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ABSTRACT

Model-based control of building energy offers an attractive

way to minimize energy consumption in buildings. Model-based

controllers require mathematical models that can accurately pre-

dict the behavior of the system. For buildings, specifically, these

models are difficult to obtain due to highly time varying, and

nonlinear nature of building dynamics. Also, model-based con-

trollers often need information of all states, while not all the

states of a building model are measurable. In addition, it is chal-

lenging to accurately estimate building model parameters (e.g.

convective heat transfer coefficient of varying outside air). In

this paper, we propose a modeling framework for “on-line es-

timation” of states and unknown parameters of buildings, lead-

ing to the Parameter-Adaptive Building (PAB) model. Extended

Kalman filter (EKF) and unscented Kalman filter (UKF) tech-

niques are used to design the PAB model which simultaneously

tunes the parameters of the model and provides an estimate for all

states of the model. The proposed PAB model is tested against

experimental data collected from Lakeshore Center building at

Michigan Tech University. Our results indicate that the new

framework can accurately predict states and parameters of the

building thermal model.

∗Address all correspondence to this author.

NOMENCLATURE

αi, j Absorption coefficient of the wall between room i & j (-)

Awi
Area of the ith wall (m2)

Awini
Total area of window on walls surrounding ith room (m2)

C Cloud coverage constant (-)

Cr
i Heat capacity of the ith room ( kJ/ K)

Cw
i, j Heat capacity of wall between room i & j ( kJ/ K)

ca Specific heat capacity of air (kJ/ kg. K)

cw Specific heat capacity of wall material

ε Emissivity coefficient (-)

hin Inside convection heat coefficient (W/m2.K)
hout Outside convection heat coefficient (W/m2.K)
IAQ Internal Air Quality (-)

K Cloud height coefficient (-)

kw Conductive heat transfer coefficient

Lw Thickness of walls

ṁri
Air mass flow rate into the ith room (kg/s)

Nwi, j Set of all of neighboring nodes to node wi, j(-)

Nri
Set of all of neighboring nodes to node i (-)

Qradi
Radiative heat flux density on node i (W/m2)

Qbldg Heat flow from the building to the environment (W/m2)
Qsky Heat flow from the sky to the building (W/m2)
Qsolar Solar heat flow to the building (W/m2)



Q̇inti Internal heat generation in room i (W)

Ri, jk Total thermal resistance between centerline of wall i & j

and the side of wall where node k is located (K/ W)

Rwin
i, j Thermal resistance of window between room i & j (K/W)

RH Relative humidity (-)

ψ CO2 concentration in the room (ppm)

σ Stefan-Boltzmann law constant (W/m2.K4)
τwi

Transmissivity of glass of window i (-)

Tbldg Average temperature of the building (◦C)

Tri
Temperature of the ith room (◦C)

Tout Outside air temperature (◦C)

Twi, j Temperature of the wall between room i & j (◦C)

Tsi
Supply air temperature of the ith room (◦C)

1 Introduction

Total primary energy consumption in the United States in-

creased from 78.3 quads in 1980 to over 100 quads in 2008, of

which the building sector accounts for about 40% [1]. The build-

ing sector is also responsible for almost 40% of greenhouse gas

emissions and 70% of electricity use. About 50% of “site” en-

ergy consumption in buildings is directly related to space heat-

ing, cooling and ventilation [1]. Therefore, reducing the energy

consumption of buildings by designing smart control systems to

operate the heating, ventilation and air conditioning (HVAC) sys-

tem in a more efficient way is critically important to address en-

ergy and environmental concerns in the United States and world-

wide.

Buildings are dynamical systems with uncertain and time-

varying plant and occupant characteristics. The heat transfer

characteristics of a building are highly dependent on the am-

bient conditions. For instance, heat transfer properties such as

convective heat transfer coefficient h, of peripheral walls is de-

pendent on outside temperature, wind speed and direction. Also,

unmodelled dynamics of a building1 is function of 1) external

factors: ambient weather conditions such as radiative heat flux

into the walls and windows, and cloudiness of the sky, and 2)

internal factors: such as occupancy level, internal heat genera-

tion from lighting, and computers. These quantities are highly

time-varying and therefore the dynamics of the building and,

consequently, parameters of the mathematical model describing

the dynamics of the buildings are constantly changing with time.

