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Abstract

Random Matrix Theory in Numerical Linear Algebra

by

Archit U. Kulkarni

Doctor of Philosophy in Mathematics

University of California, Berkeley

Assistant Professor Nikhil Srivastava, Chair

We use techniques from random matrix theory and high-dimensional probability to shed light
on several problems in numerical linear algebra. We focus on two main topics: (1) the problem
of approximately computing the eigenvalues and eigenvectors of a given non-Hermitian matrix,
and (2) the problem of approximating the spectral distribution and the extreme eigenvalues
of a Hermitian matrix via the Lanczos algorithm.

Diagonalization. We confirm a 2007 conjecture of Davies [37] that for each δ ∈ (0, 1), every
matrix A ∈ Cn×n is at least δ‖A‖-close to one whose eigenvectors have condition number at
worst cn/δ, for some cn depending only on n. We further show that the dependence on δ
cannot be improved to 1/δp for any constant p < 1.

Our proof uses tools from random matrix theory to show that the pseudospectrum of A can
be regularized with the addition of a complex Gaussian perturbation. Along the way, we
explain how a variant of a theorem of Śniady implies a conjecture of Sankar, Spielman and
Teng on the optimal constant for smoothed analysis of condition numbers.

Next, using this idea of adding a complex Gaussian perturbation as a preprocessing step, we
exhibit a randomized algorithm which given a square matrix A ∈ Cn×n with ‖A‖ ≤ 1 and
δ > 0, computes with high probability an invertible V and diagonal D such that

‖A− V DV −1‖ ≤ δ

inO(TMM(n) log2(n/δ)) arithmetic operations on a floating point machine withO(log4(n/δ) log n)
bits of precision. The computed similarity V additionally satisfies ‖V ‖‖V −1‖ ≤ O(n2.5/δ).
Here TMM(n) is the number of arithmetic operations required to multiply two n× n complex
matrices numerically stably, known to satisfy TMM(n) = O(nω+η) for every η > 0 where ω
is the exponent of matrix multiplication [48]. After the initial Gaussian perturbation, the
remainder of the algorithm is a variant of the spectral bisection algorithm in numerical linear
algebra [17]. Our running time is optimal up to polylogarithmic factors, in the sense that
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verifying that a given similarity diagonalizes a matrix requires at least matrix multiplication
time.

The Lanczos algorithm. We study the Lanczos algorithm where the initial vector is
sampled uniformly from Sn−1. Let A be an n× n Hermitian matrix. We show that when run
for few iterations, the output of the algorithm on A is almost deterministic. More precisely,
we show that for any ε ∈ (0, 1) there exists c > 0 depending only on ε and a certain global
property of the spectrum of A (in particular, not depending on n) such that when Lanczos is
run for at most c log n iterations, the Jacobi coefficients and the Ritz values deviate from their
medians by t with probability at most exp(−nεt2), for t < ‖A‖. A similar result is derived
for the Ritz vectors. The proof relies on the local Lévy lemma, a tool in high-dimensional
probability regarding concentration of measure for functions that are Lipschitz on a large
region of the sphere, as well as on classical connections between the Lanczos algorithm and
orthogonal polynomials.

Furthermore, we show that the Lanczos algorithm fails with high probability to identify
outliers of the spectrum when run for at most c′ log n iterations, where again c′ depends only
on the same global property of the spectrum of A. Classical results imply that the bound
c′ log n is tight up to a constant factor.

Our techniques also yield asymptotic results: Suppose we have a sequence of Hermitian
matrices An ∈ Mn(C) whose spectral distributions converge in Kolmogorov distance with
rate O(n−ε) to a density, for some ε > 0. Then we show that for large enough n, and for
k = O(

√
log n), the Ritz values after k iterations concentrate around the roots of the kth

orthogonal polynomial with respect to the limiting density.
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Chapter 1

Introduction

Problems involving eigenvalues and eigenvectors of n× n matrices for large n are ubiquitous
in science and engineering. By the Abel-Ruffini theorem, for n ≥ 5 there is no formula for
the eigenvalues and eigenvectors involving a finite number of arithmetic operations, powers
and kth roots—that is, there is no algorithm to compute these quantities exactly in finite
time. A significant part of the field of numerical linear algebra is concerned with constructing
algorithms that provably and efficiently compute approximate eigenvalues, eigenvectors,
matrix factorizations and so on.

The field of random matrix theory, on the other hand, does not traditionally deal with
algorithmic questions. In random matrix theory, attention is mainly devoted to highly
symmetric random matrix ensembles, and matrices from these ensembles tend to have very
predictable properties [42, 55]. As an example, any large square matrix with independent,
identically distributed complex entries of mean 0 and variance 1 will have eigenvalues
approximately uniformly distributed within the unit disc in the complex plane [123]. Thus,
a typical deterministic matrix of interest in scientific or numerical applications, whose
eigenvalues carry important information about an underlying physical system, may not be
accurately modeled by a random matrix from one of these ensembles.

Nevertheless, as we will see in this thesis, the tools used in random matrix theory can still
be used to shed light on numerical applications. The popularity of exploiting randomness in
numerical linear algebra has grown considerably in recent years; see [91] for a comprehensive
survey. In this dissertation, we will focus on two topics: (1) approximate diagonalization of
non-Hermitian matrices, and (2) approximation of extreme eigenvalues of Hermitian matrices
via the Lanczos algorithm. In each of these areas, we will use previously unexploited tech-
niques from random matrix theory and high-dimensional probability to substantially improve
upon existing results.

A detailed overview of mathematical preliminaries will be given in Section 1.1, but first
let us go over the most basic aspects of non-Hermitian and non-normal matrices. This will
allow us to better motivate some of our main results.

Recall that a matrix M is called Hermitian if it is equal to its conjugate transpose M∗,
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and normal if MM∗ = M∗M . The eigenvectors of a normal matrix are orthogonal. However,
this does not hold for non-normal matrices, and this leads to increased instability of the
eigenvalues under small perturbations. We review one standard example: consider the n× n
“Jordan block” matrix Jn, which contains 1s on the superdiagonal and 0s in every other entry.
The spectrum of this matrix is simply {0}. However, upon adding ε to the lower-left entry,
the characteristic polynomial becomes λn − ε, so the eigenvalues are evenly spaced on the
circle of radius ε1/n. Thus, perturbations of Jn that are exponentially small in n can still
move its eigenvalues by a macroscopic amount. This stands in stark contrast to the case of
normal matrices, whose eigenvalues are 1-Lipschitz with respect to the operator norm.

With regards to the stability of eigenvalues, there is a range of behavior between normal
matrices and nondiagonalizable matrices such as the Jordan block. One metric that is useful
for quantifying this behavior is the eigenvector condition number of a matrix, which ranges
from 1 in the case of a normal matrix to ∞ in the case of a nondiagonalizable matrix. The
definition appears in Section 1.1, along with several consequences.

We now give an outline of the thesis and a summary of our contributions. Theorem
statements and detailed accounts of related work can be found in the chapters indicated
below.

In Chapter 2, we show in a precise quantitative way that every matrix is close to a matrix
that has a small eigenvector condition number. Our result confirms a 2007 conjecture of
Davies [36], and leads to a numerically stable way of computing analytic functions of a matrix.
We prove this using the probabilistic method: we add small independent complex Gaussian
random variables to each entry of the matrix, and then show that the resulting matrix has
a small eigenvector condition number on average. Several ingredients of our proof come
from random matrix theory. These include lower tail bounds for the least singular value of
Gaussian random matrices first computed by Edelman [52], as well as a coupling lemma of
Śniady [116] originally used to relate random matrices to a concept called Brown measure
used in operator theory and free probability. The novelty of our approach lies in the way we
connect these results to the eigenvector condition number by bounding the expected area
of the pseudospectrum. This connection has not been exploited before in numerical linear
algebra to the best of our knowledge.

In Chapter 3, we revisit the idea of regularization by a complex Gaussian perturbation, and
use it to make substantial progress on the algorithmic problem of diagonalizing an arbitrary
n× n non-Hermitian matrix in a numerically stable way on a machine with finite-precision
arithmetic. We exhibit an algorithm running in nearly matrix-multiplication time, while the
previously best known provable algorithm runs in time O(n9) [4]. Our algorithm is based on
a variant of the well-known spectral bisection algorithm. Each step of this algorithm requires
the computation of the so-called matrix sign function, which is approximated by repeating
the Newton iteration A 7→ A+A−1

2
. We show that the adding a Gaussian perturbation at the

beginning of the algorithm regularizes the eigenvector condition number and the minimum
eigenvalue gap of the input matrix. By analyzing the pseudospectrum and bounding the
resolvent using the holomorphic functional calculus (see Section 1.1), we can then show that
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these regularity properties are maintained throughout the entire Newton iteration—thus
ensuring that the eigenvalues remain stable, and that the accumulated error from roundoff can
be controlled. The tools from random matrix theory used in Chapter 2 make a reappearance
here, alongside lower bounds on the second-smallest singular value, which are required to
bound the minimum eigenvalue gap. The resolvent bounds rely on a new property which we
call pseudospectral shattering, which ensures that eigenvalues stay far from relevant contours
even in the presence of roundoff, and which is achieved by adding a Gaussian perturbation.

In Chapter 4 we analyze a different iterative algorithm, the Lanczos algorithm, from a
rather different perspective. This algorithm is used for the related problem of approximating
the extreme eigenvalues of high-dimensional Hermitian matrices, and is well-studied as it is
used often in practice. Upper bounds are known on the number of iterations required to
obtain a satisfactory approximation of the outlying eigenvalues, but below this threshold,
the behavior of the algorithm is less understood. It is a randomized algorithm, taking as
input a deterministic matrix and a single uniform random vector u from the unit sphere.
As such, tools from high-dimensional probability can be brought to bear. We show that
the random output of the Lanczos algorithm when run for few iterations is in fact tightly
concentrated and can still be used to produce a useful approximation to the bulk distribution
of the spectrum. To prove our concentration result, we first prove that the output of the
Lanczos algorithm is locally Lipschitz in the input unit vector u. We then bring in a tool
from high-dimensional probability known as the local Lévy lemma, which says that functions
Lipschitz on a large region of the unit sphere are tightly concentrated about their medians.
These techniques do not appear to have been used in previous work on the Lanczos algorithm.

1.0.1 Bibliographic Note

The contents of this thesis are the result of joint works in various stages of publication.
Chapter 2 is based on joint work [11] with Jess Banks, Satyaki Mukherjee, and Nikhil
Srivastava. Chapter 3 is based on joint work [13] with Jess Banks, Jorge Garza Vargas, and
Nikhil Srivastava. Chapter 4 is based on joint work [127] with Jorge Garza Vargas. Parts of
the introductory material are adapted from these works as well.

1.1 Preliminaries

In this section, we review the basic theory and definitions that will be used in the forthcoming
chapters. All of it should be accessible to anyone with some background in linear algebra
and complex analysis.

1.1.1 Eigenvalue perturbation theory

Suppose a matrix M ∈ Cn×n has n distinct eigenvalues λ1, . . . , λn. One may then form the
spectral decomposition
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A =
n∑
i=1

λiviw
∗
i = V DV −1,

where the w∗i and the vi are respectively the left and right eigenvectors of A, normalized so
that w∗i vi = 1 for all i. In the case where A is normal (that is, A commutes with its conjugate
transpose A∗), we have vi = wi for all i.

We will often be interested in the eigenvalues of a small perturbation A+ tE for some
other matrix E. Informally, one has that the eigenvalues are differentiable in t, and that the
derivative of λi is equal to w∗iEvi. Thus for ‖E‖ = 1, the magnitude of the derivative is at
most ‖wi‖‖vi‖. Similar results can be obtained for higher derivatives and for the derivatives
of eigenvectors; see [65] for a survey of first-order perturbation theory for eigenvalues and
eigenvectors.

Motivated by this, in the spirit of numerical analysis one may define a condition number
for an eigenvalue as follows, measuring the sensitivity of an eigenvalue to matrix perturbations
of small norm:

Definition 1.1.1. For M , λi, w
∗
i and vi as above, the eigenvalue condition number of λi is

defined as
κ(λi) := ‖vi‖‖wi‖.

Note that for normal matrices, all eigenvalue condition numbers are equal to 1.
A related notion of spectral stability is the condition number of the matrix of eigenvectors,

defined as follows:

Definition 1.1.2. For a diagonalizable matrix M , the eigenvector condition number of M is
defined as

κV (M) := inf
V :M=V DV −1

‖V ‖‖V −1‖. (1.1)

The eigenvector condition number ranges between 1 and ∞ when A is normal and
nondiagonalizable respectively, where ‖ · ‖ denotes the operator norm. Matrices with small κV
enjoy many of the desirable properties of normal matrices, such as stability of the spectrum
under small perturbations (this is the content of the Bauer-Fike theorem [16]).

We record a lemma relating the eigenvector and eigenvalue condition numbers. For
related results, including an extension of this lemma to the more general context of block
diagonalization, see the thesis of Demmel [45, Equation 3.6].

Lemma 1.1.3. Let M be an n×n matrix with distinct eigenvalues, and let V be the matrix
whose columns are the eigenvectors of M normalized to have unit norm. Then

κV (M) ≤ κ(V ) ≤

√√√√n

n∑
i=1

κ(λi)2.
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Proof. Note that the left eigenvectors wi are the rows of V −1. Then ‖V ‖2
F = n and ‖V −1‖2

F =∑n
i=1 ‖wi‖2 =

∑n
i=1 κ(λi)

2, so

κ(V ) = ‖V ‖‖V −1‖ ≤ ‖V ‖F‖V −1‖F =

√√√√n

n∑
i=1

κ(λi)2.

Eigenvalue condition numbers and eigenvector condition numbers do not tell the whole
story, however. A richer object is the so-called ε-pseudospectrum, defined as follows:

Definition 1.1.4. For any matrix M ∈ Cn×n and any ε > 0, the ε-pseudospectrum of M is
defined as follows:

Λε(M) := {z ∈ C : z ∈ Λ(M + E) for some ‖E‖ < ε} (1.2)

=
{
z ∈ C : ‖(zI −M)−1‖ > 1/ε

}
(1.3)

= {z ∈ C : σn(zI −M) < ε} , (1.4)

where λ(X) denotes the spectrum of any matrix X and σn(X) denotes the least singular
value of X. In other words, the ε-pseudospectrum is a level set of the norm of the resolvent
matrix (z −M)−1.

For a proof of the equality of these three sets and a comprehensive treatment of pseu-
dospectra, see the beautiful book of Trefethen and Embree [125]. Note that for a normal
matrix, we have

Λε(M) = Λ(M) +
n⋃
i=1

D(λi, ε),

whereas for a nonnormal matrix such as a Jordan block, Λε can be much larger.
Note also that the eigenvector condition number and pseudospectrum are related as

follows:

Lemma 1.1.5 ([125]). Let D(z, r) denote the open disk of radius r centered at z ∈ C. For
every M ∈ Cn×n, ⋃

i

D(λi, ε) ⊂ Λε(X) ⊂
⋃
i

D(λi, εκV (M)). (1.5)

We can relate the pseudospectra of a matrix and of a perturbation:

Proposition 1.1.6 ([125], Theorem 52.4). For any n× n matrices M and E and any ε > 0,
Λε−‖E‖(M) ⊆ Λε(M + E).

It is also immediate that Λ(M) ⊂ Λε(M), and in fact a stronger relationship holds as well:

Proposition 1.1.7 ([125], Theorem 4.3). For any n× n matrix M , any bounded connected
component of Λε(M) must contain an eigenvalue of M .
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1.1.2 Random Matrix Theory

For an n× n matrix A with eigenvalues λi, we say that the empirical spectral distribution of
A is the atomic probability measure 1

n

∑n
i=1 δλi , where δx denotes the Dirac mass at x.

The following definition describes the type of matrix perturbation we will use in Chapters
2 and 3:

Definition 1.1.8. A complex Ginibre matrix is an n×n random matrix Gn = (gij) with i.i.d
complex Gaussian entries gij ∼ N(0, 1C/n), by which we mean Egij = 0 and E|gij|2 = 1/n.
Equivalently, the real and imaginary parts of each gij are independent N(0, 1/2n) random
variables.

With this normalization in n, the empirical spectral distribution of Gn converges weakly
almost surely to “circular law,” the uniform measure on the unit disc in the complex plane,
as n→∞. The same convergence was in fact proven to hold for any i.i.d. complex matrices
with entries of zero mean and variance in [123], the culmination of a long line of work by
many authors.

1.1.3 Functional Analysis

Let M ∈ Cn×n, with eigenvalues λ1, ..., λn. We say that a matrix P is a spectral projector for
M if MP = PM and P 2 = P . For instance, each of the terms viw

∗
i appearing in the spectral

expansion (3.7) is a spectral projector, as Aviw
∗
i = λiviw

∗
i = viw

∗
iA and w∗i vi = 1. If Γi is a

simple closed positively oriented rectifiable curve in the complex plane separating λi from
the rest of the spectrum, then it is well-known that

viw
∗
i =

1

2πi

∮
Γi

(z −M)−1dz,

by taking the Jordan normal form of the the resolvent (z −M)−1 and applying Cauchy’s
integral formula.

Since every spectral projector P commutes with M , its range agrees exactly with an
invariant subspace of M . We will often find it useful to choose some region of the complex
plane bounded by a simple closed positively oriented rectifiable curve Γ, and compute the
spectral projector onto the invariant subspace spanned by those eigenvectors whose eigenvalues
lie inside Γ. Such a projector can be computed by a contour integral analogous to the above.

Recall that if f is any function, and M is diagonalizable, then we can meaningfully define
f(M) := V f(D)V −1, where f(D) is simply the result of applying f to each element of the
diagonal matrix D. The holomorphic functional calculus gives an equivalent definition that
extends to the case when M is non-diagonalizable and also applies to infinite-dimensional
operators. As we will see in Chapter 3, it has the added benefit that bounds on the norm of
the resolvent of M can be converted into bounds on the norm of f(M).
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Proposition 1.1.9 (Holomorphic Functional Calculus). Let A be any matrix, D ⊃ Λ(M)
be an open neighborhood of its spectrum (not necessarily connected), and Γ1, ...,Γk be simple
closed positively oriented rectifiable curves whose interiors together contain all of Λ(M).
Then if f is holomorphic on D, the definition

f(M) :=
1

2πi

k∑
j=1

∮
Γj

f(z)(z −M)−1dz

is an algebra homomorphism in the sense that (fg)(M) = f(M)g(M) for any f and g
holomorphic on D.

Finally, the resolvent identity

(z −M)−1 − (z −M ′)−1 = (z −M)−1(M −M ′)(z −M ′)−1

will frequently come in handy to analyze perturbations of contour integrals.

1.1.4 Orthogonal polynomials

Orthogonal polynomials have a rich connection to random matrix theory; see [41] for a survey.
Here, we summarize some of the basic theory of orthogonal polynomials, with a view towards
their application in the analysis of the Lanczos algorithm.

For now, let µ be a finite Borel measure on R and assume that its support, which we
denote as supp(µ), is compact and has infinitely many points. The set of square integrable
functions L2(R, dµ) becomes a Hilbert space when endowed with the inner product

〈f, g〉 =

∫
R
f(x)g(x)dµ(x).

The hypothesis that |supp(µ)| = ∞ implies that the monomials {1, x, x2, . . . } are linearly
independent in L2(R, dµ). Hence, we can use the Gram-Schmidt procedure to obtain an
infinite sequence of polynomials pk(x) with deg(pk(x)) = k and∫

pk(x)pl(x)dµ(x) = δkl.

The leading coefficient of pk(x) is a quantity of interest in this chapter and will be denoted
by γk. We will denote the monic orthogonal polynomials by πk(x). That is, πk(x) = γ−1

k pk(x)
and clearly

γk =

(∫
R
π2
k(x)dµ(x)

)− 1
2

. (1.6)

Since πk(x) is orthogonal to all polynomials with degree less than k, the polynomial
xk − πk(x) is the orthogonal projection of xk onto the span of {1, . . . , xk−1}. Hence,
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∫
R
π2
k(x)dµ(x) = min

q∈Γk

∫
R
q2(x)dµ(x)

where Γk denotes the space of monic polynomials of degree k.
Favard’s theorem ensures that there is a sequence of real numbers αk and a sequence of

positive real numbers βk such that the following three-term recurrence holds:

xpk(x) = βk−1pk−1(x) + αkpk(x) + βkpk+1(x), k ≥ 1

and xp0(x) = α0p0(x) + β0p1(x), k = 0.

It is clear from the three-term recurrence that the following identity holds:

γk =

(
k−1∏
i=0

βi

)−1

. (1.7)

These so-called Jacobi coefficients αk and βk encode all the information of the measure µ. In
fact, since the Stieltjes transform of µ has a continued fraction expansion in terms of its Jacobi
coefficients, knowing the few first elements in these sequences allows one to approximate the
measure. See Chapter 4.3 in [41] for an example.

We denote by Jk the k × k Jacobi matrix of µ; that is, Jk is the tridiagonal symmetric
matrix with (Jk)ii = αi−1 and (Jk)i+1,i = (Jk)i,i+1 = βi−1. It is a standard fact that
πk(x) = det(xI − Jk) and that in particular, the roots of pk(x) are exactly the eigenvalues of
Jk, which are real since Jk is symmetric.

Another object of importance in this theory is the Hankel matrix of a measure. We will
denote Mk the (k + 1)× (k + 1) Hankel matrix of µ, in other words, if mi denotes the ith
moment of µ then (Mk)ij = mi+j−2 for every 1 ≤ i, j ≤ k + 1. From the elementary theory it
is known (see [41], Section 3.1) that if we define Dk = detMk then

βk =

√
Dk−1Dk+1

Dk

and γk =

√
Dk−1

Dk

, k ≥ 0, (1.8)

where we define D−1 = 1. Note that the second identity in (1.8) implies

Dk =
k∏
i=0

γ−2
i . (1.9)

Moreover, if M̃k(x) denotes the matrix obtained by replacing the last row of Mk by the row
(1 x x2 · · · xk), we have the following useful identity

pk(x) =
det M̃k(x)√
Dk−1Dk

. (1.10)



CHAPTER 1. INTRODUCTION 9

Note that in the case in which supp(µ) has n points, for n a positive integer, the set of
monomials {1, x, x2, . . . } is not linearly independent in L2(R, dµ). Moreover, the Gram-
Schmidt procedure stops after n iterations, and hence it only makes sense to talk about the
orthogonal polynomials pk(x) for k ≤ n− 1. However, sometimes it is convenient to define
the nth monic orthogonal polynomial as the unique monic polynomial of degree n whose
roots are the elements of supp(µ). In this case, the facts mentioned previously still hold for
k ≤ n.

