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H I G H L I G H T S

• The flexibility of industrial parks is leveraged for frequency regulation.

• The stochastic day-head optimization is transformed into deterministic.

• An economic model predictive control is used to enhance the profit and performance.

• The proposed hierarchical framework is verified based on a real-world power market.
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A B S T R A C T

Demand responsive industrial loads with high thermal inertia have potential to provide ancillary service for
frequency regulation in the power market. To capture the benefit, this study proposes a new hierarchical fra-
mework to coordinate the demand responsive industrial loads with thermal power plants in an industrial park
for secondary frequency control. In the proposed framework, demand responsive loads and generating resources
are coordinated for optimal dispatch in two-time scales: (1) the regulation reserve of the industrial park is
optimally scheduled in a day-ahead manner. The stochastic regulation signal is replaced by the specific ex-
tremely trajectories. Furthermore, the extremely trajectories are achieved by the day-ahead predicted regulation
mileage. The resulting benefit is to transform the stochastic reserve scheduling problem into a deterministic
optimization; (2) a model predictive control strategy is proposed to dispatch the industry park in real time with
an objective to maximize the revenue. The proposed technology is tested using a real-world industrial electro-
lysis power system based upon Pennsylvania, Jersey, and Maryland (PJM) power market. Various scenarios are
simulated to study the performance of the proposed approach to enable industry parks to provide ancillary
service into the power market. The simulation results indicate that an industrial park with a capacity of 500MW
can provide up to 40MW ancillary service for participation in the secondary frequency regulation. The proposed
strategy is demonstrated to be capable of maintaining the economic and secure operation of the industrial park
while satisfying performance requirements from the real world regulation market.

1. Introduction

To achieve a sustainable and clean energy system of the future,
governments together with the industry are putting efforts to promote
the integration of renewable with an emphasis on integration of wind

and solar into the power grid. The intermittency and variation of re-
newable by nature expose power grid to numerous operational chal-
lenges. The resulting threat on system reliability and resilience has
drawn attention from legislators as well as power industry all over the
world and corresponding policies have been put in place to enhance the
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flexibility of power systems for high penetrations of renewable. In the
United States, Federal Energy Regulatory Commission (FERC) issued
Order 755 to promote demand-side resources to participate in fre-
quency regulation markets [1]. The National Grid in the United
Kingdom (UK) has developed a dynamic frequency service named En-
hanced Frequency Response (EFR) to improve the management of
system frequency [2]. Even though China is still in an early develop-
ment phase of frequency regulation market, the Chinese government
has issued a notice encouraging electric energy storage resources [3] as
well as large industrial loads such as steel industry loads [4] to parti-
cipate in frequency regulation markets. All these orders mandate de-
mand-side resources to be fairly compensated in frequency markets,
which makes demand-side resources competitive compared to con-
ventional generation for the provision of secondary frequency control.

Resources for frequency regulation are generally required to follow
random regulation signals in a timely manner. State-of-the-art research
on demand responsive resources to participate in frequency regulation
is mainly focused on residential and commercial loads, i.e., electric
vehicles (EVs) [5–8], energy storage system [9], heating ventilation and
air-conditioning (HVAC) systems [10,11], and other thermostatically
controlled loads (TCLs) [12]. The flexibility of electric vehicles (EVs) is
leveraged for primary regulation in [5], secondary frequency regulation
in [6] and emergency frequency regulation services in [7] respectively.
Furthermore, an on-going EV vehicle-to-grid demonstration project is
developed for frequency regulation in [8]. An investigation into how
energy storage can fulfill the fast frequency response is considered in

[9]. Experimental evaluation of frequency regulation from HVAC is
verified in [10]. The potential of TCLs for frequency regulation is cal-
culated in [11] and field experiment with TCLs to study frequency
control is presented [12]. However, due to the sparseness and a limited
capacity, residential loads or commercial loads have to be aggregated in
a large scale for frequency control, and the requirement of an ag-
gregator and the communication delay between the aggregator and the
distributed load may affect the effectiveness to meet the regulation
performance for frequency control.

Different from residential and commercial loads, energy-intensive
industrial loads are advantageous to provide this frequency regulation
ancillary service in that: (1) Industrial loads can provide a large amount
of ancillary service due to an enormous power capacity (a series of
industrial loads’ power capacity can be up to 1000MW); (2) Industrial
loads are equipped with advanced infrastructures which enable a cen-
tral controller to dispatch demand-responsive assets to follow regula-
tion signals; (3) Industrial loads have substantial thermal mass, which
allows for instantaneous power change following a regulation signal
without significantly impacting the quality of electricity service; (4)
Industrial loads are operated continuously with high cyclicality,
thereby offering reliable sources for frequency regulation; (5) Industrial
loads have self-owned thermal power plants, which can be coordinated
with demand responsive loads to further leverage the flexibility from
industrial loads for up and down regulation reserve.

