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ABSTRACT

The protocols used in ad hoc networks today are based on
the assumption that the best way to approach multiple ac-
cess interference (MAI) is to avoid it. Unfortunately, as the
seminal work by Gupta and Kumar has shown, this approach
does not scale. We demonstrate that protocol architectures
that exploit multi-packet reception (MPR) do increase the
order of the transport capacity of random wireless ad hoc
networks for multi-pair unicast applications by a factor of
Θ(log n) and Θ (log(log n)) under the protocol and physi-
cal models, respectively, where n is the number of nodes in
the network. By contrast, Liu, Goeckel, and Towsley have
shown that network coding (NC) does not increase the order
capacity of wireless ad hoc networks under the protocol and
physical models.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design Wireless Com-
munication]: [Computer-Communication Network]

General Terms

Performance, Theory

Keywords

Multipacket Reception, Ad Hoc Networks, Unicast Capacity,
Multihop Wireless Networks

1. INTRODUCTION
The communication protocols used today in ad hoc net-

works are based on a one-to-one communication paradigm in
which a given receiver is able to decode at most one trans-
mission correctly. The main objective of this one-to-one com-
munication approach is the avoidance of multiple access in-
terference (MAI). Unfortunately, the seminal work by Gupta
and Kumar [7] demonstrated that the per source-destination
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throughput in a connected random wireless ad hoc network of
n nodes adhering to such a communication paradigm scales

as Θ

„

1√
n log(n)

«

1 under the protocol model [7] for multi-

pair unicast applications. Intuitively, the sharp decrease in
capacity experienced as the number of nodes increases can be
explained in the protocol model by the fact that a single suc-
cessful transmission occupies an area given by the reception
radius of the receiver, and this area is a function of the mini-
mum radius needed for the network to be connected. Hence,
as nodes are added, a smaller percentage of nodes are free to
transmit successfully. Clearly, without exploiting node mo-
bility [6], the only two possible approaches to increase the
order capacity of ad hoc networks consist of (a) increasing
the amount of information a transmitting node relays in each
transmission, or (b) enabling a receiver to decode multiple
concurrent transmissions within its reception radius. Work
has been carried out in both fronts.

Recently, Ahlswede et al. introduced the concept of net-
work coding (NC) [1], which allows nodes to conduct pro-
cessing and combining on received packets before forwarding
them. They proved that the max-flow min-cut throughput
can be achieved for single source multicast applications in
a directed graph in which there are no restrictions on when
a node can send and receive information. However, Liu et
al. [9] recently showed that NC cannot increase the transport
capacity order of wireless ad hoc networks for multi-pair uni-
cast applications when nodes are half-duplex using either the
physical or the protocol model.

On the other hand, Ghez et al. [4,5] and Mergen et al. [10]
provided a framework for many-to-one communications. In
this context, multiple nodes cooperate to transmit their pack-
ets simultaneously to a single node using multiuser detection
(MUD), directional antennas (DA), or multiple input multi-
ple output (MIMO) techniques [2,12,14]. The receiver node
utilizes MUD and successive interference cancelation (SIC) to
decode multiple packets. Toumpis and Goldsmith [13] have
shown that the capacity regions for ad hoc networks are sig-
nificantly increased when multiple access schemes are com-
bined with spatial reuse (i.e., multiple simultaneous trans-
missions), multi-hop routing (i.e., packet relaying), and SIC.

The contribution of this paper is to demonstrate that, un-
like NC, MPR increases the order of the transport capacity
of a random wireless ad hoc network under the protocol and
the physical models.

1Θ, Ω and O are the standard order bounds.



Section 2 shows that the per source-destination through-
put of a random wireless network of three dimensions (or 3-
D network) in which nodes utilize MPR is tight bounded by
Θ (r(n)) (upper and lower bounds) w.h.p.2 when the protocol
model is used, where r(n) is the reception range of a receiver.