Accordingly, the estimation algorithms utilized to identify these

parameters should take the time-varying aspect of buildings into

account and be adaptive in this respect.

Reliable dynamical models are crucial to model predictive

control strategies. Modeling and system identification are the

most challenging and time-consuming parts of building predic-

tive control [3]. To address this challenge, over the last few years

numerous mathematical models of building thermal dynamics

have been proposed in the literature. Resistor-capacitor (RC)

models with disturbances to capture unmodelled dynamics have

1See [2].

been proposed in [2, 4, 5]. A bilinear version of an RC model

is presented in [6] that takes into account weather predictions

to increase building energy efficiency. In [7], the authors found

that time varying properties such as occupancy can significantly

change the dynamic thermal model and influence how building

models are identified. While modeling a multi-zone building,

the authors observed that the experimental data often did not

have sufficient quality for system identification and hence, pro-

posed a closed-loop architecture for active system identification

using prediction-error identification method (PEM). Other mod-

eling techniques with application in building predictive control

include: subspace methods, MPC relevant identification (MRI),

deterministic semi-physical modeling (DSPM), and probabilis-

tic semi-physical modeling (PSPM). In this paper we focus on

DSPM.

Building models can be linear or nonlinear. While nonlin-

ear models typically provide better prediction of building ther-

mal dynamics, they are computationally intensive when incor-

porated in building controller algorithms. On the other hand,

linear models are less computationally intensive for use in build-

ing controllers but they are limited to the operating zones they

have been tuned for. One approach to increase the accuracy of

the linear building models is to use an adaptive parameter esti-

mation technique such that the building parameters are updated

as the environment changes. This leads to an adaptive modeling

framework for building predictive control. Although this tech-

nique has been adopted for simultaneous state-parameter esti-

mation in other applications [8–10], to the best of the authors’

knowledge, this paper is the first study on developing adaptive

modeling framework for simultaneous estimation of building pa-

rameter, states and unmodelled dynamics.

The contributions of this paper are two: a novel adaptive

modeling framework for building predictive control and the ap-

plication of extended Kalman filter (EKF) and unscented Kalman

filter (UKF) techniques for building on-line parameter identifica-

tion and state estimation using historical data from a test bed.

The remainder of the paper is organized as follows. A

physics driven building model based on [4] is described in Sec-

tion 2 and a new building model is developed based on the test

bed in this work. Section 3 explains combined state-parameter

estimation algorithms including EKF and UKF. The experimen-

tal set-up for collecting building historical data is detailed in Sec-

tion 4. Performance of the designed adaptive building modeling

framework is tested in Section 5 by comparing measured and

estimated room temperatures. Finally, the summary and conclu-

sions are presented in Section 6.

2 Mathematical Model

Fig. 1 depicts the schematic of a typical room which will be

studied. We use lumped model analysis to reduce the complex-

ity, and obtain a low order model, suitable for control purposes.

Note that due to having forced convection inside the room, the

temperature is assumed uniform inside the room. We use the RC



model from [5] in which the building is considered as a network.

Then we modify the representation of the system dynamics to ac-

count for time varying parameters by augmenting the parameters

into the state vector.

2.1 Conductive and Convective Heat Transfer

There are two types of nodes in the building network: walls

and rooms. There are in total n nodes, m of which represent

rooms and the remaining n−m nodes represent walls. We assign

a number i = 1, ...,m to each room, and denote the temperature

of the room with Tri
. The wall node and temperature of the wall

between room i and j is denoted by (i, j) and Twi, j , respectively,

and is governed by the following equation:

Cw
i, j

dTwi, j

dt
= ∑

k∈Nwi, j

Trk
−Twi, j

Ri, jk

+ ri, jαi, jAwi, j Qradi, j (1)

where Cw
i, j , αi, j and Awi, j are heat capacity, radiation heat absorp-

tion coefficient and area of wall between room i and j, respec-

tively. Ri, jk is the total thermal resistance between the centerline

of wall (i, j) and the side of the wall where node k is located.

