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ABSTRACT
Appearance-based gaze tracking algorithms, which compute gaze
direction from user face images, are an attractive alternative to
infrared-based external devices. Their accuracy has greatly bene-
fited by using powerful machine-learning techniques. The perfor-
mance of appearance-based algorithms is normally evaluated on
standard benchmarks typically involving users fixating at points
on the screen. However, these metrics do not easily translate into
functional usability characteristics. In this work, we evaluate a
state-of-the-art algorithm, FAZE, in a number of tasks of interest to
the human-computer interaction community. Specifically, we study
how gaze measured by FAZE could be used for dwell-based selec-
tion and reading progression (line identification and progression
along a line) — key functionalities for users facing motor and visual
impairments. We compared the gaze data quality from 7 partici-
pants using FAZE against that from an infrared tracker (Tobii Pro
Spark). Our analysis highlights the usability of appearance-based
gaze tracking for such applications.
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1 INTRODUCTION
Eye gaze tracking has been used extensively as a human-computer
interface modality (e.g. pointer control [Drewes et al. 2007; Sibert
and Jacob 2000], magnification control [Ashmore et al. 2005; Man-
duchi and Chung 2022]), to measure the user’s attention (e.g. when
driving a vehicle [Vicente et al. 2015] or visiting a web site [Pan
et al. 2004]), to study reading behaviors [Rajendran et al. 2018;
Vo et al. 2010], and to identify specific conditions such as autism
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spectrum disorders [Murias et al. 2018], ADHD [De Silva et al.
2019], or dyslexia [Raatikainen et al. 2021; Rayner 1998; Wang et al.
2024]. Measurements of the user’s gaze point (point of regard on
the screen) are usually obtained through an external device (a gaze
tracker) that uses an infrared illuminator and one or more cameras
to compute the visual axis [Guestrin and Eizenman 2006] (the line
from the point of regard to the center of the fovea through the
pupil). Modern commercial gaze trackers can be rather accurate
(with errors of a fraction of a degree) while allowing users to move
their heads within a certain volume of space [Tobii [n. d.]].

In recent years, there has been increasing interest in software sys-
tems that leverage modern machine learning to estimate a person’s
gaze direction from an image of their face, taken e.g. from a screen
camera. The practical advantages of “appearance-based” tracking
software are apparent, both in terms of convenience (no need for
an external device to connect) and cost (infrared-based trackers are
still quite expensive). However, the accuracy of appearance-based
trackers still lags behind that of infrared trackers [Zhang et al. 2019].
This article presents a functional usability analysis of a state-of-
the-art appearance-based tracker. While the performance of gaze
trackers is normally expressed in quantities such as angular errors,
typically computed in specific settings (e.g. with users looking at a
target on the screen), these quantities do not easily translate into
desired usability parameters. Therefore, we investigate whether
state-of-the-art appearance-based trackers can serve as potential
substitutes for infrared-based systems, especially in the following
applications tailored for users with disabilities:

Dwell-Based Selection. This is a standard technique for users who
are unable to trigger a click event using a mouse or a switch [Jacob
1991; Müller-Tomfelde 2007; Paulus and Remijn 2021; Sibert and
Jacob 2000; Zhang and MacKenzie 2007]. While other approaches
have been considered (e.g., blink-based [Huckauf and Urbina 2008;
Lu et al. 2020]), dwell-based selection remains a popular choice and
is implemented in commercial devices such as the Tobii Dynavox
communication system [Menges et al. 2019] enhancing accessibility
for those with physical limitations.

Reading Progression Tracking.Measuring progression when read-
ing a document can be useful to assess one’s cognitive skills of
reading [Huck 2016; Patterson and Ralph 1999] or to provide gaze-
contingent reading support (e.g., highlighting the line currently be-
ing read [Rosenberg 2008], controlling the speed of auto-scrolling [Ku-
mar et al. 2007; Sharmin et al. 2013] or of text-to-speech [Schiavo
et al. 2015], magnifying the text being gazed at [Ashmore et al. 2005;
Manduchi and Chung 2022; Maus et al. 2020], or detecting reading
difficulties and augmenting text [Biedert et al. 2009; Bottos and
Balasingam 2020; Lunte and Boll 2020]), aiding those with dyslexia
or low vision [Wang et al. 2024]. We are interested in reading line
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identification (detecting which text line in the document is currently
being read [Bottos and Balasingam 2020; Sun and Balasingam 2021;
Wang et al. 2024]) as well as in tracking progression along a line by
measuring fixation scanpaths [Deng et al. 2023; Reichle et al. 2003].

