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ABSTRACT 
This paper proposes a hybrid crack estimation technique that utilizes digital images from cameras and physics-based 
simulations to perform online diagnosis and prognosis of miter gate. To fully capture the localized effect of the crack, a global-
local coupled finite element (FE) model is first created. An iterative global-local (IGL) algorithm is then developed to provide 
increased accuracy over sub-modeling at the expense of increased computational cost. To replace the process of solving the 
complex local FE, a Gaussian process (GP) surrogate model is further constructed to increase the computational efficiency. By 
interpolating the nodal displacement values collected from the surface around the crack, another GP surrogate model is 
developed to generate synthetic images similar to that obtained from cameras. The results demonstrate that the proposed method 
is able to efficiently predict the parameters of the crack growth model as well as to estimate the true crack length. 
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INTRODUCTION 
Miter gates play an important role in inland waterway systems by enabling cargo ships to pass different water elevations, 
particularly under low-water conditions. Among the multiple forms of damage resulting from the aging of these steel structures, 
fatigue cracks are one of the most commonly damages found after visual inspections. Therefore, a comprehensive crack 
estimation framework that integrates diagnostics and prognostics is highly desirable, especially when in-site inspection is highly 
subjective and labour-intensive. In this work, we develop a method to perform efficient online diagnosis and prognosis using 
Bayesian networks and high-fidelity FE models. Since localized cracks at the initial phase are hard to detect by the globally 
distributed strain gage, we construct a GP surrogate model to generate synthetic image-based measurements for inference. 
 
 
IGL ALGORITHM 
As shown in Fig. 1, the global FE model of miter gate built by 3D linear shell elements does not contain the crack and is only 
coarsely discretized around the crack. The local model is defined as a cruciform which shares a local boundary with the global 
model. The local model is divided into two parts. One is the crack-affected zone using the Abaqus XFEM 3d solid shells where 
the feature of interest, a crack, is explicitly represented. The other is the rest of the sub-structures which uses the 3D shell 
elements. The global displacement around local boundary solving from global model is imposed as the boundary conditions of 
the local model, and the local force along the boundary solving from the local model is applied back as a reaction to the global 
model. The IGL algorithm finds an accurate representation of the physics by iteratively updating the interaction between the 
coupled global and local models. Stress intensity factor (SIF) as the key parameter of fatigue crack growth modeling indicates 
the crack growth pattern. For each step, the range of SIF values ∆𝐾 in a loading cycle at the crack front tip along with the crack 
length are extracted through stress analysis.  In this paper, the Paris’ law is adopted as a commonly used crack growth model, 

𝑑𝑎/𝑑𝑁 = 𝑐(∆𝐾)! 



where 𝑐 and 𝑚 are the material coefficients of Paris’ law, 𝑑𝑎 is the crack length change at each time step, and 𝑑𝑎/𝑑𝑁 is the 
fatigue crack growth for a load cycle 𝑁. In order to increase the computational efficiency for the IGL method, a surrogate 
model using Gaussian Process Regression (GPR) [1][2] is constructed to replace the non-linear behavior of the local domain. 

 

 
Figure 1. Illustrated IGL algorithm with global and local FE models of miter gate. 

 
 

IMAGE-BASED MEASUREMENTS 
Although FE analysis is capable of capturing the displacement for visualization, such computational-expensive model poses 
challenges to probabilistic analysis for diagnostics and prognostics. Given that the model needs to be executed thousands of 
times, an auxiliary surrogate model that is built to produce image-based observations, shown in Fig. 2. The images that come 
from a camera are consist of uniform square-like pixels, where the resolution of the images is determined by the side length of 
the pixels. By interpolating the Abaqus results into a uniform mapping, the function of "camera" can be fully learned. 
 

 
Figure 2. Auxiliary surrogate model to generate image-based measurements 

 
 
ONLINE DIAGNOSIS AND PROGNOSIS 
The diagnosis of the structures aims to detect and quantify the potential damage, which provides essential information on the 
current health state. Damage prognosis, in the meanwhile, extends the gathered information to predict the impact and the 
evolution of the damage, i.e., the remaining useful life (RUL) of the objective structures. Figure 3 illustrates the Bayesian 
network for online diagnosis where the ℎ"# and ℎ$%&' represents the upstream and downstream hydrostatic pressure applied 
on the global domain of the miter gate. The filtering process is composed of the crack evolution equation from IGL algorithm 
and observations from the auxiliary surrogate model that links the generated image-based measurements with the true system 
state [3]. The log-likelihood of the particles are first computed based on the observation data as follows, 

log 𝐿(𝜃|𝑥(, 	 … , 𝑥') = log	(𝑓(𝑥(, 	 … , 𝑥'|𝜃)) = ∑ 𝑓(𝑥)|𝜃)'_%+,
)-( .	



and the weight of the particles is computed as, 
𝑤𝑒𝑖𝑔ℎ𝑡) =

.(0!)

∑ .(0!)
"_$%&'!()*
!+,

. 

By repeated Monte Carlo (MC) sampling the particles based on their weights, the approximate conditional probability density 
function of the system state can be learned [4]. For each step of diagnosis, the RUL of the system can be predicted and updated 
by generating MC samples based on currently estimated parameters and crack length. 
 

 
Figure 3. Bayesian network for online diagnosis 

 
 

RESULTS 
As shown in Fig. 4, both parameters of Paris’ law converge to true values after certain time steps. Despite the large uncertainty 
at the beginning of the parameter updating, the proposed technique still managed to trace the crack growth pattern with high 
accuracy. The predicted RUL also converges to the true value within a few time steps. It is worth noted that even with a limited 
set of low-resolution pictures from the structure, the proposed framework can still accommodate great efficacy in performing 
crack diagnosis and prognosis. 
 

 
Figure 4. Online diagnosis and prognosis results 

 
 
CONCLUSION 
This work proposed a physics-based data-driven crack estimation framework with two novel advantages. An IGL-surrogate 
strategy is firstly developed which presents accurate physics of the feature of interest. In addition, the incorporated Bayesian 
network successfully predicts crack growth pattern and RUL of the component based on low-resolution images.  
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