Qradi, j is the radiative heat flux density on wall (i, j). Nwi, j is the

set of all of neighboring nodes to node wi, j . ri, j is equal to 0 for

internal walls, and equal to 1 for peripheral walls (i.e. either i or

j is the outside node). Temperature of the ith room is governed

by the following equation:

Cr
i

dTri

dt
= ∑

k∈Nri

Tk −Tri

Ri,ki

+ṁri
ca(Tsi

−Tri
)+wiτwi

Awini
Qradi

+Q̇inti

(2)

where Tri
, Cr

i and ṁri
are the temperature, heat capacity and air

mass flow into the room i, respectively. ca is the specific heat

capacity of air. Tsi
is the temperature of the supply air to room

i. wi is equal to 0 if none of the walls surrounding room i have

window, and is equal to 1 if at least one of them has a window. τwi

is the transmissivity of glass of window i, Awini
is the total area

of window on walls surrounding room i, Qradi
is the radiative

heat flux density per unit area radiated to room i, and Q̇inti is

the internal heat generation in room i. Nri
is the set of all of

the neighboring “room” nodes to room i. The details of building

thermal modeling and estimation of the unmodelled dynamics

is available in [2, 4, 5]. Note that we approximate the values of

Qradi
(t) and Q̇int(t) based on the following equations:

Qradi
(t) = τTout(t)+ ζ (3)

Q̇int(t) = µΨ(t)+ν (4)

where Tout and Ψ are the outside air temperature and CO2 con-

centration in the room, respectively. Parameters τ, ζ, µ and ν
are obtained by the parameter estimation algorithm detailed in

Section 3.

Figure 1. Schematic of a typical room with a window. Temperature sen-

sors are denoted by ”S” in this figure.

2.2 Radiative Heat Transfer
We compute the radiative heat transfer between building and

ambient environment as proposed in [11]. The amount of heat

transferred from the building to the environment is given by the

Stefan-Boltzmann law:

Qbldg = εσT 4
bldg (5)

where Tbldg is the average temperature of the building.

We also consider solar radiation heat transfer, Qsolar emit-

ted on the walls, and inside the room through the windows. The

data used in this paper is based on the past 30 years monthly

average of solar radiation for flat-plate collectors facing south

(resembling the south facing flat vertical walls of the building),

and is obtained from NREL (National Renewable Energy Labo-

ratory) [12] database for Houghton, MI in January.

Furthermore, we take into account the radiation cooling at

night (i.e. sky thermal radiation to the building) based on the

proposed relation in [11]:

Qsky = (1+KC2)8.78× 10−13T 5.852
out RH0.07195 (6)

where K is the coefficient related to the cloud height and C is a

function of cloud coverage. We use K = 0.34 and C = 0.8 for

simulations, as explained in [11]. Tout is the outside air tempera-

ture, and RH is the air relative humidity percentage.

The total radiation exchange between building and ambient

environment is then given by:



Qrad = Qsky +Qsolar −Qbldg (7)

Note that Qsky and Qsolar are heat flow into the building, and

Qbldg, is the heat flow from the building to the environment.

The heat transfer equations for each wall and room yield the

following system dynamics:

ẋt = f (xt ,ut ,dt , t)

yt =Cxt (8)

where xt ∈ R
n is the state vector representing the temperature of

the nodes in the thermal network, ut ∈ R
lm is the input vector

representing the air mass flow rate and discharge air temperature

of conditioned air into each thermal zone, and yt ∈ R
m is the

output vector of the system which represents the temperature of

the thermal zones. l is the number of inputs to each thermal

zone (e.g., air mass flow and supply air temperature). C is a

matrix of proper dimension and the disturbance vector is given

by dt = g(Qradi
(t), Q̇int(t),Tout(t)).

2.3 Disturbance

Following the intuitive linear relation between Tout , Q̇int and

Qrad , we approximate g with an affine function of these quanti-

ties, leading to:

dt = aQradi
(t)+ bQ̇int(t)+ cTout(t)+ e (9)

where e is a constant to be estimated. By substituting (3) and (4)

into (9) and rearranging the terms, we get:

dt = (aτ+ c)Tout(t)+ bµΨ(t)+ aζ+ bν+ e

= āTout(t)+ b̄Ψ(t)+ ē
(10)

where ā = aτ+ c, b̄ = bµ, and ē = aζ+ bν+ e. Therefore, only

measurements of outside air temperature and CO2 concentration

level are needed to determine the disturbance. The values of ā,

b̄, and ē are estimated along with other parameters of the model.

2.4 State-Parameter Estimation

State space form of the system is required for state-

parameter estimation. Here, the state space form of building

equations is presented, using (1) for each wall and (2) for each

room node in the building network.