We selected FAZE [Park et al. 2019] as our reference appearance-
based gaze tracking algorithm (described in Sec. 3.1.3), showing
to achieve accuracy of about 3◦ on multiple standard benchmark
data sets. One important feature of FAZE is that it adapts to the
appearance characteristics of a new user from just a few calibration
images. An open-source implementation of FAZE was made avail-
able by the authors1. On a Lambda Tensorbook, FAZE produces
gaze data at a rate of 6 fps.

In order to evaluate the feasibility of FAZE for the considered
applications, we conducted a small study with 7 participants, who
underwent two tasks: a fixation task (representative of dwell-based
selection), and a reading task. Images of the participants during
these tasks were taken by a computer camera. In addition, we used
an infrared-based gaze tracker (Tobii Pro Spark) to capture their
gaze direction. The Tobii tracker is used as a reference against
which to compare FAZE data. We define specific metrics for each
task, and evaluate FAZE and Tobii data comparatively against these
metrics. Our results give a detailed picture of the type of errors that
can be expected when using FAZE,providing insights for design-
ers integrating appearance-based gaze tracking in applications for
individuals with disabilities.

2 RELATEDWORK
Hohlfeld et al. [Hohlfeld et al. 2015] presented an analysis of the
applicability of computer vision-based gaze tracking for mobile
scenarios that is germane to our work. Here are the main differences
between this contribution and [Hohlfeld et al. 2015]. 1. Appearance-
based algorithm: Hohlfeld et al. used EyeTab [Wood and Bulling
2014], a model-based tracker whose accuracy (errors of 7◦ in ideal
conditions) is substantially inferior to learning-based algorithms
such as FAZE; 2. Tasks set: the following tasks were considered
in [Hohlfeld et al. 2015]: Focus on Device (determining whether the
user was looking at a tablet computer or behind it); Line Progression:
Line Test (finding regressions when following a moving dot); Word
Fixation: Point Test (finding fixation times). Our tasks (dwell-based
selection, reading line identification, progression along a line) are
substantially different than those in [Hohlfeld et al. 2015]. 3. Infrared
gaze tracker as reference. We use a commercial-grade infrared gaze
tracker to produce a reliable baseline against which to compare
the data from appearance-based tracking. Comparison between the
two trackers is important to establish whether an appearance-based
tracker can substituted for an infrared-based tracker, which is the
main research question motivating our work.

Zhang et al. [Zhang et al. 2019] presented a comparative eval-
uation of two appearance-based gaze tracking algorithms (MPI-
IFaceGaze [Zhang et al. 2017] and GazeML [Park et al. 2018]) against
a consumer-grade infrared-based device (Tobii EyeX). This work
was concerned with the range of viewing distances for which gaze
could be reliably computed, the required number of calibration
samples, the systems’ robustness to varying illumination (indoor
vs. outdoor), and their ability to measure gaze for users wearing

1https://github.com/NVlabs/few_shot_gaze

glasses. While very valuable, these tasks are very different from the
tasks considered in our contribution.

Wang et al. [Wang et al. 2024] developed GazePrompt to improve
digital reading for low-vision users by providing line-switching
and difficult-word recognition features, utilizing an infrared-based
tracker. This innovation highlights the necessity of investigating
appearance-based gaze tracking as a means to enhance usability
and accessibility. Such exploration could lead to significant advance-
ments in assistive reading technologies.

3 METHOD
3.1 Apparatus
3.1.1 Computer. We used a Lambda Tensorbook (equipped with
an NVIDIA RTX 2080 GPU and 8-core Intel i7-10875H at 2.30 GHz,
running Ubuntu 20.04.6) for our tests. The screen size (active pixel
area) was 349 mm by 195 mm, for a resolution of 1920 by 1080
pixels. A 1080p webcam was located on the top edge of the screen.

