
UC Irvine
Working Paper Series

Title
Summary Analysis of Potential Differences Between Truck-Involved and Non-Truck Involved 
Freeway Crashes

Permalink
https://escholarship.org/uc/item/2pg5s74s

Authors
Leonard, John D., II
Recker, Wilfred W.

Publication Date
1991-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2pg5s74s
https://escholarship.org
http://www.cdlib.org/


UCI-ITS-WP-91-10 

Summary Analysis of Potential Differences 
Between Truck-Involved and Non-Truck 

Involved Freeway Crashes 

UCI-ITS-WP-91-10 

John D. Leonard II 
Will Recker 

Institute of Transportation Studies 
University of California, Irvine 

October 1 991 

Institute of Transportation Studies 
University of California, Irvine 

Irvine, CA 92697-3600, U.S.A. 
http:/ /www.its.uci.edu 



Abstract 

Summary Analysis of Potential Differences 
Between Truck-Involved and 

Non-Truck Involved Freeway Crashes 

John D. Leonard II 
and 

Wilfred W. Recker 

Institute of Transportation Studies 
University of California, Irvine 

Irvine, CA 92717 

This working paper reports initial results of a set of analyses investigating differences 
between non-truck involved and truck-involved crashes. Data was selected from the 
California Department of Transportation T ASAS accident reporting system. Results indicate 
that there are differences in primary collision factors ( as assigned by the California Highway 
Patrol through issuance of traffic citations) between truck-involved and non-truck-involved 
crashes in the vicinity of freeway interchanges. "Speeding" in truck-involved crashes is cited 
at approximately one-half its rate for non-truck-involved crashes. Additionally, there is no 
statistical difference in the appearance of the "Uninvolved Motorist" TASAS party 
designation between truck and non-truck-involved crashes. 
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1.0 Introduction 

The safe operation of heavy trucks on our highways is a major concern of the 

industry, the operators of the highways, and the public. This brief working paper documents 

a preliminary investigation into possible differences between truck-involved and automobile­

only crashes on southern California freeways. Specifically, the analysis is intended to 

determine if sufficient differences between these two categories of crashes exist to warrant 

further and more specific investigation. 

2.0 Freeway Control Sections 

Six freeway control sections of similar length were selected. Each is approximately 

2.7 miles in length. All sections are from Los Angeles county. Table 2-1 presents the 

control sections. 

Section Route Beg.PM End.PM Length Description 

10 28.500 31.170 2.670 Near Junction of 1-10 and 1-605 

2 57 2.095 4.760 2.665 Near Junction of SR-57 and SR-60 

3 60 9.045 11.710 2.665 Near Junction of SR-60 and 1-605 

4 210 22.345 25.010 2.665 Near Junction of SR-134 and SR-210 

5 210 33.855 36.520 2.665 Near Junction of 1-605 and 1-210 

6 210 46.174 48.839 2.665 Near Junction of 1-10, SR-57 and 1210 

Table 2-1 Freeway Sections Under Study 
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3.0 Crash Selection 

All vehicle crashes occurring in each freeway control section in years ranging from 

1979 to 1988 were selected from the TASAS data base. A total of 5384 crashes were 

selected. Crashes on ramp sections are not included. 

Various descriptive statistics ( crash time of day, day of week, date, road condition, 

primary collision factor and primary collision type) were available. Also, the total number 

of vehicles involved, number of parties involved, total numbers of fatalities and injuries, and 

the number of uninvolved motorists (if any) were available. No individual party information 

was included in this data· file. 

4.0 Definitions 

A truck-involved crash is defined as one in which any of a possible number up to 9 

parties involved is designated as a large combination vehicle (T ASAS Party Types: F.Truck 

or Tractor, G.Truck or Tractor with 1 Trailer, 2.Tractor with 2 Trailers, or 3.Tractor with 

3 Trailers). Based on this definition the sample of 5384 crashes contains 4419 (82.1 % ) 

automobile-only involved crashes and 965 (17.9%) truck-involved crashes. 

T ASAS arbitrarily assigns a primary collision factor to each case in the data base. 

The primary collision factor represents the opinion of the reporting officer as to the most 

relevant factor that contributed to the occurrence of the crash. It is undetermined if any 

attempt to assign this factor to a crash participant is made. Primary collision factors include 

a series of Motor Vehicle Code infractions (Alcohol, Following too Close, Failure to Yield, 



3 

Improper Turn, Speeding, and Other Hazardous Violations) and others (Not Stated, Other 

Improper Maneuvers, Other Than Driver and Unknown.) 

Each party (participant) in the crash is assigned in T ASAS a "party type" descriptor. 