We note that r(n) ≥ Θ
“

3
p

log n/n
”

to ensure connectivity

in random wireless ad hoc networks. This minimum r(n) re-

sults in an achievable capacity bound of Θ
“

3
p

log n/n
”

when

nodes are endowed with MPR, which represents a gain in the
order capacity of Θ(log(n)) compared to that attained with
simple multihop routing [7,8] (one-to-one communication) or
NC [9].

Section 3 shows that, under the physical model, a gain of
Θ (log(log n)) can be achieved in a two-dimensional random
network compared with the capacity result by Gupta and
Kumar in [7].

Our results are in stark contrast to prior results in ad hoc
networks that assume point-to-point communications! They
state that increasing the communication range r(n) actually
increases the capacity of an ad hoc network. Intuitively, the
reason for this is that, given that all receivers are endowed
with MPR, MAI around any receiver becomes useful infor-
mation and no longer decreases the capacity. Clearly, the re-
strictions in choosing the communication range among nodes
are: (a) the need to maintain connectivity in the network,
which provides a lower bound on r(n); and (b) the decod-
ing complexity of the nodes in the network, which provides
a practical upper bound on r(n).

2. PROTOCOL MODEL
Our analysis under the protocol model focuses on the 3-

D networks in which nodes are endowed with MPR capa-
bilities. Our model is consistent with the analytical model
in [8], and considers networks represented with an undirected
graph (bidirectional links) such that two nodes Xi and Xj

can communicate directly only if they are connected with
an edge. These graph models have traditionally been used
assuming a collision channel assumption [7], which we also
denote by one-to-one communication assumption. That is,
two nodes can communicate directly if they are within a dis-
tance d(n), and the transmission from node Xi to node Xj

is successful only if there is no other transmitter within dis-
tance (1 + ∆)d(n) to node Xj . This inherently implies that
the disks of different concurrent receivers with radius d(n)
are disjoint.

Applying the same protocol model to wireless networks
with MPR capability means that nodes are able to receive
successfully multiple packets concurrently, as long as the
transmitters are within a radius of r(n) from the receiver
and all other transmitting nodes have a distance larger than
(1 + ∆)r(n). The key difference is that MPR allows the re-
ceiver node to receive multiple packets from different nodes
within its disk of radius r(n) simultaneously. Note that d(n)
in point-to-point communication is a random variable while
r(n) in MPR is a predefined value. To consider such net-
works, we use the graph models with MPR. We assume that
a node communicates in half-duplex mode which is a common
assumption in wireless ad hoc networks. The MPR transmis-
sion and reception assumptions together with protocol model

2In this paper, w.h.p. denotes “with probability 1 when n →
∞.”

r(n)

(2+ )r(n)

Figure 1: Protocol model for MPR scheme in wire-
less ad hoc networks.

for MPR are shown in Fig. 1.
Before proceeding with our discussion of capacity limits,

we need to introduce a few results that we will use in our
computations. First, Gupta and Kumar [8] showed that the
connectivity among nodes in the 3-D model is guaranteed

w.h.p. if and only if r(n) is lower bounded by Θ

„

3
q

log n
n

«

.

They also showed [8] that the distribution of nodes in random
networks is uniform, so if there are n nodes in a unit volume,
then the density of nodes equals n. Hence, if |V | denotes the
volume of space region V , the expected number of the nodes,
E(NV ), in this volume is given by E(NV ) = n|V |.

Let Nj be a random variable defining the number of nodes
in Vj . Then, for the family of variables Nj , we have the
following standard results known as the Chernoff bounds [11]:

P [|Nj − n|Vj || > δn|Vj |] < e−θn|Vj |, (1)

where, θ is a function of δ. Therefore, for any θ > 0, there
exist constants such that deviations from the mean by more
than these constants occur with probability approaching zero
as n → ∞. It follows that, w.h.p., we can get a very sharp
concentration on the number of nodes in a volume, so we
can find the achievable lower bound w.h.p., provided that
the upper bound is given. In the following, we first derive
the upper bound, and then use the Chernoff Bound to prove
the achievable lower bound w.h.p..