ẋ1 =
1

Cr
1

·

((

1

R121

−
1

R131

−
1

R141

−
1

R151

−
1

Rwin
15

− ṁr1ca

)

x1

+
x2

R121

+
x3

R131

+
x4

R141

+
x5

R151

+ caTs1ṁr1

+
T5

Rwin
15

+AwinτQrad + Q̇int1

)

(11a)

ẋ2 =
1

Cw
21

.

(

x1

R211

−

(

1

R211

+
1

R212

)

x2 +
T2

R212

)

(11b)

ẋ3 =
1

Cw
31

.

(

x1

R311

−

(

1

R311

+
1

R313

)

x3 +
T3

R313

)

(11c)

ẋ4 =
1

Cw
41

.

(

x1

R411

−

(

1

R411

+
1

R414

)

x4 +
T4

R414

)

(11d)

ẋ5 =
1

Cw
51

.

(

x1

R511

−

(

1

R511

+
1

R515

)

x5 +
T5

R515

+Aw51
αQrad

)

(11e)

where T2, T3, T4, T5 are the temperatures of the surrounding

zones, as shown in Fig. 1. These temperatures act as disturbance

to the system dynamics for a single zone thermal model, and x is

the state vector:

x =
[

Tr1,Tw12,Tw13,Tw14,Tw15

]T
(12)

One way to adapt the model to account for time varying pa-

rameters is to assume that all the parameters of the model are in-

dependent, and hence define a state corresponding to each state.

However, this would lead to excessive number of states. We take

a different approach. Note that thermal properties of wall ma-

terial (e.g. specific heat capacity and conductive heat transfer

coefficient) are the same across the building. In addition, the

thickness of internal walls and thickness of peripheral walls are

the same throughout the building. Thus, we can reduce the num-

ber of independent parameters from 18 to 10. Hence we re-write

the thermal equations of the wall, i.e. (11b)-(11d) as follows:

ẋ2 =
x1

CwRw
−

2

CwRw
x2 +

T2

CwRw
(13)

ẋ3 =
x1

CwRw
−

2

CwRw
x3 +

T3

CwRw
(14)

ẋ4 =
x1

CwRw
−

2

CwRw
x4 +

T4

CwRw
(15)

ẋ5 =
x1

Cw
51R511

−

(

1

Cw
51R511

+
1

Cw
51R515

)

x5 +
T5

Cw
51R515

+
Aw51

αQrad

Cw
51

(16)

As shown in (17), CwRw is not a function of the area of each



wall:

CwRw = (cwAwLw)(
Lw/2

kwAw

+
1

hinAw

) =
cwL2

w

2kw

+
cwLw

hin

(17)

where cw, kw, Aw and Lw are the specific heat capacity, conduc-

tive heat transfer coefficient of wall material, area and thickness

of wall, respectively, and hin is the indoor convective heat trans-

fer coefficient. Hence, we can use one common term to express

thermal capacitance-resistance between centerline of each wall

and the node on each side of the wall for the equations of walls

in the building.

In order to use Kalman filtering for parameter estimation

along with state estimation we augment the parameter vector into

state vector and define the new state update equation accordingly.

Effectively, we augment the following time-varying parameters

to the state vector:

x6 =
1

Cr
1R121

x7 =
1

Cr
1R131

(18)

x8 =
1

Cr
1R141

x9 =
1

Cr
1R151

(19)

x10 =
1

Cr
1

x11 =
1

CwRw
(20)

x12 =
1

Cw
51R511

x13 =
1

Cw
51R515

(21)

x14 =
α

Cw
51

x15 =
1

Rwin
15

(22)

As it can be seen in the continuous state space form, rate of

change of these augmented states is equal to zero. We later add a

low-magnitude fictitious noise to the dynamics of parameters to

allow slow changes in the values of parameters over time.

ẋ1 = (x6 − x7 − x8 − x9 − x10x15 − x10u2ca)x1

+ x6x2 + x7x3 + x8x4 + x9x5 +(cau1u2

+T5x15 +AwinτQrad + Q̇int).x10 (23)

ẋ2 = (x1 − 2x2 +T2).x11 (24)

ẋ3 = (x1 − 2x3 +T3).x11 (25)

ẋ4 = (x1 − 2x4 +T4).x11 (26)

ẋ5 = x1x12 − (x12 + x13)x5 +T5x13 +Aw51x14Qrad (27)

ẋi = 0 ∀i = 6,7, ...15. (28)

where u is the input vector:

u =

[

Ts1

ṁr1

]

(29)

In summary, we express the dynamics of the system using

Figure 2. Architecture of the proposed PAB model with its components.

