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Systematic reduction of a detailed atrial myocyte model
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Cardiac arrhythmias are a major health concern and often involve poorly understood mechanisms.

Mathematical modeling is able to provide insights into these mechanisms which might result in better

treatment options. A key element of this modeling is a description of the electrophysiological

properties of cardiac cells. A number of electrophysiological models have been developed, ranging

from highly detailed and complex models, containing numerous parameters and variables, to simplified

models in which variables and parameters no longer directly correspond to electrophysiological

quantities. In this study, we present a systematic reduction of the complexity of the detailed model of

Koivumaki et al. using the recently developed manifold boundary approximation method. We reduce

the original model, containing 42 variables and 37 parameters, to a model with only 11 variables and

5 parameters and show that this reduced model can accurately reproduce the action potential shape and

restitution curve of the original model. The reduced model contains only five currents and all variables

and parameters can be directly linked to electrophysiological quantities. Due to its reduction in

complexity, simulation times of our model are decreased more than three-fold. Furthermore, fitting the

reduced model to clinical data is much more efficient, a potentially important step towards patient-

specific modeling. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4999611]

Mathematical models are an essential tool for studying

and understanding mechanisms of cardiac rhythm disor-

ders. Of particular interest in this paper are the electro-

physiological models that have been developed to study

the membrane potential and ionic currents in heart cells.

Many of these models can be extremely complex, making

it difficult to extract pertinent information from them.

Here, we examine a detailed model and show that it can

be greatly reduced to a handful of equations that are

needed to describe the membrane potential. Our simpli-

fied model is unique in that we started from a detailed,

physiologically accurate model, so the parameters of the

final model maintain their physiological significance.

INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac

arrhythmia and affects 2%–3% of the population in Europe

and North America.33 During AF, the heart rate becomes

irregular, resulting in rapid and less efficient beating. AF is

difficult to eliminate,3,13 and the underlying mechanisms

remain poorly understood. This incomplete understanding is

mainly due to the difficulty in obtaining clinical data that

quantify the spatio-temporal dynamics during AF. Based on

animal data9,10 and on recent recordings of human AF using

basket electrodes21–23 and high density body surface electro-

des12 it is believed, however, that spiral waves play a crucial

role in the maintenance of human AF. Understanding how

these spiral waves form and how they are responsible for the

various clinical signatures of AF can potentially result in bet-

ter treatment options for this serious disease.

Mathematical models can play an important role in

improving treatment for cardiac diseases, including AF.14

Simulations of single cells, tissue sheets, or the entire heart

can provide useful insights into the role of different cell or

tissue properties in cardiac arrhythmias.4,25,26,31 A crucial

component in these studies is the electrophysiological model

that describes the voltage dynamics of a cardiac myocyte.

This model consists of a set of coupled differential equations

that characterize the ion channels within the cell and the

resulting currents. A variety of models exist to characterize

the excitation of a myocyte, known as an action potential

(AP). These models vary in detail and the overall structure

and can, along with the ionic channels, also include ionic

concentrations inside the cell.

Recent studies aim to improve upon the accuracy and

capabilities of previous models,5,8,19 such as adding a compo-

nent to characterize the role of the sarcoplasmic reticulum.

This results in increasing detail and complexity as the models

add new equations and parameters to further describe electro-

physiological properties of the cell. There are, however, sev-

eral drawbacks of this added complexity. Obviously, adding

equations and parameters comes at the expense of increased

computational costs. Furthermore, whether this added com-

plexity leads to improved accuracy is questionable since

many channel properties are not well characterized or only

measured using animal models. In addition, there is a large

cell-to-cell variability within the heart and between different

hearts, necessitating different and variable parameter sets.

Thus, developing patient specific modeling, a goal of many

current modeling studies,20,29 would require extensive fitting

to patient data. This fitting, however, is generally more diffi-

cult to accomplish in detailed models.27 In a recent study, for

example, we were able to fit a detailed cardiac model, the

Koivumaki Korhonen Tavi (KKT) model,16 to several clinical
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data sets describing the action potential shape, action potential

duration restitution, and conduction velocity restitution simul-

taneously. However, this came with a large computational

cost.18

As an alternative to these detailed models, simplified

descriptions of cardiac cells have been developed.6,15,24

These models are computationally efficient, more intuitive to

interpret, and their parameters can be adjusted to reproduce a

large variety of spatio-temporal dynamics.7 These models,

however, characterize only a few key components that do

not explicitly represent ion channels. Therefore, their param-

eters cannot directly be compared to physiologically relevant

quantities such as ion channels.