TASAS defines 28 potential party types including passenger car, passenger car with trailer, 

truck, truck/tractor with trailer, motorcycle, pedestrian, etc. Of special interest to this study 

is the party type "Q: Uninvolved Vehicle". An accurate description of the use of this 

category is unknown. It is presumed, however, that this category includes vehicles for which, 

because they had left the scene, no further information is available. The most likely scenario 

for inclusion in this category is described as drivers whose actions alledgedly precipitated the 

crash, but are uninvolved in the actual collisions, e.g. drivers who "cut off' other vehicles 

causing them either to stop suddenly or to otherwise lose control. While this uninvolved 

motorist could be classified as a principal cause of the crash, no additional information is 

available, and the vehicle is simply categorized as an additional party with the "Uninvolved 

Vehicle" descriptor. 

5.0 Results 

Two separate research hypotheses were tested as part of this study. The following 

sections present the results of the analysis. 

5.1 Hypothesis 1: There is a difference in primary collision factors assigned to 
Automobile-Only and Truck-Involved Crashes. 

A crosstabulation of Primary Collision Factor by Tmck Involvement was constructed. 

These results are presented in Table 5-1. Each cell in the table presents the observed 
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Primary Non-Truck Truck Row Totals 
Collision Involved Involved 

Factor 

Alcohol 549 42 591 
485.1 105.9 11% 
12.4% 4.4% 

Following Too 116 17 133 
Close 109.2 23.8 2.5% 

2.6% 1.8% 

Failure to 3 0 3 
Yield 2.5 0.5 0.1% 

0.1% 0% 

Improper Turn 486 81 567 
465.4 101.6 10.5% 

11% 8.4% 

Speeding 2018 240 2258 
1853.3 404.7 41.9% 
45.7% 24.9% 

Other 852 504 1356 
Hazardous 1113 243 25.2% 

Violation 19.3% 52.2% 

Not Stated 1 0 
0.8 0.2 0% 
0% 0% 

Other 77 13 90 
Improper 73.9 16.1 1.7% 

Maneuver 1.7% 1.3% 

Other Than 258 48 306 
Driver 251.2 54.8 5.7% 

5.8% 5% 

Unknown 58 20 78 
64 14 1.4% 

1.3% 2.1% 

(Missing) 0 
0.8 0.2 0% 
0% 0% 

Column 4419 965 5384 
Totals 82.1% 17.9% 100% 

Table 5-1 Crosstabulation of Collision Factor 
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freqency, the expected frequency and the observed percentage ( as a percent of the all 

crashes with the same primary collision factor.) For example, the observed frequency of 

truck-involved crashes with Speeding as the primary collision factor is 240 cases, which is 

24.9% of all crashes cited with Speeding as the primary collision factor. The expected 

number of these types of crashes is 404.7. 

A Chi-Square test (which tests independence of observations) was performed. 

Rejection of the null hypothesis (the frequencies of primary collision factors distinguished 

by truck and non-truck involved crashes are independent) would indicate that automobile­

only crashes and truck-involved crashes have different primary collision factors. A Chi­

Square statistic of 483.6 with 10 degrees of freedom was computed. This is significant at the 

0.05 level; thus, there are differences in primary collision factors between truck-involved and 

automobile-only involved crashes. 

A review of the crosstabulation highlights principal differences in primary collision 

factors between truck-involved and automobile-only crashes. For crashes involving only 

automobiles the factor most frequently cited is Speeding ( 45.7% ), followed by Other 

Hazardous Violations (19.3% ), Alcohol (12.4% ), Improper Tum (11.0%) and Other Than 

Driver (5.8% ). For truck-involved crashes the factor most frequently cited is Other 

Hazardous Violations (52.2% ), followed by Speeding (24.9% ), Improper Tum (8.4%) and 

Other than Driver (5.0% ). Alcohol was listed as the primary collision factor in only 4.4% of 

the truck-involved crashes. Categories of less than 5.0% of the sample are not included in 

this discussion, but may be found listed in the crosstabulation. 

It is noted that the two most frequently cited primary collision factor categories for 
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truck-involved and automobile-only crashes are reversed, with Speeding being cited for truck­

involved crashes at approximately half its rate for automobile-only crashes. In general, 

trucks tend to be less cited as being involved in alcohol-related crashes; truck crashes tend 

to be cited as Other Hazardous Violations rather than as Speeding violations; crashes involving 

only automobiles tend to be cited most often as Speeding violations. 

Based on this evidence, the hypothesis that Speeding and other moving violations are 

cited at lower rates in truck-involved crashes cannot be statistically rejected. (Such counter 

evidence would consist of similar cell frequencies between truck-involved and automobile­

only crashes.) There is a statistically significant difference in primary collision factors 

between truck and non-truck involved crashes; however, the TASAS data do not provide 

detail enough to presume explanations for these differences between observations. 

