UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Indexing Cases for Planning and Acting in Dynamic Environments: Exploiting Hierarchical
Goal Structures

Permalink
bttgs:géescholarshiQ.orgéucéiteméZQﬁch\:/I
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Authors
Robinson, Stephen
Kolodner, Janet

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2pf7c0jv
https://escholarship.org
http://www.cdlib.org/

Indexing Cases for Planning and Acting in Dynamic Environments:
Exploiting Hierarchical Goal Structures'

Stephen Robinson
Janet Kolodner
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280
E-mail: robinson@cc.gatech.edu, jlk@cc.gatech.edu

Abstract

We examine how acting in dynamic, complex, not entirely
predictable environments affects the indexing, storage and re-
trieval of cases in a memory-based system. We discuss how
a hierarchical goal structure can be exploited to provide in-
dices for searching and storage when planning and acting in
everyday environments under time pressure. The tradeofTs be-
tween the costs and utility associated with attempting to pre-
vent repeating a failure or missing an opportunity are briefly
examined. Considering these tradeoffs leads to distinguishing
between when failures can be allowed to recur and when they
should be anticipated and avoided. The amount of effort ex-
pended when handling failures differs for the two situations,
but in both cases a hierarchical goal structure can be used to
choose effective indices efficiently. This paper describes the
approach taken in our EXPEDITER? system and briefly com-
pares it to other approaches.

Acting in Complex, Dynamic Environments

Consider the following example of acting in a complex, dy-
namic, not entirely predictable environment and the difficul-
ties for indexing and retrieving information that it highlights.

Bob gets himself and his two children ready for work
and school in the momings the same way every day.
The routine includes fixing everyone cereal for break-
fast. One day, however, after putting out the bowls and
spoons, Bob finds no milk in the refrigerator.

At this point Bob is faced with a number of tasks:

e he still has to fix something to eat;

¢ he may have to undo some work he has already done (e.g.,
putting away unused utensils);

e he may want to consider how to avoid running out of milk
again;

e he may want to consider how he might reuse the alternative
actions he chooses if they succeed.

This research is supported in part by DARPA contract F49620-
88-C-0058 monitored by AFOSR and in part by a President’s Fel-
lowship from Georgia Tech.

?EXploring Planning and Exccution in Dynamic Environ-
ments employing Routines, an exploratory system currently being

developed.

882

Bob cannot just stop what he is doing and take time to deeply
analyze the situation and generate many options to proceed.
He has to continue to act while he is dealing with the failure.
The amount of effort he can put into analyzing the future
consequences of what he chooses to do depends upon how
much time he has available and how much effort it takes to
repair the current failure, to analyze costs and payoffs, etc.
Continuing with the example, we see there are many factors
to be considered when deciding not only what to do immedi-
ately, but how current decisions may affect future actions.

Bob sees no suitable substitute for milk and cannot think
of one. He decides that he does not have time to buy
more right now. He needs something else to eat that is
as easy and nutritious as cereal. Seeing bread in the re-
frigerator, he decides to serve toast with jelly and orange
juice.
If the toast satisfies everyone and Bob decides the extra work
of putting away the unused cereal utensils is not significant,
he will probably not be concerned with running out of milk
again. All he needs to be concerned with is remembering
the “‘toast substitution™ so he can use it if the same failure
happens again. He is willing to face the failure of running
out of milk in the future because it is not worth expending
the effort needed to consciously alter his routine to avoid the
problems that arise.

However, suppose Bob's children are upset about having
to eat “boring, dry toast” in place of cereal and the ensuing
commotion makes Bob late. Not being a strict disciplinarian,
Bob decides that he would rather make sure that he can serve
cereal than deal with upset children on another moming. Now
Bob’s motivation to avoid the failure is stronger so he may
take some time to think of how he can alter his routines in
the future to avoid this problem. He also may think of ways
to remind himself to make sure he has milk available at a
time when he can get more if he does not.