It would therefore be useful to have a model that is sim-

ple, needing only a handful of differential equations, while

still maintaining parameters that are related to physiological

quantities. With this goal in mind, we carry out a reduction

study of a detailed cardiac model using the Manifold

Boundary Approximation Method (MBAM).28 This method

is particularly well-suited to reduce the number of parame-

ters in the so-called “sloppy” models: models in which many

parameters are loosely constrained and which only depend a

few “stiff” parameter combinations.2 It turns out that many

system biology models exhibit sloppiness, which is also

characterized by parameter sensitivity eigenvalues that are

evenly distributed over many decades.11 MBAM uses a geo-

metric and information theoretic approach that can systemat-

ically reduce a model in a stepwise fashion.28

We will focus here on the highly complex and detailed

KKT model16 and carry out a stepwise reduction of parame-

ters and variables using MBAM. We report results on 5

reduced models: 4 corresponding to intermediate reduction

steps and one representing the final reduction. We show that

these models are able to reproduce the AP shape, and AP res-

titution curve, linking the AP duration and the stimulus

period, of the original model. The final reduction model has

significantly fewer parameters and variables than the original

one and has a significantly shorter computational time. Thus,

its complexity is vastly reduced and approaches that of sim-

plified models, without sacrificing the electrophysiological

connection of the remaining model parameters and variables.

METHODS

As our electrophysiological model, we will use the KKT

model of human atrial myocytes.16 The KKT model was

designed to characterize a wide range of quantities, including

intracellular concentrations and calcium release from the sar-

coplasmic reticulum. Several versions of the model are also

presented in the original paper, with variations in complexity

and results. Here, we use the vNassIk version of the model,

with some modification.17 In this version, a subsarcolemmal

sodium concentration is added to the cell, along with a

hyperpolarization activated potassium current. The model is

comprised of 42 differential equations, with over one hun-

dred possible parameters.

In terms of measured quantities, we only look at the

action potential produced by the model, not the individual

currents or concentrations. Simulations were run using an

S1-S2 protocol. Meaning that a stimulus (S1) is applied

repeatedly at a set cycle length for a given time duration, and

then followed by a single stimulus (S2) at a different cycle

length. After the single S2 stimuli, the pacing reverts back to

the S1 stimuli and the process repeats. For our simulations,

the S1 stimulus always had a 500 ms cycle length, and 5 S1

stimuli are applied in between each S2 stimuli. Three differ-

ent S2 stimuli were used in the simulation, and were chosen

to capture the general shape of the action potential duration

(APD) restitution curve and to characterize tissue dynamics

for both large and small cycle lengths. The action potential

shapes generated from the three different S2 stimuli were

recorded. This protocol is different from what is described in

the original paper, which used several different pacing proto-

col, some running for several minutes, to quantify a variety

of characteristics in the action potential shape and duration.

These long simulation time scales would not be practical

with the MBAM method, which requires many repeated sim-

ulations per reduction step.

Of the many parameters in the model, the time constants

and the parameters that represented the extracellular concen-

trations and physical dimensions of the cell were kept fixed.

The remaining parameters, containing all the model conduc-

tances, diffusion constants, buffer concentrations, and reaction

rates, were allowed to vary in MBAM. For the version of

KKT chosen here, this equates to a model with 42 variables

and 37 parameters. Before beginning the reduction algorithm,

all the parameters were first log transformed, �u ¼ logðuÞ, so

that each parameter in the model reduction algorithm can

vary between 61. This improves the accuracy of the algo-

rithm, as it increases the range of variability for each parame-

ter and makes them dimensionless quantities.