Over the last decade, extensive research has been conducted on
demand response for frequency regulation in power systems. Ref. [13]

Nomenclature

H set of hours
T set of time slots in one hour
I set of generators
J set of industrial loads
h index of an hour in set H
t index of a time slot in set T
i index of generators
j index of ASLs
N1 horizon of reserve scheduling
N2 prediction horizon of MPC
Incomeday daily income of the industrial park
Incomeproduct daily income of the industrial loads
Incomeregualtion daily income of the frequency regulation
Costgeneration daily operation cost of thermal power plants industrial

loads
Penaltyregulation daily penalty for frequency regulation
πh

perf price of regulation performance at hour h
Rh

reg benefits factor of regulation at hour h
Kh

perf performance score of regulation at hour h
πh

product price of the aluminum products at hour h ($/Ton)
ηh

product power consumption rate for aluminum products (ton/MW)
ch

generation fuel cost of the thermal power plant at hour h
−a a1 3 parameters of the generator fuel cost function

ηh
regulation penalty coefficient of regulation at hour h

Peco j
load

, baseline power output of ASL j
P j

load
min, minimum power output of ASL j

P j
load
max, maximum power output of ASL j

Peco i
generator

, baseline power of generator i
P i

generator
min, minimum power output of generator i

P i
generator

max, minimum power output of generator i
βup j

load
, maximum ramping up rate of ASL j

βdown j
load

, maximum ramping down rate of ASL j
βup i

generator
, minimum ramping up the rate of generator i

βdown i
generator

, minimum ramping down the rate of generator i

Ph j t
load
, , output power of ASL k in time slot t at hour h

Ph i t
generator
, , output power of generator i in time slot t at hour h

ωh t, regulation signal in time slot t at hour h
Ω trajectories contain different numbers of deviation
B different bins of regulation mileage
Tt i, time constant of the turbine of generator i
Tg i, time constant of the governor of generator i
M inertia constant of the industrial park
D load damping constant of the industrial park

PΔ m i, incremental mechanical power of generator i
PΔ g i, incremental value gate position of generator i
PΔ C i, frequency control signal of generator i
fΔ i incremental frequency of generator i
PΔ L incremental load demand
PΔ tie incremental tie-line power

Ttie interconnection gain between an industrial park and bulk
grid

PΔ ASL j, incremental power of ASL j
PΔ CL incremental power of conventional loads

x vector of industrial park states
u vector of industrial park control input
w disturbance
A B C E, , , system matrices of industrial parks state space
A B C E, , ,d d d d discrete system matrices of industrial parks state

space
Qreg weighting matrices corresponding to the regulation profit
QG weighting matrices corresponding to generators energy

losses
QASL weighting matrices corresponding to the ASL products loss
Qvpenalty weighting matrices corresponding to the variation penalty
Qoverpenalty weighting matrices corresponding to the regulation pen-

alty
u u,G Gmin max amplitude constrains of control variables of generators
u u,ASL ASLmin max amplitude constrains of control variables of ASLs

x xΔ , ΔG Gmin max ramping constraints of states variables of generators
u u,ASL ASLmin max ramping constraints of states variables of ASLs
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demonstrated that industrial loads with a large storage capacity or fuel-
switching capability are able to provide frequency regulation service.
These loads include data centers, industrial electrolysis, industrial ce-
ment, pulp mills, arc furnaces, steel rolling loads and electric boilers. In
[14], data center loads are regarded as a source of dynamic flexibility
for primary regulation and a joint power management strategy of a data
center and plug-in electric vehicles for frequency regulation is studied
in [15]. To avoid the discreteness of crushers in the cement industry
and pulp in the paper industry, a coordinated framework with energy
storage is proposed in [16] that improves frequency regulation per-
formance. Among the various types of industrial loads, industrial
electrolysis is demonstrated to be able to provide more flexibility to
support system operation. Minute-to-minute regulation of electrolysis
aluminum loads is achieved in [17] by manually controlling the ratio of
the voltage-regulating transformer. A frequency feedback control fra-
mework is proposed to allow aluminum smelter loads (ASLs) for system
frequency control in an isolated power system by controlling the gen-
erator’s excitation voltage [18,19] or the saturation reactor of the ASL
[20]. Based on this architecture, experimental verification of ASLs for
frequency regulation is reported in [21,22] based on the real-world
isolated power system. The flexibility of industrial loads, especially
industrial electrolysis loads is proven for frequency control while the
flexibility of up reserves has not been fully investigated.

Apart from flexibility, industrial regulation resources are required to
determine their optimal regulation capacity over a multi-hour opera-
tion within the constraints of market timelines [23]. The challenge is to
determine the optimal regulation reserve considering the uncertainty
from market prices and regulation signals in the day-ahead market. To
manage this uncertainty, the research explored the stochasticity
[24–26] of the resources or managed the risk robustly in a deterministic
framework [27–29]. In [24], a stochastic algorithm is developed for
frequency control with a consideration of the randomness of prices and
the regulation signal. Reference [25] proposed a bidding algorithm for
the aggregator to participate in the day-ahead market based on sto-
chastic optimization. Based on stochastic programming with a set of
possible price curves, [26] proposes an optimal bidding strategy to
maximize regulation revenues. The uncertainty of the regulation signal
is verified by the worst-case trajectories in [27]. Based on this robust
optimization framework, the regulation resources succeed in following
the uncertain signal reliably for most of the time. A robust optimization
framework that models the regulation signal as energy constrained is
proposed in [28,29]. Furthermore, experimental verification is con-
ducted to verify the effectiveness of the robust framework in [30,31].
However, the aforementioned work is based on the premise that reg-
ulation resources respond quickly to follow the regulation signal and
the regulation capacity is small. Since industrial loads have an en-
ormous regulation capability, the uncertainty of the regulation signal
will have a more significant influence on the performance of the in-
dustrial loads for frequency regulation.

In addition to the day-ahead regulation reserve schedule, a real-time
regulation strategy to track the regulation signal while maintaining
economic and secure operation of the industrial loads is in a critical
need. A large number of literature have explored the strategy based on
model predictive control (MPC) for real-time regulation control. In
[32], an MPC strategy is presented for tracking the frequency signal by
groups of EVs, controllable loads, and cogeneration power plants. A
framework based on a decentralized MPC is proposed in [33] to co-
ordinate the generator and EVs in a three-area interconnected power
system. However, economic factors during the regulation process or the
correlation between day-ahead optimal reserve scheduling and real-
time regulation have not been considered. The economic MPC (EMPC)
with an objective to directly reflect process economics is proposed in
[34]. The application of EMPC is utilized in the chemical process [35],
and the power management [36], but a few kinds of literature report its
application for frequency regulation.