3.1.2 Infrared Gaze Tracker. Weused a Tobii Pro Spark gaze tracker
for baseline measurements. This is a moderately priced model that
produces binocular measurements at 60 Hz. In ideal conditions,
its nominal accuracy (mean angular error) is of 0.45◦, while its
precision (standard deviation of the error) is of 0.26◦ [Tobii [n. d.]].
For a person looking at the TensorBook’s screen from a distance
of 500 mm, these values translate to 20 and 11 pixels, respectively.
The tracker can measure gaze from a user located between 450 mm
and 950 mm from the screen, with a nominal freedom of head
movement of 350 × 350 mm. The tracker was placed at the bottom
of the TensorBook’s screen and was calibrated for each participant
using the Tobii Pro Eye Tracker Manager utility (9 targets).

3.1.3 Appearance-Based Gaze Detection. FAZE (Few-shot Adaptive
GaZE Estimation) is a state-of-the-art appearance-based gaze track-
ing algorithm. It incorporates several few-shot learning paradigms,
most notably Model-Agnostic Meta-Learning (MAML). At the core
of FAZE is an encoder-decoder architecture that captures latent
representations related to appearance, gaze direction, and head
pose from eye region imagery. After the initial learning phase of
these latent features, FAZE undergoes fine-tuning with a minimal
set of calibration samples from individual users. The use of MAML
significantly reduces over-fitting, thereby facilitating rapid and
person-specific model fine-tuning. The average angular error of
FAZE is of 3.14◦ [Park et al. 2019].

In our tests, we noted that data from FAZE sometimes exhibits
a consistent location bias, even after calibration. To remedy this,
we considered an additional geometric calibration. Specifically, for
each participant, we recorded the barycenter of the gaze points
produced by FAZE while the participant fixated each of the 9 points
in a pattern (Sec. 3.3), then regressed the parameters of an affine
transform minimizing the squared norm of the location error. This
affine transform was then applied on the gaze points returned by
FAZE for that participant.

3.2 Population
We recruited 7 participants (3 female, 4 male; age min: 22; max:
58; mean: 33.7) for this test. Three participants(P5, P6, P7) wore
glasses during the test. The studywas conducted following aHuman

https://github.com/NVlabs/few_shot_gaze
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Figure 1: Dwelling experiment. Top: Bias; Middle: Dispersion (square root of BCEA); Bottom: 𝐷min. Left: values per target,
averaged over participants. Right: Values per participant, averaged over targets.

Subject protocol approved by the Institutional Review Board at our
school.

3.3 Procedure
Participants were asked to sit in front of the computer, which was
placed on a tabletop. The experimenter ensured that they sat at a
distance from the screen that was within the admissible range for
the Tobii tracker. The average distance of each participant to the
screen was recorded by the tracker (min: 533 mm; max: 717 mm;
mean: 632 mm). They first completed the procedure for calibration
of the Tobii gaze tracker. Then, they completed the calibration
procedure for the FAZE algorithm. At this point, the data acquisition
part started. This comprised two tasks.

Task 1: Participants were asked to stare at a target (a small blue
disk of 16 pixels in diameter) appearing in a sequence of 9 locations
on the screen (see Fig. 1), and remaining in the same locations for
6 seconds before moving to the next one. (This amount of time is
consistent with other experiments on fixation stability [Fragiotta
et al. 2018].)

Task 2: Participants were presented with a text document (ex-
tracted from Carroll’s Alice in Wonderland). The text document
was formatted using Times New Roman font at 11pt, consisting of
15 lines with an interline distance of 18pt (24 pixels), and they were
asked to read it in its entirety. In addition, participants were asked
to press a button on the keyboard when they started a new line and
to press another button when they ended that line. In this way, we
were able to record the in-line time intervals. Participants were at
liberty to read the text aloud or silently (only P1 read it aloud).

Timestamped images of the participants were recorded from the
computer camera at a rate of 10 fps for offline processing. Times-
tamped gaze points from the Tobii tracker were recorded by a
Python application built on the Tobii Pro SDK.