The MBAM reduction algorithm, further detailed in the

Supporting Material, begins by creating a metric tensor of the

parameter space manifold.28 This is done by looking at a set

of measured quantities produced by the model (see below),

and examining how sensitive these are to changes in the

parameter space. More precisely, the metric tensor is the

Fisher Information Matrix. The eigenvalues of the metric then

give a hierarchy of widths that characterize the parameter

space. By moving along parameter space towards the nearest

boundary, or shortest width, the dimensionality of the parame-

ter space can be reduced. Furthermore, in order to ensure a

minimal change in the results, the model advances towards

the boundary along the geodesic lines of the manifold.

Sixty time points, twenty from each of the three S2 stim-

uli, were chosen in total for the data points, or measured

quantities, in the reduction algorithm. These points were not

evenly spaced along the voltage trace, but rather chosen to

include values from the upstroke, repolarization, and resting

state of the model (see Fig. S1 of supplementary material).

At the end of each run of the reduction algorithm, the model

was evaluated at the limit. This corresponds to setting the

parameter(s) that will be removed to either 0, resulting in the

elimination of a variable or a term in one of the equations, or

1, which resulted in a fraction that vanishes. After the

reduction step, the new and reduced model was refit to the

output of the original model at the same sixty time points

mentioned above using a simulated annealing method as
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described in our earlier work.18 The reduced model, along

with its new parameters, was then used as input to the

MBAM algorithm. This process was repeated until the

reduced model could no longer be fit to the original model

without significant error, defined as> 10% in the AP shape

(see below).

All matrix manipulation required by the MBAM method

was run on a Tesla K40 GPU using the CUDA parallel com-

puting framework. Model simulations were run in serial on a

quad-core Xeon E5-2637 CPU. A forward Euler scheme

with a time step of 0.01 ms was used for the model simula-

tions, and a variable time step was used for integrating the

geodesic equation. Each successive step of the algorithm

took less time to complete, as the model was reduced in

complexity.

Accuracy of the fit was defined through an error function

E which measures the discrepancy of the numerical results

and the original KKT data as reported earlier18

E ¼ 1

M

XM

i¼1

jxsim
i � xKKT

i j
jxKKT

i j ; (1)

where xsim
i and xKKT

i are the values of the simulation of the

reduced and original model, respectively, and where M is the

total points that are used in the error function.

RESULTS

We first determined the parameter sensitivity spectrum

of the KKT model. To this end, we first computed the cost

function, C, for the change in voltage, V, when parameters

deviate from their original values. We use M¼ 60 time

points tm

C ¼
XM

m¼1

1

2
V ~h; tm

� �
� V ~h

�
; tm

� �� �2

: (2)

Here,~h is a vector representing the set of all parameters. We

then computed the eigenvalues of the Hessian matrix11

Hi;j ¼ @i@jC: (3)

Details of this calculation can be found in the supplementary

material. The spectrum is plotted in Fig. 1 and spans roughly

20 orders of magnitude, with eigenvalues that are approxi-

mately equally spaced. The latter means that it is not possible

to divide parameters into an important and a not so important

group.

We next carried out a stepwise reduction of the KKT

model with MBAM, and were able to reduce it from 42 varia-

bles with 37 parameters to only 11 variables with 5 parame-

ters. In Fig. 2, we give a visual representation of four

intermediate steps along with the final step, showing which

parameters are removed after each reduction step. Henceforth,

we will refer to these steps as R1, R2, R3, R4, and Rfinal. A sim-

ilar figure of the change in variables is in Fig. S2 (supplemen-

tary material), and a list of the parameter values for each

reduction step is in Table S1 (supplementary material).

In this representation, we have marked all parameters

that were eliminated in red while the parameters in blue

were combined into new parameters. As indicated in Fig. 2,

the red parameters were eliminated in one of two ways.

Some parameters, e.g., the conductance of the slow delayed

rectifier potassium current, gKs, were set equal to 0, resulting

in the complete removal of a current or equation term (Iks in

our example). Other parameters appear in the denominator

of the current equations and were set equal to1. Obviously,

this also resulted in the elimination of these terms, together

with parameters that appear in the numerator of these equa-

tions. These parameter combinations are marked by the

bracket and an example is the concentration of the calcium

buffer calsequestrin, CSQN, together with its dissociation

constant KdCSQN. The parameters marked in blue appear in

combinations that can be combined into a single parameter.

FIG. 1. Eigenvalue spectrum of the Hessian matrix for the original model

and the final reduced model.