To bridge the gap, this paper proposes a hierarchical control

framework built upon the work in [30] to explore industrial parks for
participation in frequency regulation. In the proposed framework, it
considers the slow dynamic process of industrial loads and thermal
power plants together with the fact that the random regulation signal
has a more severe impact on the profits of the industrial parks. Different
from [30] which assumes HVAC can quickly track the regulation signal,
energy and production loss and the regulation penalty are incorporated
during the regulation process in this study. The main contributions of
this study are as follows:

(1) a coordinated scheme of the self-owned thermal power plant and
the industrial loads is proposed to enhance the flexibility of industrial
parks for frequency regulation. By complementary the large regulation
capability of thermal power plants with the fast regulation ability of
industrial loads, the industrial park is able to provide a high-quality
regulation service in the power market.

(2) a hierarchical control framework is proposed to enable in-
dustrial parks to fully achieve their flexibility to provide ancillary ser-
vice for frequency regulation. In the day-ahead ancillary market, the
stochastic regulation signal is replaced by the specific extremely tra-
jectories. Furthermore, the extremely trajectories are achieved by the
day-ahead predicted regulation mileage. The resulting benefit is to
transform the stochastic reserve scheduling problem into a determi-
nistic optimization. In the real-time dispatch, the economic model
predictive control with a cost function of the regulation process is
proposed to maximize the potential revenue during regulation. In ad-
dition, the control scheme considers the correlation of the day-ahead
regulation reserve schedule and real-time regulation operation.

2. Typical industrial park and provision framework statement

2.1. Power system topology of the industrial park

An industrial park is a zone area composed of energy-intensive in-
dustrial consumers, e.g., industrial electrolysis and the steel industry.
The annual energy consumption of these industrial loads is up to
14.49MWHr per ton so that industrial parks must utilize self-owned
thermal power plants for part of their electricity supply while the bulk
grid provides additional electricity through the transmission line. The
typical topology of an industrial park is shown in Fig. 1.

The potential flexibility of industrial parks is promising since the
power output of industrial loads, especially electrolysis loads, is flat
without much fluctuation. Further, each industrial park as shown in
Table 1 generally has a large capacity to provide a regulation reserve.
This kind of industrial parks is widely distributed in the developing
country where the frequency regulation markets considering industrial
parks are not available. To study the feasibility of leveraging flexible
industrial parks for frequency regulation, regulation requirements of
the PJM market is used. In this study, we focus on electrolysis loads,
e.g., electrolytic aluminum, electrolytic zinc, and electrolytic copper for
secondary frequency control. The flexibility of other loads will be stu-
died in the future.

Bulk  grid
Industrial park

Industrial loadsResidential loads

Self-owned thermal units

Wind power Industrial loads

TransformerTransformer Transformer Transformer

Transformer

Transformer
Transmission line

Transmission line

(Electronic aluminum 
loads, blast fans)

(Arc furnace loads, 
steers, heat pumps)

Industrial loads
(Submerged arc furnaces 

loads)

Transformer

Fig. 1. Diagram of an industrial park network.
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2.2. Problem statement and framework provision

This paper focuses on leveraging the flexibility of industrial parks to
provide frequency regulation service. The objective is to maximize the
potential profit during the frequency regulation process while providing
a high quality of regulation service. However, this is a challenging task
due to several factors: (1) the independent system operator (ISO) re-
quires symmetric regulation reserves, i.e., up-regulation reserves and
down-regulation reserves. However, the flexibility of industrial loads is
limited by the rated capabilities of the electric equipment. Hence, co-
ordination between industrial loads and thermal power plants is vital to
ensure the industry parks meet the symmetric regulation requirement;
(2) the regulation signal is unpredictable in the day-ahead market,
which increases the difficulty in determination of the optimal regula-
tion scheduling; (3) since the provision of frequency regulation often
requires industrial loads to deviate from normal operation, the penalty
associated with load deviation needs to be considered; (4) the pro-
duction benefits of loads are satisfied so as to track the regulation
signal. As a result, there exists a tradeoff between regulation perfor-
mance and regulation benefits in real-time regulation. (5) Since the
predictive error in the day-ahead market influences the real-time op-
eration, how to consider the day-ahead predictive error in real-time
operation remains to be solved.

To solve the aforementioned challenges, this study develops a
hierarchical controller as shown in Fig. 2. The controller consists of
two-time scales: day-ahead ancillary service market and real-time op-
timal dispatch of industrial parks. The day-ahead ancillary market de-
termines the optimal regulation reserve offered by the industrial park to
ISO/RTO, which is aimed to deal with challenges 1 and 2; The real-time
dispatch of industrial parks tracks ISO’s frequency regulation signal
while maintaining the economic operation of the load during the real-
time operation, which addresses challenges 3 and 4; The hierarchical
framework solves the challenge 5. The details of each level are pre-
sented in Section 3 and Section 4, respectively.