1.1.5 The Lanczos algorithm

The Lanczos algorithm is a randomized iterative algorithm that takes three inputs: an
n× n Hermitian matrix A, a random vector u distributed uniformly in Sn−1 and an integer
1 ≤ k ≤ n. The output is a k × k symmetric tridiagonal matrix Jk whose diagonal entries
will be denoted by αi, for i = 0, . . . , k − 1, and whose subdiagonal and superdiagonal entries
will be denoted by βi, for i = 0, . . . , k − 2. The eigenvalues of Jk are called the Ritz values
and we will usually denote them as r1 ≥ · · · ≥ rk. The eigenvectors of Jk give rise to the
Ritz vectors, which after a change of basis yield the approximations for the eigenvectors of A.
Algorithm 1 below describes how the procedure generates the Jacobi coefficients αi and βi.

input: A, k, u
initialize: v0 = u
for j = 0, . . . , k − 1 do
Wj = span{v0, . . . , vj}
αj = 〈Avj, vj〉
βj = ‖ProjW⊥j (Avj)‖2

if βj = 0 then
stop

else

vj+1 =
Proj

W⊥
j

(Avj)

‖Proj
W⊥
j

(Avj)‖2

end if
end for
return Jk

Algorithm 1: The Lanczos algorithm

This algorithm has a natural interpretation in terms of orthogonal polynomials. To
every u ∈ Sn−1 we can associate a measure supported on the spectrum of A as follows. Let
λ1 ≥ · · · ≥ λn be the eigenvalues of A and u1, . . . , un be the coordinates of u when writen in
the eigenbasis of A. We define the probability measure

µu =
n∑
i=1

u2
i δλi . (1.11)
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In the language of functional analysis, µu is the spectral measure of the operator A induced
by the vector state u; that is, 〈f(A)u, u〉 =

∫
f(x) dµu(x) for all (say) polynomials f . Note

that the expectation of the random measure µu is just the empirical spectral distribution of
A, namely

1

n

n∑
i=1

δλi .

It is not hard to see that if pj(x) are the orthogonal polynomials with respect to µu then
vj = pj(A)u. Hence, the coefficients αj and βj output by the Lanczos algorithm are the
Jacobi coefficients of the measure µu, and the Ritz values after k iterations are the roots of
pk(x).

As a last remark, observe that the output of Algorithm 1 scales linearly with A. Hence, to
simplify notation, in some of the proofs in Chapter 4 we will start by assuming that ‖A‖ = 1.
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Chapter 2

Davies’ Conjecture

2.1 Background

In this chapter we study the following question posed by E. B. Davies in [37]:

How well can an arbitrary matrix be approximated by one with a small eigenvector
condition number?

Our main theorem is as follows.

Theorem 2.1.1. Suppose A ∈ Cn×n and δ ∈ (0, 1). Then there is a matrix E ∈ Cn×n such
that ‖E‖ ≤ δ‖A‖ and

κV (A+ E) ≤ 4n3/2

(
1 +

1

δ

)
.

In other words, every matrix is at most inverse polynomially close to a matrix whose
eigenvectors have condition number at most polynomial in the dimension. The previously
best known general bound in such a result was [37, Theorem 3.8]:

κV (A+ E) ≤
(n
δ

)(n−1)/2

, (2.1)

so our theorem constitutes an exponential improvement in the dependence on both δ and n.
We show in Proposition 2.4.1 that the 1/δ-dependence in Theorem 2.1.1 cannot be improved
beyond 1/δ1−1/n, so our bound is essentially optimal in δ for large n.

2.1.1 Davies’ Conjecture

Theorem 2.1.1 implies a positive resolution to a conjecture of Davies [37].

Conjecture 2.1.2. For every positive integer n there is a constant cn such that for every
A ∈ Cn×n with ‖A‖ ≤ 1 and ε ∈ (0, 1):

inf
E∈Cn×n

(κV (A+ E)ε+ ‖E‖) ≤ cn
√
ε. (2.2)
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Proof of Conjecture 2.1.2. Given ε > 0, set δ = dn
√
ε for some dn > 0 and apply Theorem

2.1.1. This yields cn = 4n3/2 + 4n3/2/dn + dn. This is minimized at dn = 2n3/4, which yields
cn = 4n3/2 + 4n3/4 ≤ 8n3/2.

The phrasing of Conjecture 2.1.2 is motivated by a particular application in numerical
analysis. Suppose one wants to evaluate analytic functions f(A) of a given matrix A, which
may be nonnormal. If A is diagonalizable, one can use the formula f(A) = V f(D)V −1, where
f(D) means the function is applied to the scalar diagonal entries of D. However, this may be
numerically infeasible if κV (A) is very large: if all computations are carried to precision ε,
the result may be off by an error of κV (A)ε. Davies’ idea was to replace A by a perturbation
A + E with a much smaller κV (A + E), and compute f(A + E) instead. In [37, Theorem
2.4], he showed that the net error incurred by this scheme for a given ε > 0 and sufficiently
regular f is controlled by:

κV (A+ E)ε+ ‖E‖,

which is the quantity appearing in (2.2). The key desirable feature of (2.2) is the dimension-
independent fractional power of ε on the right-hand side, which shows that the total error
scales slowly.

Davies proved his conjecture in the special case of upper triangular Toeplitz matrices, in
dimension n = 3 with the constant cn = 2, as well as in the general case with the weaker
dimension-dependent and nonconstructive bound (n+ 1)ε2/(n+1). This last result corresponds
to (2.1) above. He also speculated that a random regularizing perturbation E suffices to prove
Conjecture 2.1.2, and presented empirical evidence to that effect. Our proof of Theorem 2.1.1
below indeed follows this strategy.

2.1.2 Gaussian Regularization

Theorem 2.1.1 follows from a probabilistic result concerning complex Gaussian perturbations
of a given matrix A.

We show that adding a small Ginibre perturbation regularizes the eigenvalue condition
numbers of any matrix in the following averaged sense.

Theorem 2.1.3. Suppose A ∈ Cn×n with ‖A‖ ≤ 1 and δ ∈ (0, 1). Let Gn be a complex
Ginibre matrix, and let λ1, . . . , λn ∈ C be the (random) eigenvalues of A + δGn. Then for
every measurable open set B ⊂ C,

E
∑
λi∈B

κ(λi)
2 ≤ n2

πδ2
Leb(B).

Note that the κ(λi) appearing above are well-defined because A+δGn has distinct eigenvalues
with probability one.
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2.1.3 Related Work

Random Matrix Theory. There have been numerous studies of the eigenvalue condition
numbers κ(λi)

2, sometimes called eigenvector overlaps in the random matrix theory and
mathematical physics literature, for non-Hermitian random matrix models of type A+ δGn.
In the centered case A = 0 and δ = 1 of a standard complex Ginibre matrix, the seminal
work of Chalker and Mehlig [32] calculated the large-n limit of the conditional expectations

E[κ(λ)2|λ = z] ∼
n→∞

n(1− |z|2),

whenever |z| < 1. Recent works by Bourgade and Dubach [24] and Fyodorov [58] improved
on this substantially by giving exact nonasymptotic formulas for the distribution of κ(λ)2

conditional on the location of the eigenvalue λ, as well as concise descriptions of the scaling
limits for these formulas. The paper [22] proved (in the more general setup of invariant
ensembles) that the angles between the right eigenvectors (v∗i vj)/‖vi‖‖vj‖ have subgaussian
tails, which has some bearing on κV (for instance, a small angle between unit eigenvectors
causes ‖V −1‖ and therefore κV to blow up.)

In the non-centered case, Davies and Hager [38] showed that if A is a Jordan block
and δ = n−α for some appropriate α, then almost all of the eigenvalues of A + δGn lie
near a circle of radius δ1/n with probability 1 − on(1). Basak, Paquette, and Zeitouni [15,
14] showed that for a sequence of banded Toeplitz matrices An with a finite symbol, the
spectral measures of An + n−αGn converge weakly in probability, as n→∞, to a predictable
density determined by the symbol. Both of the above results were recently and substantially
improved by Sjöstrand and Vogel [112, 113] who proved that for any Toeplitz A, almost all
of the eigenvalues of A+ n−αGn are close to the symbol curve of A with exponentially good
probability in n. Note that none of the results mentioned in this paragraph explicitly discuss
the κ(λi); however, they do deal qualitatively with related phenomena surrounding spectral
instability of non-Hermitian matrices.

The idea of managing spectral instability by adding a random perturbation can be traced
back to the influential papers of Haagerup and Larsen [69] and Śniady [116] (see also [68,
56]), who used it to study convergence of the eigenvalues of certain non-Hermitian random
matrices to a limiting Brown measure, in the context of free probability theory.

There are three notable differences between Theorem 2.1.3 and the results mentioned
above:

1. Our result is much coarser, and only guarantees an upper bound on the Eκ(λi)
2, rather

than a precise description of any distribution, limiting or not.

2. It applies to any A ∈ Cn×n and δ ∈ (0, 1).

3. It is completely nonasymptotic and does not require n→∞ or even sufficiently large n.

Numerical Analysis. In the numerical linear algebra literature, several works have analyzed
the condition numbers of Gaussian matrices (notably the seminal results of Demmel [45] and
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Edelman [52]) as well as perturbations of arbitrary matrices by Gaussian matrices (beginning
with [109]) in the nonasymptotic regime. In contrast, we study the condition numbers of the
eigenvectors of such matrices, rather than of the matrices themselves.

The idea of approximating matrix functions by adding a regularizing perturbation was
introduced in [37] and has since appeared in several works regarding numerical computation
of the matrix logarithm, sine, cosine, and related functions [94, 73, 95, 97, 40].

2.1.4 Techniques and Organization

We first collect some tools from random matrix theory in Section 2.2, along the way proving
a conjecture of Sankar, Spielman, and Teng [109] regarding the optimal constant in their
smoothed analysis of condition numbers of matrices under real Gaussian perturbations in
Section 2.2.3. Section 2.3 contains the proofs of our main results, Theorems 2.1.1 and 2.1.3.
In Section 2.4, we prove optimality of the 1/δ-dependence in Theorem 2.1.1 as discussed
above, and show that Theorem 2.1.3 is sharp up to a small constant factor. We conclude
with a discussion of some open problems in Section 2.5.

2.2 Tools from Random Matrix Theory

2.2.1 Nonasymptotic Extreme Singular Value Estimates

Let us record some standard non-asymptotic estimates for the extreme singular values of
complex Ginibre matrices. The lower tail behavior of the smallest singular value of a Ginibre
matrix was worked out by Edelman [52, Chapter 5], and with our normalization it translates
to:

Theorem 2.2.1. For a complex Ginibre matrix Gn,

P[σn(Gn) < ε] = 1− e−ε2n2 ≤ ε2n2.

We will also require a cruder tail estimate on the largest singular value. We believe the
lemma holds with a constant 2 instead of 2

√
2, but did not find a reference to a nonasymptotic

result to this effect; since the difference is not very consequential in this context, we reduce
to the real case.

Lemma 2.2.2. For a complex Ginibre matrix Gn,

P[σ1(Gn) > 2
√

2 + t] ≤ 2 exp(−nt2).

Proof. We can write Gn = 1√
2
(X + iY ) where X and Y are independent with i.i.d. real

N(0, 1/n) entries. It is well-known (e.g. [35, Theorem II.11]) that:

Eσ1(Gn) ≤ 2√
2
E‖X‖ ≤ 2

√
2.

Lipschitz concentration of functions of real Gaussian random variables yields the result.
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2.2.2 Śniady’s Comparison Theorem

To bound the least singular value of noncentered Gaussian matrices, we will lean on a
remarkable theorem of Śniady [116].

Theorem 2.2.3 (Śniady). Let A1 and A2 be n×n complex matrices such that σi(A1) ≤ σi(A2)
for all 1 ≤ i ≤ n. Assume further that σi(A1) 6= σj(A1) and σi(A2) 6= σj(A2) for all i 6= j.
Then for every t ≥ 0, there exists a joint distribution on pairs of n × n complex matrices
(G1, G2) such that

1. the marginals G1 and G2 are distributed as (normalized) complex Ginibre matrices Gn,
and

2. almost surely σi(A1 +
√
tG1) ≤ σi(A2 +

√
tG2) for every i.

We will briefly sketch the proof of this theorem for the reader’s benefit, since it is quite
beautiful and we will need to perform a slight modification to prove the conjecture of
Sankar-Spielman-Teng in the next subsection.

Sketch of proof. The key insight of the proof is that it is possible to couple the distributions
of G1 and G2 through their singular values. To do so, one first derives a stochastic differential
equation satisfied by the singular values s1, ..., sn of a matrix Brownian motion (i.e., a matrix
whose entries are independent complex Brownian motions):

dsi =
1√
2n
dBi +

dt

2si

(
1− 1

2n
+
∑
j 6=i

s2
i + s2

j

n(s2
i − s2

j)

)
, (2.3)

where the Bi are independent standard real Brownian motions. Next, one uses a single n-tuple
of real Brownian motions B1, ..., Bn to drive two processes (s

(1)
1 , . . . , s

(1)
n ) and (s

(2)
1 , . . . , s

(2)
n )

according to (2.3), with initial conditions s
(1)
i (0) = σi(A1) and s

(2)
i (0) = σi(A2) for all i. (To

do this rigorously, one needs existence and uniqueness of strong solutions to the above SDE;
this is shown in [79] under the hypothesis si(0) 6= sj(0) for all i 6= j.)

Things have been arranged so that the joint distribution of (s
(j)
1 , . . . , s

(j)
n ) at time t matches

the joint distribution of the singular values of Aj +
√
tGj for each j = 1, 2. One can then

sample unitaries Uj and Vj from the distribution arising from the singular value decomposition

Aj +
√
tGj = UjDjV

∗
j , conditioned on Dj = diag(s

(j)
1 , . . . , s

(j)
n ). Thus each Gj is separately

Ginibre-distributed. However, A1 +
√
tG1 and A2 +

√
tG2 are coupled through the shared

randomness driving the evolution of their singular values. In particular, since the same Bi

were used for both processes, from (2.3) one can verify that the n differences s
(2)
i − s

(1)
i are

C1 in t. By taking derivatives, one can then show the desired monotonicity property: if
s

(2)
i − s

(1)
i ≥ 0 holds for all i at t = 0, it must hold for all t ≥ 0.
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2.2.3 Sankar-Spielman-Teng Conjecture

The proof technique of Śniady can be adapted to prove a counterpart of Theorem 3.3.2
for real Ginibre perturbations (by this we mean matrices with i.i.d. real N(0, 1/n) entries).
Because a rigorous proof requires some stochastic analysis, we defer the proof and discussion
of the following theorem to Appendix A.1.

Theorem 2.2.4. Let A1 and A2 be n × n real matrices such that σi(A1) ≤ σi(A2) for all
1 ≤ i ≤ n. Assume further that σi(A1) 6= σj(A1) and σi(A2) 6= σj(A2) for all i 6= j. Then for
every t ≥ 0, there exists a joint distribution on pairs of real n×n matrices (G1, G2) such that

1. the marginals G1 and G2 are distributed as real Ginibre matrices (with i.i.d. N(0, 1/n)
entries), and

2. almost surely σi(A1 +
√
tG1) ≤ σi(A2 +

√
tG2) for every i.

This resolves Conjecture 1 in [109], which we restate below as a proposition:

Proposition 2.2.5. Let G be an n× n matrix with i.i.d. real N(0, 1) entries, and A be any
n× n matrix with real entries. Then

P[σn(A+G) < ε] ≤ ε
√
n.

Proof. The case A = 0 is a result of Edelman [52]. The proposition for general A would then
follow from Theorem 2.2.4 with A1 = 0 and A2 = A if not for the hypothesis σi(A1) 6= σj(A1)
and σi(A2) 6= σj(A2) for all i 6= j. So we approach 0 and A by matrices satisfying this
hypothesis, apply Theorem 2.2.4, and take limits, using the continuous mapping theorem
and continuity of σn(·).

2.3 Proof of Theorems 2.1.1 and 2.1.3

Proof of Theorem 2.1.1 given Theorem 2.1.3. Let λ1, . . . , λn be the eigenvalues of the ran-
dom matrix A+ δGn, and t > 2

√
2 and s > 1 be parameters to be optimized later. Davies’

original bound (2.1) implies our bound for n ≤ 3, so assume n ≥ 4. Then Lemma 2.2.2 tells
us that

P[‖δGn‖ ≥ tδ] ≤ 2e−4(t−2
√

2)2 . (2.4)

Letting B = D(0, ‖A‖+ tδ), we have

P

[∑
λi∈B

κ(λi)
2 6=

∑
i≤n

κ(λi)
2

]
≤ P[‖δGn‖ ≥ tδ] ≤ 2e−4(t−2

√
2)2 (2.5)

since maxi≤n |λi| ≤ ‖A‖ + ‖δGn‖. On the other hand, by Theorem 2.1.3 applied to B and
Markov’s inequality:

P

[∑
λi∈B

κ(λi)
2 ≥ s

n2Leb(B)

δ2π

]
≤ 1

s
. (2.6)
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By the union bound, if we choose s and t such that

2e−4(t−2
√

2)2 +
1

s
< 1 (2.7)

then there exists a choice of Gn such that neither of the events (2.5), (2.6) occurs. Letting
E = δGn for this choice, we have

n∑
i=1

κ(λi)
2 =

∑
i∈B

κ(λi)
2 ≤ s

n2Leb(B)

πδ2
.

Taking a square root and applying Lemma 1.1.3, we have

κV (A+ E) ≤
√
sn3/2

δ
(‖A‖+ tδ) ≤

√
sn3/2‖A‖

δ
+ t
√
sn3/2.

Because ‖E‖ ≤ tδ and not δ, replacing δ by δ/t yields the bound

κV (A+ E) ≤ t
√
sn3/2‖A‖
δ

+ t
√
sn3/2.

To get the best bound, we must minimize t
√
s subject to the constraints (2.7), t > 2

√
2

and s > 1. Solving for s this becomes a univariate optimization problem, and one can
check numerically that the optimum is achieved at t ≈ 3.7487 and t

√
s ≈ 3.8822 < 4, as

advertised.

We begin the proof of Theorem 2.1.3 by relating the eigenvalue condition numbers of a
matrix to the rate at which its pseudospectrum Λε shrinks as a function of the parameter
ε > 0. The following proposition is not new; the proof essentially appears for example in
Section 3.6 of [24], but we include it for completeness since it is critical to our argument.

Lemma 2.3.1 (Limiting Area of the Pseudospectrum). Let M be an n× n matrix with n
distinct eigenvalues λ1, . . . , λn and let B ⊂ C be an open set whose boundary contains none
of the λi. Then

lim
ε→0

Leb(Λε(M) ∩B)

ε2
= π

n∑
λi∈B

κ(λi)
2.

Proof. Write the spectral decomposition

(zI −M)−1 =
n∑
i=1

viw
∗
i

z − λi
,

where the vi and w∗i are right and left eigenvectors of M , respectively. Since the λi are
distinct, we may choose ε0 > 0 sufficiently small to guarantee that there exists a constant
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C > 0 satisfying (1) the disks D(λi, ε0) are disjoint; (2) for every λi ∈ B the disk D(λi, ε0) is
contained in B; and (3) whenever z ∈ D(λi, ε0) for some i,

‖(zI −M)−1‖ ≥ ‖viw
∗
i ‖

|z − λi|
− C =

κ(λi)

|z − λi|
− C. (2.8)

Using the definition of the ε-pseudospectrum in (1.3), we rearrange (2.8) to obtain

Λε(M) ∩B ⊃
{
z : |z − λi| ≤ min

{
ε0,

κ(λi)ε

1 + εC

}
, for some λi ∈ B

}
.

Thus, taking ε small enough, we have

lim inf
ε→0

Leb(Λε(M) ∩B)

ε2
≥ π

∑
λi∈B

κ(λi)
2.

For the opposite inequality, Theorem 52.1 of [125] states that the ε-pseudospectrum is
contained in disks around the eigenvalues λi of radii εκ(λi) +O(ε2). Choosing ε small enough
so that for λi ∈ B these disks are entirely contained in B:

Leb(Λε ∩B) ≤
∑
λi∈B

π(εκ(λi) +O(ε2))2 ⇒ lim sup
ε→0

Leb(Λε ∩B)

ε2
≤
∑
λi∈B

πκ(λi)
2.

Next, we show that for fixed ε > 0, any particular point z ∈ C is unlikely to be in
Λε(A + δGn). This is based on the following singular value estimate, which generalizes
Theorem 2.2.1.

Lemma 2.3.2 (Small Ball Estimate for σn). Let M be an n×n matrix with complex entries,
and G be drawn from the Ginibre ensemble. Then for all δ > 0 and ε > 0

P [σn(M + δGn) < ε] ≤ n2 ε
2

δ2
.

Proof. Repeat the proof of Proposition 2.2.5 using instead Theorems 2.2.1 and 3.3.2.

Remark 2.3.3. If one is willing to lose a small constant factor in the bound, Lemma 2.3.2 has
an elementary geometric proof (which avoids stochastic calculus), essentially identical to the
proof of Sankar-Spielman-Teng [109, Theorem 3.1] in the case of real Ginibre perturbations.
Note however that it is crucial to use a complex Gaussian for our purposes. A real Gaussian
would yield a small ball estimate of order ε (see Proposition 2.2.5) rather than ε2, which is
not good enough to take the limit below.
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Proof of Theorem 2.1.3. For every z ∈ C we have the upper bound

P[z ∈ Λε(A+ δGn)] = P[σn(zI − (A+ δGn)) < ε] ≤ n2 ε
2

δ2
, (2.9)

by applying Lemma 2.3.2 to M = zI − A and noting that G and −G have the same
distribution.