Indexing Cases While Acting

At the heart of memory-based systems that reuse plans and
learn from experience is the storage and retrieval of cases.
Storing information about experiences for later retrieval re-
quires that the episodes be labeled in such a way that they
will likely be retrieved when they are most useful in the fu-
ture. The problem of labeling memory and coming up with

mailto:robinson@cc.gatech.edu
mailto:jlk@cc.gatech.edu

labels during problem solving to retrieve useful past experi-
ences is often referred to as the “indexing problem.” While
considerable research has been done on the indexing prob-
lem, little has been in the context of acting in dynamic en-
vironments. Planning and acting in complex, dynamic en-
vironments adds additional constraints and considerations to
indexing processes.

¢ Time is a limiting factor since the environment may change
while an agent is engaged in reasoning.

o Repair of the ongoing situation is necessary; there is no
going back.

e An agent is concerned not only with accomplishing tasks
and satisfying goals in the current context, but also with
continued success in the future.

e The richness of complex environments may require an
agent to filter through available information to get usable
indices.

While systems like CHEF (Hammond, 1989a), RUN-
NER (Hammond er al., 1990), PLEXUS (Alterman, 1988,
Alterman, 1986) and FLOABN/SCAVENGER (Zito-Wolf &
Alterman, 1990) are concerned with repairing failures and
with success in the future (through adaptation, anticipation of
failure and opportunity, etc.), they do not balance the cost of
indexing memory to enable such anticipation against the util-
ity of doing so. At first glance, it seems that an agent would
always want to avoid repeating failures and to take every op-
portunity to optimize its activities. However, in environments
where changes can occur and time to act is limited, expend-
ing effort to carefully augment plans for future use may cause
additional failures or missed opportunities in the current time
frame. There are a number of tradeoffs to consider.

e The time spent reorganizing memory takes time away from
the current task, but

e reorganizing memory may result in improved actions in the
future by contributing to

- optimizing activity and
- avoiding failures.

e Knowledge may be gained by adding cases to memory but
the knowledge may be erroneous.

¢ Reorganizing memory may result in higher matching costs
when searching for repairs, etc., in the future.

These tradeoffs should be considered when decisions about
indexing and search are made. In particular, easy ways of do-
ing the required indexing must be found for those situations
in which the harder work of blame assignment needed to
anticipate failure situations is deemed inappropriate. In this
paper, we look at the ways indexing and search processes can
take advantage of the hierarchical goal structures employed in
planning to generate indices and annotate memory when ex-
pectation failures occur. An expectation failure can be either
a failure or a previously unnoticed opportunity to improve.
We show how indexing can be accomplished quickly when
the cost of repeating a failure is not deemed to be high and
time is scarce in the current situation. We concentrate on

883

everyday environments® where activity is repetitive, allowing
an agent to develop habitual ways of accomplishing goals.

One of our goals is to show how “routines” can be ac-
quired in a memory-based planning and acting system via
repairing failures and noticing opportunities for optimization.
A routine is a set of actions (“primitive” steps or operators)
specific to a particular situation and environment which an
agent executes 1o achieve a set of goals. The execution order
of operators in a routine emerges with experience as failing
conditions and interactions are dealt with. Employing a rou-
tine helps reduce the computational load required to achieve
repeated conjuncts of goals by allowing the agent to ignore
preconditions, interactions, operator ordering, etc., because
those details have been iteratively ironed out during the evo-
lution of that routine. While we do not address the full set
of issues associated with learning routines in this paper, it
should be noted that the processes described here are part of
a larger system that aims toward that capability.

It is also important to note that “routinization” does not
simplify an agent’s interactions with a dynamic environment.
Rather, it simplifies how an agent reasons about its environ-
ment. An agent can view a familiar dynamic environment
as being more stable than it really is because the agent has
learned to reliably predict how the aspects it is concerned
with will change and interact. An agent can assume that its
expectations about an environment and its own actions will
hold without checking their validity. When expectations fail,
the experiences are stored to be later retrieved and employed
to avoid or cope with similar failures. This is why routiniza-
tion is iterative. This paper presents a method for choosing
indices and organizing case memory under the time pressures
of a dynamic environment that uses a hierarchical goal struc-
ture to provide readily accessible context.