5.2 Hypothesis 2: "Uninvolved Motorists" appear in Truck-Involved and 
Automobile-Only crashes at different rates. 

A crosstabulation of Uninvolved Motorist and Truck Involvement was constructed. 

Results indicate that the null hypothesis (i.e., the cell frequencies are independent) can NOT 

be rejected ( at the 0.05 confidence level). The results of this crosstabulation are presented 

in Table 5-2. Apparently, Uninvolved Motorists do not appear more often in truck-involved 

crashes. To the contrary, a review of the table indicates that they tend to appear less often 

in truck-involved crashes (Expected cell frequency: 22.2, actual observed: 15). 

6.0 Acknowledgements 

This research was supported through a grant from the David Lee Shanbrom 
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Number of Non-Truck Truck Row Totals 
Uninvolved Motorists Involved Involved 

No Uninvolved (U.I.) 4310 950 5260 
Motorists 4317.2 942.8 97.7% 

97.5% 98.4% 

More Than U.1 109 15 124 
Motorist 101.8 22.2 2.3% 

2.5% 1.6% 

Column Totals 4419 965 5384 
82.1% 17.9% 100% 

Table 5-2 Crosstabulation of Uninvolved Motorists 

Memorial Fellowship. This support is gratefully acknowledged. 

The contents of this report reflect the views of the authors, who are responsible for 

the accuracy of the data presented herein. The contents do not necessarily reflect the views 

of the sponsoring parties, the Institute of Transportation Studies or the University of 
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Introduction 

Most of the equilibrium traffic assignment models used nowadays, 

are based on aggregate link performance functions. These flow-delay 

functions represent a crude abstraction of real dependence of 

travel time on actual traffic volumes and physical conditions of 

the transportation network elements. These link performance 

functions reflect the travel impedance associated with the links 

and intersections. In many applications, especial those which are 

concerned with detailed microscopic traffic analysis, the perfor­

mance of these simplified flow-delay relationship might be too 

crude and thus unsatisfactory. When such analysis is desired, 

detailed flow-delay models, or simulation models, have to be used. 

Furthermore in many investigations different levels of detail are 

necessary for various components of the network. The flow-delay 

characteristics of some network elements can be represented by 

crude aggregate relations while other elements need to be repre­

sented in great detail and accuracy. When some, or all, of the 

network elements are not represented by mathematically defined 

flow-delay function it becomes very difficult to solve for user 

equilibrium in a transportation network. Similar difficulties might 

arise in the investigation of system optimum of transportation, 

communication or other networks. 

In the framework of this work, a traffic assignment model is 

developed that can be based on functions, whose exact mathematical 

form is not known. The proposed solution method applies to steady 

state network flow problems. This solution will be valid as long as 

the flow-delay curve is non deceasing when traffic flow increases. 

The flow-delay function can be numeric pointwise function or a set 

of simulation-generated values. The empirical analysis and 

derivation of the proposed solution methods follows the user 

equilibrium, traffic assignment model, developed by Leblanc [7]. 

1 



Link Performance Functions 

When solving for equilibrium assignment, one has to pay attention 

to how the travel time is related to traffic volume and to other 

characteristic. Most of these flow-delay models are based on crude 

and aggregate relationships, and represent, therefore, only in an 

approximate and coarse manner real traffic flow conditions. 

The equilibrium assignment model requires that these flow-delay 

curves satisfy a number of properties: 

* The function should be monotone and non-decreasing. 

* The function should be continuous and differentiable. 

* The function must be defined for oversaturated regions 

(during the assignment process, some links will be loaded with 

more traffic than its capacity). 

The last property is necessary when solving transportation 

networks, because inherently non steady state problems are solved 

as if steady state conditions prevail. Thus, temporal delays on 

network elements, which experience demand higher than capacity, are 

implicitly accounted for by the oversaturated region of the flow­

delay function. A number of authors have suggested functional forms 

for flow-delay relationships. ortuzar [ 8] review some of these 

flow-delay curves: 

1. The Detroit Study: 

(1) 

where tis the travel time, t 0 is the free flow travel 

time, xis the flow, and C is the link's capacity. 

2. The Bureau of Public Roads in the USA proposed the most 

common function: 
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(2) 

where a and Bare parameters for calibration 

3. A function that is asymptotic to a capacity flow was 

proposed by Davidson [5] based on queuing theory consid­

erations: 

t= t 0[l+J__£] 
c-x 

where J is a parameter of the model. 