3. Day-ahead level reserve optimization

3.1. Stochastic regulation reserve optimization formulation

3.1.1. Objective function
In this section, the regulation reserve of industrial parks is opti-

mized with an objective to maximize the potential revenue. We denote
the operation time horizon, the set of thermal power plants and the set
of ASLs by =H h{1, ..., }, =I i{1, ..., }, and =J j{1, ..., }, respectively. Each
hour is divided into multiple time slots as =T t{1, ..., }. Each time slot
corresponds to the day-ahead calculate time step. For an industrial
park, the total daily income denoted as Incomeday, is calculated by:

= ∑ +

− −
∈

Penalty

max Income (Income Income

Cost )
h H h

product
h
regulation

h
generation

h
regulation

day

(1)

where Income product denotes the revenue from the industrial load's daily
production, Incomeh

regulation is the revenue from the regulation ancillary
service within hour h, Costh

generation represents the generators' operation
cost within hour h, and Penaltyh

regulation denotes the penalty of loads for

overloading within hour h.
The product income Income product is determined by:

∑ ∑= ⎡

⎣
⎢

⎤

⎦
⎥ ∀

∈ ∈

π η P t h j tIncome · · Δ , , ,h
product

j J
h
product

h
product

t T
h j t
load
, ,

(2)

where πh
production denotes the unit revenue of the aluminum products,

ηh
production is the constant power consumption rate for aluminum pro-

ducts, and Ph
load represents the operational power demand of the ASLs

products.
The regulation revenue Incomeh

regulation consists of two parts, i.e., the
capability payment and the performance payment, which is formulated
as:

= + ∀π π R K r h tIncome ( · )· · , ,h
regulation

h
cap

h
perf perf

t
reg (3)

where πh
cap is the regulation market capability clearing price, πh

perf is the
regulation market performance clearing price and rk

reg denotes the
regulation capacity. K perf denotes the performance score, which reflects
the accuracy of the regulation resource’s response to the regulation
signal. PJM calculates the performance score as the hourly average of
three components, the correlation score, the delayed score, and the
precision score [36]. R denotes the mileage factor that converts the
dynamic regulation signal (RegD) into the traditional regulation signal
(RegA). In PJM, the mileage factor R is approximately 2.92.

A quadratic cost function is typically used to denote the cost of
thermal generation in the industrial park [38], which is formulated as:

∑ ∑= + + ∀
∈ ∈

c α P α P α t h i tCost [ ·( )Δ ], , ,h
generation

i I t T
h
genaration

h i t
g

h i t
g

1 , ,
2

2 , , 3

(4)

where ch
generation denotes the fuel cost of the thermal unit and [α α α, ,1 2 3]

denotes parameters of the fuel cost function.
The provision of regulation affects the operation of the industrial

park in two aspects. First, the provision of regulation influences both
the product revenue of the ASLs and the operational cost of thermal
power plants. This influence has been considered in (2). Second, as
ASLs operate at 95 percent of the rated power, the overload of ASLs for
down-reserve regulation would increase the damage probability of the
ASLs equipment. We define ξ as the maintenance cost and τ as the
maintenance cycle of the ASLs. Let τeco% denotes the maintenance cycle
of ASLs operating at economic operation, i.e., 95 percent of the rated
power, the maintenance cost in period τeco% is ξeco. The higher output of
the ASLs would increase the damage probability of the ASLs equipment,
as a consequence, the maintenance cost fee ξh j t, , is higher than that of
ξeco j, . The difference between the two maintenance costs in each time
slot denoted by ηh j t

regulation
, , can be expressed as:

Table 1
Capacity of typical industrial parks.

Typical industrial
park

Capacity
(MW)

Productivity
(ton)

Power consumption
(kWh/ton)

Electrolytic
aluminum

1360 895,000 13,307

Electrolytic copper 100 250,000 97.4
Electrolytic zinc 300 150,000 342.8
Steel plant 1300 13,390,000 667.9

Fig. 2. Hierarchical controller for the industrial park.
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=
−

=
−

η
ξ ξ

τ

ξ τ τ

τ τ

( )
h j t
regulation h j i eco j

eco j

eco j h j t eco j

eco j h j t
, ,

, , ,

,

, , , ,

, , , (5)

If the operating power exceeds the economic point, this regulation
process received an overload penalty which is formulated as:

∑ ∑= ⎛

⎝
⎜

− ⎞

⎠
⎟ ∀

∈ ∈

η
P P

P
t h j tPenalty [ ·max , 0 Δ ], , ,h

regulation

j J t T
h j t
regulation h j t

load
eco j
load

eco j
load, ,

, , ,

,

(6)

3.1.2. Constraints
The constraints are formulated as follows:

∑ ∑+ = ∀
∈ ∈

P K ω r p h i j t, , , ,
i I

h i t
generator

t
perf

h t h t
reg

j J
h j t
load

, , , , , ,
(7a)

− ⩽ ⩽ ∀ω h t1 1, ,h t, (7b)

∑ ∑⩽ ⩽ − + − ∀
∈ ∈

r P P P P i t k0 ( ) ( ), , ,up t
reg

i I
eco i
generator

i
generator

k K
k

load
eco k
load

, , min, max, ,

(7c)

∑ ∑⩽ ⩽ − + − ∀
∈ ∈

r P P P P i t j0 ( ) ( ), , ,down t
reg

i I
i

generator
i eco
generator

j J
eco j
load

j
load

, max, , , min,

(7d)

= = ∀r r r h t, ,h
reg

h
up

h
down (7e)

⩽ ⩽ ∀P P P h t i, , ,i
generator

h i t
generator

i
generator

min, , , max, (7f)

⩽ ⩽ ∀P P P h t j, , ,j
loads

h j t
loads

j
loads

min, , , max, (7g)

⩽ − ⩽ ∀−β P P P β P h t i, , ,down i
generator

rate i
generator

h i t
generator

h i t
generator

up i
generator

rate i
generator

, , , , , , 1 , ,

(7h)

⩽ − ⩽ ∀−β P P P β P h t j, , ,down j
loads

rate j
loads

h j t
loads

h j t
loads

up j
loads

rate j
loads

, , , , , , 1 , , (7i)

Constraint (7a) is the power balance in the industrial park and ωh t, is
the regulation signal sent from ISO, such as PJM. The signal can take
any value in [−1,1] as expressed in (7b). The analysis of this signal is
presented in the next part. Constraints (7c), (7d), and (7e) guarantee
that the up-regulation reserve rup h

reg
, and the down-regulation reserve

rdown h
reg

, in each hour are equal. Constraints (7f) and (7 g) ensure that the
power of the thermal power plants and the aluminum loads should not
exceed the safe operating areas. Constraints (7 h) and (7i) are ramping
limits of thermal power plants. The maximum loading rate for thermal
power plants is on the order of 2 percent of maximum continuous rating
(MCR) per minute [38]. For aluminum loads, this rate is on the order of
100 percent of MCR per minute.