EXPEDITER operates in a small simulated work area oc-
cupied by various objects such as an oven, clothes, washing
machine, dryer, bread, etc. Objects, goals and operators are
represented in a simple frame system patterned after the or-
ganization used in PLEXUS (Alterman, 1988). Each object,
including the agent, has associated with it message handlers
which govern how the object interacts with the rest of the
environment at each “time” tick. The agent is limited in how
much it can process at each tick, an important consideration
we are working to define more carefully.

Choosing Indices Under Time Pressure

The best indices are general enough to be applicable in a
sufficiently large number of situations yet concrete enough
to be recognized. Choosing good indices is hard because
it is difficult to determine features that will be predictive in
future situations. Part of the difficulty is in not knowing
the circumstances in which the case could be useful in the
future. The indexing process needs predictive information at
a useful level of generality from which to derive indices. An
agent acting in everyday environments has some advantages.
The routines, failures, repairs and opportunities it will index

*See Agre’s discussion of everyday environments in (Agre,
1988).

are all likely to be important in the future under the same
circumstances due to the cyclic nature of such environments.

The question we must address is what “the same circum-
stances™ means. Consider Bob in the example above. He may
discover he has no milk when he goes to the refrigerator, or he
may remember there is no milk as he walks into the kitchen
to make breakfast or any time up to the time he looks in the
refrigerator. He may also discover that he is missing utensils
or cereal. In a sense, all of these are the same circumstances
(it is breakfast time and cereal cannot be served). Certainly,
all can be repaired with the same fix (serve toast and jelly).
In other senses, however, the circumstances are different. In
the first situation, Bob is looking at the place where the milk
should be. In the other situations, he is not. Furthermore,
he has completed varying amounts of the routine leading up
to getting the milk. Clearly, the first instance of not having
milk (the one where he figured out that toast and jelly was
a good substitute for cereal) must be indexed so that it can
be recalled in all of these circumstances. And clearly, since
time is of the essence, the method of choosing indices and
storing cases must be fast. Search through memory needs
to be efficient for the same reasons. When cases are sought
to provide repairs for failures, a quick response is needed to
allow action to continue.

Exploiting Hierarchical Goal Structure

The organization of a hierarchical goal structure can be ex-
ploited to meet these needs. In this section, we will illustrate
how the goal structure can be used to organize the dynamic
memory (Schank, 1982) of which it is a part. Consider Bob
again. The circumstances under which he needs to remem-
ber substituting toast and jelly for cereal are when he has
the goal of having cereal for breakfast and cannot. While he
may not have been consciously considering that goal as he
was going through the routine of getting spoons and bowls,
getting cereal, getting milk, etc., it does organize that set of
actions. Using that goal as an index to the “toast and jelly”
case makes it accessible no matter when during the action
sequence the agent discovers that cereal cannot be served.

Such an index can be chosen quickly if memory is orga-
nized in goal/subgoal hierarchies that also organize actions
according to the subgoals they achieve. Figure 1 shows part
of one of these hierarchies. When an action fails, the sub-
goals it is instrumental to can be found by traversing up the
hierarchy. The subgoals found this way become indices for
the new situation. Thus, when Bob looks in the refrigerator
and finds no milk, he can quickly choose the indices “trying
to grasp-carton and there is no milk,” “trying to get-milk
and there is no milk,” “trying to prepare-cereal and there
is no milk,” and “trying to have-cereal and there is no
milk.” The “toast and jelly” case will be indexed in all of
these ways. The figure also shows this configuration.

The hierarchy can also be exploited during search. If a
routine action fails and there is no case indexed under it,
traversing up the goal/subgoal hierarchy will quickly find
goals under which a case might be found. Thus, if Bob
remembers he has no milk while he is getting cereal from the
pantry, he can find the “toast and jelly” case by traversing up
the hierarchy from grasp-cereal-box to get-cereal to

884

prepare-cereal, which serves as an index along with “no
milk” to the “toast and jelly” case.