(3) 

4. When dealing with signalized networks other functions 

have to be employed. Almost any model that relates delay 

caused to the traffic flow, to traffic signal parameters 

(cycle length, effective green time, saturation flow) can 

be employed. One of the most frequently used delay models 

is due to Webster [13]: 

d= c(l-A) 2 + y2 -0. 65( xc2 )1/3y2+sA 
2 (1-Ay) 2x(l-y) 

(4) 

where d average delay per vehicle 

C cycle time 
}.. proportion of the cycle which is effec-

tively green (g/c) 

X traffic flow 

s saturation flow 

y the degree of saturation. 

Webster's model does not apply in oversaturated condi­

tions when y=>l. 

5. Akcelik [ 2] developed an improved traffic delay model for 

signalized intersections. This model is valid for 

udersaturated as well as oversaturated conditions: 

where notation is as above with the following additions: 
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(5) 

T flow period in hours 

Q capacity in vehicles per hour 

m, n calibration parameters 

y 0 the degree of saturation below which the 

second term in equation (5) is zero. 

Some of the models shown above are not defined when flow exceeds 

capacity. Davidson's model and Webster's (Equations (3) and (4)) do 

not work in the oversaturation region. These two models are 

asymptotic functions, meaning that they generate infinite travel 

time, when flow is equal or greater than capacity. 

It should also be noted that all of the above models include only 

a limited number of variables and are therefore not realistic 

enough for congested urban areas. In order to obtain more realistic 

assignments, the delay models involved must be improved, and 

expanded to handle many network elements such as nonsignalized 

intersections, weaving and merging sections on freeways etc. In 

order to overcome the disadvantage of using an incomplete set of 

empiric and aggregate delay functions, some assignment models use 

fine scale simulation of the delays. These delays are then used by 

the assignment model. At present, a common characteristic of such 

models is an iterative loop between a curve fitting phase of flow­

delay functions based on simulation results and a traditional 

assignment phase. The curve fitting phase is quite complex, 

requiring a lot of computer time, memory and storage space, to 

generate the estimated flow-delay curves. Those curves are used in 

a complete traffic assignment procedure. Based on the assignment 

results a new iteration of the curve fitting procedure is performed 

and so on until the process hopefully converges. The problem with 

this process is that in many cases we have no a priori information 
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about the shape of the flow-delay curve, and have no assurance that 

the chosen form represents actual behavior, and will converge to 

the correct solution. 

The present paper presents a new assignment methodology which 

integrates simulation with conventional equilibrium assignment. 

This method overcomes some of the drawbacks of the existing 

methods. It does not assume any functional form of the flow-delay 

relations, and uses efficiently memory and storage resources. The 

proposed method iterates between simulation and assignment steps 

however, convergence of the assignment procedure is reached only 

once in the proposed process. 

Simulation and Assignment 

A number of assignment models that are based on flow-delay values 

obtained from simulation programs have been developed. Their common 

characteristic is an iterative loop between the simulation and 

curve fitting phase on one hand and a whole converged assignment 

phase on the other. This iterative process is repeated until some 

convergence criterion is satisfied. It is worth noting that no 

convergence can be warranted by means of such an algorithm. An 

other disadvantage of these algorithms is that they repeatedly 

perform to completion a number of equilibrium assignment proce­

dures. A brief description of two of such models will be presented 

in the following paragraphs. 

The SATURN Model 

SATURN [ 6] ( Simulation and Assignment of Traffic to Urban Road 

Networks) is a computer model developed at the Institute for Tran­

sport Studies, University of Leeds, for the analysis and evaluation 

of traffic management schemes. 
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SATURN uses two sub-models in order to achieve "realistic" 

assignments [12]. The first one is a TRANSYT type simulation model 

based on the use of cyclic flow profiles to represent the movements 

of platoons of vehicles over a network. It needs information about 

the flow on each link of the network to estimate capacity, queues 

and delays. Therefore, an assignment model is required to load a 

trip matrix onto the network and obtain an estimate of these flows. 

This is achieved through an separate assignment model. The link 

between these two models is through the flow delay curves as shown 

in Figure 1. 

Network Data - Simulation -

J l 

New Lin k Flows Flow-Delay Curv es 

,, 

Assignment ~ - Trip Matrix 

Figure 1: The Simulation and Assignment Phases of SATURN 

The objective of the simulation phase is to generate flow-delay re­

lationships from a given pattern of traffic flows in a network. 

These flow-delay curves are obtained by calculating the delays for 

each movement at zero flow, current flow (results of the last 

assignment procedure) and capacity with all other flows (i.e. 

opposing traffic) fixed. With these three points a flow-delay 

curve, that take the form of a polynomial, is fitted: 
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{ 

d
0
+ax n 

d(x)= T(x-C) 
d(C) + 2C 

x<C 

Otherwise 
(6) 

where: d(x) average intersection delay experienced by traffic 

flow x 

C turn capacity 

d0 delay at o flow 

a, n parameters 

T duration of the simulation period 

The iterative process continues until the turning movements reach 

reasonable stable values (i.e. the flow patterns are similar in two 

consecutive iterations). It must be noted that ultimate convergence 

to stable values is difficult [6]. 