FIG. 2. Chart of parameter changes between iterations of the reduction algo-

rithm. The parameters highlighted in red are ones that were removed in the

following iteration, after being evaluated at a limit. The parameters

highlighted in blue were reduced or combined to make new parameters.
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For example, when going to a boundary of the manifold,

both INaKmax, the maximum value of the INaK current, and

kNaKNa, the half maximum sodium binding concentration,

were observed to grow quickly. Since these parameters are

in the numerator and denominator, respectively, they can be

combined into a new, and single one /INaK.

The final model contains only 5 parameters, representing

the conductances of the 5 remaining currents: the fast sodium

current INa, the L-type Ca2þ current ICaL, the time-independent

potassium current IK1, the transient outward potassium cur-

rent It current, and the sustained outward potassium current

Isus. These currents are unmodified from the original model,

except the L-type calcium current which now depends on

the parameter /CaL, which is the product of the original con-

ductance and effective reversal potential (see supplemental

material, where we also show for completeness the unmodi-

fied currents). The eigenvalue spectrum of the final reduced

model Rfinal is shown in Fig. 1 and shows that the range has

significantly decreased from the original model and now

only spans 104.

We next determined how accurately the reduced mod-

els can reproduce the original model results. To this end, we

fitted, after each reduction step, the remaining parameters

of the model to the data as described in Methods. In Fig. 3,

we plot the computed AP shape for all three S2 stimuli for

the 4 intermediate steps and the final reduction step. As can

be seen from these graphs, the AP shape remains close to

the original one for all reduction steps. This can be quanti-

fied by computing the error between the original and

the simulated AP curves (see Methods). The results are

shown as bar graphs in Fig. 3 and demonstrate that this error

remains < 2% for R1, R2, and R3 and becomes at most

�8% for R4 and Rfinal.

To further quantify the outcomes of the reduction steps,

we computed the APD restitution curve for our three S2 val-

ues. The results are plotted in Fig. 4 using the same color

scheme as in Fig. 2. As expected, the restitution curves for

all reduction steps are similar to the one from the original

model. In Fig. S3 (supplementary material), we have plotted

APD restitution curves for a larger range of S2 stimuli,

showing identical qualitative behavior.

Attempting to proceed after Rfinal resulted in either the

conductance of IK1 or of Isus to go to 0. Fitting the resulting

AP shape with these currents removed resulted in an error

that was larger than 10% and the reduction process was

stopped. We have also examined the stability of the action

potential duration for each of the models, a desirable feature

for cardiac simulations.32 We found that the original model

and the final model are roughly identical in their stability

(see Fig. S4 of supplementary material), while the drift from

the initial values was more pronounced in the intermediate

models. The fact that the intermediate models show a more

significant drift in voltage is perhaps not surprising. The rest-

ing potential is a result of a delicate balance between all cur-

rents, pumps, and exchangers. Removing some of these

might result in a resting potential that slowly changes over

time. Furthermore, even the original model shows a small

drift. It also likely that constraining parameter values or fur-

ther fitting with more data points can improve the stability of

the reduced models.

FIG. 3. AP Shape comparison for select iterations of the reduced model. The AP shape is shown for each of the S2 stimuli in the S1-S2 pacing protocol used in

the reduction algorithm. The cycle lengths shown are 400, 300, and 250 ms. For clarity, the bar graph next to each curve shows the percent error in each of the

models.

FIG. 4. APD Restitution curve for the original and reduced models. The

APD was recorded from simulations using 3 S2 stimuli, as in the reduction/

fitting process. The original and Rfinal models are represented as thick black

lines, with the original also being dashed.
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DISCUSSION

In this study, we systematically reduced a detailed

model for atrial myocytes, containing many parameters and

variables, to a relatively simple model with only 5 parame-

ters and 11 variables. The reduction was carried out with

MBAM, a geometric and information theoretic technique

particularly well-suited for sloppy models. This sloppiness is

manifested in the insensitivity of the model results to large

parameter variations, as shown in the large and roughly even

spread of eigenvalues (Fig. 1). Therefore, the model is only

sensitive to a limited set of parameter combinations and

should be amenable to parameter reduction.