Fix a measurable open set B ⊂ C. Then

ELeb(Λε(A+ δGn) ∩B) = E
∫
B

1{z∈Λε(A+δGn)} dz

=

∫
B

E{z ∈ Λε(A+ δGn)} dz by Fubini

≤
∫
B

n2 ε
2

δ2
dz by (3.12)

= n2 ε
2

δ2
Leb(B) (2.10)

where the integrals are with respect to Lebesgue measure on C. Finally, taking a limit as
ε→ 0 yields the desired bound:

E
∑
λi∈B

κ(λ2
i ) = E lim inf

ε→0

Leb(Λε(A+ δGn) ∩B)

πε2
by Lemma 2.3.1

≤ lim inf
ε→0

E
Leb(Λε(A+ δGn) ∩B)

πε2
by Fatou’s Lemma

≤ n2Leb(B)

πδ2
by (2.10).

2.4 Optimality of the Bounds

We first show that Theorem 2.1.1 has essentially the optimal dependence on δ for n large.
The example which requires this dependence is simply a Jordan block J , for which Davies
[37] established the upper bound κV (J + δE) ≤ 2/δ1−1/n, for some E with ||E|| < 1.

Proposition 2.4.1. Fix n > 0 and let J ∈ Cn×n be the upper triangular Jordan block with
ones on the superdiagonal and zeros everywhere else. Then there exist cn > 0 and δn > 0
such that for all E ∈ Cn×n with ‖E‖ ≤ 1 and all δ < δn, we have

κV (J + δE) ≥ cn
δ1−1/n

.



CHAPTER 2. DAVIES’ CONJECTURE 20

Proof. As a warm-up, we’ll need the following bound on the pseudospectrum of J . Let λ
be an eigenvalue of J + δE, with v its associated right eigenvector; then (J + δE)nv = λnv
and, accordingly, |λ|n ≤ ‖(J + δE)n‖. Expanding, using nilpotence of J , ‖J‖ = 1, and
submultiplicativity of the operator norm, we get

|λ|n ≤ ‖(J + δE)n‖ ≤ (1 + δ)n − 1 = O(δ) (2.11)

where the big-O refers to the limit δ → 0 (recall n is fixed).
Writing J + δE = V −1DV , we want to lower bound the condition number of V . As above,

let λ be an eigenvalue of J + δE, now writing w∗ and v for its left and right eigenvectors.
We’ll use the lower bound

κ(V ) = ‖V −1‖‖V ‖ ≥ ‖w
∗‖‖v‖
|w∗v|

= κ(λ).

Since the formula above is agnostic to the scaling of the left and right eigenvectors, we’ll
assume that both have unit length and show that |w∗v| is small.

Let 0 ≤ k ≤ n. Then ‖(J + δE)kv‖ = |λ|k, and analogously to (2.11),

‖(J + δE)k − Jk‖ ≤ (1 + δ)k − 1 = O(δ).

Since J acts on the left as a left shift,(
n∑

i=k+1

|vi|2
)1/2

= ‖Jkv‖

≤ ‖(J + δE)kv‖+ ‖(Jk − (J + δE)k)v‖
≤ |λ|k +O(δ)

= O(δk/n),

where the final line follows from (2.11). Similarly,(
n−k∑
i=1

|wi|2
)1/2

= ‖w∗Jk‖ = O(δk/n).

Finally, we have κ(V )−1 = |w∗v| ≤
n∑
j=1

|wj||vj|, which in turn is at most

n∑
j=1

(
j∑
i=1

|wi|2
)1/2( n∑

i=j

|vi|2
)1/2

= O(δ(n−j)/nδ(j−1)/n) = O(δ1−1/n).
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We end by showing that the dependence on n in Theorem 2.1.3 cannot be improved.

Proposition 2.4.2. There exists c > 0 such that for all n,

E
∑
i∈[n]

κ2 (λi(Gn)) ≥ cn2.

Proof. Bourgade and Dubach [24, Theorem 1.1, Equation 1.8] show that eigenvalue condition
numbers in the bulk of the spectrum of complex Ginibre matrices are of order

√
n. Precisely,

lim
n→∞

E[κ(λi)
2|λi = z]

n
= 1− |z|2

uniformly for (say) z ∈ D(0, r) for any r < 1. The classical circular law for the limiting
spectral distribution of Ginibre matrices ensures that

lim
n→∞

E|Λ(Gn) ∩D(0, r)|
n

=
vol(D(0, r))

vol(D(0, 1))
= r2.

Thus,

lim inf
n→∞

E
∑

i∈[n] κ (λi(Gn))2

n2
≥ r2(1− r2) > 0.

2.5 Conclusion and Discussion

A key theme in our work is the interplay between the related notions of eigenvector condition
number κV , eigenvalue condition number κ(λi) and pseudospectrum Λε. Equally important is
the fact that global objects such as κV and Λε can be controlled by local quantities, specifically
the least singular values of shifts σn(zI −M) for each z ∈ C. The proof also heavily exploits
the left and right unitary invariance of the Ginibre ensemble (via Theorem 3.3.2, due to
Śniady) as well as anticoncentration of the complex Gaussian.

One natural question is whether similar results hold if one replaces Gaussian perturbations
with a different class of random perturbations G′. To apply the approach in this chapter, the
key difficulty would be obtaining suitable bounds for the least singular value of z − A− δG′.
Davies [37] presents experimental evidence that Theorem 2.1.1 holds for random real rank-one
perturbations and random real Gaussian perturbations. In fact, recent work shows that
the theorem does not hold for perturbations of bounded rank [12], but a real version of the
theorem can be proved, albeit with a weaker dependence on δ; see [12, 76]. See Remark
2.3.3 for a discussion of why the present proof does not extend to the case of real Gaussian
perturbations.

One may also ask if Theorem 2.1.1 can be derandomized; that is, if the regularizing
perturbation E can be chosen by a deterministic algorithm given A as input. One natural
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choice would be to perturb in the direction of the nearest normal matrix in either operator
or Frobenius norm, the latter of which can be written as a certain optimization problem over
unitary matrices [106].

Proposition 2.4.1 shows that the upper bound in Theorem 2.1.1 is tight in the perturbation
size δ. Now, let cn be the smallest constant such that Theorem 2.1.1 holds with an upper
bound of cn/δ. Theorem 2.1.1 implies that cn ≤ 8n3/2, and since κV = ‖V ‖‖V −1‖ ≥ 1 for
any matrix, we have cn ≥ 1. It would be interesting to determine the correct asymptotic
behavior of cn. Davidson, Herrero, and Salinas asked in 1989 [34] whether the statement of
Theorem 2.1.1 is possible with κV (A+ E) depending only on δ and not on n. In the present
context, we can ask the more refined question: does Theorem 2.1.1 hold with bounded cn, or
must cn go to infinity with n?
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Chapter 3

Approximate Diagonalization

3.1 Background

In this chapter, we study the algorithmic problem of approximately finding all of the
eigenvalues and eigenvectors of a given arbitrary n×n complex matrix. While this problem is
quite well-understood in the special case of Hermitian matrices (see, e.g., [103]), the general
non-Hermitian case has remained mysterious from a theoretical standpoint even after several
decades of research. In particular, the currently best known provable algorithms for this
problem run in time O(n9/δ2) [4] or O(nc log(1/δ)) [30] with c ≥ 12 where δ > 0 is an error
parameter, depending on the model of computation and notion of approximation considered.1

To be sure, the non-Hermitian case is well-motivated: coupled systems of differential equations,
linear dynamical systems in control theory, transfer operators in mathematical physics, and
the nonbacktracking matrix in spectral graph theory are but a few situations where finding
the eigenvalues and eigenvectors of a non-Hermitian matrix is important.

The key difficulties in dealing with non-normal matrices are the interrelated phenomena of
non-orthogonal eigenvectors and spectral instability, the latter referring to extreme sensitivity
of the eigenvalues and invariant subspaces to perturbations of the matrix. Non-orthogonality
slows down convergence of standard algorithms such as the power method, and spectral
instability can force the use of very high precision arithmetic, also leading to slower algorithms.
Both phenomena together make it difficult to reduce the eigenproblem to a subproblem by
“removing” an eigenvector or invariant subspace, since this can only be done approximately
and one must control the spectral stability of the subproblem.

In this chapter, we overcome these difficulties by identifying and leveraging a phenomenon
we refer to as pseudospectral shattering: adding a small complex Gaussian perturbation to
any matrix yields a matrix with well-conditioned eigenvectors and a large minimum gap
between the eigenvalues, implying spectral stability. This result builds on the recent solution
of Davies’ conjecture [11], and is of independent interest in random matrix theory, where
minimum eigenvalue gap bounds in the non-Hermitian case were previously only known for

1A detailed discussion of these and other related results appears in Section 3.1.3.
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i.i.d. models [110, 60].
We complement the above by proving that a variant of the well-known spectral bisection

algorithm in numerical linear algebra [17] is both fast and numerically stable (i.e., can be
implemented using a polylogarithmic number of bits of precision) when run on a pseudospec-
trally shattered matrix. The key step in the bisection algorithm is computing the sign function
of a matrix, a problem of independent interest in many areas such including control theory
and approximation theory [78]. Our main algorithmic contribution is a rigorous analysis
of the well-known Newton iteration method [105] for computing the sign function in finite
arithmetic, showing that it converges quickly and numerically stably on matrices for which
the sign function is well-conditioned, in particular on pseudospectrally shattered ones.

The end result is an algorithm which reduces the general diagonalization problem to a
polylogarithmic (in the desired accuracy and dimension n) number of invocations of standard
numerical linear algebra routines (multiplication, inversion, and QR factorization), each
of which is reducible to matrix multiplication [47], yielding a nearly matrix multiplication
runtime for the whole algorithm. This improves on the previously best known running time
of O(n3 + n2 log(1/δ)) arithmetic operations even in the Hermitian case [103].

We now proceed to give precise mathematical formulations of the eigenproblem and
computational model, followed by statements of our results and a detailed discussion of
related work.

3.1.1 Problem Statement

An eigenpair of a matrix A ∈ Cn×n is a tuple (λ, v) ∈ C× Cn such that

Av = λv,

and v is normalized to be a unit vector. The eigenproblem is the problem of finding a maximal
set of linearly independent eigenpairs (λi, vi) of a given matrix A; note that an eigenvalue
may appear more than once if it has geometric multiplicity greater than one. In the case
when A is diagonalizable, the solution consists of exactly n eigenpairs, and if A has distinct
eigenvalues then the solution is unique, up to the phases of the vi.

3.1.1.1 Accuracy and Conditioning

As mentioned in the introduction, due to the Abel-Ruffini theorem, it is impossible to have
a finite-time algorithm which solves the eigenproblem exactly using arithmetic operations
and radicals. Thus, all we can hope for is approximate eigenvalues and eigenvectors, up to
a desired accuracy δ > 0. There are two standard notions of approximation. We assume
‖A‖ ≤ 1 for normalization.

Forward Approximation. Compute pairs (λ′i, v
′
i) such that

|λi − λ′i| ≤ δ and ‖vi − v′i‖ ≤ δ
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for the true eigenpairs (λi, vi), i.e., find a solution close to the exact solution. This makes
sense in contexts where the exact solution is meaningful; e.g. the matrix is of theoreti-
cal/mathematical origin, and unstable (in the entries) quantities such as eigenvalue multiplic-
ity can have a significant meaning.

Backward Approximation. Compute (λ′i, v
′
i) which are the exact eigenpairs of a matrix

A′ satisfying
‖A′ − A‖ ≤ δ,

i.e., find the exact solution to a nearby problem. This is the appropriate and standard notion
in scientific computing, where the matrix is of physical or empirical origin and is not assumed
to be known exactly (and even if it were, roundoff error would destroy this exactness). Note
that since diagonalizable matrices are dense in Cn×n, one can hope to always find a complete
set of eigenpairs for some nearby A′ = V DV −1, yielding an approximate diagonalization of A:

‖A− V DV −1‖ ≤ δ. (3.1)

Note that the eigenproblem in either of the above formulations is not easily reducible to
the problem of computing eigenvalues, since they can only be computed approximately and
it is not clear how to obtain approximate eigenvectors from approximate eigenvalues. We
now introduce a condition number for the eigenproblem, which measures the sensitivity of
the eigenpairs of a matrix to perturbations and allows us to relate its forward and backward
approximate solutions.

Condition Numbers.
We define the condition number of the eigenproblem to be2:

κeig(A) :=
κV (A)

gap(A)
∈ [0,∞]. (3.2)

It follows from the following proposition (whose proof appears in the preliminaries of this
chapter) that a δ-backward approximate solution of the eigenproblem is a κeig(A)2δ-forward
approximate solution3.

Proposition 3.1.1. If ‖A‖, ‖A′‖ ≤ 1, ‖A − A′‖ ≤ δ, and {(vi, λi)}i≤n, {(v′i, λ′i)}i≤n are

eigenpairs of A,A′ with distinct eigenvalues, and δ < gap(A)
4κV (A)

, then

‖v′i − vi‖ ≤ 4κeig(A)2δ and ‖λ′i − λi‖ ≤ 4κeig(A)2δ ∀i = 1, . . . , n, (3.3)

after possibly multiplying the vi by phases.

2This quantity is inspired by but not identical to the “distance to ill-posedness” for the eigenproblem
considered by Demmel [46], to which it is polynomially related.

3In fact, it can be shown that κeig(A) is polynomially related to the smallest constant for which (3.3)
holds for all sufficiently small δ > 0.
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Note that κeig =∞ if and only if A has a double eigenvalue; in this case, a relation like
(3.3) is not possible since different infinitesimal changes to A can produce macroscopically
different eigenpairs.

In this chapter we will present a backward approximation approximation for the eigen-
problem with running time scaling polynomially in log(1/δ), which by (3.3) yields a forward
approximation algorithm with running time scaling polynomially in log(1/κeigδ).

Remark 3.1.2 (Multiple Eigenvalues). A backward approximation algorithm for the eigen-
problem can be used to accurately find bases for the eigenspaces of matrices with multiple
eigenvalues, but quantifying the forward error requires introducing condition numbers for
invariant subspaces rather than eigenpairs. A standard treatment of this can be found in any
numerical linear algebra textbook, e.g. [43], and we do not discuss it further in this work for
simplicity of exposition.

3.1.1.2 Models of Computation

These questions may be studied in various computational models: exact real arithmetic
(i.e., infinite precision), variable precision rational arithmetic (rationals are stored exactly as
numerators and denominators), and finite precision arithmetic (real numbers are rounded
to a fixed number of bits which may depend on the input size and accuracy). Only the last
two models yield actual Boolean complexity bounds, but introduce a second source of error
stemming from the fact that computers cannot exactly represent real numbers.

We study the third model in this chapter, axiomatized as follows.

Finite Precision Arithmetic. We use the standard axioms from [70]. Numbers are stored
and manipulated approximately up to some machine precision u := u(δ, n) > 0, which for us
will depend on the instance size n and desired accuracy δ. This means every number x ∈ C
is stored as fl(x) = (1 + ∆)x for some adversarially chosen ∆ ∈ C satisfying |∆| ≤ u, and
each arithmetic operation ◦ ∈ {+,−,×,÷} is guaranteed to yield an output satisfying

fl(x ◦ y) = (x ◦ y)(1 + ∆) |∆| ≤ u.

It is also standard and convenient to assume that we can evaluate
√
x for any x ∈ R, where

again fl(
√
x) =

√
x(1 + ∆) for |∆| ≤ u.

Thus, the outcomes of all operations are adversarially noisy due to roundoff. The bit
lengths of numbers stored in this form remain fixed at lg(1/u), where lg denotes the logarithm
base 2. The bit complexity of an algorithm is therefore the number of arithmetic operations
times O∗(log(1/u)), the running time of standard floating point arithmetic, where the ∗ sup-
presses log log(1/u) factors. We will state all running times in terms of arithmetic operations
accompanied by the required number of bits of precision, which thereby immediately imply
bit complexity bounds.
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Remark 3.1.3 (Overflow, Underflow, and Additive Error). Using p bits for the exponent in
the floating-point representation allows one to represent numbers with magnitude in the range
[2−2p , 22p ]. It can be easily checked that all of the nonzero numbers, norms, and condition
numbers appearing during the execution of our algorithms lie in the range [2− lgc(n/δ), 2lgc(n/δ)]
for some small c, so overflow and underflow do not occur. In fact, we could have analyzed our
algorithm in a computational model where every number is simply rounded to the nearest
rational with denominator 2lgc(n/δ)—corresponding to additive arithmetic errors. We have
chosen to use the multiplicative error floating point model since it is the standard in numerical
analysis, but our algorithms do not exploit any subtleties arising from the difference between
the two models.

The advantages of the floating point model are that it is realistic (being and potentially
yields very fast algorithms by using a small number of bits of precision (polylogarithmic in n
and 1/δ), in contrast to rational arithmetic, where even a simple operation such as inverting
an n× n integer matrix requires n extra bits of precision (see, e.g., Chapter 1 of [66]). An
iterative algorithm that can be implemented in finite precision (typically, polylogarithmic
in the input size and desired accuracy) is called numerically stable, and corresponds to a
dynamical system whose trajectory to the approximate solution is robust to adversarial noise
(see, e.g. [114]).

The disadvantage of the model is that it is only possible to compute forward approximations
of quantities which are well-conditioned in the input—in particular, discontinuous quantities
such as eigenvalue multiplicity cannot be computed in the floating point model, since it is
not even assumed that the input is stored exactly.

3.1.2 Results and Techniques

Eigenvalue Gaps, κV , and Pseudospectral Shattering. The key probabilistic result of
the paper is that a random complex Gaussian perturbation of any matrix yields a nearby
matrix with large minimum eigenvalue gap and small κV .

Theorem 3.1.4 (Smoothed Analysis of gap and κV ). Suppose A ∈ Cn×n with ‖A‖ ≤ 1, and
γ ∈ (0, 1/2). Let Gn be an n × n matrix with i.i.d. complex Gaussian N(0, 1C/n) entries,
and let X := A+ γGn. Then

κV (X) ≤ n2

γ
, gap(X) ≥ γ4

n5
, and ‖Gn‖ ≤ 4,

with probability at least 1− 1/n−O(1/n2) where the implicit constant is at most 600.

The proof of Theorem 3.1.4 appears in Section 3.3.1. The key idea is to first control
κV (X) using [11], and then observe that for a matrix with small κV , two eigenvalues of X
near a complex number z imply a small second-least singular value of z −X, which we are
able to control.
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In Section 3.3.2 we develop the notion of pseudospectral shattering, which is implied by
Theorem 3.1.4 and says roughly that the pseudospectrum consists of n components that lie
in separate squares of an appropriately coarse grid in the complex plane. This is useful in
the analysis of the spectral bisection algorithm in Section 3.5.

Matrix Sign Function. The sign function of a number z ∈ C with <(z) 6= 0 is defined as
+1 if <(z) > 0 and −1 if <(z) < 0. The matrix sign function of a matrix A with Jordan
normal form

A = V

[
N

P

]
V −1,

where N (resp. P ) has eigenvalues with strictly negative (resp. positive) real part, is defined
as

sgn(A) = V

[
−IN

IP

]
V −1,

where IP denotes the identity of the same size as P . The sign function is undefined for
matrices with eigenvalues on the imaginary axis. Quantifying this discontinuity, Bai and
Demmel [7] defined the following condition number for the sign function:

κsign(M) := inf
{

1/ε2 : Λε(M) does not intersect the imaginary axis
}
, (3.4)

and gave perturbation bounds for sgn(M) depending on κsign.
Roberts [105] showed that the simple iteration

Ak+1 =
Ak + A−1

k

2
(3.5)

converges globally and quadratically to sgn(A) in exact arithmetic, but his proof relies on
the fact that all iterates of the algorithm are simultaneously diagonalizable, a property which
is destroyed in finite arithmetic since inversions can only be done approximately.4 In Section
3.4 we show that this iteration is indeed convergent when implemented in finite arithmetic
for matrices with small κsign, given a numerically stable matrix inversion algorithm. This
leads to the following result:

Theorem 3.1.5 (Sign Function Algorithm). There is a deterministic algorithm SGN which
on input an n× n matrix A with ‖A‖ ≤ 1, a number K with K ≥ κsign(A), and a desired
accuracy β ∈ (0, 1/12), outputs an approximation SGN(A) with

‖SGN(A)− sgn(A)‖ ≤ β,

in
O((logK + log log(1/β))TINV(n)) (3.6)

4Doing the inversions exactly in rational arithmetic could require numbers of bit length nk for k iterations,
which will typically not even be polynomial.
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arithmetic operations on a floating point machine with

lg(1/u) = O(log n log3K(logK + log(1/β)))

bits of precision, where TINV(n) denotes the number of arithmetic operations used by a
numerically stable matrix inversion algorithm (satisfying Definition 3.2.3).

The main new idea in the proof of Theorem 3.1.5 is to control the evolution of the
pseudospectra Λεk(Ak) of the iterates with appropriately decreasing (in k) parameters εk,
using a sequence of carefully chosen shrinking contour integrals in the complex plane. The
pseudospectrum provides a richer induction hypothesis than scalar quantities such as con-
dition numbers, and allows one to control all quantities of interest using the holomorphic
functional calculus. This technique is introduced in Sections 3.4.1 and 3.4.2, and carried out
in finite arithmetic in Section 3.4.3, yielding Theorem 3.1.5.

Diagonalization by Spectral Bisection. Given an algorithm for computing the sign
function, there is a natural and well-known approach to the eigenproblem pioneered in [17].
The matrices (I±sgn(A))/2 are spectral projectors onto the invariant subspaces corresponding
to the eigenvalues of A in the left and right open half planes, so if some shift of A or iA has
roughly half its eigenvalues on either side of the imaginary axis, the problem can be reduced
to smaller subproblems appropriate for recursion.

The two difficulties in carrying out the above approach are: (a) efficiently computing the
sign function (b) finding a balanced splitting along an axis that is well-separated from the
spectrum. These are nontrivial even in exact arithmetic, since the iteration (3.5) converges
slowly if (b) is not satisfied, even without roundoff error. We use Theorem 3.1.4 to ensure that
a good splitting always exists after a small Gaussian perturbation of order δ, and Theorem
3.1.5 to compute splittings efficiently in finite precision. Combining this with well-understood
techniques such as rank-revealing QR factorization, we obtain the following theorem, whose
proof appears in Section 3.5.1.