Other Models 

Stephanedes [11] developed a simulation-assignment model based on 

an iterative feedback loop between an assignment and a simulation 

phase. The assignment phase distributes trips to the network and 

the simulation phase provides detailed information about the 

network performance given its geometric and operational character­

istics. Like in the SATURN model, the loop terminates when the 

travel times of the links between two successive iterations reach 

reasonably stable values. 

The objective of the simulation phase is to provide detailed 

information about link travel times resulting from a given traffic­

flow pattern. This information includes a significant number of 

<flow>, <delay> points used in a statistical estimation of volume­

delay curves. These fitted delay curves are used then in the 

assignment phase to distribute flow over the network. 

7 



Exact Problem Formulation 

For sake of completeness of the presentation we start with a 

concise derivation of the steady state user equilibrium traffic 

assignment problem following Leblanc's [7] work. Next the method 

of successive averages - MSA suggested by Sheffi [ 10] for the 

solution of stochastic assignment is presented. Finally a new 

linearization method is presented and compared to the MSA method. 

Current Equilibrium Assignment Practice 

Beckman et al. formulated the user equilibrium problem (UE) as a 

convex (nonlinear) objective function and a set of linear con­

straints. LeBlanc [7] proposed an algorithm to solve this problem 

when the flow-delay functions are fully specified based on the 

Frank-Wolfe method (see Avriel [3]). The steady state UE problem is 

formulated as follows: 

X 

min f(x) =}:.ft (w) dw 
1.J 0 

(7) 

st: D (j, s) + L xii= L xii 
i k -v- i, s 

(8) 

Where t(w) is a flow-delay function, Xijs is the flow on link {ij} 

to destination - s, and D(j,s) is flow originating at node j 

destined to s. Given x 1 a feasible flow vector ( a flow vector that 

satisfies the conservation of flow equation and the nonnegativity 

of flow constraints), then a first order expansion off(~) around 

x 1 can be written as: 
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forO<0<1 (9) 

A linear approximation to f(y) is to let 0 equal O (this yields a 

linear function in y). Further manipulation of equation (9) and 

removal of all constant terms yields the following objective 

function: 

(LP:) min Vf(x1 )y (10) 

Solving the above LP problem under a set of conservation flow 

constrains, equation (7), yields a solution vector y 1 which is also 

a feasible solution to the original non linear problem equations 

(7) & (8). The direction g=y1-~1 is a good direction to seek a 

decreased value off (see Zangwill [15]). 

Since the feasible region (determined by the flow conservation 

equations) is convex, each point on the line between ~ 1 and y 1 is 

also feasible. So, to minimize fin the direction g1 a one dimen­

sional problem, 

st: 
(11) 

has to be solved. The optimal step size, a, can be obtained from 

any interval reduction method. Further investigation of the LP 

objective function, equation (10), reveals that: 

So that 

(12) 

Defining cij as t(~ x=xi>, the linear program (LP) can be written 

as: 
min ~~ c .. y.s. 

LJ LJ 1-J 1-J 
s ij 

9 

(13) 



This program can be minimized by finding the shortest path connect­

ing each OD pair and assigning all the flow to it [7,10]. 

The algorithm can be summarized as follows: 

1. Initialization 

Perform All Or Nothing assignment based on tij=tij(0) • This 

yields to flow vector x 1 • Set the iteration counter n to 1. 

2. Update Travel Times 

Update the link travel times ( t . . n=t .. ( x .. n) 
l.J l.J 1.J 'ef a) 

3. Direction Finding 

Perform an All or Nothing assignment with tijn• This yields 

the auxiliary flow vector Y· .n 1.J 

4. Line Search 

Find a that solves the linear program (see Equation (11)). 

5. Move 

Set X· .n+l=x .. n + a (y n x n) 1.J 1.J n ij - ij 

6. Convergence Test 

If the convergence criterion is met stop; otherwise go to step 

2. 

Formulation of the Assignment Problem with Pointwise Flow-Delay 

Relationships 

As mentioned earlier, the objective of this work is to develop an 

assignment methodology not based on aggregate and simplified flow 

delay relationships. Let FDM be the delay vector produced by a flow 

delay model with unknown mathematical characteristics or by a 

simulation model: 

10 



Flow 
Vector 

Flow Delay 
Model 

FDM 

Delay 

Vector 

Figure 2: Example of a Pointwise Flow Delay Model 

When dealing with such a function, it is impossible to evaluate the 

objective function of the following equilibrium assignment problem: 

X 

min f(x)=r;.jFDM(w)dw 
1.J 0 

(14) 

One possibility to overcome this problem is to estimate a new flow 

delay relationship based on the results of the simulation values. 