Lastly, we note that the capacity results that we present
also depend on the transmission bandwidth W of the net-
work. However, given that we assume that W is independent
of n, the value of W is simply a constant multiplier in capac-
ity computations and does not change the order of capacity.
Hence, we consider W = 1 for simplicity.

In the following, to simplify our analysis, we assume that
n nodes are randomly located inside a cube of a unit area3.
Each node selects a destination randomly, and sends λ(n)
bits/sec.

2.1 Upper Bound in 3-D
A cut Γ is a partition of a network into two connected

components. The cut capacity is defined as the sum of band-
width of all the edges crossing the cut. A min-cut is a cut
whose capacity is the minimum value of all cuts. For wire-
less networks, we use a sparsity cut instead of min-cut to take
into account the broadcast nature of wireless links [9].

In the 3-D case, the cut plane Γp is defined as the area of
the cut. The cut plane that we consider has zero volume, such
that no node lies on it. A sparsity cut for a random network
is defined as a cut induced by the plane with the minimum

3In order to avoid edge effects, we can use a sphere as in [8]
and the results of this paper will not change.
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Figure 2: Cubic unit area.

area that separates the region into two subregions [9]. For
the square deployment region illustrated in Fig. 2, the middle
plane induces a sparsity cut Γp. Because nodes are uniformly
deployed in a random network, such a sparsity cut captures
the traffic bottleneck of a random network on average. This
cut capacity constrains the information rate that the nodes
from one side of the cut as a whole can deliver to the nodes at
the other side. This is the maximum information (in bits per
second) that can be transmitted across the cut from left to
right (or from right to left). The formal definition of sparsity
cut is given below.

Definition 2.1. In the 3-D model, a sparsity cut Γp for a
random network is defined as a cut induced by the plane with
the minimum area that separates the region into two volume
subregions.

The sparsity cut capacity is upper bounded by deriving
the maximum number of simultaneous transmissions across
the cut. In the work by Gupta and Kumar [8], spheres of
radius r(n) centered at each receiver are not necessarily dis-
joint, and the protocol model is still satisfied as long as the
transmitter has the closest distance to the receiver node com-
pared to all other transmitters in the network. In the MPR
protocol model, the receiver node can receive packets simul-
taneously from all the nodes within a radius of r(n) and all
other transmitters should be outside of region of radius r(n).
The following lemma describes the MPR protocol model.

Lemma 2.2. The sphere with radius r(n) centered at any
receiver should be disjoint from the other spheres centered at
the other receivers.

Proof. The proof is by contradiction and it is omitted
because of space limitations. The readers can find the details
in [15].

The protocol model assumption for the MPR scheme al-
lows simultaneous transmissions by nodes as long as they
are within a radius of r(n) from the receiver and all other
transmitting nodes have a distance larger than (1 + ∆)r(n).
∆ is a guard zone that is a function of the physical layer
characteristics.

Lemma 2.3. The capacity of a sparsity cut Γ for a unit re-
gion has an upper bound of 2c1Γpr(n)n, where c1 = 1

3(1+ ∆
2 )2

.

Proof. The cut capacity is upper bounded by the max-
imum number of simultaneous transmissions across the cut.
In Fig. 2 we observe that all the nodes located in the shaded
volume Vxyz can send their packets to the receiver node lo-
cated at (x, y, z). These nodes lie in the left side of the cut

Γp within a volume called Vxyz and the assumption is that
all these nodes send packets to the right side of the cut Γp.