Note that the dashed line proposes the use of this technique to provide

updated model parameters to the more sophisticated control techniques,

such as MPC. However, design of MPC is not the focus of this paper.

state space model below:

xk = f (xk−1,uk−1,dk−1,wk−1)

zk = h(xk)+ vk (30)

where wk and vk are the process and measurement noise and are

assumed to be zero mean multivariate Gaussian process with co-

variance Wk and Vk, (i.e. wk ∼ N(0,Wk) and vk ∼ N(0,Vk)), re-

spectively.

3 Combined State-Parameter Estimation
In order to estimate the unknown parameters of the system

we augment the states of the system with a vector pk which stores

the parameters of the system, with a time evolution dynamics of

pk+1 = pk, as explained in Section 2. Nonlinear estimation al-

gorithms can then be exploited to simultaneously estimate the

states and the parameters of the system. Here we exploit the ex-

tended Kalman filter (EKF) and unscented Kalman filter (UKF)

techniques. Simulation results are compared in Section 5. The

architecture of the proposed Parameter-Adaptive Building (PAB)

model is shown in Fig. 2.

3.1 Extended Kalman Filter

In the EKF, the state transition and observation models need

not be linear functions of the state but may instead be differ-

entiable functions. The Kalman filter algorithm consists of two

steps – prediction followed by update. The states of the sys-

tem are approximated by a Gaussian random variable. In the

prediction step, the filter propagates the a-priori state estimate

through the nonlinear state update equation from time step k− 1



to the current time step k, and the state estimation error covari-

ance is propagated through the linearized approximation of the

state equations to compute the a-priori state estimation error co-

variance. In the update step, the a-posteriori state estimate and

state estimation error covariance are computed.

With the stochastic state update equation given in (30), and

the following notations

x̂k|k−1 = E[xk|z0,z1, ...,zk−1] (31)

x̂k|k = E[xk|z0,z1, ...,zk] (32)

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T |z0,z1, ...,zk−1] (33)

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)
T |z0,z1, ...,zk] (34)

where E[x|y] represents mean of variable x, given measurement

y. Each iteration of the EKF is summarized as follows:

Prediction:

A-priori state estimate: x̂k|k−1 = f (x̂k−1|k−1,uk−1,dk−1,0)
State transition and observation matrices:

Fk−1 =
∂ f

∂x
|x̂k−1|k−1,uk−1

Hk =
∂h

∂x
|x̂k|k−1

A-priori state estimation error covariance:

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Wk−1

Update:

A-priori output estimation error: ỹk = zk − h(x̂k|k−1)

Innovation or residual covariance: Sk = HkPk|k−1HT
k +Vk

Near-optimal Kalman gain: Kk = Pk|k−1HT
k S−1

k

A-posteriori state estimate: x̂k|k = x̂k|k−1 +Kkỹk

A-posteriori state estimation error

covariance:

Pk|k = (I−KkHk)Pk|k−1

Extended Kalman Filter Algorithm

3.2 Unscented Kalman Filter

A nonlinear KF that shows promise as an improvement over

the EKF is the unscented Kalman filter (UKF). The basic premise

behind the UKF is that it is easier to approximate a Gaussian

distribution than to approximate an arbitrary nonlinear function.

The UKF addresses the approximation issues of the EKF. Instead

of using Jacobian matrix, UKF uses a deterministic sampling ap-

proach to capture the mean and covariance estimates with a min-

imal set of sample points [13]. As with the EKF, we present

an algorithmic description of the UKF, omitting some theoretical

considerations. More details can be found in [14, 15].