Theorem 3.1.6 (Backward Approximation Algorithm). There is a randomized algorithm
EIG which on input any matrix A ∈ Cn×n with ‖A‖ ≤ 1 and a desired accuracy parameter
δ > 0 outputs a diagonal D and invertible V such that

‖A− V DV −1‖ ≤ δ and κ(V ) ≤ 32n2.5/δ

in
O
(
TMM(n) log2 n

δ

)
arithmetic operations on a floating point machine with

O(log4(n/δ) log n)

bits of precision, with probability at least 1 − 2/n − O(1/n2), where the implied constant
is at most 600. Here TMM(n) refers to the running time of a numerically stable matrix
multiplication algorithm (detailed in Section 3.2.3).
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Considering (3.3), we have the following immediate corollary by invoking EIG with accuracy
δ/κeig.

Corollary 3.1.7 (Forward Approximation Algorithm). There is a randomized algorithm
which on input any matrix A ∈ Cn×n with ‖A‖ ≤ 1, a desired accuracy parameter δ > 0, and
an estimate K ≥ κeig(A) outputs a δ−forward approximate solution to the eigenproblem for
A in

O

(
TMM(n) log2 nK

δ

)
arithmetic operations on a floating point machine with

O(log4(nK/δ) log n)

bits of precision, with probability at least 1 − 2/n − O(1/n2). Here TMM(n) refers to the
running time of a numerically stable matrix multiplication algorithm (detailed in Section
3.2.3).

Remark 3.1.8 (Accuracy vs. Precision). The gold standard of “backward stability” in
numerical analysis postulates that

log(1/u) = log(1/δ) + log(n),

i.e., the number of bits of precision is linear in the number of bits of accuracy. The relaxed
notion of “logarithmic stability” introduced in [48] requires

log(1/u) = log(1/δ) +O(logc(n) log(κ))

for some constant c, where κ is an appropriate condition number. In comparison, Theorem
3.1.6 obtains the weaker relationship

log(1/u) = O(log4(1/δ) log(n) + log5(n)),

which is still polylogarithmic in n in the regime δ = 1/poly(n).

3.1.3 Related Work

Minimum Eigenvalue Gap. The minimum eigenvalue gap of random matrices has been
studied in the case of Hermitian and unitary matrices, beginning with the work of Vinson
[130], who proved an Ω(n−4/3) lower bound on this gap in the case of the Gaussian Unitary
Ensemble (GUE) and the Circular Unitary Ensemble (CUE). Bourgade and Ben Arous [5]
derived exact limiting formulas for the distributions of all the gaps for the same ensembles.
Nguyen, Tao, and Vu [100] obtained non-asymptotic inverse polynomial bounds for a large
class of non-integrable Hermitian models with i.i.d. entries (including Bernoulli matrices).

In a different direction, Aizenman et al. proved an inverse-polynomial bound [1] in the
case of an arbitrary Hermitian matrix plus a GUE matrix or a Gaussian Orthogonal Ensemble
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(GOE) matrix, which may be viewed as a smoothed analysis of the minimum gap. Theorem
3.3.6 may be viewed as a non-Hermitian analogue of the last result.

In the non-Hermitian case, Ge [60] obtained an inverse polynomial bound for i.i.d. matri-
ces with real entries satisfying some mild moment conditions, and [110]5 proved an inverse
polynomial lower bound for the complex Ginibre ensemble. Theorem 3.3.6 may be seen as a
generalization of these results to non-centered complex Gaussian matrices.

Smoothed Analysis and Free Probability. The study of numerical algorithms on
Gaussian random matrices (i.e., the case A = 0 of smoothed analysis) dates back to [131,
115, 44, 52]. The powerful idea of improving the conditioning of a numerical computation by
adding a small amount of Gaussian noise was introduced by Spielman and Teng in [117], in
the context of the simplex algorithm. Sankar, Spielman, and Teng [109] showed that adding
real Gaussian noise to any matrix yields a matrix with polynomially-bounded condition
number; [11] can be seen as an extension of this result to the condition number of the
eigenvector matrix, where the proof crucially requires that the Gaussian perturbation is
complex rather than real. The main difference between our results and most of the results on
smoothed analysis (including [4]) is that our running time depends logarithmically rather
than polynomially on the size of the perturbation.

The broad idea of regularizing the spectral instability of a nonnormal matrix by adding a
random matrix can be traced back to the work of Śniady [116] and Haagerup and Larsen [69]
in the context of Free Probability theory.

Matrix Sign Function. The matrix sign function was introduced by Zolotarev in 1877. It
became a popular topic in numerical analysis following the work of Beavers and Denman
[18, 17, 49] and Roberts [105], who used it first to solve the algebraic Ricatti and Lyapunov
equations and then as an approach to the eigenproblem; see [78] for a broad survey of its
early history. The numerical stability of Roberts’ Newton iteration was investigated by Byers
[27], who identified some cases where it is and isn’t stable. Malyshev [90], Byers, He, and
Mehrmann [28], Bai, Demmel, and Gu [8], and Bai and Demmel [7] studied the condition
number of the matrix sign function, and showed that if the Newton iteration converges then
it can be used to obtain a high-quality invariant subspace6, but did not prove convergence in
finite arithmetic and left this as an open question.7 The key issue in analyzing the convergence
of the iteration is to bound the condition numbers of the intermediate matrices that appear,
as N. Higham remarks in his 2008 textbook:

Of course, to obtain a complete picture, we also need to understand the effect of
rounding errors on the iteration prior to convergence. This effect is surprisingly
difficult to analyze. . . . Since errors will in general occur on each iteration, the

5At the time of writing, the work [110] is still an unpublished arXiv preprint.
6This is called an a fortiriori bound in numerical analysis.
7[28] states: “A priori backward and forward error bounds for evaluation of the matrix sign function

remain elusive.”
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overall error will be a complicated function of κsign(Xk) and Ek for all k. . . . We
are not aware of any published rounding error analysis for the computation of
sign(A) via the Newton iteration. –[71, Section 5.7]

This is precisely the problem solved by Theorem 3.1.5, which is as far as we know the first
provable algorithm for computing the sign function of an arbitrary matrix which does not
require computing the Jordan form.

In the special case of Hermitian matrices, Higham [72] established efficient reductions
between the sign function and the polar decomposition. Byers and Xu [29] proved backward
stability of a certain scaled version of the Newton iteration for Hermitian matrices, in the
context of computing the polar decomposition. Higham and Nakatsukasa [99] (see also the
improvement [98]) proved backward stability of a different iterative scheme for computing
the polar decomposition, and used it to give backward stable spectral bisection algorithms
for the Hermitian eigenproblem with O(n3)-type complexity.

Non-Hermitian Eigenproblem. Floating Point Arithmetic. The eigenproblem has been
thoroughly studied in the numerical analysis community, in the floating point model of
computation. While there are provably fast and accurate algorithms in the Hermitian case
(see the next subsection) and a large body of work for various structured matrices (see, e.g.,
[23]), the general case is not nearly as well-understood. As recently as 1998, J. Demmel
remarked in his well-known textbook [43]: “. . . the problem of devising an algorithm [for the
non-Hermitian eigenproblem] that is numerically stable and globally (and quickly!) convergent
remains open.”

Demmel’s question remained entirely open until 2015, when it was answered in the
following sense by Armentano, Beltrán, Bürgisser, Cucker, and Shub in the remarkable paper
[4]. They exhibited an algorithm (see their Theorem 2.28) which given any A ∈ Cn×n with
‖A‖ ≤ 1 and a desired accuracy δ > 0 produces in O(n9/δ2) expected arithmetic operations
the diagonalization of the nearby random perturbation A + δG where G is a matrix with
standard complex Gaussian entries. By setting δ sufficiently small, this may be viewed as a
backward approximation algorithm for diagonalization, in that it solves a nearby problem
essentially exactly.8 Their algorithm is based on homotopy continuation methods, which
they argue informally are numerically stable and can be implemented in finite precision
arithmetic. Our algorithm is similar on a high level in that it adds a Gaussian perturbation
to the input and then obtains a high accuracy forward approximate solution to the perturbed
problem. The difference is that their overall running time depends polynomially rather than
logarithmically on the accuracy δ desired with respect to the original unperturbed problem.

Other Models of Computation. If we relax the requirements further and ask for any
provable algorithm in any model of Boolean computation, there is only one more positive
result with a polynomial bound on the number of bit operations: Jin Yi Cai showed in 1994
[30] that given a rational n× n matrix A with integer entries of bit length a, one can find an

8The output of their algorithm is n vectors on each of which Newton’s method converges quadratically to
an eigenvector.
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Result Error Arithmetic Ops Boolean Ops Restrictions

[103] Backward n3 + n2 log(1/δ) n3 log(n/δ) + n2 log(1/δ) log(n/δ) Hermitian
[3] Backward n9/δ2 n9/δ2 · polylog(n/δ)a

[21] Backward nω+1polylog(n) log(1/δ) nω+1polylog(n) log(1/δ) Hermitian

Theorem 3.1.6b Backward TMM(n) log2(n/δ) TMM(n) log6(n/δ) log(n)

Corollary 3.1.7 Forward TMM(n) log2(nκeig/δ) TMM(n) log6(nκeig/δ) log(n)

a Does not specify a particular bound on precision.
b TMM(n) = O(nω+η) for every η > 0, see Definition 3.2.2 for details.

Table 3.1: Results for finite-precision floating-point arithmetic

Result Model Error Arithmetic Ops Boolean Ops Restrictions

[30] Rational Forwarda poly(a, n, log(1/δ))b poly(a, n, log(1/δ))
[102] Rational Forward nω + n log log(1/δ) nω+1a+ n2 log(1/δ) log log(1/δ) Eigenvalues onlyc

[89] Finitec Forward nω log(n) log(1/δ) nω log4(n) log2(n/δ) Hermitian, λ1 only

a Actually computes the Jordan Normal Form. The degree of the polynomial is not specified, but is at
least 12 in n.

b In the bit operations, a denotes the bit length of the input entries.
c Uses a custom bit representation of intermediate quantities.

Table 3.2: Results for other models of arithmetic

δ-forward approximation to its Jordan Normal Form A = V JV −1 in time poly(n, a, log(1/δ)),
where the degree of the polynomial is at least 12. This algorithm works in the rational
arithmetic model of computation, so it does not quite answer Demmel’s question since it is
not a numerically stable algorithm. However, it enjoys the significant advantage of being able
to compute forward approximations to discontinuous quantities such as the Jordan structure.

As far as we are aware, there are no other published provably polynomial-time algorithms
for the general eigenproblem. The two standard references for diagonalization appearing
most often in theoretical computer science papers do not meet this criterion. In particular,
the widely cited work by Pan and Chen [102] proves that one can compute the eigenvalues
of A in O(nω + n log log(1/δ)) (suppressing logarithmic factors) arithmetic operations by
finding the roots of its characteristic polynomial, which becomes a bound of O(nω+1a +
n2 log(1/δ) log log(1/δ)) bit operations if the characteristic polynomial is computed exactly
in rational arithmetic and the matrix has entries of bit length a. However that paper does
not give any bound for the amount of time taken to find approximate eigenvectors from
approximate eigenvalues, and states this as an open problem.9

Finally, the important work of Demmel, Dumitriu, and Holtz [47] (see also the followup
[9]), which we rely on heavily, does not claim to provably solve the eigenproblem either—it

9“The remaining nontrivial problems are, of course, the estimation of the above output precision p
[sufficient for finding an approximate eigenvector from an approximate eigenvalue], . . . . We leave these open
problems as a challenge for the reader.” – [102, Section 12].
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bounds the running time of one iteration of a specific algorithm, and shows that such an
iteration can be implemented numerically stably, without proving any bound on the number
of iterations required in general.

Hermitian Eigenproblem. For comparison, the eigenproblem for Hermitian matrices is
much better understood. We cannot give a complete bibliography of this huge area, but
mention one relevant landmark result: the work of Wilkinson [132] and Hoffman-Parlett [74] in
the 60’s and 70’s, which shows that the Hermitian eigenproblem can be solved with backward
error δ in O(n3 +n2 log(1/δ)) arithmetic operations with O(log(n/δ)) bits of precision. There
has also recently been renewed interest in this problem in the theoretical computer science
community, with the goal of bringing the runtime close to O(nω): Louis and Vempala [89]
show how to find a δ−approximation of just the largest eigenvalue in O(nω log4(n) log2(1/δ))
bit operations, and Ben-Or and Eldar [21] give an O(nω+1polylog(n))-bit-operation algorithm
for finding a 1/poly(n)-approximate diagonalization of an n×n Hermitian matrix normalized
to have ‖A‖ ≤ 1.

Remark 3.1.9 (Davies’ Conjecture). The beautiful paper [36] introduced the idea of ap-
proximating a matrix function f(A) for nonnormal A by f(A + E) for some well-chosen
E regularizing the eigenvectors of A. This directly inspired our approach to solving the
eigenproblem via regularization.

The existence of an approximate diagonalization (3.1) for every A with a well-conditioned
similarity V (i.e, κ(V ) depending polynomially on δ and n) was precisely the content of
Davies’ conjecture [36], which was recently solved by some of the authors and Mukherjee in
[11]. The existence of such a V is a prerequisite for proving that one can always efficiently
find an approximate diagonalization in finite arithmetic, since if ‖V ‖‖V −1‖ is very large it
may require many bits of precision to represent. Thus, Theorem 3.1.6 can be viewed as an
efficient algorithmic answer to Davies’ question.

Reader Guide. This chapter contains a lot of parameters and constants. On first reading,
it may be good to largely ignore the constants not appearing in exponents, and to keep
in mind the typical setting δ = 1/poly(n) for the accuracy, in which case the important
auxiliary parameters ω, 1−α, ε, β, η are all 1/poly(n), and the machine precision is log(1/u) =
polylog(n).

3.2 Preliminaries

Let M ∈ Cn×n be a complex matrix, not necessarily normal. We will write matrices and
vectors with uppercase and lowercase letters, respectively. Let us denote by Λ(M) the
spectrum of M and by λi(M) its individual eigenvalues. In the same way we denote the
singular values of M by σi(M) and we adopt the convention σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M).
When M is clear from the context we will simplify notation and just write Λ, λi or σi
respectively.
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Recall that the operator norm of M is

‖M‖ = σ1(M) = sup
‖x‖=1

‖Mx‖.

As usual, we will say that M is diagonalizable if it can be written as M = V DV −1 for some
diagonal matrix D whose nonzero entries contain the eigenvalues of M . In this case we have
the spectral expansion

M =
n∑
i=1

λiviw
∗
i , (3.7)

where the right and left eigenvectors vi and w∗j are the columns and rows of V and V −1

respectively, normalized so that w∗i vi = 1.
We now record the proof of Proposition 3.1.1, which follows from a simple contour integral

argument appearing in Section 3.5.1.

Proof of Proposition 3.1.1. We repeat the proof of Lemma 3.5.8 with η = δ, where instead
of using a grid square we use a circular contour around λi with radius ω = gap

2
, so that by

(1.5) we may set ε = gap
2κV

. Note that η < ε/2 and gap(A) ≤ 2 by hypothesis, which gives the
desired bound.

3.2.1 Finite-Precision Arithmetic

We briefly elaborate on the axioms for floating-point arithmetic given in Section 3.1.1. Similar
guarantees to the ones appearing in that section for scalar-scalar operations also hold for
operations such as matrix-matrix addition and matrix-scalar multiplication. In particular, if
A is an n× n complex matrix,

fl(A) = A+ A ◦∆ |∆i,j| < u.

It will be convenient for us to write such errors in additive, as opposed to multiplicative form.
We can convert the above to additive error as follows. Recall that for any n× n matrix, the
spectral norm (the `2 → `2 operator norm) is at most

√
n times the `2 → `1 operator norm,

i.e. the maximal norm of a column. Thus we have

‖A ◦∆‖ ≤
√
nmax

i
‖(A ◦∆)ei‖ ≤

√
nmax

i,j
|∆i,j|max

i
‖Aei‖ ≤ u

√
n‖A‖. (3.8)

For more complicated operations such as matrix-matrix multiplication and matrix inversion,
we use existing error guarantees from the literature. This is the subject of Section 3.2.3.

We will also need to compute the trace of a matrix A ∈ Cn×n, and normalize a vector
x ∈ Cn. Error analysis of these is standard (see for instance the discussion in [70, Section
3.1-3.4, 4.1]) and the results in this chapter are highly insensitive to the details. For simplicity,
calling x̂ := x/‖x‖, we will assume that

|fl (TrA)− TrA| ≤ n‖A‖u (3.9)

‖fl(x̂)− x̂‖ ≤ nu. (3.10)
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Each of these can be achieved by assuming that un ≤ ε for some suitably chosen ε, independent
of n, a requirement which will be depreciated shortly by several tighter assumptions on the
machine precision.

Throughout this chapter, we will take the pedagogical perspective that our algorithms are
games played between the practitioner and an adversary who may additively corrupt each
operation. In particular, we will include explicit error terms (always denoted by E(·)) in each
appropriate step of every algorithm. In many cases we will first analyze a routine in exact
arithmetic—in which case the error terms will all be set to zero—and subsequently determine
the machine precision u necessary to make the errors small enough to guarantee convergence.

3.2.2 Sampling Gaussians in Finite Precision

For various parts of the algorithm, we will need to sample from normal distributions. For our
model of arithmetic, we assume that the complex normal distribution can be sampled up to
machine precision in O(1) arithmetic operations. To be precise, we assume the existence of
the following sampler:

Definition 3.2.1 (Complex Gaussian Sampling). A cN-stable Gaussian sampler N(σ) takes

as input σ ∈ R≥0 and outputs a sample of a random variable G̃ = N(σ) with the property
that there exists G ∼ NC(0, σ2) satisfying

|G̃−G| ≤ cNσ · u

with probability one, in at most TN arithmetic operations for some universal constant TN > 0.
We will only sample O(n2) Gaussians during the algorithm, so this sampling will not

contribute significantly to the runtime. Here as everywhere in the chapter, we will omit issues
of underflow or overflow. To simplify some of our bounds, we will also assume that cN ≥ 1.

3.2.3 Black-box Error Assumptions for Multiplication, Inversion,
and QR

Our algorithm uses matrix-matrix multiplication, matrix inversion, and QR factorization
as primitives. For our analysis, we must therefore assume some bounds on the error and
runtime costs incurred by these subroutines. In this section, we first formally state the kind
of error and runtime bounds we require, and then discuss some implementations known in
the literature that satisfy each of our requirements with modest constants.

Our definitions are inspired by the definition of logarithmic stability introduced in [47].
Roughly speaking, they say that implementing the algorithm with floating point precision u
yields an accuracy which is at most polynomially or quasipolynomially in n worse than u
(possibly also depending on the condition number in the case of inversion). Their definition has
the property that while a logarithmically stable algorithm is not strictly-speaking backward
stable, it can attain the same forward error bound as a backward stable algorithm at the
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cost of increasing the bit length by a polylogarithmic factor. See Section 3 of their paper for
a precise definition and a more detailed discussion of how their definition relates to standard
numerical stability notions.

Definition 3.2.2. A µMM(n)-stable multiplication algorithm takes as input A,B ∈ Cn×n and
a precision u > 0 and outputs C = MM(A,B) satisfying

‖C − AB‖ ≤ µMM(n) · u‖A‖‖B‖,

on a floating point machine with precision u, in TMM(n) arithmetic operations.

Definition 3.2.3. A (µINV(n), cINV)−stable inversion algorithm INV(·) takes as input A ∈
Cn×n and a precision u and outputs C = INV(A) satisfying

‖C − A−1‖ ≤ µINV(n) · u · κ(A)cINV logn‖A−1‖,

on a floating point machine with precision u, in TINV(n) arithmetic operations.

Definition 3.2.4. A µQR(n)-stable QR factorization algorithm QR(·) QRtakes as input A ∈ Cn×n

and a precision u, and outputs [Q,R] = QR(A) such that

1. R is exactly upper triangular.

2. There is a unitary Q′ and a matrix A′ such that

Q′A′ = R, (3.11)

and
‖Q′ −Q‖ ≤ µQR(n)u, and ‖A′ − A‖ ≤ µQR(n)u‖A‖,

on a floating point machine with precision u. Its running time is TQR(n) arithmetic operations.

Remark 3.2.5. Throughout this chapter, to simplify some of our bounds, we will assume
that

1 ≤ µMM(n), µINV(n), µQR(n), cINV log n.

The above definitions can be instantiated with traditional O(n3)-complexity algorithms
for which µMM, µQR, µINV are all O(n) and cINV = 1 [70]. This yields easily-implementable
practical algorithms with running times depending cubically on n.

In order to achieveO(nω)-type efficiency, we instantiate them with fast-matrix-multiplication-
based algorithms and with µ(n) taken to be a low-degree polynomial [47]. Specifically, the
following parameters are known to be achievable.

Theorem 3.2.6 (Fast and Stable Instantiations of MM, INV,QR).
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1. If ω is the exponent of matrix multiplication, then for every η > 0 there is a
µMM(n)−stable multiplication algorithm with µMM(n) = ncη and TMM(n) = O(nω+η),
where cη does not depend on n.

2. Given an algorithm for matrix multiplication satisfying (1), there is a (µINV(n), cINV)-
stable inversion algorithm with

µINV(n) ≤ O(µMM(n)nlg(10)), cINV ≤ 8,

and TINV(n) ≤ TMM(3n) = O(TMM(n)).

3. Given an algorithm for matrix multiplication satisfying (1), there is a µQR(n)−stable
QR factorization algorithm with

µQR(n) = O(ncQRµMM(n)),

where cQR is an absolute constant, and TQR(n) = O(TMM(n)).

In particular, all of the running times above are bounded by TMM(n) for an n× n matrix.

Proof. (1) is Theorem 3.3 of [48]. (2) is Theorem 3.3 (see also equation (9) above its statement)
of [47]. The final claim follows by noting that TMM(3n) = O(TMM(n)) by dividing a 3n× 3n
matrix into nine n×n blocks and proceeding blockwise, at the cost of a factor of 9 in µINV(n).
(3) appears in Section 4.1 of [47].

We remark that for specific existing fast matrix multiplication algorithms such as Strassen’s
algorithm, specific small values of µMM(n) are known (see [48] and its references for details),
so these may also be used as a black box, though we will not do this in this work.

3.3 Pseudospectral Shattering

This section is devoted to our central probabilistic result, Theorem 3.1.4, and the accompanying
notion of pseudospectral shattering which will be used extensively in our analysis of the spectral
bisection algorithm in Section 3.5.