A goal hierarchy preserves relationships between general
and specific goals which can be used to select indices perti-
nent to a problem solving situation at varying levels of gen-
erality. When an agent is executing steps of a routine, it is
not concemed with the details of all the goals it is achiev-
ing. It is only immediately privy to information about the
step it is executing. However, it can follow subgoal links
up the hierarchy and generalize its knowledge of the current
situation by inspecting the goals it finds at the higher levels.
When it needs to search for or to index a way to handle an
exception, it has simple, directed access to indices which are
both generally applicable yet pertinent to the current context.

In the following sections, we discuss our implementation
of this scheme in EXPEDITER and the control issues that
must be addressed to make it work.

Implementing the Hierarchical Memory. EXPEDITER'’s
memory has nodes corresponding to goals and subgoals that
are connected to each other according to goal/subgoal de-
composition relationships. The agent knows, for exam-
ple, that get-ready-for-work can be decomposed into
eat-breakfast and get-dressed. Goal/subgoal decom-
position links are bidirectional. They can be used both to
find subgoal decompositions and to find goals a subgoal is
instrumental to. These connections are illustrated in Figure 1
in a small portion of EXPEDITER’s memory.

The lowest level goals have action sequences associ-
ated with them that, when carried out, achieve the goal.
Get—cereal, for example, is carried out by the sequence
goto-pantry followed by grasp-cereal-box. Action
nodes are connected to each other by sequencing links.
Goto-pantry is followed by grasp-cereal-box which is
followed by goto-cabinet, etc. Subgoals are connected
to each other in context and so are actions. Thus, be-
cause get-cereal and get-bowls are both subgoals of
prepare-cereal and in that context are carried out in a
specific order, the sequencing of the actions of each one is
specified in that context. We assume that these sequences
come from cases in which the same sequence of actions is
carried out over and over again,

Exceptions to routines are indexed from these memory
structures. In essence, each node in memory can act as a
“branch point,” providing access to both normal and spe-
cialized ways of carrying out the action or achieving the
subgoal. Figure 1 shows how the “toast and jelly” case is
indexed from these memory structures. A pointer to it is
placed at each appropriate goal node in the memory struc-
ture, and the pointer is labeled with the circumstances un-
der which that branch should be taken. For example, when
attempting to grasp-carton and there is no milk, rather
than going to the table (the normal routine), the have-toast
branch is followed (its sequence of events is not specified
in the illustration, but can be easily imagined). This same
branch is attached to the get-milk, prepare-cereal, and
have-cereal nodes.

Traversal of the Hierarchy under Normal Circumstances.
During normal activity, goals arise through an agent’s inter-

--- Subgoal relation
—> Activation order

get-ready-

- eat-breakfast - - -have-cereal
for-work | i

I
i
'
|
i
1

1
I
1
1
1
]
1
1
|

1
\
\
\
\
\
\
\
1

X
A r
get-dressed(

Al
Al

prepare-cereal

’
eat-cereal¢
b}

get-cereal < -gcio-p i
/ * grasp-cereal-box

']

2 ,get-bowlse 7~ goJo-cabinet
‘ ~
i ’

he ~-grasp-bowls
5 ': - get-spoonk:\'go o-drawer

N grasp-spoons
‘ \ gﬁl-milk D
WA

'- W

%\ goto-table
" "‘
\\ put-items-down

w
nh
1

\' pour-cereal-in-bowls
\

- ‘-pour—milk-in-bowls

A
AY

Figure 1: Simplified goal structure and routine with annotations for substituting toast.

actions with the environment. Routine methods for achieving
those goals can be found by using features of the goals and
the current context as indices to memory. In the normal case
of getting up in the morning, for example, the actor’s goal
of get-ready-for-work and the fact that he is in his own
home get him to the normal moming routine (beginning with
goto-pantry). He follows the routine he finds there. When
he gets to the grasp-carton step, if he has no milk, he
follows the have-toast branch, otherwise he follows the
normal sequencing and continues with goto-table.