This approach was adopted by the developers of several solution 

algorithms SATURN [12] being one of them. 

When applying Leblanc's [7] algorithm directly to solve the problem 

of Equation (7) there are two steps of the algorithm which may be 

problematic to solve, ( a) the solution of the linear program, 

Equation (10) and (b) the one-dimensional search, Equation (11). 

Assuming that the FDM function represents an underlying continuous 

and nonotonic non decreasing function the LP part of the original 

Leblanc's algorithm can be easily applied. It can easily be shown 

that no problem arises by the use of FDM in the LP problem since 

the term: 

min :E 
ijk 

reduces to the following one: 

Bf (x1 ) s 
s Yij 

axij 

11 
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minL FDM(xi) Yii 
ijk 

(16) 

The line search step for the optimal move size (Equation (11)) can 

not be solved easily using FDM model. The Line Search step of 

Leblanc's algorithm requires a continuous evaluation of the 

objective function (equation (14)) in order to find its minimum. 

This can not be done since the functions are unknown analytically 

and thus the function's integral is not known. 

Solution Algorithms 

As shown in the previous section the line search step can not be 

implemented directly. At each iteration of the assignment algo­

rithm, the new solution xn+l, lies between xn (the old solution) and 

y-12. The new point can be calculated as: 

(17) 

Which is equivalent to 

(18) 

of this research the optimum value of a (optimal move size) can 

not be determined using the method proposed by Leblanc, thus 

another linear combination method and has to be applied. Before the 

proposed method is presented, a solution method of successive 

averages - MSA, suggested first by Sheffi [10] is discussed. 

Successive Averages Method 

The method of successive averages (MSA) is based on stochastic 

approximation methods. Stochastic approximation is concerned with 

12 



the convergence of problems which are stochastic in nature usually 

based on observations which involve errors. Search techniques which 

successfully reach an optimum in spite of the noise have been named 

"stochastic approximation methods" by Robbins and Monroe in 1954 

[ 14 J. The term approximation refers, in this context, to the 

continual use of past measurements to estimate the approximate 

position of the "goal", while the term stochastic suggest the 

random character of the function being evaluated. 

The Robbins Monroe procedure places solution point n+l according to 

the solution of point n 

(19) 

where z(x) is a "noisy" function. The method is based on predeter­

mined move sizes, a, that has to satisfy the following two 

conditions: 

Lan .... "° 
n=l (20) 

One of the simplest step-size sequences, that satisfy both 

conditions is the sequence: 

1 a =­
n n 

In general, any sequence such that: 

Kl a=-­
n K +n 

2 

13 

(21) 

(22) 



where K 1 is a positive constant and K 2 is a nonnegative constant 

can be used. 

Sheffi [ 10] applied this methodology to solve a probabilistic 

assignment problem. This approach can also be applied to the 

solution of deterministic equilibrium assignment. The whole 

algorithm can be summarized as: 

1 Initialization 

(1) Run the simulation program with an initial flow vector and 

(2) perform an All or Nothing assignment. This yields to flow 

vector x 1 

2 Update Travel Times 

Perform a simulation run with flow vector xn, this yields tijn 

3 Direction Finding 

Perform an All or Nothing assignment with tijn• This yields 
n 

Yij 

4 Next Point 

Find a point xn+l between xn and yn. 

(23) 

Increase iteration counter n. 

5 Convergence Test 

If the convergence criterion is met stop; otherwise go to step 

2. 

The drawbacks of the algorithm with predetermined step sizes is 

that its convergence is very slow, and it is difficult to design 

appropriate convergence criteria [9]. 

The slow convergence of this methodology is not the only problem of 

the Moving Averages Method. The MSA algorithm was applied to solve 

the assignment problem of a network consisting of three links and 

one OD pair ( see Sheffi [ 10] page 114). Figure 3 shows the 
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Figure 3: Convergence Pattern for the Three Link Network 

objective function, z(x), as function of the iteration number. It 

can be seen, that if the assignment procedure is ended after a 

predetermined number of iterations, a solution with bad convergence 

characteristics may be chosen. This occurs due to the fact that the 

convergence of the MSA method is not asymptotic, but it oscillates 

around the approximate solution. Furthermore the MSA method is 

suppose theoretically to converge under certain regularity 

conditions ( Powell & Sheffi [ 9]) . However numerical computer 

roundoff errors might be quite significant when the number of 

iterations is high. This errors and the small difference in links 

loads from one iteration to the other when n is high might prevent 

this algorithm to converge to the correct solution. 