3.3.1 Smoothed Analysis of Gap and Eigenvector Condition
Number

As is customary in the literature, we will refer to an n× n random matrix Gn whose entries
are independent complex Gaussians drawn from N (0, 1C/n) as a normalized complex Ginibre
random matrix. To be absolutely clear, and because other choices of scaling are quite common,
we mean that EGi,j = 0 and E|Gi,j|2 = 1/n.
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In the course of proving Theorem 3.1.4, we will need to bound the probability that the
second-smallest singular value of an arbitrary matrix with small Ginibre perturbation is
atypically small. We begin with a well-known lower tail bound on the singular values of a
Ginibre matrix alone.

Theorem 3.3.1 ([119, Theorem 1.2]). For Gn an n× n normalized complex Ginibre matrix
and for any α ≥ 0 it holds that

P
[
σj(Gn) <

α(n− j + 1)

n

]
≤
(√

2e α
)2(n−j+1)2

.

As in Chapter 2, we can transfer this result to case of a Ginibre perturbation via the
remarkable coupling result of Śniady, which we restate below:

Theorem 3.3.2 (Śniady [116]). Let A1 and A2 be n × n complex matrices such that
σi(A1) ≤ σi(A2) for all 1 ≤ i ≤ n. Assume further that σi(A1) 6= σj(A1) and σi(A2) 6= σj(A2)
for all i 6= j. Then for every t ≥ 0, there exists a joint distribution on pairs of n× n complex
matrices (G1, G2) such that

1. the marginals G1 and G2 are distributed as normalized complex Ginibre matrices, and

2. almost surely σi(A1 +
√
tG1) ≤ σi(A2 +

√
tG2) for every i.

Corollary 3.3.3. For any fixed matrix M and parameters γ, t > 0

P[σn−1(M + γGn) < t] ≤ (e/2)4(tn/γ)8 ≤ 4(tn/γ)8.

Proof. Applying Theorem 3.3.2 to A1 = 0 and A2 = M shows that

P[σn−1(M + γGn) < t] ≤ P[σn−1(γGn) < t] = P[σn−1(Gn) < t/γ].

Invoking Theorem 3.3.1 with j = n− 1 and α replaced by tn/2γ yields the claim.

We will need as well the main theorem of Chapter 2, which shows that the addition of a
small complex Ginibre to an arbitrary matrix tames its eigenvalue condition numbers. We
restate this below:

Theorem 3.3.4 ([11, Theorem 1.5]). Suppose A ∈ Cn×n with ‖A‖ ≤ 1 and δ ∈ (0, 1). Let
Gn be a complex Ginibre matrix, and let λ1, . . . , λn ∈ C be the (random) eigenvalues of
A+ δGn. Then for every measurable open set B ⊂ C,

E
∑
λi∈B

κ(λi)
2 ≤ n2

πδ2
Leb(B).

Our final lemma before embarking on the proof in earnest shows that bounds on the j-th
smallest singular value and eigenvector condition number are sufficient to rule out the presence
of j eigenvalues in a small region. For our particular application we will take j = 2. .

TODO: improve this and ... p r o p a g a t e ?
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Lemma 3.3.5. Let D(z0, r) := {z ∈ C : |z − z0| < r}. If M ∈ Cn×n is a diagonalizable
matrix with at least j eigenvalues in D(z0, r) then

σn−j+1(z0 −M) ≤ rκV (M).

Proof. Write M = V DV −1. By Courant-Fischer:

σn−j+1(z0 −M) = min
S:dim(S)=j

max
x∈S\{0}

‖V (z0 −D)V −1x‖
‖x‖

= min
S:dim(S)=j

max
y∈V (S)\{0}

‖V (z0 −D)y‖
‖V y‖

setting y = V x

= min
S:dim(S)=j

max
y∈S\{0}

‖V (z0 −D)y‖
‖V y‖

since V is invertible

≤ min
S:dim(S)=j

max
y∈S\{0}

‖V ‖‖(z0 −D)y‖
σn(V )‖y‖

≤ κV (M)σn−j+1(z0 −D).

Since z0 −D is diagonal its singular values are just |z0 − λi|, so the j-th smallest is at most
r, finishing the proof.

We now present the main tail bound that we use to control the minimum gap and
eigenvector condition number.

Theorem 3.3.6 (Multiparameter Tail Bound). Let A ∈ Cn×n. Assume ‖A‖ ≤ 1 and γ < 1/2,
and let X := A+ γGn where Gn is a complex Ginibre matrix. For every t, r > 0:

P[κV (X) < t, gap(X) > r, ‖Gn‖ < 4] ≥ 1−
(

144

r2
· 4(trn/γ)8 + (9n2/γ2t2) + 2e−2n

)
.

(3.12)

Proof. Write Λ(X) := {λ1, . . . , λn} for the (random) eigenvalues of X := A + γGn, in
increasing order of magnitude (there are no ties almost surely). Let N ⊂ C be a minimal
r/2-net of B := D(0, 3), recalling the standard fact that one exists of size no more than
(3 · 4/r)2 = 144r2. The most useful feature of such a net is that, by the triangle inequality, for
any a, b ∈ D(0, 3) with distance at most r, there is a point y ∈ N with |y − (a+ b)/2| < r/2
satisfying a, b ∈ D(y, r). In particular, if gap(X) < r, then there are two eigenvalues in the
disk of radius r centered at some point y ∈ N .

Therefore, consider the events

Egap := {gap(X) < r} ⊂ {∃y ∈ N : |D(y, r) ∩ Λ(X)| ≥ 2}
ED := {Λ(X) 6⊆ D(0, 3)} ⊂ {‖Gn‖ ≥ 4} := EG

Eκ := {κV (X) > t}
Ey := {σn−1(y −X) < rt}, y ∈ N .
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Lemma 3.3.5 applied to each y ∈ N with j = 2 reveals that

Egap ⊆ ED ∪ Eκ ∪
⋃
y∈N

Ey,

whence
Egap ∪ Eκ ⊆ ED ∪ Eκ ∪

⋃
y∈N

Ey.

By a union bound, we have

P[Egap ∪ Eκ] ≤ P[ED ∪ Eκ] + |N |max
y∈N

P[Ey]. (3.13)

From the tail bound on the operator norm of a Ginibre matrix in [11, Lemma 2.2],

P[ED] ≤ P[EG] ≤ 2e−(4−2
√

2)2n ≤ 2e−2n. (3.14)

Observe that by (1.1), κV (X) >

√
n

∑
λi∈D(0,3)

κ(λi)2

 ⊂ ED,

which implies that

Eκ ⊂ ED ∪

 ∑
λi∈D(0,3)

κ(λi)
2 > t2/n

 .

Theorem 3.3.4 and Markov’s inequality yields

P

 ∑
λi∈D(0,3)

κ(λi)
2 > t2/n

 ≤ 9n2

γ2

n

t2
=

9n3

t2γ2
.

Thus, we have

P[Eκ ∪ EG] ≤ 9n3

t2γ2
+ 2e−2n.

Corollary 3.3.3 applied to M = −y + A gives the bound

P[Ey] ≤ 4

(
trn

γ

)8

,

for each y ∈ N , and plugging these estimates back into (3.13) we have

P[Egap ∪ Eκ ∪ EG] ≤ 144

r2
· 4
(
trn

γ

)8

+
9n2

γ2t2
+ 2e−2n,

as desired.
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A specific setting of parameters in Theorem 3.3.6 immediately yields Theorem 3.1.4.

Proof of Theorem 3.1.4. Applying Theorem 3.3.6 with parameters t := n2

γ
and r := γ4

n5 , we
have

P[gap(X) > r, κV (X) < t, Λ(X) ⊂ D(0, 3)] ≥ 1−600
n10

γ8

(
γ2

n2

)8

− 9

n2
−2e−2n ≥ 1−O(n−2),

(3.15)
as desired.

Since it is of independent interest in random matrix theory, we record the best bound on
the gap alone that is possible to extract from the theorem above.

Corollary 3.3.7 (Minimum Gap Bound). For X as in Theorem 3.3.6,

P[gap(X) < r] ≤ 2 · 94/5(144 · 4)1/5(n/γ)2+6/5r6/5 ≤ 42(n/γ)3.2r1.2 + 2e−2n.

In particular, the probability is o(1) if r = o((γ/n)8/3).

Proof. Setting

t10 =
9

144 · 4
(γ/nr)6

in Theorem 3.3.6 balances the first two terms and yields the advertised bound.

3.3.2 Shattering

Propositions 1.1.6 and 1.1.7 in the preliminaries together tell us that if the ε-pseudospectrum
of an n × n matrix M has n connected components, then each eigenvalue of any size-ε
perturbation M̃ will lie in its own connected component of Λε(M). The following key
definitions make this phenomenon quantitative in a sense which is useful for our analysis of
spectral bisection.

Definition 3.3.8 (Grid). A grid in the complex plane consists of the boundaries of a lattice
of squares with lower edges parallel to the real axis. We will write

grid(z0, ω, s1, s2) ⊂ C

to denote an s1 × s2 grid of ω × ω-sized squares and lower left corner at z0 ∈ C. Write
diam(g) := ω

√
s2

1 + s2
2for the diameter of the grid.

Definition 3.3.9 (Shattering). A pseudospectrum Λε(A) is shattered with respect to a grid
g if:

1. Every square of g has at most one eigenvalue of A.

2. Λε(A) ∩ g = ∅.
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Figure 3.1: T is a sample of an upper triangular 10×10 Toeplitz matrix with zeros on the diagonal
and an independent standard real Gaussian repeated along each diagonal above the main diagonal.
G is a sample of a 10× 10 complex Ginibre matrix with unit variance entries. Using the MATLAB
package EigTool [133], the boundaries of the ε-pseudospectrum of T (left) and T + 10−6G (right) for
ε = 10−6 are plotted along with the spectra. The latter pseudospectrum is shattered with respect
to the pictured grid.

Observation 3.3.10. As Λε(A) contains a ball of radius ε about each eigenvalue of A,
shattering of the ε-pseudospectrum with respect to a grid with side length ω implies ε ≤ ω/2.

As a warm-up for more sophisticated arguments later on, we give here an easy consequence
of the shattering property.

Lemma 3.3.11. If Λε(M) is shattered with respect to a grid g with side length ω, then
every eigenvalue condition number satisfies κi(M) ≤ 2ω

πε
.

Proof. Let v, w∗ be a right/left eigenvector pair for some eigenvalue λi of M , normalized so
that w∗v = 1. Letting Γ be the positively oriented boundary of the square of g containing λi,
we can extract the projector vw∗ by integrating, and pass norms inside the contour integral
to obtain

κi(A) = ‖vw∗‖ =

∥∥∥∥ 1

2πi

∮
Γ

(z −M)−1dz

∥∥∥∥ ≤ 1

2π

∮
Γ

∥∥(z −M)−1
∥∥ dz ≤ 2ω

πε
. (3.16)

In the final step we have used the fact that, given the definition of pseudospectrum (1.3)
above, Λε(M) ∩ g = ∅ means ‖(z −M)−1‖ ≤ 1/ε on g.

The theorem below quantifies the extent to which perturbing by a Ginibre matrix results
in a shattered pseudospectrum. See Figure 3.1 for an illustration in the case where the initial
matrix is poorly conditioned. In general, not all eigenvalues need move so far upon such a
perturbation, in particular if the respective κi are small.
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Theorem 3.3.12 (Exact Arithmetic Shattering). Let A ∈ Cn×n and X := A+ γGn for Gn a
complex Ginibre matrix. Assume ‖A‖ ≤ 1 and 0 < γ < 1/2. Let g := grid(z, ω, d8/ωe, d8/ωe)
with ω := γ4

4n5 , and z chosen uniformly at random from the square of side ω cornered at
−4− 4i. Then, κV (X) ≤ n2/γ, ‖A−X‖ ≤ 2γ, and Λε(X) is shattered with respect to g for

ε :=
γ5

16n9
,

with probability at least 1− 1/n−O(1/n2) where the implied constant is at most 600.

Proof. Condition on the event in Theorem 3.1.4, so that

κV (X) ≤ n2

γ
, ‖X − A‖ ≤ 4γ, and gap(X) ≥ γ4

n5
= 4ω.

Consider the random grid g. Since D(0, 3) is contained in the square of side length 8 centered
at the origin, every eigenvalue of X is contained in one square of g with probability 1.
Moreover, since gap(X) > 4ω, no square can contain two eigenvalues. Let

distg(z) := min
y∈g
|z − y|.

Let λi := λi(X). We now have for each λi and every s < ω
2

:

P[distg(λi) > s] =
(ω − 2s)2

ω2
= 1− 4s

ω
+

4s2

ω2
≥ 1− 4s

ω
,

since the distribution of λi inside its square is uniform with respect to Lebesgue measure.
Setting s = ω/4n2, this probability is at least 1− 1/n2, so by a union bound

P[min
i≤n

distg(λi) > ω/4n2] > 1− 1/n, (3.17)

i.e., every eigenvalue is well-separated from g with probability 1− 1/n.
We now recall from (1.5) that

Λε(X) ⊂
⋃
i≤n

D(λi, κV (X)ε).

Thus, on the events (3.15) and (3.17), we see that Λε(X) is shattered with respect to g as
long as

κV (X)ε <
ω

4n2
,

which is implied by

ε <
γ4

4n5
· 1

4n2
· γ
n2

=
γ5

16n9
.

Thus, the advertised claim holds with probability at least

1− 1

n
−O(1/n2),

as desired.
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Finally, we show that the shattering property is retained when the Gaussian perturbation
is added in finite precision rather than exactly. This also serves as a pedagogical warmup
for our presentation of more complicated algorithms later in this chapter: we use E to
represent an adversarial roundoff error (as in step 2), and for simplicity neglect roundoff error
completely in computations whose size does not grow with n (such as steps 3 and 4, which
set scalar parameters).

SHATTER

Input: Matrix A ∈ Cn×n, Gaussian perturbation size γ ∈ (0, 1/2).
Requires: ‖A‖ ≤ 1.
Algorithm: (X, ε) = SHATTER(A, γ)

1. Gij ← N(1/n) for i, j = 1, . . . , n.

2. X ← A+ γG+ E.

3. Let g be a random grid with ω = γ4

4n5 and bottom left corner z chosen as in Theorem
3.3.12.

4. ε← 1
2
· γ5

16n9

Output: Matrix X ∈ Cn×n, grid g, shattering parameter ε > 0.
Ensures: ‖X − A‖ ≤ 4γ, κV (X) ≤ n2/γ, and Λε(X) is shattered with respect to g, with
probability at least 1− 1/n−O(1/n2).

Theorem 3.3.13 (Finite Arithmetic Shattering). Assume there is a cN-stable Gaussian
sampling algorithm N satisfying the requirements of Definition 3.2.1. Then SHATTER has
the advertised guarantees as long as the machine precision satisfies

u ≤ 1

2

γ5

16n9
· 1

(3 + cN)
√
n
, (3.18)

and runs in
n2TN + n2 = O(n2)

arithmetic operations.

Proof. The two sources of error in SHATTER are:

1. An additive error of operator norm at most n · cN · (1/
√
n) · u ≤ ·cN

√
nu from N, by

Definition 3.2.1.

2. An additive error of norm at most
√
n · ‖X‖ · u ≤ 3

√
nu, with probability at least

1− 1/n, from the roundoff E in step 2.
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Thus, as long as the precision satisfies (3.18), we have

‖SHATTER(A, γ)− shatter(A, γ)‖ ≤ 1

2

γ5

16n9
,

where shatter(·) refers to the (exact arithmetic) outcome of Theorem 3.3.12. The correctness
of SHATTER now follows from Proposition 1.1.6. Its running time is bounded by

n2TN + n2

arithmetic operations, as advertised.

3.4 Matrix Sign Function

The algortithmic centerpiece of this work is the analysis, in finite arithmetic, of a well-known
iterative method for approximating to the matrix sign function. Recall from Section 3.1 that
if A is a matrix whose spectrum avoids the imaginary axis, then

sgn(A) = P+ − P−

where the latter two are the spectral projectors corresponding to eigenvalues in the open
right and left half-planes respectively. The iterative algorithm we consider approximates the
matrix sign function by repeated application to A of the function

g(z) :=
1

2
(z + z−1) (3.19)

This is simply Newton’s method to find a root of z2 − 1, but one can verify that the function
fixes the left and right halfplanes, and thus we should expect it to push eigenvalues in the
former towards −1, and in the latter towards +1.

In Subsection 3.4.1 we briefly discuss the specific preliminaries that will be used throughout
this section. In Subsection 3.4.2 we give a pseudospectral proof of the rapid global convergence
of SGN when implemented in exact arithmetic. In Subsection 3.4.3 we show that the proof
provided in Subsection 3.4.3 is robust enough to handle the finite arithmetic case; a formal
statement of this main result is the content of Theorem 3.4.9.

3.4.1 Circles of Apollonius

It has been known since antiquity that a circle in the plane may be described as the set of
points a fixed ratio of distances to two focal points. By choosing two such points and varying
the ratio in question, we get a family of circles named for the Greek geometer Apollonius of
Perga. We will exploit several interesting properties enjoyed by these Circles of Apollonius
in the analysis below.
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SGN

Input: Matrix A ∈ Cn×n, pseudospectral guarantee ε, circle parameter α, and desired
accuracy δ
Requires: Λε(A) ⊂ Cα.
Algorithm: S = SGN(A, ε, α, δ)

1. N ← dlg(1/(1− α)) + 3 lg lg(1/(1− α)) + lg lg(1/(βε)) + 7.59e

2. A0 ← A

3. For k = 1, ..., N ,

a) Ak ← 1
2
(Ak−1 + A−1

k−1) + Ek

4. S ← AN

Output: Approximate matrix sign function S
Ensures: ‖S − sgn(A)‖ ≤ δ

More precisely, we analyze the Newton iteration map g in terms of the family of Apollonian
circles whose foci are the points ±1 ∈ C. For the remainder of this section we will write
m(z) = 1−z

1+z
for the Möbius transformation taking the right half-plane to the unit disk, and

for each α ∈ (0, 1) we denote by

C+
α = {z ∈ C : |m(z)| ≤ α} , C−α = {z ∈ C : |m(z)|−1 ≤ α}

the closed region in the right (respectively left) half-plane bounded by such a circle. Write
∂C−α for their boundaries, and Cα = C+

α ∪ C−α for their union.
The region C+

α is a disk centered at 1+α2

1−α2 ∈ R, with radius 2α
1−α2 , and whose intersection

with the real line is the interval (m(α),m(α)−1); C−α can be obtained by reflecting C+
α with

respect to the imaginary axis. For α > β > 0, we will write

A+
α,β = C+

α \ C+
β

for the Apollonian annulus lying inside C+
α and outside C+

β ; note that in our notation this

set does not include ∂C+
β . In the same way define A−α,β for the left half-plane and write

Aα,β = A+
α,β ∪ A−α,β.

Observation 3.4.1 ([105]). The Newton map g is a two-to-one map from C+
α to C+

α2 , and a
two-to-one map from C−α to C−α2 .

Proof. This follows from the fact that for each z in the right half-plane,

|m(g(z))| =
∣∣∣∣1− 1

2
(z + 1/z)

1 + 1
2
(z + 1/z)

∣∣∣∣ =

∣∣∣∣(1− z)2

(z + 1)2

∣∣∣∣ = |m(z)|2
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Figure 3.2: Apollonian circles appearing in the analysis of the Newton iteration. Depicted are
C+

α2k
for α = 0.8 and k = 0, 1, 2, 3.

and similarly for the left half-plane.

It follows from Observation 3.4.1 that under repeated application of the Newton map g,
any point in the right or left half-plane converges to +1 or −1, respectively.

3.4.2 Exact Arithmetic

Here we denote by A0 = A and Ak+1 = g(Ak). In the case of exact arithmetic, Observation
3.4.1 implies global convergence of the Newton iteration when A is diagonalizable. For the
convenience of the reader we provide this argument (due to [105]) below.

Proposition 3.4.2. Let A be a diagonalizable matrix and assume that Λ(A) ⊂ Cα for some
α ∈ (0, 1). Then for every N ∈ N we have the guarantee

‖AN − sgn(A)‖ ≤ 4α2N

α2N+1 + 1
· κV (A).

Moreover, when A does not have eigenvalues on the imaginary axis the minimum α for which
Λ(A) ⊂ Cα is given by

α2 = max
i

{
1− 4|<(λi(A))|
|λi(A)− sgn(A)|2

}
Proof. Consider the spectral decomposition A =

∑n
i=1 λiviw

∗
i , and denote by λ

(N)
i the eigen-

values of AN .
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By Observation 3.4.1 we have that Λ(AN) ⊂ Cα2N and sgn(λi) = sgn(λ
(N)
i ). Moreover,

AN and sgn(A) have the same eigenvectors. Hence

‖AN − sgn(A)‖ ≤

∥∥∥∥∥∥
n∑

<(λi)>0

(λ
(N)
i − 1)viw

∗
i

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
<(λi)<0

(λ
(N)
i + 1)viw

∗
i

∥∥∥∥∥∥ . (3.20)

Now we will use that for any matrix X we have that ‖X‖ ≤ κV (X)spr(X) where spr(X)
denotes the spectral radius of X. Observe that the spectral radii of the two matrices appearing
on the right hand side of (3.20) are bounded by maxi |λi− sgn(λi)|, which in turn is bounded
by the radius of the circle C+

α2N
, namely 2α2N/(α2N+1

+1). On the other hand, the eigenvector

condition number of these matrices is bounded by κV (A). This concludes the first part of the
statement.

In order to compute α note that if z = x+ iy with x > 0, then

|m(z)|2 =
(1− x)2 + y2

(1 + x)2 + y2
= 1− 4x

(1 + x)2 + y2
,

and analogously when x < 0 and we evaluate |m(z)|−2.

The above analysis becomes useless when trying to prove the same statement in the
framework of finite arithmetic. This is due to the fact that at each step of the iteration the
roundoff error can make the eigenvector condition numbers of the Ak grow. In fact, since
κV (Ak) is sensitive to infinitesimal perturbations whenever Ak has a multiple eigenvalue, it
seems difficult to control it against adversarial perturbations as the iteration converges to
sgn(Ak) (which has very high multiplicity eigenvalues). A different approach [105] yields a
proof of convergence in exact arithmetic even when A is not diagonalizable. However, this
proof relies heavily on the fact that m(AN ) is an exact power of m(A0), or more precisely, it
requires the sequence Ak to have the same generalized eigenvectors, which is again not the
case in the finite arithmetic setting.