3.4 Measurements
3.4.1 Dwelling. Selection by dwellingmechanisms [Müller-Tomfelde
2007] typically defines an area (e.g., a circle with diameter𝐷) around
a certain target (e.g., a button to be clicked). When the gaze point
is located within this area continuously for a period of time 𝑇 , the
selection is triggered. We are interested in evaluating how errors
in gaze measurements affect selection by dwelling, and how to
properly design a system that accounts for these errors. We are
not considering here the dynamic aspects of this task, which can
be described using variants of Fitt’s law [Zhang et al. 2010, 2011].
Rather, we look for the minimum diameter 𝐷min of a circle around
the target that ensures, with a certain probability 𝑃 , that selection
is triggered when the user is fixating the target for a period of time
𝑇 . Intuitively, 𝐷 will need to be larger for noisy measurements, as
noise may push measurements away from the point of fixation. In
our experiments, we set𝑇 , the dwelling time, to 700 ms, as this was
found to be appropriate for simple tasks in prior research [Stampe
and Reingold 1995; Zhang et al. 2011]. We set 𝑃 to 0.9. To find 𝐷min,
we first considered the interval of time [𝑡𝑖𝑛 (𝑖), 𝑡𝑒𝑛𝑑 (𝑖)] (approxi-
mately 6 seconds long) during which participants fixated the 𝑖-th
target in Task 1. We defined a sequence of finely spaced values for
𝐷 , and for each such value, we slid a time window of duration 𝑇
through [𝑡𝑖𝑛 (𝑖), 𝑡𝑒𝑛𝑑 (𝑖)]. For each window location, we checked
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Figure 2: Dwelling experiment. Left: A visualization of the dwelling circles with a diameter equal to the mean of 𝐷min across all
participants. Right: Contour plots of probability density functions fitted to the recorded data for P7. Contour levels were set at
20,40,60, and 80 percentile. Solid blue line: Tobii data. Yellow dashed line: FAZE data.

whether or not all gaze points measured in that time window were
within a distance of 𝐷/2 from the center of the target. The propor-
tion of window locations for which this was the case represents
the probability 𝑃𝐷 (𝑖) that, when staring at the 𝑖-th target, selection
would be triggered for a dwelling circle of diameter 𝐷 . Finally, we
defined 𝐷min as the smallest value of 𝐷 for which 𝑃𝐷 (𝑖) ≥ 0.9.

In addition, we provide measures of bias and dispersion. Bias is
defined as the distance, for each target, between the barycenters
of the gaze points measured from Tobii or FAZE and the actual
target location. Dispersion is measured as the square root of BCEA
(bivariate contour ellipse area). BCEA, a metric commonly used
for fixation studies (e.g. [Blignaut and Beelders 2012; Niehorster
et al. 2020]), represents the area of the ellipse containing 63% of
the gaze values, which are modeled as normally distributed. Noisy
measurements are typically characterized by large BCEA values.
We used all the data within each period [𝑡𝑖𝑛 (𝑖), 𝑡𝑒𝑛𝑑 (𝑖)] to measure
bias and BCEA at each target.

It is important to note that both 𝐷min and dispersion are affected
by measurement noise as well as by any fixation instability of the
viewer. BCEA is unaffected by bias (constant error terms).

To determine the intervals [𝑡𝑖𝑛 (𝑖), 𝑡𝑒𝑛𝑑 (𝑖)], we define a circle of
radius 4 pixels around each marker. 𝑡𝑖𝑛 (𝑖) and 𝑡𝑜𝑢𝑡 (𝑖) are the times
at which gaze as measured by the reference Tobii tracker enters
and exits the circle defined at the 𝑖-th marker.

3.4.2 Text Reading - Line Identification. The ability to identify
which text line in an onscreen document one is currently reading
hinges on the measured gaze being located within a narrow area
containing the line. We are only concerned with in-line reading
here, and neglect retracing time (return sweeps [Rayner and Pollat-
sek 2006]). We do not consider a specific vertical coordinate as a
reference (e.g., the midline of the text) since the user’s gaze is not
constrained to such a line while reading. Instead, we take the Tobii
data as a reference, against which to compare FAZE data.

For the 𝑖-th text line, we measure, for both Tobii and FAZE data,
the mean 𝜇𝑦 (𝑖) and standard deviation 𝜎𝑦 (𝑖) of the Y coordinate
of gaze points. 𝜎𝑦 (𝑖) measures the vertical dispersion; it provides
an indication of the minimum interline distance for reliable line
identification. The differences of the means 𝜇𝑦 (𝑖) between FAZE
data and the reference Tobii data represent the residual vertical
bias.