Many of the currents in the original model were

completely removed in the final reduced version. Perhaps

this is not a surprise when one takes into account the result

from previous studies. In the original publication of the KKT

model,16 it was reported that the addition of the hyperpolari-

zation activated current If was added to the model but that it

only has a small effect on the overall dynamics, as it only

activates at hyperpolarized voltages compared to the resting

(diastolic) potential. It is also stated that the IKs and IKr cur-

rents in the model should have a smaller effect than the IK1

current in determining repolarization. In agreement with this,

our method removes the If, IKr, and IKs currents entirely,

while keeping the IK1 current. Furthermore, Nygren et al.
showed that the ICaP, INab, ICab, INaK, and INaCa currents are

more relevant for maintaining sodium and calcium concen-

trations within the cell and do not change the response of the

cell to a stimulus in a significant way.24 As the goal of our

reduced model was to characterize the action potential, it is

reasonable that currents related to the ionic concentrations

could be removed. Clearly, since our final reduced model

does not explicitly solve for these concentrations, nor for the

calcium concentration within the sarcoplasmic reticulum, it

will not be able to address dynamics changes of these con-

centrations. We should point out, however, that some of

these variables are still present in one of the intermediate

models, which could be used instead. Furthermore, our

reduction method focused on the voltage dynamics, using an

S1S2 stimulus protocol. Reduction attempts that focus on the

dynamics of some of the intracellular components might

result in reduced models that maintain the ability to investi-

gate the ionic concentrations.

Our final model resulted in AP changes and restitution

curves that are close to the ones generated by the original

model even though it contains many fewer variables and

parameters. This suggests that our reduced model can be

used as a viable alternative to the complex full model for

the investigation of both single cell responses to different

stimuli, and for the study of spatio-temporal dynamics in

spatially extended geometries. As a simple example, we

performed a 2D simulation in which we initiated spiral

waves using a premature stimulus1 (see Fig. S5 of supple-

mentary material). The observed dynamics in the reduced

model is qualitatively similar to the original model, albeit

with a slightly lower conduction velocity. Consistent with

the development of the original model, our reduced model

excluded any selection for the conduction velocity, so it is

to be expected that the simulations over extended domains

contain some differences.

When trying to further reduce the model by eliminating

one of the remaining 5 currents, the error in the resulting and

the original AP shape became quite large. This suggests that

using the ionic formulation of the KKT model it is not possi-

ble to accurately describe AP shapes without an explicit

description of INa, ICaL, IK1, It, and Isus and that our reduced

model can be seen as a minimal atrial myocyte model. This

does not mean that it is impossible to fit AP shapes with

fewer variables, as, for example, in the Fenton-Karma

model.6 This model, however, does not utilize the same func-

tional form for its variable equations which can no longer be

directly equated to ionic currents.

While many of the components of the original KKT

model were removed, this approach has also allowed for

much of the detail and complexity to remain in the five cur-

rents that were kept in the model. Of these currents, only the

L-type calcium channel was altered, and a physical descrip-

tion can still be associated with many of the parameters and

variables. This is in contrast to the simple models that have

been developed in the past. Not surprisingly, our reduced

model is computationally more efficient than the original

one. An estimate of the simulation times for the original and

for the final model shows that the reduction resulted in an

approximately three-fold speed-up: simulations of 1000 s for

a single cell took 11.9, 11.1, 9.7, 8.6, 6.6, and 3.7 s for the

original, R1, R2, R3, R4, and Rfinal models, respectively. We

have verified that similarly a speed up can be seen when fit-

ting the model to data, a task that is necessary for the devel-

opment of patient-specific models.

CONCLUSION

Here, we showed how MBAM can systematically

reduce the complexity of a detailed atrial model. Although

we have focused here on a model for atrial myocytes, our

reduction methodology can also be applied to models for

ventricular myocytes.30 The models presented here are capa-

ble of reproducing action potential dynamics that are equiva-

lent, or nearly equivalent, to those produced by more

detailed models. The approach used in this paper begins with

a very complex model and successively removes all compo-

nents which did not greatly affect the action potential or the

APD. Meaning that only variables and parameters which

have the greatest sensitivity to the measured quantities

remain. Plus, this produces a series of increasingly simple

models, instead of a single end result. From the final reduced

model, we find that IK1, Isus, It, INa, and ICaL currents are

most relevant for determining the AP shape and duration.