Indexing a “New” Case. New cases must be placed in
memory when a failure is encountered or when an alternate
way of doing something is found. Indices to the new case
must be general enough so that case can be found in a va-
riety of appropriate circumstances. As discussed above, this
is accomplished in EXPEDITER by placing indices on ap-
propriate goals in the hierarchy designating that an alternate
branch should be taken. Indices either describe circumstances
under which the failure can be expected, describe the failure
itself (e.g., no milk), or describe an enabling condition that
allows the agent to take advantage of an opportunity to im-
prove (e.g., “if a goal to do wash is active, then branch to ...”).
They point to the case that provides the set of steps that has

previously repaired the failure (or grabbed the opportunity).
Of course, the process must stop at some point in the hier-

archy. One way to choose a stopping point is to only go as far
up as the goal that was substituted when repairing a failure.
In Figure 1 that point is at have-cereal. Going farther up is
not warranted because there is no indication that goals above
have-cereal are affected since milk is neccessary for cereal,
not for breakfast in general. We are considering other meth-
ods for deciding where to stop, especially for cases where a
failure should be anticipated and prevented.

Searching for a Previous Repair. When EXPEDITER en-
counters a failure, it attempts to find ways in which it

885

has previously repaired similar failures. It begins by
looking for indices associated with the failed action that
might point to repairs. If no appropriate one is found,
it looks next at the parent goal's indices, first for a di-
rect match to the failure, and then for other branches. If
grasp-carton fails again, there will be a direct match
for the failure annotated at grasp-carton so no fur-
ther search is needed. If EXPEDITER “recalls” that
it has no milk at grasp-cereal-box, it finds a di-
rect match at prepare-cereal. If grasp-cereal-box
fails, EXPEDITER can find the “have toast” branch at
prepare-cereal because, although “no milk” is not a di-
rect match, prepare-cereal is a failing goal shared with a
previous failure.

Searching for a “New” Repair. If no particular repair is
found, the goal hierarchy can still provide clues that can
help in finding a repair somewhere else in memory. Ac-
tive goals, along with their constraints, reasons, and needed
resources can be used to create a more abstract descrip-
tion of the situation needing repair. This more abstract de-
scription can be used to search more broadly in memory.
For example, if grasp-carton fails and EXPEDITER can
find no repair, descriptive features of get-ready-for-work,
eat-breakfast, have-cereal, etc., can be used to describe
the situation. A description including the features “limited
time,” “easy to fix,” and “‘breakfast food,” would be created.
In the example scenario, “have toast” was chosen because it
was suggested by the presence of bread in the refrigerator,
although others may be equally usable. How these features
can be selected is an issue we are studying.

In all of this, the goal hierarchy is providing a way to gen-
eralize a situation. It allows the choice of indices of varying
degrees of generality, starting with very concrete, which are
likely to be effective in both the current and future contexts.
The indices are available at little cost since the only work is

following subgoal links and gathering features from the goals.

Allowing and Avoiding Repeated Failure

When cost/utility tradeoffs are considered, not all exceptions
merit equal treatment. For example, in the first scenario in the
first section, the failure is deemed to be a minor problem that
could be allowed to happen again. However, in the second
scenario where Bob’s children get upset, the failure is too
“costly” to allow it to recur.

Our discussions so far have addressed the first scenario.
The agent decides that there is no need to anticipate a failure
(it is willing to let the failure recur, or at least not to take
action to try to prevent it at the current time), and effort is
put only into recording the ways in which it was repaired. The
agent will want to recall how the current failure was handled
if it is encountered again, but only needs to be reminded if
the failure actually recurs.

However, when a failure is deemed too costly to allow it
to happen again, it is not enough to index only on the failed
goal and its immediate parents since those annotations will be
encountered only if the failure happens again. Indices must
include goals that will be active and other context features
that will be present when failures and opportunities need to
be anticipated. While this is a harder problem, we believe that
the hierarchical goal structures can again be used to advan-
tage. The extra step of blame assignment is required when a
more costly failure occurs or an important opportunity arises.
Blame or credit must be assigned to steps taken earlier that
set up the failure or to steps which could have been taken
to prevent it. We are not investigating the difficult credit as-
signment problem at this time; however, once an assignment
is made, a process similar to that described in the section on
exploiting goal hierarchies can be followed. Limited space
does not allow us to add details.