3.1.3. Problem formulation
The reserve scheduling problem can be formulated as:

maximize (1)

subject to (7a) - (7i)
r P P, ,h

reg
h t t
generation

h k t
load

, , , ,

(8)

3.2. Algorithm and implementation issues

3.2.1. Trajectory transition of the stochastic regulation signal
Notice that ωh t, is a random signal that creates uncertainty for the

regulation capacity. Meanwhile, it is difficult to directly model the
regulation signal trajectories since there are a large number of possible
trajectories. Ref. [24] studied that if the regulation resources can follow
the regulation signal in two extreme cases, i.e., a trajectory with an
extreme downward deviation from 1 to −1, and a trajectory with an
extreme upward deviation from −1 to 1, the regulation resources can
follow the regulation signal under other trajectories. However, as the

ramp rate of industrial park regulation resources is limited, the number
of extreme up and down deviations affects the regulation capacity.
Hence, different from [24], this study is to deal with the stochastic
regulation signal by replacing it with standard trajectories with dif-
ferent numbers of extreme up and down deviations. The different ex-
tremely trajectories is shown in the left plot in Fig. 3.

Here, the regulation mileage concept is used, and a regulation
mileage is defined by PJM to characterize the fluctuation of a different
regulation signal by the absolute sum of the regulation signal's move-
ment [36]. The correlation between the real regulation signal and
regulation mileage is shown in Fig. 3. A larger mileage corresponds to a
more severe fluctuation as seen in Fig. 3. We sort the mileage of the
regulation signal into different bins by amplitude i.e., a bin with
mileage values from 10 p.u. to 60 p.u., which are denoted as [bin1,
bin2, bin3, bin4, bin5]. Moreover, the trajectories that contain different
numbers of extreme deviations are denoted as [Ω1, Ω2, Ω3, Ω4, Ω5]. By
running numerical simulations using historical regulation signals and
different numbers for extreme trajectories, the effect of the regulation
mileage to the regulation reserve is characterized by the number of
extreme deviation trajectories. The detailed relationship is presented in
Section 6. In an alternative way, we utilize the trajectories Ω1, Ω2, Ω3,
Ω4, Ω5 as the input regulation signal instead of the real regulation
signal at each hour.

3.2.2. Prediction of regulation signal
The historical regulation signal mileage of PJM from March 1, 2017,

to March 1, 2018, is presented in Fig. 4. By utilizing this historical data,
the regulation signal mileage can be predicted by long short-term
memory network (LSTM) prediction [37]. The persistence prediction
uses the latest available observation as a prediction, and the mean
prediction uses the average from all available observations as predic-
tions. Hence, the corresponding trajectories Ω related to the predicted
mileage can be obtained. Moreover, the random regulation signal ωh t, is
replaced by the trajectories Ω which contains a different number of
extreme deviations in each hour.

3.2.3. Implement flowchart
By using regulation mileage, (8) is transformed into a deterministic

optimization with a quadratic objective function, which can be solved

Mileage = 15

Mileage = 25

Mileage = 31

Mileage = 40

Mileage = 51

1

2

3

4

5

Fig. 3. Historical regulation mileage and extremely trajectories.
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by commercially available solvers such as CPLEX or YALMIP [38]. The
flowchart of the day-ahead optimization schedule is shown in Fig. 5.
The outcomes of (8) are reserve capacity, the thermal power plants’
outputs, and the aluminum loads outputs, which are sent to the real-
time operation controller for optimal dispatch.

4. Economic model predictive control for real-time operation

4.1. Dynamic model of the industrial park power system

4.1.1. Electrolysis loads model
Electrolysis loads all utilize the same process whereby cells are

placed in series and heated by a large direct current. The equivalent
circuit of aluminum smelter loads (ASLs) is shown in Fig. 6. The ASL is
equal to the series connection of a counter electromotive force E and
resistance R.

In our previous works, the dynamic model of ASLs has been ob-
tained through field experiments [22] as shown in Fig. 7. The state
space model with state variable P sΔ ( )ASL and the control variable

PΔ ASLref is expressed as follows:

= ⎡
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(9)

where parameters KASL and TASL can be found in [22].

4.1.2. Thermal power plant model
The state space model of the self-owned thermal power plants can

be obtained directly from the block diagram [38]:
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whereTt andTg are the time constants of the governor and the turbine of
the thermal power plant, respectively, M is the inertia constant, D is the
load damping constant, and R is the governor droop of the thermal
power plant [38]. PΔ m is the incremental mechanical power, PΔ g is the
incremental value gate position, fΔ is the incremental frequency, PΔ L is
the incremental load demand, PΔ C is the control signal of the thermal
power plant, PΔ tie,12 is the incremental tie-line power, and Tij is the in-
terconnection gain between the industrial park and the bulk power grid.

fΔ 2 is the incremental frequency of the bulk power grid, and as the
capacity of the bulk power grid can be regarded as infinite, ∫ fΔ 2 is
zero, hence (13) can be reformulated by:

=P πT fΔ ̇ 2 (Δ )tie ij ij, 1 (14)