We conclude here that if one does need to study all the intri-

cacies of intracellular concentrations, then a detailed model

containing such components is not necessary for studying

many of the remaining dynamics.

SUPPLEMENTARY MATERIAL

See supplementary material for further details of the

MBAM method, and structure of the reduced models.

093914-5 D. M. Lombardo and W.-J. Rappel Chaos 27, 093914 (2017)

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-021795
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-021795
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-021795


ACKNOWLEDGMENTS

We would like to thank Dr. Transtrum for helpful

comments on the manuscript. We gratefully acknowledge

the support of NVIDIA Corporation with the donation of the

Tesla K40 GPU used for part of this research. This work was

supported by National Institutes of Health R01 HL122384.

1R. R. Aliev and A. V. Panfilov, Chaos, Solitons Fractals 7, 293 (1996).
2K. S. Brown and J. P. Sethna, Phys. Rev. E 68, 021904 (2003).
3S. S. Chugh, R. Havmoeller, K. Narayanan, D. Singh, M. Rienstra, E. J.

Benjamin, R. F. Gillum, Y.-H. Kim, J. H. McAnulty, Z.-J. Zheng et al.,
Circulation 129(8), 837–847 (2014).

4R. H. Clayton, A. Bailey, V. N. Biktashev, and A. V. Holden, J. Theor.

Biol. 208, 215 (2001).
5M. Courtemanche, R. J. Ramirez, and S. Nattel, Am. J Physiol. 275, H301

(1998).
6F. Fenton and A. Karma, Chaos 8, 20 (1998).
7F. H. Fenton, E. M. Cherry, H. M. Hastings, and S. J. Evans, Chaos 12,

852 (2002).
8E. Grandi, S. V. Pandit, N. Voigt, A. J. Workman, D. Dobrev, J. Jalife, and

D. M. Bers, Circ. Res. 109, 1055 (2011).
9C. M. Gray, A. K. Engel, P. K€onig, and W. Singer, Visual Neurosci. 8,

337 (1992).
10R. Gray, A. Pertsov, and J. Jalife, Nature 392, 75 (1998).
11R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers,

and J. P. Sethna, PLoS Comput. Biol. 3, e189 (2007).
12M. Haissaguerre, M. Hocini, A. Denis, A. J. Shah, Y. Komatsu, S.

Yamashita, M. Daly, S. Amraoui, S. Zellerhoff, M. Q. Picat, A. Quotb, L.

Jesel, H. Lim, S. Ploux, P. Bordachar, G. Attuel, V. Meillet, P. Ritter, N.

Derval, F. Sacher, O. Bernus, H. Cochet, P. Jais, and R. Dubois,

Circulation 130, 530 (2014).
13J. Jalife, Cardiovasc. Res. 89, 766 (2011).
14A. Karma, Annu. Rev. Condens. Matter Phys. 4, 313 (2013).

15B. Y. Kogan, W. J. Karplus, B. S. Billett, A. T. Pang, H. S. Karagueuzian,

and S. S. Khan, Phys. D: Nonlinear Phenom. 50, 327 (1991).
16J. T. Koivumaki, T. Korhonen, and P. Tavi, PLoS Comput. Biol. 7,

e1001067 (2011).
17J. T. Koivumaki, G. Seemann, M. M. Maleckar, and P. Tavi, PLoS

Comput. Biol. 10, e1003620 (2014).
18D. M. Lombardo, F. H. Fenton, S. M. Narayan, and W.-J. Rappel, PLoS

Comput. Biol. 12, e1005060 (2016).
19M. M. Maleckar, J. L. Greenstein, N. A. Trayanova, and W. R. Giles,

Prog. Biophys. Mol. Biol. 98, 161 (2008).
20K. S. McDowell, F. Vadakkumpadan, R. Blake, J. Blauer, G. Plank, R. S.

MacLeod, and N. A. Trayanova, J. Electrocardiol. 45, 640 (2012).
21S. M. Narayan, D. E. Krummen, M. W. Enyeart, and W.-J. Rappel, PLoS

One 7, e46034 (2012).
22S. M. Narayan, D. E. Krummen, and W. Rappel, J. Cardiovasc.

