose communicate through circulating cytokines, lipid 

antigens, and adipokines and hepatokines to regulate overall systemic metabolism and 

circadian rhythms. b) Gut microbes directly modulate intestinal epithelial lipid uptake via 

IL-22 circuits as well as modulating hepatocyte FGF21 production through KC IL-1β 
production and monocyte IL-12. FGF21 has pleotropic effects on adipose tissue, broadly 

enhancing metabolic homeostasis. FGF21-stimulated production of adiponectin by the 

adipose additionally exerts varied effects on peripheral tissue metabolism. High fat diet 

(HFD)-induced alterations to the microbiome lead to decreased ILC3-derived IL-22 in the 

intestinal epithelium, increasing lipid uptake in both the gut and adipose tissue. Presentation 

of gut-derived microbial lipid antigens by CD1d+ hepatic DCs to γδT cells stimulates 

IL-17A production detrimental to hepatic metabolic health. Intestinal lipid uptake may 

also be modified by WAT regulation of iron. Increased WAT iron uptake, modulated by 
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CSF1R+ myeloid cells in the adipose, results in decreased hepatic iron uptake and intestinal 

lipid absorption. Adipose-derived EVs containing metabolites and miRNAs also influence 

peripheral metabolism in the liver and gut through unknown mechanisms. Finally, gut 

sensing of diurnal microbial cycles regulates both intestinal and hepatic circadian rhythms 

and metabolism.
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