PΔ L consists of the incremental power of ASLs PΔ ASL and incremental
power of conventional loads PΔ CL as:

= +P P PΔ Δ ΔL ASL CL (15)

4.1.3. State space model of the industrial park
By combining (9–12) with (14) and (15), the discrete linear state

space model of the industrial park can be uniformly described by the
following equation:

+ = + −
=

x k A x k B u k Ew k
y k Cx k

̇ ( 1) ( ) ( ) ( )
( ) ( )

i i i i i

i i (16)

where = = =x x x x P P f P x P[ ; ], [Δ Δ Δ Δ ] , [Δ ]i Gi ASLi Gi m g tie
T

ASLi ASLi
T is the

state, = = =u u u u P u P[ ; ], [Δ ] , [Δ ]i Gi ASLi Gi Ci
T

ASLi ASLrefi
T is the control

variable, =w PΔ CLi is the disturbance, and =y f P[Δ Δ ]tie
T is the output

vector of the industrial park. A, B, C , and E represent system matrices,
which can be obtained using (9)–(15).

4.2. EMPC formulation

In this paper, we present an economic model predictive control
(EMPC) scheme to overcome the conflict between regulation perfor-
mance and the profits of industrial parks. The EMPC minimizes an
economic cost directly as opposed to minimizing the deviation from the
set point. The primary task of the EMPC is to decide which input
variables should be actuated to realize the maximize profits from the
frequency regulation services. Meanwhile, the controller should track
the regulation signal as accurately as possible.

4.2.1. Objective of EMPC
Depending on the desires of the controller, the cost function of the

EMPC contains five parts. The first part is the quadratic function for the
deviation of a state from its steady-state value which indicates that the
industrial loads follow the frequency regulation signal as committed.
The second part and the third part denote the operating loss of the
thermal power plants and the products profits loss of the ASLs,

Fig. 4. Historical mileage of regulation signal.
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Fig. 5. Flowchart of day-ahead optimization schedule.
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respectively. The fourth part penalizes the deviation of consumption of
its value in the previous time step which causes a smoother operation of
the ASLs. The last part serves to penalize the overload of the ASLs.
Taking into account the penalties above, the objective function of EMPC
is formulated as:

= ∑ + + +

+ +
+

=
−J x n Q x n u n Q u n

Q u n u n Q u n
Q u n

min ( ( 1) ( 1) ( ) ( )

( ) Δ ( ) Δ ( )
max( ( ), 0))

n
N

G
T

reg G G
T

G G

ASL ASL ASL
T

varypenalty ASL

overpenalty ASL

0
12

(17)

where Qreg, QG, QASL Qvarypenalty, and Qoverpenalty are the weighting
matrices corresponding to the regulation profit, generators energy
losses, ASL products loss, variation penalty, and regulation penalty.
uGmin, uGmax, uASLmin, and uASLmax are the amplitude constraints of the
control variables of the thermal power plants and the ASLs. ΔxGmin,
ΔxGmax, ΔxASLmin, and ΔxASLmax are the ramping constraints of the
thermal power plants and the ASLs. N2 is the prediction horizon. As the
real-time rolling forecast has a good performance [16]. Hence in our
manuscript, the uncertainty of the regulation signal is not taken into
consideration in real-time, and the latest information of the regulation
signal is directly used in this EMPC model.

4.2.2. Constraints of EMPC
The constraints are formulated as follows:

+ = +x n A x n B u n( 1) ( ) ( )d d (18a)

⩽ ⩽u u n u( )G G Gmin max (18b)

⩽ ⩽u u n u( )ASL G ASLmin max (18c)

⩽ ⩽x x n x( )G G Gmin max (18d)

⩽ ⩽x x n x( )ASL ASL ASLmin max (18e)

⩽ ⩽x x n xΔ Δ ( ) ΔG G Gmin max (18f)

Constraint (18a) is the model of MPC. It is the state space function of
the industrial park power system presented in (16). Constraints (18b)
and (18c) are the rate limits of the industrial loads and the thermal

power plants. The maximum loading rate for thermal power plants is on
the order of 2 percent of maximum continuous rating (MCR) per
minute. For aluminum loads, this rate is on the order of 100 percent of
MCR per minute. Constraints (18d) and (18e) ensure that the power of
the thermal power plants and the aluminum loads does not exceed the
safe operating areas. Constraint (18f) is the limit to the ramping rate of
thermal power plants.

4.2.3. Formulation of EMPC
Combining (17) and (18), we can formulate the EMPC as below:
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The EMPC solved in this paper is formulated as a convex quadratic
problem that can be solved by YALMIP [39]. The solution to (19) is
denoted = + =

−U u* { * }k j j
N

0
1, and the first element will be returned as the

optimal power plan for thermal plants and aluminum loads.

5. Case study

5.1. Simulation system

In this section, we validate the framework's performance in a typical
industrial park with ASLs and thermal power plants. We consider that
the industrial park has one series of aluminum loads with a capacity of
500MW, and two self-owned thermal power plants with a capacity of
600MW. The industrial park power system is connected to the bulk
power system through a tie-line. The detailed parameters of the in-
dustrial park are listed in Table 2.

The income of the industrial park is equal to its production benefits
subtracted by the operation cost of its thermal power plants. The power

Fig. 6. The equivalent circuit of the ASL [18].
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Fig. 7. Dynamic characteristics of ASLs from experiments [22].

Table 2
System parameters of the industrial park.