For a node at location (x, y, z), any node in the sphere of
radius r(n) can transmit information to this node simultane-
ously and the node can successfully decode those transmis-
sions. To obtain an upper bound, we only need to consider
edges that cross the cut. We first consider all possible nodes
that can transmit to the receiver node in the Vxyz region.
We use the fact that E(NV ) = n|V | to estimate the average
number of transmitters located in Vxyz as nVxyz. The num-
ber of nodes that are able to transmit at the same time from
left to right is upper bounded as a function of Vxyz. The
volume of Vxyz, which is a spherical cap, is given by

Vxyz =
1

3
πr3(n)

„
1 − cos

θ

2

«2„
2 + cos

θ

2

«
. (2)

Hence, the total number of nodes that can send packets
across the cut is

Nmax = max
0≤θ≤π

"
Γp

π(1 + ∆
2

)2r2(n) sin2 θ
2

Vxyzn

#

= max
0≤θ≤π

"
c1Γp

(1 − cos θ
2
)(2 + cos θ

2
)

1 + cos θ
2

r(n)n

#
, (3)

where, c1 = 1

3(1+ ∆
2 )2

. This number is maximized with θ = π.

Therefore, the total number of nodes is upper bounded by
2c1Γpr(n)n.

Corollary 2.4. For any unit-volume 3-D random net-
work of arbitrary shape, if the minimum cut plane Γp is not
a function of n, then the sparsity cut capacity has an upper
bound of O(nr(n)).

Proof. Regardless of the shape of the unit volume re-
gion, there exists a sparsity cut for each orientation of the
cut plane. This sparsity cut capacity depends only on the
minimum cut area Γp. If Γp is not a function of n, then the
capacity is always upper bounded by O(nr(n)).

Theorem 2.5. The per source-destination throughput of
the MPR scheme in a 3-D random network is upper bounded
by O(r(n)).

Proof. For a sparsity cut Γ in the middle of the network,
on average, there are Θ(n) pairs of source-destination nodes
that need to cross Γ in one direction w.h.p., i.e., nΓ1,2 =
nΓ2,1 = Θ(n). The theorem then follows by combining this
result with Corollary 2.4.

2.2 Lower Bound in 3-D
We now prove that, when n nodes are distributed uni-

formly over a unit cubic volume, there are simultaneously at

least
c2Γp

r2(n)
circular regions, where c2 = 1

π(1+∆/2)2
, and each

such region contains 2
3
nπr3(n) nodes w.h.p.. This allows

us to obtain an achievable lower bound by using the Cher-
noff bound, such that the distribution of the number of edges
across the cut plane is sharply concentrated around its mean.
Therefore, in a randomly chosen network, the actual number
of edges crossing the sparsity cut plane is indeed Θ(nr(n))
w.h.p..

Theorem 2.6. Each spherical region Vj contains Ω(nr3(n))

nodes w.h.p. for all values of j, 1 ≤ j ≤ c2Γp

r2(n)
.



This theorem can be expressed as

lim
n→∞ P

2
64c2Γp/r2(n)\

j=1

|Nj − E(Nj)| < δE(Nj)

3
75 = 1, (4)

where, δ is a positive small value arbitrarily close to zero.

Proof. From the Chernoff bound and Equation (1), for
any given 0 < δ < 1, we can find θ > 0 such that

P
h

[|Nj − E(Nj)| > δE(Nj)] < e−θE(Nj)
i

= e−θn|Vj |. (5)

Thus, we can conclude that the probability that the value of
the random variable Nj deviates by an arbitrarily small con-
stant value from the mean tends to zero as n → ∞. Hence,

when all the events
Tc2Γp/r2(n)

j=1 |Nj − E(Nj)| < δE(Nj) oc-
cur simultaneously, then all Nj ’s converge uniformly to their
expected values. Utilizing the union bound, we obtain

P

0
B@c2Γp/r2(n)\

j=1

|Nj − E(Nj)| < δE(Nj)

1
CA

≥ max

8><
>:1 −

c2Γp/r2(n)X
j=1

P [|Nj − E(Nj)| < δE(Nj )] , 0

9>=
>;

> max

j
1 − c2Γp

r2(n)
e−θE(Nj), 0

ff
. (6)

Because E(Nj) = 2π
3

nr3(n), the final result is

limn→∞ P
h

Tc2Γp/r2(n)
j=1 |Nj − E(Nj)| < δE(Nj)

i

≥ max
n

1 − c2Γp

r2(n)
e−

2πθ
3 nr3(n), 0

o

. (7)

To guarantee connectivity, r(n) > 3
q

log n
n

[8]. Therefore, as

n → ∞, we have e
− 2πθnr3(n)

3
r2(n)

→ 0.