Linearization Method 

Due to the drawbacks of the MSA method. A new methodology by means 

of which any FDM function can be used to solve the equilibrium 

traffic assignment was searched. As mentioned in previous sections, 

a number of methodologies exist which take the delay values from 

simulation models. A simulation model can be considered a FDM 

function. We can obtain the delay of traffic on any link or turn 
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movement on the network for a given traffic flow pattern. But it is 

impossible to do further mathematical manipulations on the relation 

between flow and delay. 

The proposed method is based on a linear approximation of the real 

flow-delay function. At each iteration of Frank-Wolfe's algorithm 

we generate a new flow-delay pair for each network element and 

calculate a straight line which paths through the previous flow­

delay pair and the present one. For errorless FDM function this 

straight line will always be a non decreasing function with volume. 

the succession of this straight lines and Frank-Wolf iterations are 

the basic iterations of the proposed algorithm. Theoretically it is 

possible to fit a curve based on all the flow-delay pairs obtained 

during the assignment process. This is, however, a cumbersome work 

which requires large storage space and its advantage is not clear 

when the actual shape of the FDM function is not known. Therefore 

we chose the simplest of all approximations, the linear one. At 

each iteration of Frank-Wolfe's algorithm, only two 

(<flow>, <delay>) pairs are considered. At iteration n of the 

algorithm the straight line defining the present flow-delay 

relationships is based on the xri-1 and x1 values. the practical 

implication of this approach is that at any point in the algorithm 

only one set of <flow>, <delay> points needs to be stored. An 

example of linear relationship at each iteration are presented in 

Figure Figure 4. 

Mathematically the linear flow-delay relations can be expressed as 

follows: 

(24) 

Obviously, if this is the relationship between the flow and the 

delay there are no problem in the implementation of Frank-Wolfe's 

algorithm. 
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Figure 4: Linearized Flow Delay Relationship 

The temporal (for the current iteration) objective function is: 

X 

min z (x) =~ f y(w) dw 
J.J 0 

(25) 

And can be expressed as: 

(26) 

The step that could not be solved when using pointwise flow-delay 

functions (FDM), can now be easily implemented. Moreover, when 

using a linear functions the optimal move size can be calculated in 

an exact manner and no line search method is required. This 

improves computer running time of each iteration of the algorithm. 

Given two feasible flow vectors,~ and y, the line search step 

determines the minimum of the original function along the line 

between the two flow vectors. In the case of a linearized function, 

the objective function is convex with respect to xij' meaning that 

there exist unique minimum in the interval between~ and y. 

The step size can be calculated according to the following 

expression: 
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min z [xn+a(yn-xn)] 

st: O:s:a:s:1 

Defining gn as the direction between ~n and yn (gn 

equation(27) can be expressed as: 

(27) 

The optimal step size, a, can be analytically determined according 

to the following expression: 

I:>e ijdij+~ ijxijdij) 
a=--i~·j ________ _ (29) 

Using the linearized function, z(.), and the step size, a, Frank­

Wolfe's algorithm can be implemented to solve assignment problems 

using pointwise flow-delay relationships. At each iteration of the 

algorithm a better approximation of the original function can be 

achieved. 

The proposed algorithm can be summarized as follows: 

1. Initialization 

(1) Calculate an initial delay vector based on FDM. 

(2) Perform an All or Nothing assignment. This yields to flow 

vector ~ 1 . 

2. Update Travel Times 

Calculate the delay vector with flow vector ~n. 

FDM(~n) = .t_n. 

3. Linearization 

Calculate the linearized function z(x) based on vectors ~n-l 

and ~n. 

18 



4. Direction Finding 

Perform an All or Nothing assignment with ~n. This yields the 

vector yn. 

5. Next Point 

(1) Calculate the step size according to Equation (29). 

(2) Set ~n+l = ~n + a (yn - ~n). 

(3) Increase iteration counter n. 

6. Convergence Test 

If the convergence criterion is met stop; otherwise go to step 

2. 

Examples and Results 

To determine the ability of the proposed algorithm to provide 

accurate estimates of the traffic flow vector, the method was 

tested.with three different networks. For each network different 

flow-delay relationships were assumed. These flow-delay relation­

ships were based on the BPR functions [ 1], equation ( 1) with 

different a and B values. 

The proposed assignment methodology was compared to two existing 

assignment methodologies: Leblanc's implementation of Frank-Wolfe's 

decomposition algorithm and Sheffi's method of successive averages 

(MSA). The proposed methodology was implemented using a BPR 

function to calculate delays, but it was assumed that the delay 

values are the result of a pointwise FDM model. The BPR function 

was evaluated at discrete points, as if it is not possible to 

calculate the original objective function integral - f t(w)dw. 