The state distribution is represented by a Gaussian random

variable (GRV), but is now specified using a minimal set of care-

fully chosen sample points. These sample points completely cap-

ture the true mean and covariance of the GRV, and when prop-

agating through the true nonlinear system, capture the posterior

mean and covariance accurately to the 3rd order (Taylor series

expansion) for any nonlinearity. Unscented Transformation (UT)

is a method used for calculating the statistics of a random vari-

able which undergoes a nonlinear transformation [14]. We con-

duct the following initialization:

x̂0 = E[x0] (35)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (36)

Each step of the UKF can be summarized as follows:

Prediction:

Calculate sigma points:

Xk−1 = [x̂k−1 x̂k−1 + γ
√

Pk−1 x̂k−1 − γ
√

Pk−1]

Propagate each column of Xk−1 through time:

(Xk)i = f ((Xk−1)i) i = 0,1, ...,2L

A-priori state estimate: x̂−k = ∑2L
i=0 W

(m)
i (Xk)i

A-priori error covariance:

P−
k =

2L

∑
i=0

W
(c)
i [(Xk)i − x̂−k ][(Xk)i − x̂−k ]

T +Qk

Update:

Measurement estimate: (Zk)i = h((Xk)i) i = 0, ..,2L

ẑ−k = ∑2L
i=0 W

(m)
i (Zk)i

A-posteriori state estimate: x̂k = x̂−k +Kk(zk − ẑ−k )

where: Kk = Px̂k ẑk
P−1

ẑk ẑk

A-posteriori estimate of

the error covariance:

Pk = P−
k −KkPẑk ẑk

KT
k

where:

Px̂k ẑk
=W

(c)
i [(Xk)i − x̂−k ][(Zk)i − ẑ−k ]

T

Pẑk ẑk
=

2L

∑
i=0

W
(c)
i [(Zk)i − ẑ−k ][(Zk)i − ẑ−k ]

T +Rk

Unscented Kalman Filter Algorithm

where x̂− denotes a-priori estimate of x. γ =
√

(L+λ), and

λ = α2(L + δ)− L are the composite scaling parameters. α
is a scaling parameter that determines the spread of the sigma



points around x̂, and is usually set to a small positive value (e.g.

1e− 4 ≤ α ≤ 1). δ is a secondary scaling parameter which is

usually set to 0 or 3−L [15]. Qk is the process error covariance

matrix and Rk is the measurement noise covariance matrix. W
(m)
i

and W
(c)
i weights are defined by:

W
(m)
i =

{

λ
(L+λ) , if i = 0

1
2(L+λ) , if i = 1,2, ...,2L

(37)

and

W
(c)
i =

{

λ
L+λ

+(1−α2+β), if i = 0
1

2(L+λ)
, if i = 1,2, ...,2L

(38)

where β is a parameter used to incorporate the prior knowledge of

the distribution of x. We use β = 2 which is optimal for Gaussian

distributions [16].

4 Test-Bed and Historical Data

The model studied in this paper is a model for an office with

a simple structure in the Lakeshore building at Michigan Tech-

nological University. This room is surrounded by two rooms

and a corridor in the building and connected to the outdoor area

with a thick concrete wall and two south-oriented double-layered

windows. Each room is equipped with temperature and humid-

ity sensors (Uni-curve Type II) with the temperature accuracy of

±0.2◦C. We have installed a temperature data logger with accu-

racy of ±0.8◦C inside the main room to estimate measurement

errors. Temperature readings from these two sensors are shown

in Fig. 3. We follow the methodology proposed in [17] to find

the temperature measurement accuracy, which is obtained to be

±0.82◦C, and is used in the EKF and UKF algorithms. There are

also some other sensors throughout the university to measure and

record the outdoor temperature. All the sensors’ measurements

for the building network are available through the Building Man-

agement System (BMS).

The HVAC system in the building uses Water-Source Heat-

Pumps (WSHP) to maintain required energy for heating pur-

poses. Each unit in this system provides heating for an individual

zone. Therefore, a unit operates when heating is required for its

zone and the set point can be defined independently based on the

functionality of each zone. The HVAC system uses an on-off

controller to provide a desired temperature for each zone. When

the temperature goes below a set point by 0.28◦C (0.5 ◦F), the

heating system is switched on until it reaches the adjusted set

point. To maintain standard internal air quality (IAQ) for each

zone, a supply fan with a constant mass flow rate of 0.52 (kg/ s)

works between 4AM to 6 PM (except for holidays). Zone tem-

peratures are measured with a sampling period of 60 seconds.

Figure 3. Data logger and BMS sensor temperature readings

Figure 4. Location of the temperature sensors in the test-bed

5 Results

The test-bed from previous section was used to collect mea-

surements from January 11 to January 24, 2013. To remove noise

from the temperature measurements, a second order Butterworth

lowpass filter with cutoff frequency of 0.001 Hz was used.