This theorem demonstrates that the lower bound can be
achieved w.h.p.

Corollary 2.7. The per source-destination throughput of
the MPR scheme for a 3-D random network has an achievable
lower bound of Ω(r(n)) w.h.p..

Proof. Theorem 2.6 proves that there are
Γp

π(1+∆/2)2r2(n)

different circles of radius r(n), each of them having Θ(nr3(n))
nodes w.h.p. Therefore, the per source-destination through-
put is the multiplication of these two values divided by the
total number of nodes, which proves the corollary.

By utilizing the lower bound for r(n) as Ω( 3
p

log n/n) to
guarantee connectivity of the network, the tight bound ca-
pacity can be given as

Θ(r(n)) = Θ( 3
p

log n/n).

Note that if we increase r(n), the transport capacity increases
as well. Constructively, therefore, the following theorem fol-
lows for the 3-D case.

Theorem 2.8. The per source-destination throughput λ(n)
of MPR scheme for a 3-D random network is given by Θ(r(n))
as the lower and upper bounds w.h.p..

3. PHYSICAL MODEL
In the physical model [7], a successful communication oc-

curs if SINR ≥ β, where SINR is defined as

SINR =
Pij(t)gij(t)

BN0 +
X

k �=i,k∈A

Pkjgkj

| {z }
COI

+
X

t �=i,t/∈A

Ptjgkj

| {z }
DEI

. (8)

With MPR, each receiving node is able to decode the trans-
missions of all the nodes transmitting within its receiving
range of distance A, and any transmission outside that range
is considered interference. In Eq. (8), Pij is the transmit
power of the node i with closest distance to the receiver j;
Pkj is the transmit power of a node other than i within
the receiver range, which constitutes constructive interfer-
ence (COI ); and Ptj is the transmit power of node t outside
the receiver range,4 which is considered as destructive inter-
ference (DEI ).

The normalized capacity between transmit node i and re-
ceive node j is defined as Cij bits/sec and it is given by

Cij = log (1 + SINR) , (9)

3.1 Interference Analysis
We first prove that decoding occurs from the closest node

to the farthest node.

Lemma 3.1. The transmitter receiver pair with maximum
SINR is the nearest transmitter, after decoding and subtract-
ing this pair from the received signal, the pair with the next
highest SINR is the second nearest transmitter; i.e., we de-
code the information from the nearest node to the receiver to
the last transmitter with maximum distance of A.

Proof. Because the channel propagation model is based
on the path-loss parameter, it is clear from (8) that the node
with the closest distance to the receiver has the highest SINR.
After decoding this packet and subtracting it from the re-
ceived data, it is obvious that the next packet with highest
SINR is from the second closest node to the receiver node
and this procedure can continue.

To compute the interference around a receiver, we first con-
sider a differential element area rdrdφ that is distant r units
from the receiver. Using a technique similar to that used
in [3] and considering the fact that the nodes are uniformly
distributed in the square unit area, then the interference cre-
ated by this area can be computed as

I(x0,y0) =
2πδPtjn

(α − 2)rα−2
0

"
1 − rα−2

0

2π
C(x0, y0)

#
, (10)

where C(x0, y0) is a function of the receiver location (x0, y0),
δ is the sender density parameter, and r0 is the distance
between the transmitter with the highest SINR and the re-
ceiver.