The proposed method was applied initially to the three links 

network given by Sheffi. Figure 5 shows the convergence pattern for 

the three methods, when applied to the three link network given by 

Sheffi [10]. It can be seen that the proposed method converges 

asymptotic to the exact solution. For this small example, the 

performance of the proposed methodology is better than that of the 
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MSA method in two aspects. First it steadily converges to the exact 

solution and second, the number of iterations necessary to achieve 

acceptable solution is significantly smaller. 
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Figure 5: Convergence Pattern for the Three Link Network 

The method was also applied to a 

nine link and a 16 link grid net­

work. The results obtained by the 

proposed method were always better 

than those obtained by the method 

of successive averages. 

Finally the method was applied to 

the "classic" Sioux Falls network, 

presented in the original work by 

Figure 6: Sioux Falls Network 
(Leblanc [7]) 

Leblanc [10] (see figure 6). This is a 24 nodes, 76 links network. 

Several assignment runs with different BPR volume-delay curves with 

where performed. The different a and B values of the delay curves 

where changed to examine the behavior of the assignment algorithms 

under various congestion conditions. Twenty five iterations of the 

proposed algorithm and the MSA method were performed for each 
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Figure 7: Convergence Pattern for the Sioux Falls Network 

volume delay curve. As expected the proposed method gave better 

results than the MSA method. After 25 iterations of the algorithm, 

the proposed method was always closer to the exact solution ob­

tained by means of Leblanc's algorithm. Table I shows the results 

for various combinations of the BPR model parameters. It can be 

seen that, no matter what kind of flow-delay model is used, the 

proposed model's results were closer to the exact solution than 

those of the MSA method. Further more the convergence characteris­

tics of the proposed method don't deteriorate when sensitivity, of 

the network elements, to congestion increase. Observe in table I 

that this doesn't seem to be the case for the MSA assignment 

procedure. 

Conclusions 

The proposed linearization assignment methods seems to work very 

well. When a errorless deterministic FDM exists the proposed method 

is clearly superior to the MSA method. One of the big advantages of 

the proposed method is that it provides an elegant simple and 
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computer storage efficient iterative procedure to perform traffic 

assignment when the volume-delay curves are not explicitly 

specified. It can easily be adopted to situation where part of the 

network elements are represented by volume-delay curves while the 

behavior of others is determined by FDM functions. Furthermore this 

method seems well suited to be applied as a second refined 

assignment stage using as a staring points the solution vector 

generated based on aggregate crude volume-delay functions. 

Procedures which perform stochastic assignment are of great 

interest lately. The ability of the proposed procedure to perform 

stochastic assignment was not fully investigated. One of the 

problems which might arise when applying the proposed method to 

stochastic assignment is that the slope of the straight line 

generated at some iteration of the algorithm might be negative. 

This will indicate a decrease of travel time with volume and might 

al though not necessarily will imperil the convergence of the 

procedure. A way to over come this problem can be simply assigning 

a zero slope or using the previously calculated slope when such a 

problem occurs. The convergence characteristics of the proposed 

method when performing stochastic assignment need further investi­

gation. 
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Table I: Objective Function Values for the SIOUX Falls Network 

Parameter M e t h o d R e s u 1 t s 

a B FW MSA Linear FW-MSA FW-Linear 

0.15 1 673465.25 673465.06 673465.42 0.0000% 0.0000% 

0.15 2 658047.13 658092.72 658048.79 0.0069% 0.0003% 

0.15 3 652008.50 652094.23 652008.11 0.0131% -0.0001% 

0.15 4 649040.33 649380.82 649056.72 0.0525% 0.0025% 

0.15 5 647383.66 647816.21 647397.8 0.0668% 0.0022% 

3.00 1 1251805.93 1262714.46 1251836.66 0.8714% 0.0025% 

3.00 2 920306.65 938585.44 920602.65 1.9862% 0.0322% 

3.00 3 797500.07 814918.08 800769.58 2.1841% 0.4100% 

3.00 4 741256.24 756196.98 744504.26 2.0156% 0.4382% 

3.00 c:; 711110.66 73?911.87 713g86 Lll", 3.0658!!< 0. LlnLl.Ll.% 

4.50 1 1052317.34 1081560.57 1054371.86 2.7789% 0.1952% 

4.50 2 1052317.34 1081560.57 1054371. 86 2.7789% 0.1952% 

4.50 3 868625.09 895160.58 873920.02 3.0549% 0.6096% 

4.50 4 784554.39 812435.01 790197.29 3.5537% 0.7192% 

4.50 5 742024.08 769401. 7 748640.45 3.5896% 0.8917% 
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