Description Parameter Value

Day-ahead level Peco
generatot 490MW

Peco
load 490MW

Pload
min 400MW

Pload
max 500MW

βup
genarotar 2%/min

βdown
genarotar 5%/min

βup
load 50%/min

βdown
genarotar 50%/min

πcap $51.36/MW

πperf $3.72/MW

πproduct $2044/ton

ηproduct $200/MW

Real-time level Tt 10
Tg 2
M 10
D 1
N2 300 s
u u,ASL ASLmin max −20%|0%

x xΔ , ΔG Gmin max −5%/min|2%/min
Q Q Q Q Q, , , ,reg G ASL vpenalty overpenalty [100, 62, 70, 30, 200]
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consumption of ASLs requires the thermal power plants to operate at 95
percent load factor with limited perturbation within an hour, and the
industrial park’s nominal power production rate is 1700 tons per hour.
The average price of aluminum production is $2044/ton. To investigate
the framework's performance, we use the average regulation capacity
price and the average regulation performance price of PJM on October
8, 2017, and the regulation signal from October 8, 2017, to October 13,
2017. The sampling time of the regulation signal is every 2 s. The
average mileage ratio of the regulation signal is 2.92.

Simulations are performed in MATLAB by calling YALMIP to solve
the optimization problem [39]. The reserve scheduling problem is
solved with 24-hour time slots and 5min time steps in each hour. The
real-time control problem is solved with a 300s prediction time horizon
and a time step of 2 s. This predictive horizon is based on the PJM
power market [40]. And the proposed EMPC method is compared with
the traditional MPC whose objective is focused on tracking the reg-
ulation performance. In addition, the hierarchical control method is
also verified when there is the prediction error of day ahead regulation
capacity.

5.2. Day-ahead capacity reserve schedule

To quantify the correlation between regulation mileage and reg-
ulation reserve, we run numerical simulations with real regulation
signals across several months. The results shown in Fig. 8 indicate that
regulation reserve is highly related to mileage. When mileage is high,
the regulation reserve is low. The black rectangles in Fig. 9 denote
regulation reserve with different numbers for extremely deviated reg-
ulation signals. In each mileage bin, the average regulation reserve as
calculated by the real regulation signal is approximately the same as it
is under extremely different deviation trajectories. The average reg-
ulation reserve for each mileage bin is listed in Table 3.

Then we predict the day-ahead mileages. The daily regulation
mileage signal for the simulation is plotted in Fig. 10 together with the
LSTM prediction. As shown in Fig. 10, the root-mean-square-error
(RMSE) is 5.2953MW.

Utilizing the relationships in Table 3 and the predicted mileage, we
solve the day-ahead reserve schedule problem. The optimization results
for each hour of the next operating day are shown in Fig. 11. The black-
solid and black-dashed curves indicate the predicted mileage and the
real mileage of the regulation signal. The blue bar represents the reg-
ulation reserve based on the predicted mileage, and the gray-dotted
curves represent the regulation reserve based on the real regulation
signal. The graph in Fig. 11 indicates that the regulation reserve of an
industrial park with 500MW capacity is more than 30MW, and the
average net profit compared with the income without regulation is
$2450. Moreover, the PJM's regulation requirement is 700MW during
peak periods and 525MW during off-peak periods in PJM. Hence, the
amount of regulation reserve provided by the industrial park can con-
tribute to this frequency regulation market.

Note that there exists some error between the mileage-based reg-
ulation reserve and the actual signal-based regulation reserve. This
error, shown in Fig. 10, results from a prediction error in mileage and
would influence real-time operation results. Hence, in the second part
of the case study, we present real-time operation results with a con-
sideration of the influence of this prediction error.

5.3. Real-time regulation ignore the day-ahead prediction error

The real-time regulation simulation is investigated to demonstrate
the effectiveness of the proposed EMPC for optimal dispatch of the
industrial park. The proposed framework is compared with the tradi-
tional MPC in terms of tracking performance and regulation economics.

The results are presented in Figs. 12 and 13. The red curve in Fig. 12
is the hourly dynamic regulation signal. The black curves in Figs. 12
and 13 represents the dynamic response of the active power of the

industrial park, the industrial loads and the thermal power plant based
on EMPC and the red curves in Fig. A1, Fig. 12 and Fig. 13 represents
the dynamic response of the active power of the industrial park, the
industrial loads and the thermal power plant based on traditional MPC.
As the regulation signal changes, the thermal power plants and the
industrial loads respond to track it. Due to the limit of the governed
dynamic, the thermal power plants are slow to track the regulation
signal. Hence, the industrial loads respond quickly to follow the reg-
ulation signal followed by the change of thermal power plants. By co-
ordinating thermal power plants and industrial loads, the industrial
park can track the regulation signal well. The performance score of this
regulation is 0.90.

The most significant difference between traditional MPC and eco-
nomic MPC is the dynamic response of industrial loads, especially in the
periods when industrial loads go down or up. As seen in the period
t= 450:500, the regulation signal ramps extremely fast from−1 p.u. to
1 p.u. in 1min. In the traditional MPC strategy, the output of industrial
loads decreases rapidly to help industrial park keep track of the reg-
ulation signal. While the reduction of industrial load in economic MPC
is less which causes a lower regulation performance. In the period
t= 2400:2700 when the reference signal goes up in an extreme fashion,
the output of industrial loads increases to keep track of the regulation
signal in the traditional MPC strategy as seen in Fig. 13. In economic
MPC strategy, there is a penalty for overloading industrial load's that
would increase the risk of equipment failures. Hence, the industrial
loads’ overload time is shorter in economic MPC than that in traditional
MPC. Fig. 14 compares the economic benefits of traditional MPC and
economic MPC. From Fig. 14, although the regulation income with
traditional MPC is higher than the economic MPC, the total net income
of economic MPC is higher than the net income of traditional MPC. The
proposed EMPC brings more revenue than the traditional MPC due to a
less stringent regulation penalty. The detail economic benefits of tra-
ditional MPC and economic MPC are listed in Table 4.