Assume that our communication model is a narrow band
system, then interference is the dominant term compared to
the additive white Gaussian noise (AWGN). Consequently,
we can omit the noise term BN0 and using (8) and (10), the

4Note that for the MPR model, we need to define receiver
range as opposed to transmission range for point-to-point
communication [7].
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Figure 3: Feasible transmitters for node at location
(x,y).

SINR is given by

SINR =
Pijgij

BN0 + I
≤ Pij

Ptj

(α − 2)

2πδ

1

nr2
0

"
1 − rα−2

0

2π
C(x0, y0)

#−1

≤ c1

nr2
0

h
1 − c2rα−2

0

i−1
. (11)

Note that gij = 1/rα
0 , c1 =

Pij

Ptj

(α−2)
2πδ

and c2 is a constant

value such that c2 ≥ C(x0, y0)/2π. Each receiver node de-
codes all transmitting nodes within a receiver range of A
using MPR and SIC schemes.

3.2 Upper Bound on Capacity
From (9) and (11), the normalized shannon link capacity

can be computed as

Cij = log(1 + SINR)

≤ log

„

1 +
c1

nr2
0

ˆ

1 − c2r
α−2
0

˜−1
«

. (12)

Lemma 3.2. The capacity of a sparsity cut Γ for a unit
square region has an upper bound of

Θ

 

lΓ
2R0

log
(c1 + nR2

0)
(c1+nR2

0)

(nR2
0)

(nR2
0)c1

c1

!

.

Proof. The cut capacity is upper bounded by the max-
imum number of simultaneous transmissions across the cut.
From Fig. 3, we observe that all nodes located in the shaded
area Sxy can transmit concurrently to the receiver located at
(x, y). These nodes lie in the left side of the cut Γ and the
assumption is that all these nodes are sending packets to the
right side of the cut Γ.

For a node at location (x, y), any node in the disk of radius
R0 can transmit information to this receiver simultaneously
and the node can successfully decode those packets. In order
to obtain an upper bound, we only need to consider edges
that cross the cut. Let us first consider all possible nodes
in the Sxy region that can transmit to the receiver node.
Because nodes are uniformly distributed, the average number
of transmitters in area Sxy is n× Sxy. The number of nodes
that can transmit at the same time from left to right is upper
bounded as a function of Sxy .

Similar to the 3-D case in the previous section, it can be
shown that the area of Sxy is maximized when θ = π. Hence,

max
0≤θ≤π

[Sxy] =
1

2
πR2

0 (13)

From Lemma 3.1, it is clear that the decoding sequence
is from close nodes to far nodes. We can compute the to-
tal information capacity using the differential area r0dr0dφ
with nr0dr0dφ transmitter nodes inside this region. The to-
tal information that can be transmitted from this region is
equal to Cijnr0dr0dφ, where Cij is defined in Eq. (12). De-
fine R0 = f(n), such that limn→∞ f(n) = 0. Given that
r0 ≤ R0, we have limn→∞[1 − c2r

α−2
0 ]−1 = 1 in (12) for

α > 2. The total throughput across the cut Γ when n → ∞
can be computed as follows:

Cj =
X

i∈ 1
2 πR2

0

Cij =

Z R0

0

Z π

0

Cijnr0dr0dφ

= Θ

 

log
(c1 + nR2

0)
(c1+nR2

0)

(nR2
0)

(nR2
0)c1

c1

!

, (14)

where R0 is the receiver range that separates the COI and
DEI interferences.

Therefore, the total throughput capacity C across the spar-
sity cut is C = lΓ

2R0
Cj .

Theorem 3.3. The per source-destination throughput of
MPR scheme in a 2-D random network is upper bounded by
Θ(
p

1/n), when R0 = Θ(
p

1/n).