Therefore, a robust version, tolerant to perturbations, of the above proof is needed. To
this end, instead of simultaneously keeping track of the eigenvector condition number and the
spectrum of the matrices Ak, we will just show that the εk−pseudospectra of these matrices
are contained in a certain shrinking region dependent on k. This invariant is inherently robust
to perturbations smaller than εk, unaffected by clustering of eigenvalues due to convergence,
and allows us to bound the accuracy and other quantities of interest via the functional
calculus. The following lemma shows how to obtain a bound on ‖AN − sgn(A)‖ solely using
information from the pseudospectrum.

Lemma 3.4.3 (Pseudospectral Error Bound). Assume that εN > 0 and αN ∈ (0, 1) satisfy
ΛεN (AN) ⊂ CαN . Then we have the guarantee

‖AN − sgn(A)‖ ≤ 8α2
N

(1− αN)2(1 + αN)εN
. (3.21)
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Proof. Note that sgn(A) = sgn(AN). Using the functional calculus we get

‖AN − sgn(AN)‖ =

∥∥∥∥∥ 1

2πi

∮
∂C+

αN

z(z − An)−1 − (z − An)−1 dz

+
1

2πi

∮
∂C−αN

z(z − An)−1 + (z − An)−1 dz

∥∥∥∥∥
≤
`(∂C+

αN
)

π
sup{|z − 1| : z ∈ C+

αN
} 1

εN
by the triangle inequality and symmetry

=
4αN

1− α2
N

(
1 + αN
1− αN

− 1

)
1

εN

=
8α2

N

(1− αN)2(1 + αN)εN
.

The key feature of (3.21) is that the accuracy depends on the square of the circle parameter
α. In view of this bound it is now enough to find sequences αk and εk such that

Λεk(Ak) ⊂ C+
αk

and α2
k/εk converges quadratically to zero, which will follow if εk shrinks at roughly the same

rate as αk. The lemma below is instrumental in determining such sequences.

Lemma 3.4.4 (Key Lemma). If Λε(A) ⊂ Cα, then for every α′ > α2, we have Λε′(g(A)) ⊂ Cα′
where

ε′ := ε
(α′ − α2)(1− α2)

8α
.

Proof. From the definition of pseudospectrum, our hypothesis implies ‖(z − A)−1‖ < 1/ε for
every z outside of C+

α ∪C−α . The proof will hinge on the observation that, for each α′ ∈ (α2, α),
this resolvent bound allows us to bound the resolvent of g(A) everywhere in the Appolonian
annuli Aα,α′ .

Let w ∈ Aα,α′ . We must show that w 6∈ Λε′(g(A)). Since w 6∈ Cα2 , Observation 3.4.1
ensures no z ∈ Cα satisfies g(z) = w; in other words, the function (w− g(z))−1 is holomorphic
in z on Cα. As Λ(A) ⊂ Λε(A) ⊂ Cα, Observation 3.4.1 also guarantees that Λ(g(A)) ⊂ Cα2 .
Thus for w in the union of the two Appolonian annuli in question, we can calculate the
resolvent of g(A) at w using the holomorphic functional calculus:

(w − g(A))−1 =
1

2πi

∮
∂Cα

(w − g(z))−1(z − A)−1dz,
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Figure 3.3: Illustration of the proof of Lemma 3.4.4

where by this we mean to sum the integrals over ∂C+
α and ∂C−α , both positively oriented.

Taking norms, passing inside the integral, and applying Observation 3.4.1 one final time, we
get: ∥∥(w − g(A))−1

∥∥ ≤ 1

2π

∮
∂Cα

|(w − g(z))−1| · ‖(z − A)−1‖dz

≤
` (∂C+

α ) supy∈C+

α2
|(w − y)−1|+ `((∂C−α ) supy∈C−

α2
|(w − y)−1|

2πε

≤ 1

ε

8α

(α′ − α2)(1− α2)
.

In the last step we also use the forthcoming Lemma 3.4.5. Thus, with ε′ defined as in the
theorem statement, Aα,α′ contains none of the ε′-pseudospectrum of g(A). Since Λ(g(A)) ⊂
Cα2 , Theorem 1.1.7 tells us that there can be no ε′-pseudospectrum in the remainder of
C \ Cα′ , as such a connected component would need to contain an eigenvalue of g(A).

Lemma 3.4.5. Let 1 > α, β > 0 be given. Then for any x ∈ ∂Cα and y ∈ ∂Cβ, we have
|x− y| ≥ (α− β)/2.

Proof. Without loss of generality x ∈ ∂C+
α and y ∈ ∂C+

β . Then we have

|α− β| = |m(x)−m(y)| = 2|x− y|
|1 + x||1 + y|

≤ 2|x− y|.

Lemma 3.4.4 will also be useful in bounding the condition numbers of the Ak, which is
necessary for the finite arithmetic analysis.
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Corollary 3.4.6 (Condition Number Bound). Using the notation of Lemma 3.4.4, if Λε(A) ⊂
Cα, then

‖A−1‖ ≤ 1

ε
and ‖A‖ ≤ 4α

(1− α)2ε
.

Proof. The bound ‖A−1‖ ≤ 1/ε follows from the fact that 0 /∈ Cα ⊃ Λε(A). In order to bound
A we use the contour integral bound

‖A‖ =

∥∥∥∥ 1

2πi

∮
∂Cα

z(z − A)−1 dz

∥∥∥∥
≤ `(∂Cα)

2π

(
sup
z∈∂Cα

|z|
)

1

ε

=
4α

1− α2

1 + α

1− α
1

ε
.

Another direct application of Lemma 3.4.4 yields the following.

Lemma 3.4.7. Let ε > 0. If Λε(A) ⊂ Cα, and 1/α > D > 1 then for every N we have the
guarantee

ΛεN (AN) ⊂ CαN ,

for αN = (Dα)2N/D and εN = αN ε
α

(
(D−1)(1−α2)

8D

)N
.

Proof. Define recursively α0 = α, ε0 = ε, αk+1 = Dα2
k and εk+1 = 1

8
εkαk(D− 1)(1− α2

0). It is
easy to see by induction that this definition is consistent with the definition of αN and εN
given in the statement.

We will now show by induction that Λεk(Ak) ⊂ Cαk . Assume the statement is true for
k, so from Lemma 3.4.4 we have that the statement is also true for Ak+1 if we pick the
pseudospectral parameter to be

ε′ = εk
(αk+1 − α2

k)(1− α2
k)

8αk
=

1

8
εkαk(D − 1)(1− α2

k).

On the other hand

1

8
εkαk(D − 1)(1− α2

k) ≥
1

8
εkαk(D − 1)(1− α2

0) = εk+1,

which concludes the proof of the first statement.

We are now ready to prove a pseudospectral version of Proposition 3.4.2.
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Proposition 3.4.8. Let A ∈ Cn×n be a diagonalizable matrix and assume that Λε(A) ⊂ Cα
for some α ∈ (0, 1). Then, for any 1 < D < 1

α
for every N we have the guarantee

‖AN − sgn(A)‖ ≤ (Dα)2N · πα(1− α2)2

8ε
·
(

8D

(D − 1)(1− α2)

)N+2

.

Proof. Using the choice of αk and εk given in the proof of Lemma 3.4.7 and the bound (3.21),
we get that

‖AN − sgn(A)‖ ≤ 8πα2
N

(1− αN)2(1 + αN)εN

=
8πα0αN

ε0(1− αN)2(1 + αN)

(
8D

(D − 1)(1− α2
0)

)N
= (Dα0)2N 8D3πα0

(D − (Dα0)2N )2(D + (Dα0)2N )ε0

(
8D

(D − 1)(1− α2
0)

)N
≤ (Dα0)2N 8D2πα0

(D − 1)2ε0

(
8D

(D − 1)(1− α2
0)

)N
= (Dα0)2N πα0(1− α2

0)2

8ε0

(
8D

(D − 1)(1− α2
0)

)N+2

,

where the last inequality was taken solely to make the expression more intuitive, since not
much is lost by doing so.

3.4.3 Finite Arithmetic

Finally, we turn to the analysis of SGN in finite arithmetic. By making the machine precision
small enough, we can bound the effect of roundoff to ensure that the parameters αk, εk are
not too far from what they would have been in the exact arithmetic analysis above. We will
stop the iteration before any of the quantities involved will become exponentially small, so
we will only need polylog(1− α0, ε0, β) bits of precision, where β is the accuracy parameter.

In exact arithmetic, recall that the Newton iteration is given by Ak+1 = g(Ak) =
1
2
(Ak + A−1

k ). Here we will consider the finite arithmetic version G of the Newton map g,
defined as G(A) := g(A) + EA where EA is an adversarial perturbation coming from the

round-off error. Hence, the sequence of interest is given by Ã0 := A and Ãk+1 := G(Ãk).
In this subsection we will prove the following theorem concerning the runtime and precision

of SGN. Our assumptions on the size of the parameters α0, β are in place only to simplify
the analysis; these assumptions are not required for the execution of the algorithm.

Theorem 3.4.9 (Main guarantees for SGN). Assume INV is a (µINV(n), cINV)-stable matrix
inversion algorithm satisfying Definition 3.2.3. Let ε0 ∈ (0, 1), β ∈ (0, 1/12), and assume

A = Ã0 has its ε0-pseudospectrum contained in Cα0 where 0 < 1 − α0 < 1/100. Run SGN
with
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N = dlg(1/(1− α0)) + 3 lg lg(1/(1− α0)) + lg lg(1/(βε0)) + 7.59e

iterations, as in the statement of the algorithm. Then ÃN = SGN(A) satisfies the advertised
accuracy guarantee

‖ÃN − sgn(A)‖ ≤ β

when run with machine precision satisfying

u ≤ α
2N+1(cINV logn+3)
0

2µINV(n)
√
nN

,

corresponding to at most

lg(1/u) = O(log n log3(1/(1− α0))(log(1/β) + log(1/ε0)))

required bits of precision. The number of arithmetic operations is at most

N(4n2 + TINV(n)).

Later on, we will need to call SGN on a matrix with shattered pseudospectrum; the lemma
below calculates acceptable parameter settings for shattering so that the pseudospectrum is
contained in the required pair of Appolonian circles, satisfying the hypothesis of Theorem
3.4.9.

Lemma 3.4.10. IfA has ε-pseudospectrum shattered with respect to a grid g = grid(z0, ω, s1, s2)
that includes the imaginary axis as a grid line, then one has Λε0(A) ⊆ Cα0 where ε0 = ε/2
and

α0 = 1− ε

diam(g)2
.

In particular, if ε is at least 1/poly(n) and ωs1 and ωs2 are at most poly(n), then ε0 and
1− α0 are also at least 1/poly(n).

Proof. First, because it is shattered, the ε/2-pseudospectrum of A is at least distance ε/2
from g. Recycling the calculation from Proposition 3.4.2, it suffices to take

α2
0 = max

z∈Λε/2(A)

(
1− 4|<z|
|z − sgn(z)|2

)
.

From what we just observed about the pseudospectrum, we can take |<z| ≥ ε/2. To bound
the denominator, we can crudely use the fact any two points inside the grid are at distance
no more than diam(g). Finally, we use

√
1− x ≤ 1− x/2 for any x ∈ (0, 1).

The proof of Theorem 3.4.9 will proceed as in the exact arithmetic case, with the
modification that εk must be decreased by an additional factor after each iteration to account
for roundoff. At each step, we set the machine precision u small enough so that the εk remain
close to what they would be in exact arithmetic. For the analysis we will introduce an explicit
auxiliary sequence ek that lower bounds the εk, provided that u is small enough.
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Lemma 3.4.11 (One-step additive error). Assume the matrix inverse is computed by an
algorithm INV satisfying the guarantee in Definition 3.2.3. Then G(A) = g(A) + E for some
error matrix E with norm

‖E‖ ≤
(
‖A‖+ ‖A−1‖+ µINV(n)κ(A)cINV logn‖A−1‖

)
4
√
nu. (3.22)

The proof of this lemma is deferred to Appendix A.2.
With the error bound for each step in hand, we now move to the analysis of the whole

iteration. It will be convenient to define s := 1− α0.. As in the exact arithmetic case, for
k ≥ 1, we will recursively define decreasing sequences αk and εk maintaining the property

Λεk(Ãk) ⊂ Cαk for all k ≥ 0 (3.23)

by induction as follows:

1. The base case k = 0 holds because by assumption, Λε0 ⊂ Cα0 .

2. Here we recursively define αk+1. Set

αk+1 := (1 + s/4)α2
k.

In the notation of Subsection 3.4.2, this corresponds to setting D = 1 + s/4. This
definition ensures that α2

k ≤ αk+1 ≤ αk for all k, and also gives us the bound (1 +
s/4)α0 ≤ 1− s/2. We also have the closed form

αk = (1 + s/4)2k−1α2k

0 ,

which implies the useful bound

αk ≤ (1− s/2)2k . (3.24)

3. Here we recursively define εk+1. Combining Lemma 3.4.4, the recursive definition of

αk+1, and the fact that 1−α2
k ≥ 1−α2

0 ≥ 1−α0 = s, we find that Λε′

(
g(Ãk)

)
⊂ Cαk+1

,

where

ε′ = εk
(αk+1 − α2

k) (1− α2
k)

8αk
= εk

sαk(1− α2
k)

32
≥ εk

αks
2

32
.

Thus in particular

Λεkαks2/32

(
g(Ãk)

)
⊂ Cαk+1

.

Since Ãk+1 = G(Ãk) = g(Ãk) + Ek, for some error matrix Ek arising from roundoff,
Proposition 1.1.6 ensures that if we set

εk+1 := εk
s2αk
32
− ‖Ek‖ (3.25)

we will have Λεk+1
(Ãk+1) ⊂ Cαk+1

, as desired.
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We now need to show that the εk do not decrease too fast as k increases. In view of
(3.25), it will be helpful to set the machine precision small enough to guarantee that ‖Ek‖ is

a small fraction of εk
αks

2

32
.

First, we need to control the quantities ‖Ãk‖, ‖Ã−1
k ‖, and κ(Ãk) = ‖Ãk‖‖Ã−1

k ‖ appearing
in our upper bound (3.22) on ‖Ek‖ from Lemma 3.4.11, as functions of εk. By Corollary
3.4.6, we have

‖Ã−1
k ‖ ≤

1

εk
and ‖Ãk‖ ≤ 4

αk
(1− αk)2εk

≤ 4

s2εk
.

Thus, we may write the coefficient of u in the bound (3.22) as

Kεk :=

[
4

s2εk
+

1

εk
+ µINV(n)

(
4

s2ε2
k

)cINV logn
1

εk

]
4
√
n

so that Lemma 3.4.11 reads
‖Ek‖ ≤ Kεku. (3.26)

Plugging this into the definition (3.25) of εk+1,we have

εk+1 ≥ εk
s2αk
32
−Kεku. (3.27)

Now suppose we take u small enough so that

Kεku ≤
1

3
εk
s2αk
32

. (3.28)

For such u, we then have

εk+1 ≥
2

3
εk
s2αk
32

, (3.29)

which implies

‖Ek‖ ≤
1

2
εk+1; (3.30)

this bound is loose but sufficient for our purposes. Inductively, we now have the following
bound on εk in terms of αk:

Lemma 3.4.12 (Lower bound on εk). Let k ≥ 0, and for all 0 ≤ i ≤ k−1, assume u satisfies
the requirement (3.28):

Kεiu ≤
1

3
εi
s2αi
32

.

Then we have

εk ≥ ek := ε0

(
s2

50

)k
αk.

In fact, it suffices to assume the hypothesis only for i = k − 1.
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Proof. The last statement follows from the fact that Kεi is increasing and εi is decreasing in
i.

Since (3.28) implies (3.29), we may apply (3.29) repeatedly to obtain

εk ≥ ε0(s2/48)k
k−1∏
i=0

αi

= ε0(s2/48)k(1 + s/4)2k−1−kα2k−1
0 by the definition of αi

= ε0

(
s2

48(1 + s/4)

)k
αk
α0

≥ ε0

(
s2

50

)k
αk. α0 ≤ 1, s < 1/8

We now show that the conclusion of Lemma 3.4.12 still holds if we replace εi everywhere in
the hypothesis by ei, which is an explicit function of ε0 and α0 defined in Lemma 3.4.12. Note
that we do not know εi ≥ ei a priori, so to avoid circularity we must use a short inductive
argument.

Corollary 3.4.13 (Lower bound on εk with predictable hypothesis). Let k ≥ 0, and for all
0 ≤ i ≤ k − 1, assume u satisfies

Keiu ≤
1

3
ei
s2αi
32

(3.31)

where ei is defined in Lemma 3.4.12. Then we have

εk ≥ ek.

In fact, it suffices to assume the hypothesis only for i = k − 1.

Proof. The last statement follows from the fact that ei is decreasing in i.
Assuming the full hypothesis of this lemma, we prove εi ≥ ei for 0 ≤ i ≤ k by induction

on i. For the base case, we have ε0 ≥ e0 = ε0α0.
For the inductive step, assume εi ≥ ei. Then as long as i ≤ k − 1, the hypothesis of this

lemma implies

Kεiu ≤
1

3
εi
s2αi
32

,

so we may apply Lemma 3.4.12 to obtain εi+1 ≥ ei+1, as desired.

Lemma 3.4.14. Suppose u satisfies the requirement (3.28) for all 0 ≤ k ≤ N . Then

‖ÃN − sgn(A)‖ ≤ 8

s

N−1∑
k=0

‖Ek‖
ε2
k+1

+
8 · 50N

s2N+2ε0

(1− s/2)2N . (3.32)
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Proof. Since sgn = sgn ◦ g, for every k we have

‖sgn(Ãk+1)− sgn(Ãk)‖ = ‖sgn(Ãk+1)− sgn(g(Ãk))‖ = ‖sgn(Ãk+1)− sgn(Ãk+1 − Ek)‖.

From the holomorphic functional calculus we can rewrite ‖sgn(Ãk+1)− sgn(Ãk+1 − Ek)‖ as
the norm of a certain contour integral, which in turn can be bounded as follows:

1

2π

∥∥∥∥∥
∮
∂C+

αk+1

[(z − Ãk+1)−1 − (z − (Ãk+1 − Ek))−1] dz

−
∮
∂C−αk+1

[(z − Ãk+1)−1 − (z − (Ãk+1 − Ek))−1] dz

∥∥∥∥∥
=

1

2π

∥∥∥∥∥
∮
∂C+

αk+1

[(z − (Ãk+1 − Ek))−1Ek(z − Ãk+1)−1] dz

−
∮
∂C−αk+1

[(z − (Ãk+1 − Ek))−1Ek(z − Ãk+1)−1] dz

∥∥∥∥∥
≤ 1

π

∮
∂C+

αk+1

‖(z − (Ãk+1 − Ek))−1‖‖Ek‖‖(z − Ãk+1)−1‖ dz

≤ 1

π
`(∂C+

αk+1
)‖Ek‖

1

εk+1 − ‖Ek‖
1

εk+1

=
4αk+1

1− α2
k+1

‖Ek‖
1

εk+1 − ‖Ek‖
1

εk+1

,

where we use the definition (1.3) of pseudospectrum and Proposition 1.1.6, together with the
property (3.23). Ultimately, this chain of inequalities implies

‖sgn(Ãk+1)− sgn(Ãk+1 − Ek)‖ ≤
4αk+1

1− α2
k+1

‖Ek‖
1

εk+1 − ‖Ek‖
1

εk+1

.

Summing over all k and using the triangle inequality, we obtain

‖sgn(ÃN)− sgn(Ã0)‖ ≤
N−1∑
k=1

4αk+1

1− α2
k+1

‖Ek‖
1

εk+1 − ‖Ek‖
1

εk+1

≤ 8

s

N−1∑
k=0

‖Ek‖
ε2
k+1

,

where in the last step we use αk ≤ 1 and 1− α2
k+1 ≥ s, as well as (3.30).
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By Lemma 3.4.3, we have

‖ÃN − sgn(ÃN)‖ ≤ 8α2
N

(1− αN)2(1 + αN)εN

≤ 8

s2
αN

αN
εN

≤ 8

s2
αN

1

ε0

(
50

s2

)N
≤ 8

s2ε0

(1− s/2)2N
(

50

s2

)N
≤ 8 · 50N

s2N+2ε0

(1− s/2)2N .

where we use s < 1/2 in the last step.
Combining the above with the triangle inequality, we obtain the desired bound.

We would like to apply Lemma 3.4.14 to ensure ‖ÃN − sgn(A)‖ < β. The bound in
Lemma 3.4.14 is the sum of two terms; we will make each term less than β/2. The bound for
the second term will yield a sufficient condition on the number of iterations N . Given that,
the bound on the first term will give a sufficient condition on the machine precision u. This
will be the content of Lemmas 3.4.16 and 3.4.17.

We start with the second term. The following preliminary lemma will be useful:

Lemma 3.4.15. Let 1/800 > t > 0 and 1/2 > c > 0 be given. Then for

j ≥ lg(1/t) + 2 lg lg(1/t) + lg lg(1/c) + 1.62,

we have
(1− t)2j

t2j
< c.

The proof is deferred to Appendix A.2.

Lemma 3.4.16. Suppose we have

N ≥ lg(8/s) + 2 lg lg(8/s) + lg lg(16/(βs2ε0)) + 4.

Then
8 · 50N

s2N+2ε0

(1− s/2)2N ≤ β/2.

Proof. It is sufficient that
8 · 64N

s2N+2ε0

(1− s/8)2N ≤ β/2.

The result now follows from applying Lemma 3.4.15 with c = βs2ε0/16 and t = s/8.
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Now we move to the first term in the bound of Lemma 3.4.14.

Lemma 3.4.17. Suppose

N ≥ lg(8/s) + 2 lg lg(8/s) + lg lg(16/(βs2ε0)) + 1.62,

and suppose the machine precision u satisfies

u ≤ (1− s)2N+1(cINV logn+3)

2µINV(n)
√
nN

.

Then we have
8

s

N−1∑
k=0

‖Ek‖
ε2
k+1

≤ β/2.

Proof. It suffices to show that for all 0 ≤ k ≤ N − 1,

‖Ek‖ ≤
βε2

k+1s

16N
.