5.4. Performance verification of the hierarchical framework considering
day-ahead prediction error

The prediction error of regulation reserve would influence the total
income of the industrial park in the real-time operation. For example,
when the fluctuation of the real regulation signal is more severe than
the fluctuation of the predicted signal, if we pursue the same perfor-
mance score, a more variation of the industrial loads is required which
would affect the final regulation income of the industrial park.
Consequently, the prediction error requires to be considered in the real-
time regulation (Fig. 15).

In this scenario, we consider the extreme case. The day-ahead re-
serve schedule calculates the optimal regulation reserve is 45MW with
a predicted regulation mileage. However, the actual regulation mileage
is higher than the predicted one, and the actual optimal regulation
capacity would be 25MW. We compare the proposed framework with
the traditional MPC in terms of tracking performance and regulation
economics.

Fig. 8. The considered power system model of the industrial park.
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Regulation results with 25MW regulation reserve are shown in
Figs. 16 and 17. The red curve in Fig. 16 is the real regulation signal.
The black and the blue curves in Fig. 16 denote the output of the in-
dustrial park with traditional MPC and economic MPC. The black and
the blue curves in Fig. 17 show the dynamic response of industrial loads

with traditional MPC and economic MPC. Regulation results with
45MW regulation reserve are shown in Figs. 18 and 19. The red curve
in Fig. 18 is the real regulation signal. The black and the blue curves in
Fig. 18 denote the output of the industrial park with traditional MPC
and economic MPC. The black and the blue curves in Fig. 19 show the
dynamic response of industrial loads with traditional MPC and eco-
nomic MPC.

When the regulation reserve is 25MW based on the real mileage,
both the traditional MPC and the economic MPC are profitable.
However, there are also some differences marked as the dotted circles

Fig. 9. Relationship between regulation reserve and mileage.

Table 3
Relationship between regulation reserve and mileage.

Mileage (p.u.) Regulation reserve (MW) Number of ramp events

< 20 45 1
20–30 40 2
30–35 30 3
35–45 26.7 4
> 45 20 5

Fig. 10. Regulation mileage over five days and its prediction.

Fig. 11. Day-ahead scheduling result.

Fig. 12. Hourly simulation results of regulation signal.

Fig. 13. Hourly simulation results of industrial loads.

Fig. 14. Hourly simulation results of thermal power plants.

Table 4
Comparison of system operation cost between traditional MPC and Economic
MPC.

Traditional MPC Economic MPC

Total net income ($) 2000 3613
Regulation income ($) 10,926 10,374
Production loss ($) 2822 2774
Generation cost ($) 140 162
Regulation penalty ($) 6245 4147
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in Fig. 17. The deviation amplitude of industrial loads in EMPC is lower
than the traditional MPC. In the time period of t= 900 s to 1200 s, the
output of industrial loads goes up to help track the regulation signal in
the traditional MPC. However, the output of industrial loads almost
keeps its normal operation?? Both of these controllers can get a high-
performance score as listed in Table 5. However, the total net income of
the economic MPC is higher than the traditional MPC as shown in
Fig. 20.

When the regulation capacity is 45MW which is based on the pre-
dicted mileage, the difference of the traditional MPC and the economic
MPC is revealed. The tracking performance in the traditional MPC is
still higher than the economic MPC. However, the high regulation
performance compromises more production profits due to energy loss
and more regulation penalties due to the overloading of industrial
loads. Hence the total net income of economic MPC is much higher than
the traditional MPC. Moreover, the regulation performance of the
economic MPC is higher than the basic requirement of PJM whose
minimal regulation performance score is 0.75. The detail economic
benefits of traditional MPC and economic MPC are listed in Table 5.

Fig. 15. Hourly simulation results.

Fig. 16. Hourly simulation results of industrial parks with a 25MW regulation
capacity.

Fig. 17. Hourly simulation results of industrial loads a 25MW regulation ca-
pacity.

Fig. 18. Hourly simulation results of industrial parks with a 50MW regulation
capacity.

Fig. 19. Hourly simulation results of industrial loads a 50MW regulation ca-
pacity.

Table 5
Comparison of system operation cost.

Cost ($) Traditional MPC Economic MPC

R=20MW R=45MW R=20MW R=45MW

Total income ($) 627 −3061 1502 941
Regulation income ($) 4803 10,145 4424 9285
Production loss ($) 2065 4086 2159 4287
Generation cost ($) 78 290 100 384
Regulation penalty ($) 2188 9409 862.7 4441
Performance score 0.933 0.876 0.860 0.810

Fig. 20. Economic results of industrial parks with a 50MW regulation capacity.
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6. Conclusions

This paper presents a hierarchical framework to coordinate thermal
power plants and industrial loads in the industrial park for frequency
regulation. The framework consists of the day-ahead regulation reserve
optimization and a real-time model predictive controller. By utilizing
the mileage feature of the regulation signal, the random regulation
signal is transformed into a deterministic optimization, and the reg-
ulation reserve of each operating hour is optimized. The utilization of
economic model predictive control achieves the maximum benefit to
the industrial park through participation in the frequency regulation.
The operation simulation in this study demonstrates the flexibility of
industrial parks for frequency regulation. By utilizing the proposed
framework, the economics of industrial parks during frequency reg-
ulation is optimized while the electricity service is maintained. Even
though the study is based on ASL, the proposed framework also works
for other types of industrial electrolysis loads.

Future work should address the uncertainty of market prices in
detail. The bidding model of industrial parks for frequency regulation
also needs to be developed. Utilization of other energy-intensive loads,
e.g., steel loads and arc furnace loads, for frequency regulation will be
studied in the near future.
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