We implement both the EKF and the UKF and present the

results of the simulations. Fig. 5 shows the temperatures of the

neighboring zones and the outside temperature which act as dis-

turbance to the model. Fig. 6 depicts the model inputs including

the air mass flow rate and the supply air temperature. In order

to obtain the best initial parameter values for the Kalman filter

algorithms, we first perform a (static) parameter identification

on the historical data. We consider the first part of the data as

training data set (shown in red in Fig. 7), and obtain the best pa-

rameters that minimize the error between the simulation and the

measurement in least square sense. The result of this step is used

to simulate the temperature evolution of the room air for the next

three days (shown in black in Fig. 7). Due to time-varying pa-

rameters and disturbance to the model, it is difficult to find a set
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Figure 5. Disturbances to the PAB model.

Figure 6. Inputs to the PAB model.

of parameters for the model which results in good temperature

tracking for all days, and hence, as shown in Fig. 7, the results of

simulations for the following days in the testing data set is even

worse.

The obtained initial parameters from the off-line calibration

step is used as initial point for the EKF and UKF algorithms.

5.1 EKF Results

Temperature estimation of room and walls, using EKF are

depicted in Fig. 8 and Fig. 9. The results show that although

the initial parameters from the training data set is not necessar-

ily optimal for future days, the PAB model manages to tune the

parameters and leads to very good temperature tracking (Fig. 8).

Fig. 10 shows the evolution of parameters over time. In

this case, EKF only temporarily changes the value of parameters

when necessary, but the steady state values of the parameters are

close to the initial values obtained from the one shot parameter

identification using historical data.

Note that although the room temperature estimations are

Figure 7. The first set of data (shown in red) is the training data. We

identify the parameters in a one shot optimization by minimizing the l2
norm of the error between simulation and measurement data. Then we

used the obtained parameters from the training data set to predict the

temperature evolution for the next days (shown in black).
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Figure 8. Estimated and measured room temperature using EKF.

close to the actual room temperature, the temperature of walls

are not realistic in the EKF case. Hence we also try UKF and

report the results in what follows.

5.2 UKF Results

We follow the same steps to first acquire the best initial pa-

rameters by an off-line optimization and then use the obtained

parameters as initial value for UKF. The temperature estimation

of room and walls, using UKF are depicted in Fig. 11 and Fig. 12.

The evolution of parameters over time is shown in Fig. 13. In this

case, contrary to the EKF case, the parameters evolve over time

and the steady state values are not necessarily close to the initial

points.

Note that the first part of the estimation of wall temperature

by UKF leads to overshoot in the wall temperature, however, this

overshoot is quickly recovered as UKF uses more data to tune

the parameters more accurately. Overall, the UKF outperforms
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Figure 9. Estimated temperature of walls using EKF.
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Figure 10. Estimated parameters of the system using EKF.

the EKF in providing an accurate PAB mode because: 1) the

estimation of room temperature is more accurate. 2) the esti-

mated temperatures of walls are more realistic in the UKF case.

High frequency oscillations in the wall temperature estimation

of EKF is observed (Fig. 9), but these fast temperature oscilla-

tions of walls are not realistic due to the large heat capacitance

of the walls. The dynamics of wall temperatures determined by

the UKF algorithm seem intuitive and correct, given the slower

dynamics i.e. small frequency oscillations.

6 Summary and Conclusion

We presented a framework for simultaneous state estimation

and parameter identification of building predictive models. To

develop a Parameter-Adaptive Building (PAB) model, we first

constructed a nonlinear state space model by augmenting the pa-

rameters of the system into the state vector. We exploited the
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Figure 11. Estimated and filtered temperature of room using UKF.
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Figure 12. Estimated temperature of walls using UKF. We have zoomed

the figures to focus on the more steady estimates of the walls rather than

the first part transient behavior.

similarities in the physical properties such as wall materials and

thicknesses in the building under study, and reduced the number

of independent parameters in the building model. We then uti-

lized the developed model in the extended Kalman filter (EKF)

and unscented Kalman filter (UKF) to simultaneously estimate

all the states of the dynamic model and continuously and in an

online fashion tune the parameters of the model. The results

of testing both EKF and UKF showed that UKF outperforms

EKF as it yields a more accurate room temperature estimation

as well as more realistic estimations of wall temperatures. The

PAB model from this work can easily be extended to cover an

entire building. In future work, we plan to apply the PAB model

for model predictive control of buildings.
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Figure 13. Estimated parameters of the system using UKF.
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