In view of (3.26), which says ‖Ek‖ ≤ Kεku, it is sufficient to have for all 0 ≤ k ≤ N − 1

u ≤ 1

Kεk

βε2
k+1s

16N
. (3.33)

For this, we claim it is sufficient to have for all 0 ≤ k ≤ N − 1

u ≤ 1

Kek

βe2
k+1s

16N
. (3.34)

Indeed, using the facts β < 1/6, and ek+1 ≤ ek ≤ ε0αk ≤ αk, the condition (3.34) is the
hypothesis of Corollary 3.4.13, so we have the conclusion ek ≤ εk for all 0 ≤ k ≤ N , which
implies the condition (3.33).

Finally, because 1/Kek and ek are decreasing in k, it is sufficient to have the single
condition

u ≤ 1

KeN

βe2
Ns

16N
.

We continue the chain of sufficient conditions on u, where each line implies the line above:

u ≤ 1

KeN

βe2
Ns

16N

u ≤ 1[
4

s2eN
+ 1

eN
+ µINV(n)

(
4

s2e2N

)cINV logn
1
eN

]
4
√
n

βe2
Ns

16N

u ≤ 1

6µINV(n)
(

4
s2eN

)cINV logn+1

4
√
n

βe2
Ns

16N

u ≤ β

6 · 4 · 16µINV(n)
√
nN

(
eNs

2

4

)cINV logn+3

.
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where we use the bound 1
eN
≤ 4

s2e2N
without much loss, and we also assume µINV(n) ≥ 1 and

cINV log n ≥ 1 for simplicity.
Substituting the value of eN as defined in Lemma 3.4.12, we get the sufficient condition

u ≤ β

384µINV(n)
√
nN

(
ε0(s2/50)NαNs

2

4

)cINV logn+3

.

Replacing αN by the smaller quantity α2N

0 = (1 − s)2N and cleaning up the constants
yields the sufficient condition

u ≤ β

400µINV(n)
√
nN

(
ε0(s2/50)N(1− s)2Ns2

4

)cINV logn+3

.

Now we finally use our hypothesis on the size of N to simplify this expression. Applying
Lemma 3.4.16, we have

ε0(s2/50)N/4 ≥ 4(1− s)2N

β
.

Thus, our sufficient condition becomes

u ≤ β

400µINV(n)
√
nN

(
4(1− s)2N+1

β

)cINV logn+3

.

To make the expression simpler, since cINV log n + 3 ≥ 4 we may pull out a factor of
44 > 200 and remove the occurrences of β to yield the sufficient condition

u ≤ (1− s)2N+1(cINV logn+3)

2µINV(n)
√
nN

.

Matching the statement of Theorem 3.4.9, we give a slightly cleaner sufficient condition
on N , the proof of which is deferred to Appendix A.2.

Lemma 3.4.18 (Final condition on N). If

N = dlg(1/s) + 3 lg lg(1/s) + lg lg(1/(βε0)) + 7.59e,

then
N ≥ lg(8/s) + 2 lg lg(8/s) + lg lg(16/(βs2ε0)) + 1.62.

Lemma 3.4.19 (Bit length computation). Suppose

N = dlg(1/s) + 3 lg lg(1/s) + lg lg(1/(βε0)) + 7.59e
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and

u ≤ (1− s)2N+1(cINV logn+3)

2µINV(n)
√
nN

.

Then
log(1/u) = O

(
log n log(1/s)3(log(1/β) + log(1/ε0))

)
.

Proof. Immediately we have

log(1/u) = O
(
log(1/β) + log µINV(n) + log n+ logN + (log n)2N+1 log(1/(1− s))

)
.

We first focus on the term 2N+1 log(1/(1− s)). Note that log(1/(1− s)) = O(s). Thus,

2N+1 log(1/(1−s)) = (1/s)·23 lg lg(1/s)+lg lg(1/(βε0))+9.59·O(s) = O(log(1/s)3(log(1/β)+log(1/ε0))).

Using that µINV(n) = poly(n) and discarding subdominant terms, we obtain the desired
bound.

This completes the proof of Theorem 3.4.9. Finally, we may prove the theorem advertised
in the Introduction.

Proof of Theorem 3.1.5. Set ε := min{ 1
K
, 1}. Then Λε(A) does not intersect the imaginary

axis, and furthermore Λε(A) ⊆ D(0, 2) because ‖A‖ ≤ 1. Thus, we may apply Lemma 3.4.10
with diam(g) = 4

√
2 to obtain parameters α0, ε0 with the property that log(1/(1− α0)) and

log(1/ε0) are both O(logK). Theorem 3.4.9 now yields the desired conclusion.

3.5 Spectral Bisection Algorithm

In this section we will prove Theorem 3.1.6. As discussed in Section 3.1, our algorithm is not
new, and in its idealized form it reduces to the two following tasks:

Split: Given an n× n matrix A, find a partition of the spectrum into pieces of roughly
equal size, and output spectral projectors P± onto each of these pieces.

Deflate: Given an n × n rank-k projector P , output an n × k matrix Q with orthogonal
columns that span the range of P .

These routines in hand, on input A one can compute P± and the corresponding Q±, and
then find the eigenvectors and eigenvalues of A± := Q∗±AQ±. The observation below verifies
that this recursion is sound.

Observation 3.5.1. The spectrum of A is exactly Λ(A+) t Λ(A−), and every eigenvector of
A is of the form Q±v for some eigenvector v of one of A±.
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The difficulty, of course, is that neither of these routines can be executed exactly: we will
never have access to true projectors P±, nor to the actual orthogonal matrices Q± whose
columns span their range, and must instead make do with approximations. Because our
algorithm is recursive and our matrices nonnormal, we must take care that the errors in
the sub-instances A± do not corrupt the eigenvectors and eigenvalues we are hoping to find.
Additionally, the Newton iteration we will use to split the spectrum behaves poorly when an
eigenvalue is close to the imaginary axis, and it is not clear how to find a splitting which is
balanced.

Our tactic in resolving these issues will be to pass to our algorithms a matrix and a grid
with respect to which its ε-pseudospectrum is shattered. To find an approximate eigenvalue,
then, one can settle for locating the grid square it lies in; containment in a grid square is
robust to perturbations of size smaller than ε. The shattering property is robust to small
perturbations, inherited by the subproblems we pass to, and—because the spectrum is
quantifiably far from the grid lines—allows us to run the Newton iteration in the first place.

Let us now sketch the implementations and state carefully the guarantees for SPLIT and
DEFLATE; the analysis of these will be deferred to Appendices A.3 and A.4. Our splitting
algorithm is presented a matrix A whose ε-pseudospectrum is shattered with respect to a
grid g. For any vertical grid line with real part h, Tr sgn(A− h) gives the difference between
the number of eigenvalues lying to its left and right. As

|Tr SGN(A− h)− Tr sgn(A− h)| ≤ n‖SGN(A− h)− sgn(A− h)‖,

we can determine these eigenvalue counts exactly by running SGN to accuracy O(1/n) and
rounding Tr SGN(A − h) to the nearest integer. We will show in Appendix A.3 that, by
mounting a binary search over horizontal and vertical lines of g, we will always arrive at a
partition of the eigenvalues into two parts with size at least min{n/5, 1}. Having found it, we
run SGN one final time at the desired precision to find the approximate spectral projectors.

Theorem 3.5.2 (Guarantees for SPLIT). Assume INV is a (µINV, cINV)-stable matrix inversion
algorithm satisfying Definition 3.2.3. Let ε ≤ 0.5, β ≤ 0.05/n, and ‖A‖ ≤ 4 and g have side
lengths of at most 8, and define

NSPLIT := lg
256

ε
+ 3 lg lg

256

ε
+ lg lg

4

βε
+ 7.59.

Then SPLIT has the advertised guarantees when run on a floating point machine with precision

u ≤ uSPLIT := min

{(
1− ε

256

)2NSPLIT+1(cINV logn+3)

2µINV(n)
√
nNSPLIT

,
ε

100n

}
,

Using at most

TSPLIT(n, g, ε, β) ≤ 12 lg
1

ω(g)
·NSPLIT ·

(
TINV(n) +O(n2)

)
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SPLIT

Input: Matrix A ∈ Cn×n, pseudospectral parameter ε, grid g = grid(z0, ω, s1, s2), and
desired accuracy β
Requires: Λε(A) is shattered with respect to g, and β ≤ 0.05/n

Algorithm: (P̃±, g±) = SPLIT(A, ε, g, β)

1. Execute a binary search over horizontal grid shifts h until

Tr SGN

(
A− h, ε/4, 1− ε

2 diam(g)2
, β

)
≤ 3n/5.

2. If this fails, set A← iA and repeat with vertical grid shifts

3. Once a shift is found,

P̃± ← 1
2

(
SGN

(
A− h, ε/4, 1− ε

2 diam(g)2
, β

)
± 1

)
,

and g± are set to the two subgrids

Output: Two matrices P̃± ∈ Cn×n, two subgrids g±, and two numbers n±
Ensures: Each subgrid g± contains n± eigenvalues of A, n± ≥ n/5, and ‖P̃± − P±‖ ≤ β,
where P± are the true spectral projectors for the eigenvalues in the subgrids g± respectively.

arithmetic operations. The number of bits required is

lg 1/uSPLIT = O

(
log n log3 256

ε

(
log

1

β
+ log

4

ε

))
.

Deflation of the approximate projectors we obtain from SPLIT amounts to a standard
rank-revealing QR factorization. This can be achieved deterministically in O(n3) time with
the classic algorithm of Gu and Eisenstat [67], or probabilistically in matrix-multiplication
time with a variant of the method of [47]; we will use the latter.

Theorem 3.5.3 (Guarantees for DEFLATE). Assume MM and QR are matrix multiplication
and QR factorization algorithms satisfying Definitions 3.2.2 and 3.2.4. Then DEFLATE has
the advertised guarantees when run on a machine with precision:

u ≤ uDEFLATE := min

{
β

4‖P̃‖max(µQR(n), µMM(n))
,

η

2µQR(n)

}
.

The number of arithmetic operations is at most:

TDEFLATE(n) = n2TN + 2TQR(n) + TMM(n).
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DEFLATE

Input: Matrix P̃ ∈ Cn×n, desired rank k, input precision β, and desired accuracy η
Requires: ‖P̃ − P‖ ≤ β ≤ 1

4
for some rank-k projector P .

Algorithm: Q̃ = DEFLATE(P, k, β, η)

1. H ← n× n Haar unitary +E1

2. (U,R)← QR(PH∗)

3. Q̃← first k columns of U .

Output: A tall matrix Q̃ ∈ Cn×k

Ensures: There exists a matrix Q ∈ Cn×k whose orthogonal columns span range(P ), such

that ‖Q̃−Q‖ ≤ η, with probability at least 1− (20n)3
√
β

η2
.

Remark 3.5.4. The proof of the above theorem, which is deferred to Appendix A.4, closely
follows and builds on the analysis of the randomized rank revealing factorization algorithm
(RURV) introduced in [47] and further studied in [10]. The parameters in the theorem are
optimized for the particular application of finding a basis for a deflating subspace given an
approximate spectral projector.

The main difference with the analysis in [47] and [10] is that here, to make it applicable to
complex matrices, we make use of Haar unitary random matrices instead of Haar orthogonal
random matrices. In our analysis of the unitary case, we discovered a strikingly simple
formula (Corollary A.4.6) for the density of the smallest singular value of an r× r sub-matrix
of an n× n Haar unitary; this formula is leveraged to obtain guarantees that work for any n
and r, and not only for when n−r ≥ 30, as was the case in [10]. Finally, we explicitly account
for finite arithmetic considerations in the Gaussian randomness used in the algorithm, where
true Haar unitary matrices can never be produced.

We are ready now to state completely an algorithm EIG which accepts a shattered
matrix and grid and outputs approximate eigenvectors and eigenvalues with a forward-error
guarantee. Aside from the a priori un-motivated parameter settings in lines 2-3 and 9—which
we promise to justify in the analysis to come—EIG implements an approximate version of the
split and deflate framework that began this section.

Theorem 3.5.5 (EIG: Finite Arithmetic Guarantee). Assume MM,QR, and INV are numeri-
cally stable algorithms for matrix multiplication, QR factorization, and inversion satisfying
Definitions 3.2.2, 3.2.4, and 3.2.3. Let δ < 1, A ∈ Cn×n have ‖A‖ ≤ 3.5 and, for some ε < 1,
have ε-pseudospectrum shattered with respect to a grid g = grid(z0, ω, s1, s2) with side lengths
at most 8 and ω ≤ 1. Define

NEIG := lg
256n

ε
+ 3 lg lg

256n

ε
+ lg lg

(5n)26

θ2δ4ε9
.
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EIG

Input: Matrix A ∈ Cm×m, desired eigenvector accuracy δ, grid g = grid(z0, ω, s1, s2),
pseudospectral guarantee ε, acceptable failure probability θ, and global instance size n
Requires: Λε(A) is shattered with respect to g, and m ≤ n.
Algorithm: EIG(A, δ, g, ε, θ, n)

1. If A is 1× 1, (Ṽ , D̃)← (1, A)

2. η ← δε2

200

3. β ← η4

(20n)6
θ2

4n8

4. (P̃+, P̃−, g+, g−, n+, n−)← SPLIT(A, ε, g, β)

5. Q̃± ← DEFLATE(P̃±, n±, β, η)

6. Ã± ← Q̃∗±ÃQ̃± + E6,±

7. (Ṽ±, D̃±)← EIG(Ã±, 4δ/5, g±, 4ε/5, θ, n).

8. Ṽ ←
(
Q̃+Ṽ+ Q̃−Ṽ−

)
+ E8

9. Ṽ ← normalize(Ṽ ) + E9

10. D̃ ←

(
D̃+

D̃−

)

Output: Eigenvectors and eigenvalues (Ṽ , D̃)

Ensures: With probability at least 1− θ, each entry λ̃i = D̃i,i lies in the same square as

exactly one eigenvalue λi ∈ Λ(A), and each column ṽi of Ṽ has norm 1± nu, and satisfies
‖ṽi − vi‖ ≤ δ for some exact unit right eigenvector Avi = λivi.

Then EIG has the advertised guarantees when run on a floating point machine with precision
satisfying:

lg 1/u ≥ max

{
lg3 n

ε
lg

(
(5n)26

θ2δ4ε8

)
214.83(cINV log n+ 3) + lgNEIG, lg

(5n)30

θ2δ4ε8
+ lg max{µMM(n), µQR(n), n}

}
= O

(
log3 n

ε
log

n

θδε
log n

)
.
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The number of arithmetic operations is at most

TEIG(n, δ, g, ε, θ, n) = 60NEIG lg
1

ω(g)

(
TINV(n) +O(n2)

)
+ 10TQR(n) + 25TMM(n)

= O

(
log

1

ω(g)

(
log

n

ε
+ log log

1

θδ

)
TMM(n)

)
.

Remark 3.5.6. We have not fully optimized the large constant 214.83 appearing in the bit
length above.

Theorem 3.5.5 easily implies Theorem 3.1.6 when combined with SHATTER.

Theorem 3.5.7 (Restatement of Theorem 3.1.6). There is a randomized algorithm EIG which
on input any matrix A ∈ Cn×n with ‖A‖ ≤ 1 and a desired accuracy parameter δ ∈ (0, 1)
outputs a diagonal D and invertible V such that

‖A− V DV −1‖ ≤ δ and κ(V ) ≤ 32n2.5/δ

in
O
(
TMM(n) log2 n

δ

)
arithmetic operations on a floating point machine with

O
(

log4 n

δ
log n

)
bits of precision, with probability at least 1 − 2/n − O(1/n2), where the implied constant
is at most 600. Here TMM(n) refers to the running time of a numerically stable matrix
multiplication algorithm (detailed in Section 3.2.3).

Proof. Given A and δ, consider the following two step algorithm:

1. (X, g, ε)← SHATTER(A, δ/8).

2. (V,D)← EIG(X, δ′, g, ε, 1/n, n), where

δ′ :=
δ3

n2.5 · 6 · 128 · 2
.

We will show that this choice of δ′ guarantees

‖X − V DV −1‖ ≤ δ/2.

Theorem 3.3.13 implies that X = WCW−1 is diagonalizable with probability one, and
moreover

κ(W ) = ‖W‖‖W‖−1 ≤ 8n2/δ
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when W is normalized to have unit columns, by (1.1) (where we are using the proof of
Theorem 3.3.6), with probability at least 1− 1/n−O(1/n2).

Since ‖X‖ ≤ ‖A‖ + ‖A − X‖ ≤ 1 + 4γ ≤ 3 from Theorem 3.3.13, the hypotheses of
Theorem 3.5.5 are satisfied. Thus EIG succeeds with probability at least 1− 1/n. Taking a
union bound with the success of SHATTER, we have V = W + E for some ‖E‖ ≤ δ′

√
n, so

‖V −W‖ ≤ δ′
√
n,

as well as

σn(V ) ≥ σn(W )− ‖E‖ ≥ δ

8n2
− δ′
√
n ≥ δ

16n2
,

since our choice of δ′ satisfies.

δ′ ≤ δ

16n2.5
,

This implies that

κ(V ) = ‖V ‖‖V −1‖ ≤ 2
√
n · 16n2

δ
,

establishing the last item of the theorem.
We can control the perturbation of the inverse as:

‖V −1 −W−1‖ = ‖W−1(W − V )V −1‖

≤ 2

(
8n2

δ

)2

δ′
√
n

≤ 128n2.5δ′

δ2
.

Combining this with ‖D − C‖ ≤ δ from Theorem 3.5.5, we have:

‖V DV −1 −WCW−1‖ ≤ ‖(V −W )DV −1‖+ ‖W (D − C)V −1‖+ ‖WC(V −1 −W−1)‖

≤ δ′
√
n · 5 · 16n2

δ
+
√
nδ′

16n2

δ
+
√
n · 5 · 128n2.5δ′

δ2

=
δ′n2.5

δ

(
5 · 16 + 16 +

5 · 128

δ

)
≤ δ′n2.5

δ2
· 6 · 128

which is at most δ/2, for δ′ chosen as above. We conclude that

‖A− V DV −1‖ ≤ ‖A−X‖+ ‖X − V DV −1‖ ≤ δ,

with probability 1− 2/n−O(1/n2) as desired.
To compute the running time and precision, we observe that SHATTER outputs a grid

with parameters

ω = Ω

(
δ4

n5

)
, ε = Ω

(
δ5

n9

)
.
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Plugging this into the guarantees of EIG, we see that it takes

O
(

log
n

δ

(
log

n

δ
+ log log

n

δ

)
TMM(n)

)
= O(TMM(n) log2(n/δ))

arithmetic operations, on a floating point machine with precision

O
(

log3 n

δ
log

n

δ
log n

)
= O(log4(n/δ) log(n))

bits, as advertised.

3.5.1 Proof of Theorem 3.5.5

A key stepping-stone in our proof will be the following elementary result controlling the
spectrum, pseudospectrum, and eigenvectors after perturbing a shattered matrix.

Lemma 3.5.8 (Eigenvector Perturbation for a Shattered Matrix). Let Λε(A) be shattered

with respect to a grid whose squares have side length ω, and assume that ‖Ã− A‖ ≤ η < ε.

Then, (i) each eigenvalue of Ã lies in the same grid square as exactly one eigenvalue of A, (ii)

Λε−η(Ã) is shattered with respect to the same grid, and (iii) for any right unit eigenvector ṽ

of Ã, there exists a right unit eigenvector of A corresponding to the same grid square, and
for which

‖ṽ − v‖ ≤
√

8ω

π

η

ε(ε− η)
.

Proof. For (i), consider At = A+ t(Ã− A) for t ∈ [0, 1]. By continuity, the entire trajectory
of each eigenvalue is contained in a unique connected component of Λη(A) ⊂ Λε(A). For (ii),

Λε−η(Ã) ⊂ Λε(A), which is shattered by hypothesis. Finally, for (iii), let w∗ and w̃∗ be the
corresponding left eigenvectors to v and ṽ respectively, normalized so that w∗v = w̃∗ṽ = 1.
From the contour integral definition of spectral projectors, if we call Γ the boundary of the
grid square containing the eigenvalues associated to v and ṽ respectively,

‖ṽw̃∗ − vw∗‖ =
1

2π

∥∥∥∥∮
Γ

(z − A)−1 − (z − Ã)−1dz

∥∥∥∥
=

1

2π

∥∥∥∥∮
Γ

(z − A)−1(A− Ã)(z − Ã)−1dz

∥∥∥∥
≤ 2ω

π

η

ε(ε− η)
.

Thus, using that ‖v‖ = 1 and w∗v = 1,

||ṽw̃∗ − vw∗|| ≥ ‖(ṽw̃∗ − vw∗)v‖ = ‖(w̃∗v)ṽ − v‖.
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Now, since (ṽ∗v)ṽ is the orthogonal projection of v onto the span of ṽ we have that

‖(w̃∗v)ṽ − v‖ ≥ ‖(ṽ∗v)ṽ − v‖ =
√

1− (ṽ∗v)2.

Then, multiplying v by a phase we can assume without loss of generality that ṽ∗v ≥ 0 which
implies that √

1− (ṽ∗v)2 =
√

(1− ṽ∗v)(1 + ṽ∗v) ≥
√

1− ṽ∗v.

The above discussion can now be summarized in the following chain of inequalities

√
1− ṽ∗v ≤

√
1− (ṽ∗v)2 ≤ ‖(w̃∗v)ṽ − v‖ ≤ ‖ṽw̃∗ − vw∗‖ ≤ 2ω

π

η

ε(ε− η)
.

Finally, note that ‖v − ṽ‖ =
√

2− 2ṽ∗v ≤
√

8ω
π

η
ε(ε−η)

as we wanted to show.

The algorithm EIG works by recursively reducing to subinstances of smaller size, but
requires a pseudospectral guarantee to ensure speed and stability. We thus need to verify that
the pseudospectrum does not deteriorate too subtantially when we pass to a sub-problem.

Lemma 3.5.9 (Compressing a Shattered Matrix). Suppose P is a spectral projector of
A ∈ Cn×n of rank k and Q is an n× k matrix with Q∗Q = Ik and PQQ∗ = QQ∗P . Then for
every ε > 0,

Λε(Q
∗AQ) ⊂ Λε(A).

Proof. Take z ∈ Λε(Q
∗AQ). Then, there exists v ∈ Ck satisfying ‖(z − Q∗AQ)v‖ ≤ ε‖v‖.