3.4.3 Text Reading - Progression Along a Line. During reading,
one’s eyes are not gliding smoothly along a text line; rather, gaze
proceeds as a sequence of fixations (during which gaze is relatively
static) and saccades, which are rapid movements forward in the line,
or, occasionally, backward (regressions) [Rayner and Pollatsek 2006].
For ourmeasure of progression along a line, we consider all fixations
detected from Tobii data during line reading. Fixation detection is
a relatively straightforward operation, and the accuracy of infrared
trackers such as Tobii Spark is adequate for this purpose [Olsen
2012]. For this purpose, we use a simple velocity-based algorithm
inspired by the Tobii I-VT fixation filter [Olsen 2012]. For the 𝑖-
th fixation period, we compute the average value 𝜇𝑥,𝑓 (𝑖) and the
standard deviation 𝜎𝑥,𝑓 (𝑖) of the X coordinate for both Tobii and of
FAZE data. The difference between 𝜇𝑥,𝑓 (𝑖) values in the two cases
is an indication of how accurately the reading location along a line
can be tracked using an algorithm like FAZE.

In addition, we computed the standard deviation 𝜎𝑥,𝑠 (𝑖) of the
X coordinate of gaze point for both Tobii and FAZE data in the
periods outside fixations (saccades [Rayner and Pollatsek 2006]).
Comparison of 𝜎𝑥,𝑠 (𝑖) against 𝜎𝑥,𝑓 (𝑖) provides an indication of the
relative dispersion during fixations (periods with low gaze point
variance) and during saccades (when variance is large due to fast
motion).

4 RESULTS
We present the results of our experiments in the following. All
statistical tests were conducted at 5% significance level. In order to
visually highlight any dependencies of the recorded values on the
participants’ distance to the screen, participant indices were sorted
according to increasing distance to the screen.

4.1 Fixation
Recorded values of bias, dispersion, and 𝐷min are shown in Fig. 1.
Specifically, we report, for both Tobii and FAZE, the values averaged
across participants for each target, as well as the values averaged
across targets for each participant. As expected, FAZE data have
significantly larger bias and dispersion than Tobii data (as revealed
by paired t-test).

Total means for Tobii data were: bias: 54.0 pixels; the square
root of BCEA: 1.13◦; 𝐷min: 125.3 pixels. For FAZE data, the total
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Figure 3: Text Reading - Line Identification experiment. (a) Bias (RMSE of the difference of 𝜇𝑦 (𝑖) between Tobii and FAZE data).
(b) 𝜎𝑦 averaged over all text lines.

Figure 4: Left: Strips showing for 𝜇𝑦 (𝑖) ±𝜎𝑦 (𝑖) for data recorded for participant P4, shown for three text lines. Right: An example
of gaze points recorded for a text line (P6). Data from Tobii was subsampled to 10 Hz for comparison with FAZE data. Blue
forward slash or circular symbol: Tobii data. Yellow backward slash or cross symbol: FAZE data.

means were: bias: 144.2 pixels; the square root of BCEA: 10.45◦;
𝐷min: 501 pixels. (For references, values of the square root of BCEA
reported in the literature, measured using accurate microperimeter
instruments, varied from 0.08◦ to 0.4◦ [Kumar and Chung 2014].)
Note from Fig. 1 that the BCEA value for P5 was substantially
higher than for other participants, though this did not translate
into a larger 𝐷min value.

Two-way analysis of variance revealed a significant effect of
participants on both 𝐷min and square root of BCEA, for both Tobii
and FAZE data. A significant effect of target was found for Tobii
data only, on both 𝐷min and square root of BCEA. A significant
correlation between distance and both bias and 𝐷min was found for
FAZE data only (𝜌 = 0.85 in both cases). A graphical representation
of 𝐷min for each target (averaged over all participants) for both
Tobii and FAZE is shown in Fig. 2, left. An example of data collected
with the two modalities for a single participant (P7) is presented in
Fig. 2, right, which shows contours at the same percentile levels of
the probability density functions fitted to the recorded samples.

4.2 Text Reading - Line Identification
Relevant data from the experiment is shown in Fig. 3. The text
line index was not shown to have a significant effect on either bias
(RMSE of the difference of the means 𝜇𝑦 measured for each line for
FAZE or Tobii), nor on 𝜎𝑦 for either FAZE or Tobii data. Participant
index had a significant effect on both bias and 𝜎𝑦 . 𝜎𝑦 was found to
be significantly larger for FAZE than for Tobii. For Tobii data only,

𝜎𝑦 was found to be correlated with distance to the screen (𝜌 = 0.78).
The total mean of the bias was 91.7 pixels, while the total mean
of 𝜎𝑦 was 15.9 pixels for Tobii data and 51.5 for FAZE data. From
Fig. 3, it is seen that P5 had a much larger value of 𝜎𝑦 (averaged
across lines) than the others. An example of strips containing gaze
data at 𝜇𝑦 (𝑖) ± 𝜎𝑦 (𝑖) is shown in Fig. 4, left.