How EXPEDITER Relates to Other Approaches
Hammond's study of agency (Hammond et al., 1990;
Hammond, 1989b) is also based on a dynamic memory repre-
sentation and the acquisition of “well-tuned, default plans” for
particular conjuncts of goals. Like EXPEDITER, the RUN-
NER system is designed to act in a changing environment,
to learn from failure and to recognize opportunities. Our ap-
proach differs in at least two important aspects: it provides a
method that allows it to choose effective indices rapidly and
it recognizes the variable importance of analyzing and pro-
cessing exceptions. RUNNER's spreading activation is good
for recognition and recall but it is not clear how its indexing
and search would be affected by considering cost/utility trade-
offs. Also, in Hammond's systems, action is always taken to
attempt to prevent failure from happening again and every
blocked goal results in marking memory to set up a possible
opportunity to satisfy the goal. It is not clear that it is always
desirable to do this since the effect on current activity may
be deleterious. Our approach has a way to choose useful in-
dices from knowledge of its goals quickly and can adjust the
amount of effort it expends on indexing repairs to reflect the
usefulness of doing so.

Alterman’s work on adaptive planning and “ad-hoc” learn-
ing (Alterman, 1988; Zito-Wolf & Alterman, 1990) is similar

886

to our work as well. PLEXUS adapts situated plans it already
knows to similar situations in order to avoid a more com-
plex planning problem. The FLOABN/SCAVENGER system
also adapts situated plans but in addition learns discrimina-
tion points and ad-hoc categories which allow it to apply the
adaptations it develops when it encounters the same situations
again. SCAVENGER addresses choosing indices from fea-
tures salient to the system’s current knowledge and expend-
ing effort on reorganizing the plans used the most, SCAV-
ENGER's method of generating indices seems effective but
EXPEDITER goes farther by providing an efficient way to
choose effective indices along a range of generality. In addi-
tion, EXPEDITER addresses the placement of discrimination
points to support anticipation of exceptions and reusing re-
pairs for related failures.

Conclusions

The computational load required for indexing and retriev-
ing cases placed on a memory-based system in a complex
domain can be high. Reducing this load becomes more im-
portant when the additional constraints placed on a system
by dynamic environments are taken into account. However,
when everyday, cyclic activity is considered, the hierarchical
goal structures used in planning and routine activity may be
exploited to lessen the high load.

Our approach addresses difficult problems for indexing
cases in dynamic, complex environments. It allows choosing
from a broad spectrum of concrete to more general indices,
directed by goal knowledge pertinent to current context. It
allows good choices to be made when time is limited and
better choices to be made as more time is allowed. It is lim-
ited to known goal knowledge and may be too closely tied
to goal hierarchies but we are working to better understand
these issues.

References

Agre, P. E. 1988. The Dynamic Structure of Everyday Life. Tech-
nical Report TR 1085, Al Laborabory, MIT, Cambridge, Mas-
sachusetts.

Alterman, R. 1986. An Adaptive Planner. In Proceedings of the Fifth
National Conference on Artificial Intelligence, pages 6569, Los Al-
tos, California. Morgan Kaufmann Publishers, Inc.

Allerman, R. 1988. Adaptive Planning. Cognitive Science,
12(3):393-421.

Hammond, K.; Converse, T.; and Martin, C. 1990. Integrating Plan-
ning and Acting in a Case-Based Framework. In Proceedings of
the Eighth National Conference on Artificial Intelligence, pages 292~
297, Boston, MA.

Hammond, K. J. 1989a. Case-Based Planning: Viewing Planning as
a Memory Task. Academic Press, Inc. (Harcourt Brace Jovanovich,
Publishers), New York.

Hammond, K. J. 1989b. Opportunistic Memory. In Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence,
pages 504-510, Detroit, Michigan.

Schank, R. 1982. Dynamic Memory. Cambridge University Press,
New York.

Zito-Wolf, R. and Alterman, R. 1990. Ad-Hoc, Fail-Safe Plan Learn-
ing. In Proceedings of the Twelfth Annual Conference of the Cognitive
Science Society, pages 908-914, Cambridge, MA.

	cogsci_1991_882-886