Electrophysiol. 23, 447 (2012).
23S. M. Narayan, D. E. Krummen, K. Shivkumar, P. Clopton, W.-J. Rappel,

and J. M. Miller, J. Am. Coll. Cardiol. 60, 628 (2012).
24A. Nygren, C. Fiset, L. Firek, J. W. Clark, D. S. Lindblad, R. B. Clark, and

W. R. Giles, Circ. Res. 82, 63 (1998).
25Z. Qu, F. Xie, A. Garfinkel, and J. N. Weiss, Ann. Biomed. Eng. 28, 755

(2000).
26W.-J. Rappel, Chaos 11, 71 (2001).
27M. K. Transtrum, B. B. Machta, and J. P. Sethna, Phys. Rev. Lett. 104,

060201 (2010).
28M. K. Transtrum and P. Qiu, Phys. Rev. Lett. 113, 098701 (2014).
29N. A. Trayanova, IEEE Spectrum 51, 34 (2014).
30K. H. ten Tusscher and A. V. Panfilov, Am. J. Physiol.-Heart Circ.

Physiol. 291, H1088 (2006).
31N. Virag, V. Jacquemet, C. Henriquez, S. Zozor, O. Blanc, J.-M. Vesin, E.

Pruvot, and L. Kappenberger, Chaos 12, 754 (2002).
32M. Wilhelms, H. Hettmann, M. M. Maleckar, J. T. Koivumaki, O. Dossel,

and G. Seemann, Front Physiol. 3, 487 (2012).
33M. Zoni-Berisso, F. Lercari, T. Carazza, S. Domenicucci et al., Clin.

Epidemiol. 6, e220 (2014).

093914-6 D. M. Lombardo and W.-J. Rappel Chaos 27, 093914 (2017)

http://dx.doi.org/10.1016/0960-0779(95)00089-5
http://dx.doi.org/10.1103/PhysRevE.68.021904
http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005119
http://dx.doi.org/10.1006/jtbi.2000.2212
http://dx.doi.org/10.1006/jtbi.2000.2212
http://dx.doi.org/10.1063/1.166311
http://dx.doi.org/10.1063/1.1504242
http://dx.doi.org/10.1161/CIRCRESAHA.111.253955
http://dx.doi.org/10.1017/S0952523800005071
http://dx.doi.org/10.1038/32164
http://dx.doi.org/10.1371/journal.pcbi.0030189
http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005421
http://dx.doi.org/10.1093/cvr/cvq364
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125112
http://dx.doi.org/10.1016/0167-2789(91)90003-R
http://dx.doi.org/10.1371/journal.pcbi.1001067
http://dx.doi.org/10.1371/journal.pcbi.1003620
http://dx.doi.org/10.1371/journal.pcbi.1003620
http://dx.doi.org/10.1371/journal.pcbi.1005060
http://dx.doi.org/10.1371/journal.pcbi.1005060
http://dx.doi.org/10.1016/j.pbiomolbio.2009.01.010
http://dx.doi.org/10.1016/j.jelectrocard.2012.08.005
http://dx.doi.org/10.1371/journal.pone.0046034
http://dx.doi.org/10.1371/journal.pone.0046034
http://dx.doi.org/10.1111/j.1540-8167.2012.02332.x
http://dx.doi.org/10.1111/j.1540-8167.2012.02332.x
http://dx.doi.org/10.1016/j.jacc.2012.05.022
http://dx.doi.org/10.1161/01.RES.82.1.63
http://dx.doi.org/10.1114/1.1289474
http://dx.doi.org/10.1063/1.1338128
http://dx.doi.org/10.1103/PhysRevLett.104.060201
http://dx.doi.org/10.1103/PhysRevLett.113.098701
http://dx.doi.org/10.1109/MSPEC.2014.6934929
http://dx.doi.org/10.1152/ajpheart.00109.2006
http://dx.doi.org/10.1152/ajpheart.00109.2006
http://dx.doi.org/10.1063/1.1483935
http://dx.doi.org/10.3389/fphys.2012.00487
http://dx.doi.org/10.2147/CLEP.S47385
http://dx.doi.org/10.2147/CLEP.S47385

	s1
	l
	n1
	s2
	d1
	s3
	d2
	d3
	f1
	f2
	f3
	f4
	s4
	s5
	s6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33