4.3 Text Reading - Progression Along a Line
We computed all fixation times (during in-line reading intervals)
on the Tobii data, then, as explained in Sec. 3.4.3, we computed the
RMSE of the difference of the mean values 𝜇𝑥,𝑓 (𝑖) of the X coor-
dinate of measurements from Tobii and FAZE. The resulting bias
value is shown in Fig. 5, left. The mean of RMSE across participants
was 89.2 pixels. For both Tobii and FAZE data, we also computed
the standard deviation 𝜎𝑥,𝑓 (𝑖) and 𝜎𝑥,𝑠 (𝑖) of the X coordinate of
gaze for all periods identified as fixations and saccades, respectively,
based on the Tobii data. The mean values are shown in Fig. 5. For
both Tobii and FAZE data, paired t-test rejected the null hypothesis
of equal mean of 𝜎𝑥,𝑓 and of 𝜎𝑥,𝑠 . An example of gaze data on a
text line is shown in Fig. 4, right.

5 DISCUSSION AND CONCLUSIONS
Appearance-based gaze tracking algorithms hold the promise to
“democratize” gaze-based interactions and analysis by removing the
need to purchase dedicated devices. However, it is critical that these
systems be tested in realistic applications, in order to assess their
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Figure 5: Text Reading - Progression Along a Line experiment. (a) Bias (RMSE of the difference of 𝜇𝑥,𝑓 (𝑖) for Tobii and FAZE
data). (b) 𝜎𝑥 averaged over all fixations (left bar in bar groups) and saccades (right bar in bar groups).

practical usability [Hohlfeld et al. 2015; Zhang et al. 2019]. In this
paper, we proposed a number of metrics associated with specific
applications of interest, and compared measurements taken with a
state-of-the-art appearance-based tracker against those taken with
an infrared gaze tracker.

Our first experiment showed that dwelling-based selection is
possible with FAZE, but the dwelling areas must be substantially
larger than those afforded by an infrared tracker for equal effective-
ness (Fig. 2, left). In our measurements, the ratio of the diameters
𝐷min found for FAZE to those found with Tobii (averaged over all
participants) varied from 2.3 to 6.3. Our text reading - line identifi-
cation experiment showed the dispersion across the Y coordinate
of FAZE data to be more than 3 times larger than that of Tobii
data. This suggests that the minimum interline distance needs to be
larger by at least that same amount, in order to ensure reliable text
line identification. This is compounded by the effect of bias, which
measures the difference between the Y coordinate of the values
measured by Tobii and FAZE in the same line, and that was found
to be 92 pixels on average in our experiment. This is almost 4 times
the interline distance used in the text document considered for our
experiment (see Fig. 4, left). Our text reading - progression along
a line experiment showed an RMSE value of the difference of X
coordinates during fixations of almost 90 pixels. Considering that
in our document the width of a character was about 13.5 pixels on
average, this bias translates to an expected error of about 7 char-
acters. Interestingly, we found a significant difference in the mean
of the standard deviation of FAZE measured during fixation and
saccade intervals (where these intervals were computed based on
our reference Tobii data). This suggests that it may be possible to
identify fixations on FAZE data using appropriate local analysis.

In most of the cases, measurements on the FAZE data were
found to correlate positively with the distance to the screen. This
should not be surprising, considering that gaze tracking algorithms
measure the direction of the visual axis, and the effect of an angular
error on the location of the gaze point increases linearly with the
distance.

Our study considered a relatively small population sample (7
participants), and we are planning for a larger study in the near
future, which will include different illumination types (which can
affect the quality of FAZE data) and a larger range of viewing
distances. Another limitation of this work is that the image data was
processed offline. In future experiments, we will run FAZE online.
Besides a reduced frame rate (6 frames/second on our TensorBook),

latency (delay) should be expected, and its effect on specific tasks
(e.g., dwelling) will be analyzed.
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