Proof. There are lΓ/2R0 different circles of radius R0

each of them having Θ(nR2
0) nodes w.h.p. Therefore, the

per node throughput capacity can be derived as

λ(n) =
C

Θ(n)
= Θ

„
R0 log

„
1 +

c1

nR2
0

«
+ c1

log(nR2
0/c1)

nR0

«

= Θ

 
log

„
1 +

c1

nR2
0

«R0
!

+ Θ

„
log(nR2

0/c1)

nR0

«
(15)

The first term in Eq. 15 tends to zero when n → ∞.
To maximize the second term of the equation, the optimum

value of R0 is
q

c1e2

n
= Θ(

p

1/n). When R0 = Θ(
p

1/n), the

maximum of λ(n) equals Θ(
p

1/n), i.e., λmax(n) = Θ(
p

1/n).

3.3 Lower Bound on Capacity
We now prove that, when n nodes are distributed uni-

formly over a square area, we have simultaneously at least
lΓ

2R0
circular regions (see fig. 3), each one containing Θ(nR2

0)
nodes w.h.p..

Theorem 3.4. Each area Aj with circular shape of ra-
dius R0 contains Θ(nR2

0) nodes w.h.p. and uniformly for

all values of j, 1 ≤ j ≤ lΓ
2R0

under the condition that R0 ≥
Θ

„

q

log n
n

«

. Equivalently, this theorem can be expressed as

lim
n→∞ P

2
4lΓ/2R0\

j=1

|Nj − E(Nj)| < δE(Nj)

3
5 = 1, (16)

where δ is a positive small value arbitrarily close to zero.

Proof. From the definition of the Chernoff bound and
Eq. (1), there exists a θ > 0 for any given 0 < δ < 1 such
that

P
h
[Nj − |E(Nj)| > δE(Nj)] < e−θE(Nj)

i
= e−θn|Aj | (17)



Utilizing the union bound and using a similar technique as
the one applied for the lower bound in the protocol model,
we arrive at

P

2
4lΓ/2R0\

j=1

|Nj − E(Nj)| < δE(Nj)

3
5

≥ max

0
@1 −

lΓ/2R0X
j=1

P [|Nj − E(Nj)| > δE(Nj)] , 0

1
A

≥ max

„
1 − lΓ

2R0
e−θE(Nj), 0

«
. (18)

Because E(Nj) = π
2
nR2

0 (see (13)), then the final result is

lim
n→∞ P

2
4lΓ/2R0\

j=1

|Nj − E(Nj)| < δE(Nj)

3
5 ≥

max

 
1 − lΓ

2R0
e−

θπnR2
0

2 , 0

!
(19)

If R0 ≥
q

c5 log n
n

= Θ

„

q

log n
n

«

and as n → ∞, then

e
− θπnR2

0(n)
2

R0
→ 0, when θ > 1/πc5. Here, the key constraint

of R0 is given as

R0 ≥ Θ

 r
log n

n

!
, (20)

which is equivalent to the connectivity constraint in the
protocol model [7].

This theorem demonstrates that we can achieve the lower
bound with the constraint in Eq. (20) w.h.p. The achiev-
able capacity is only feasible when the receiver range of each
node using MPR is at least equal to the connectivity criterion
of transmission range in point-to-point communication [7].
Combining the result in (15) and (20), we have the following
theorem for the lower bound of throughput capacity.

Theorem 3.5. The per source-destination throughput ca-
pacity of MPR scheme in a 2-D static wireless ad hoc network

is lower bounded by Θ
“

log(log n)√
n log n

”

.

This theorem demonstrates that a gain of Θ (log(log n)) can
be achieved compared with the result of Gupta and Kumar
in [7].

4. CONCLUSION
We have shown that exploiting MPR techniques in ad hoc

networks can render an increase in transport capacity for
both protocol and physical models. The key significance of
this result is that, with MPR, the ability of ad hoc networks
to scale is no longer limited by MAI, but by the complexity of
transmitters and receivers. Using recent results from [9], we
have also shown that MPR is a more attractive alternative
than NC.
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