Since Ik = Q∗InQ we have
‖Q∗(z − A)Qv‖ ≤ ε‖v‖.

Since Q∗ is an isometry on range(Q) and (z − A)Qv ∈ range(Q), we have ‖Q∗(z − A)Qv‖ =
‖(z − A)Qv‖ and hence

‖(z − A)Qv‖ ≤ ε‖v‖ = ε‖Qv‖,

showing that z ∈ Λε(A).

Observation 3.5.10. Since δ, ω(g), ε ≤ 1, our assumption on η in Line 2 of the pseudocode
of EIG implies the following bounds on η which we will use below:

η ≤ min

{
0.02, ε/75, δ/100,

δε2

200ω(g)

}
.

Initial lemmas in hand, let us begin to analyze the algorithm. At several points we will
make an assumption on the machine precision on the right hand side. These will be collected
at the end of the proof, where we will verify that they follow from the precision hypothesis of
Theorem 3.5.5.

Correctness.
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Lemma 3.5.11 (Accuracy of λ̃i). When DEFLATE succeeds, each eigenvalue of A shares a

unique square of g with exactly one from Ã±, and Λ4ε/5(Ã±) ⊂ Λε(A).

Proof. Let P± be the true projectors onto the two bisection regions found by SPLIT(A, β),
Q± be the matrices whose orthogonal columns span their ranges, and A± := Q∗±AQ±. From

Theorem 3.5.3 the event that DEFLATE succeeds, the approximation Q̃± that it outputs

satisfies ‖Q̃±−Q±‖ ≤ η, so in particular ‖Q̃±‖ ≤ 2 as η ≤ 1. The error E6,± from performing

the matrix multiplications necessary to compute Ã± admits the bound

‖E6,±‖ ≤ µMM(n)‖Q̃±‖‖AQ̃±‖u + µMM(n)2‖Q̃±A‖u + µMM(n)2‖Q̃±‖2‖A‖u
≤ 16

(
µMM(n)u + µMM(n)2u2

)
‖A‖ ≤ 4 and ‖Q̃±‖ ≤ 1 + η ≤ 1.02 ≤

√
2

≤ 3η u ≤ η

10µMM(n)2
.

Iterating the triangle inequality, we obtain

‖Ã± − A±‖ ≤ ‖E6,±‖+ ‖(Q̃± −Q±)AQ̃±‖+ ‖Q±A(Q̃± −Q±‖
≤ 3η + 8η + 4η ‖Q̃± −Q±‖ ≤ η

≤ ε/5 η ≤ ε/75.

We can now apply Lemma 3.5.8.

Everything is now in place to show that, if every call to DEFLATE succeeds, EIG has
the advertised accuracy guarantees. After we show this, we will lower bound this success
probability and compute the running time.

When A ∈ C1×1, the algorithm works as promised. Assume inductively that EIG has the
desired guarantees on instances of size strictly smaller than n. In particular, maintaining the
notation from the above lemmas, we may assume that

(Ṽ±, D̃±) = EIG(Ã±, 4ε/5, g±, 4δ/5, θ, n)

satisfy (i) each eigenvalue of D̃± shares a square of g± with exactly one eigenvalue of Ã±, and

(ii) each column of Ṽ± is 4δ/5-close to a true eigenvector of Ã±. From Lemma 3.5.8, each

eigenvalue of Ã± shares a grid square with exactly one eigenvalue of A, and thus the output

D̃ =

(
D̃+

D̃−

)

satisfies the eigenvalue guarantee.

To verify that the computed eigenvectors are close to the true ones, let ˜̃v± be some

approximate right unit eigenvector of one of Ã± output by EIG (with norm 1± nu), ṽ± the
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exact unit eigenvector of Ã± that it approximates, and v± the corresponding exact unit
eigenvector of A±. Recursively, EIG(A, ε, g, δ, θ, n) will output an approximate unit eigenvector

ṽ :=
Q̃±˜̃v± + e

‖Q̃±˜̃v± + e‖
+ e′,

whose proximity to the actual eigenvector v := Qv± we need now to quantify. The error
terms here are e, a column of the error matrix E8 whose norm we can crudely bound by

‖e‖ ≤ ‖E8‖ ≤ µMM(n)‖Q̃±‖‖Ṽ±‖u ≤ 4µMM(n)u ≤ η,

and e′ is a column of E9, the error incurred by performing the normalization in floating point;

we assumed in (3.10) that ‖e′‖ ≤ nu. The distance between ṽ and Q̃±˜̃v± is just the difference
in their norms—since they are parallel—so∥∥∥∥∥ Q̃±˜̃v± + e

‖Q̃±˜̃v± + e‖
− Q̃±˜̃v± + e

∥∥∥∥∥ ≤ ∣∣∣‖Q̃±˜̃v± + e‖ − 1
∣∣∣ ≤ (1 + η)(1 + u) + 4µMMu− 1 ≤ 4η.

Inductively ‖˜̃v± − ˜̃v±‖ ≤ 4δ/5, and since ‖A± − Ã±‖ ≤ ε/5 and A± has shattered ε-
pseudospectrum from Lemma 3.5.9, Lemma 3.5.8 ensures

‖˜̃v± − v±‖ ≤ √8ω(g) · 15η

π · ε(ε− 15η)

≤
√

8ω(g) · 15η

π · 4ε2/5
η ≤ ε/75

≤ δ/10 η ≤ δε2

200ω(g)
.

Thus iterating the triangle identity and using ‖Q±‖ = 1,

‖ṽ − v‖ =

∥∥∥∥∥ Q̃±˜̃v± + e

‖Q̃±˜̃v± + e‖
+ e′ −Q±v±

∥∥∥∥∥
≤

∥∥∥∥∥ Q̃±˜̃v± + e

‖Q̃±˜̃v± + e‖
− Q̃±˜̃v± + e

∥∥∥∥∥+ ‖e′‖+ ‖e‖

+ ‖(Q̃± −Q±)˜̃v±‖+ ‖Q±(˜̃v± − ṽ±)‖+ ‖Q±(ṽ± − v±)‖
≤ 4η + nu + µMM(n)u + η(1 + nu) + 4δ/5 + δ/10

≤ 8η + 4δ/5 + δ/10 nu, µMM(n)u ≤ η

≤ δ η ≤ δ/200.

This concludes the proof of correctness of EIG.

Running Time and Failure Probability. Let’s begin with a simple lemma bounding the
depth of EIG’s recursion tree.
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Lemma 3.5.12 (Recursion Depth). The recursion tree of EIG has depth at most log5/4 n,
and every branch ends with an instance of size 1× 1.

Proof. By Theorem 3.5.2, SPLIT can always find a bisection of the spectrum into two regions
containing n± eigenvalues respectively, with n+ + n− = n and n± ≥ 4n/5, and when n ≤ 5
can always peel off at least one eigenvalue. Thus the depth d(n) satisfies

d(n) =

{
n n ≤ 5

1 + maxθ∈[1/5,4/5] d(θn) n > 5
(3.35)

As n ≤ log5/4 n for n ≤ 5, the result is immediate from induction.

We pause briefly and verify that the assumptions on δ < 1, ε < 1/2, and ‖A‖ ≤ 3.5
in Theorem 3.5.5 ensure that every call to SPLIT throughout the algorithm satisfies the
hypotheses in Theorems 3.5.2. Since δ, ε are non-increasing as we travel down the recursion
tree of EIG, we need only verify for their initial settings. Theorem 3.5.2 needs ε < 1/2, which
is satisfied immediately, and we additionally have β = η4θ2/(20n)6 · 4n8 ≤ 1/206n ≤ 0.05/n.

Finally, we need that every matrix passed to SPLIT throughout the course of the algorithm
has norm at most 4. Lemma 3.5.11 shows that if ‖A‖ ≤ 4 and has its ε-pseudospectrum

shattered, then ‖Ã± − A±‖ ≤ ε/5, and since ‖A±‖ = ‖A‖, this means ‖Ã±‖ ≤ ‖A‖ + ε/5.
Thus each time we pass to a subproblem, the norm of the matrix we pass to EIG (and thus
to SPLIT) increases by at most ε/5. Since ε decreases by a factor of 4/5 on each recursion,
this means that by the end of the algorithm the norm of the matrix passed to EIG will be at
most 1

5·(1−4ε/5)
≤ ε ≤ 1/2. Thus we will be safe if our initial matrix has norm at most 3.5, as

assumed.

Lemma 3.5.13 (Lower Bounds on the Parameters). The input parameters given to every
recursive call EIG(A′, δ′, grid′, ε′, θ, n) and SPLIT(A′ − h′, ε′, g′, β′) satisfy

δ′ ≥ δ/n ε′ ≥ ε/n η ≥ δε2

200n3
4 β ≥ θ2δ4ε8

(5n)26
.

Proof. Along each branch of the recursion tree, we replace ε← 4ε/5 and δ ← 4δ/5 at most
log5/4 n times, so each can only decrease by a factor of n from their initial settings.

Lemma 3.5.14 (Failure Probability). EIG fails with probability no more than θ.

Proof. Since each recursion splits into at most two subproblems, and the recursion tree has
depth log5/4 n, there are at most

2 · 2log5/4 n = 2n
log 2

log 5/4 ≤ 2n4

calls to DEFLATE. We have set every η and β so that the failure probability of each is θ/2n4,
so a crude union bound finishes the proof.
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The arithmetic operations required for EIG satisfy the recursive relationship

TEIG(n, δ, g, ε, θ, n) ≤ TSPLIT(n, ε, β) + TDEFLATE(n, β, η) + 2TMM(n)

+ TEIG(n+, 4δ/5, g+, 4ε/5, θ, n) + TEIG(n−, 4δ/5, g−, 4ε/5, θ, n)

+ 2TMM(n) +O(n2).

Each of the T◦ terms is of the form polylog(n)poly(n), where both polynomials have nonneg-
ative coefficients, and the exponent on n is at least 2. Thus, when we split into problems of
sizes n+ + n− = n and n± ≥ 4n/5, by convexity T◦(n+, ...) + T◦(n−, ...) ≤ 42+12

52
T◦(n, ...) =

16
25
T◦(n, ...). Recursively then, if we were to keep all accuracy parameters fixed, the total cost

of the operations we perform in each layer is at most 16/25 times the cost of the previous one.
Using our parameter lower bounds from Lemma 3.5.13, and these geometrically decreasing
bit operations, we then have

TEIG(n, δ, g, ε, θ, n) ≤ 25

8

(
TSPLIT

(
n, ε/n, g,

δ4ε8θ2

(5n)26

)
+ TDEFLATE

(
n, β/n, ε/n,

δ4ε8θ2

(5n)26

)
+ 4TMM(n) +O(n2)

)
=

25

8

(
12NEIG lg

1

ω(g)

(
TINV(n) +O(n2)

)
+ 2TQR(n)

+ 5TMM(n) + n2TN +O(n2)

)
≤ 60NEIG lg

1

ω(g)

(
TINV(n) +O(n2)

)
+ 10TQR(n) + 25TMM(n)

where

NEIG := lg
256n

ε
+ 3 lg lg

256n

ε
+ lg lg

(5n)26

θ2δ4ε9
.

In the final expression for TEIG we have used the fact that TN = O(1). Thus we have

TEIG(n, δ, g, ε, θ, n) = O

(
log

1

ω(g)

(
log

n

ε
+ log log

1

θδ

)
TMM(n,u)

)
,

by Theorem 3.2.6.

Required Bits of Precision. We will need the following bound on the norms of all spectral
projectors.

Lemma 3.5.15 (Sizes of Spectral Projectors). Throughout the algorithm, every approximate

spectral projector P̃ given to DEFLATE satisfies ‖P̃‖ ≤ 10n/ε.
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Proof. Every such P̃ is β-close to a true spectral projector P of a matrix whose ε/n-
pseudosepctrum is shattered with respect to the initial 8 × 8 unit grid g. Since we can
generate P by a contour integral around the boundary of a rectangular subgrid, we have

‖P̃‖ ≤ 2 + ‖P‖ ≤ 2 +
32

2π

n

ε
≤ 10n/ε,

with the last inequality following from ε < 1.

Collecting the machine precision requirements u ≤ uSPLIT,uDEFLATE from Theorems 3.5.2
and 3.5.3, as well as those we used in the course of our proof so far, and substituting in the
parameter lower bounds from Lemma 3.5.13, we need u to satisfy

u ≤ min

{(
1− ε

256n

)2NEIG+1(cINV logn+3)

2µINV(n)
√
nNEIG

,

ε

100n2
,
θ2δ4ε8

(5n)26

1

4‖P̃‖max{µQR(n), µMM(n)}
,

δε2

100n3 · 2µQR(n)
,

δε2

100n3 max{4µMM(n), n, 2µQR(n)}

}
From Lemma 3.5.15, ‖P̃‖ ≤ 10n/ε, so the conditions in the second two lines are all satisfied
if we make the crass upper bound

u ≤ θ2δ4ε8

(5n)30

1

max{µQR(n), µMM(n), n}
,

i.e. if lg 1/u ≥ O
(
lg n

θδε

)
. Unpacking the first requirement and using the definition of NEIG

and 1/2 ≤ (1− x)2lg x for x ∈ (0, 1), we have

(
1− ε

256n

)2NEIG+1(cINV logn+3)

2µINV(n)
√
nNEIG

=

((
1− ε

256n

) 256n
ε

)lg3 256n
ε

lg
(5n)26

θ2δ4ε8
28.59(cINV logn+3)

2µINV(n)
√
nNEIG

≥ 2− lg3 256n
ε

lg
(5n)26

θ2δ4ε8
28.59(cINV logn+3)

2µINV(n)
√
nNEIG

,

so the final expression is a sufficient upper bound on u. This gives

lg 1/u ≥ lg3 n

ε
lg

(5n)26

θ2δ4ε8
214.83(cINV log n+ 3) + lgNEIG

= O
(

log3 n

ε
log

n

θδε
log n

)
.

This dominates the precision requirement above, and completes the proof of Theorem 3.5.5.
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3.6 Conclusion and Open Questions

In this chapter, we reduced the approximate diagonalization problem to a polylogarithmic
number of matrix multiplications, inversions, and QR factorizations on a floating point
machine with precision depending only polylogarithmically on n and 1/δ. The key phenomena
enabling this were: (a) every matrix is δ-close to a matrix with well-behaved pseudospectrum,
and such a matrix can be found by a complex Gaussian perturbation. (b) The spectral
bisection algorithm can be shown to converge rapidly to a forward approximate solution
on such a well-behaved matrix, using a polylogarithmic in n and 1/δ amount of precision
and number of iterations. The combination of these facts yields a δ-backward approximate
solution for the original problem.

Using fast matrix multiplication, we obtain algorithms with nearly optimal asymptotic
computational complexity (as a function of n, compared to matrix multiplication), for general
complex matrices with no assumptions. Using naive matrix multiplication, we get easily
implementable algorithms with O(n3) type complexity and much better constants which
are likely faster in practice. The constants in our bit complexity and precision estimates,
while not huge, are likely suboptimal. The reasonable practical performance of spectral
bisection based algorithms is witnessed by the many empirical papers (see e.g. [8]) which
have studied it. The more recent of these works further show that such algorithms are
communication-avoiding and have good parallelizability properties.

Remark 3.6.1 (Hermitian Matrices). A curious feature of our algorithm is that even when
the input matrix is Hermitian or real symmetric, it begins by adding a complex non-Hermitian
perturbation to regularize the spectrum. If one is only interested in this special case, one
can replace this first step by a Hermitian GUE or symmetric GOE perturbation and appeal
to the result of [1] instead of Theorem 3.1.4, which also yields a polynomial lower bound
on the minimum gap of the perturbed matrix. It is also possible to obtain a much stronger
analysis of the Newton iteration in the Hermitian case, since the iterates are all Hermitian
and κV = 1 for such matrices. By combining these observations, one can obtain a running
time for Hermitian matrices which is significantly better (in logarithmic factors) than our
main theorem. We do not pursue this further since our main goal was to address the more
difficult non-Hermitian case.

We conclude by listing several directions for future research.

1. Devise a deterministic algorithm with similar guarantees. The main bottleneck to
doing this is deterministically finding a regularizing perturbation, which seems quite
mysterious. Another bottleneck is computing a rank-revealing QR factorization in near
matrix multiplication time deterministically (all of the currently known algorithms
require Ω(n3) time).

2. Determine the correct exponent for smoothed analysis of the eigenvalue gap of A+ γG
where G is a complex Ginibre matrix. We currently obtain roughly (γ/n)8/3 in Theorem
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3.3.6. Is it possible to match the n−4/3 type dependence [130] which is known for a
pure Ginibre matrix?

3. Reduce the dependence of the running time and precision to a smaller power of log(1/δ).
The bottleneck in the current algorithm is the number of bits of precision required for
stable convergence of the Newton iteration for computing the sign function. Other,
“inverse-free” iterative schemes have been proposed for this, which conceivably require
lower precision.

4. Study the convergence of “scaled Newton iteration” and other rational approximation
methods (see [71, 98]) for computing the sign function on non-Hermitian matrices.
Perhaps these have even faster convergence and better stability properties?

More broadly, we hope that the techniques introduced in this chapter—pseudospectral
shattering and pseudospectral analysis of matrix iterations using contour integrals—are useful
in attacking other problems in numerical linear algebra.
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Chapter 4

The Lanczos Algorithm Under Few
Iterations

4.1 Background

Eigenvalue problems are ubiquitous in science and engineering. However, most applications
require analyzing matrices whose large dimension makes it impractical to exactly compute
any important feature of their spectrum. It is for this reason that iterative randomized
algorithms have proliferated in numerical linear algebra [107, 124].

In this context, iterative randomized algorithms provide an approximation of the spectrum
of the matrix in question, where the accuracy of the approximation improves as the number
of iterations increases. For any such algorithm, it is natural to ask the following questions:

(Q1) How much does the random output vary?

(Q2) How many iterations are necessary and sufficient to obtain a satisfactory approximation?

This chapter addresses the above questions for one of the most widely used algorithms
for eigenvalue approximation, namely the Lanczos algorithm. Throughout, we assume exact
arithmetic.

4.1.1 The Lanczos algorithm

Recall from Section 1.1 that when run for k iterations, the Lanczos algorithm outputs a
k × k matrix, called the Jacobi matrix, then, the eigenvalues of the Jacobi matrix, namely
the Ritz values, are used as an approximation for the spectrum of the matrix. In particular,
when k = n, the Ritz values are exactly the eigenvalues of A, and hence the full spectrum is
recovered. However, in practice it is usually too expensive to perform Θ(n) iterations.

The success of the Lanczos algorithm resides to some extent in its ability to find the
outliers of the spectrum of the matrix A with very few iterations. By outliers, we mean
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the eigenvalues distant from the region in which the majority of the spectrum accumulates
(the bulk). Hence, the algorithm is of particular interest in most applications in science and
engineering [107].

Lanczos-type methods can also be used to approximate the global spectral density of large
matrices—for a survey of techniques see [88]. In applied mathematics, large matrices often
arise as discretizations of infinite-dimensional operators such as the Laplacian. Computing
the eigenvalues of the finite-dimensional operator then yields information about the infinite-
dimensional operator and the underlying continuous system. For an example, see Section 7 of
[126] for numerical experiments and bounds for the Lanczos algorithm applied to an explicit
discretized Laplace operator.

In applications, sophisticated modifications of the Lanczos algorithm are used [63, 31,
87]. Since the goal of this chapter is to introduce proof techniques and theoretical tools that
have not been exploited previously, we only deal with the simplest version of the Lanczos
algorithm and do not strive to obtain optimal constants in our bounds and theorems when
providing answers for questions (1) and (2).

4.1.2 Question (1): Our contributions

As far as we are aware, there is no previous work addressing this question for the Lanczos
algorithm. In this chapter we show that there is a c > 0 depending on a global feature of the
spectrum of the matrix, such that for n large enough, the output of the Lanczos procedure
is almost deterministic when run for at most c log n iterations. More precisely, in Theorem
4.2.2 we show that for ε ∈ (0, 1/2) deviations of the order n−ε occur with exponentially small
probability.

From the point of view of random matrix theory, the problem treated in this chapter
is atypical. In random matrix theory, most of the studied models have a rich probabilistic
structure that can be exploited to obtain results about the eigenvalue distribution of the
matrix. By contrast, in our case, the Jacobi matrix output by the Lanczos algorithm is a
random matrix obtained by running a complicated deterministic dynamic over a minimal
source of randomness—a single uniform random unit vector. Hence, in order to obtain
results similar to the ones presented in this article, the structure of the algorithm needs to be
exploited in an involved way. We use the ubiquitous concentration of measure phenomenon
for Lipschitz functions in high dimension, together with a careful control of the variables
appearing in the Lanczos algorithm and their Lipschitz constants as functions of the random
input. Roughly speaking, the Lipschitz constant is exponential in the number of iterations,
which yields concentration in the regime of at most c log n iterations for sufficiently small c.
Throughout the analysis we use elementary results in the theory of orthogonal polynomials.

In view of the fact that the output of the Lanczos algorithm is sharply concentrated under
few iterations, one may ask which values the output is concentrated around. Towards the
end of this introduction we give an overview of our results in this direction.
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4.1.3 Question (2): Previous work

For the Lanczos algorithm, theoretical answers to the sufficiency part of Question (2) posed
above appeared decades ago. Most of them in essence give an upper bound on the number of
iterations required to approximate the outliers of the spectrum of an n-dimensional matrix
A with great accuracy–see [77, 101, 108]. Roughly speaking, previous literature provides
inequalities that state that k ≥ C log n iterations suffice for the output of the Lanczos
algorithm approximates very well the true extreme eigenvalues of A, making the use of
O(log n) iterations common in practice–see [81] or [126] for examples of inequalities that give
this bound. The constant C in the results mentioned above is determined by features of
the spectrum of A; typically, these features are the diameter of the spectrum and the gaps
between the outliers and the bulk. In recent years, more refined arguments have yielded
inequalities in which other features of the spectrum are considered, see [134] for an example
or [20] for a survey.

Regarding the necessity part of Question (2), to the best of our knowledge, the only
existing negative result regarding detection of outliers is the one given in the recent work
[111]. There, a query complexity bound was proven for any algorithm that is allowed to make
queries of matrix-vector products, which in particular applies to the Lanczos algorithm.

4.1.4 Question (2): Our contributions

In this chapter we study the Lanczos algorithm in the context of approximation of outliers,
and answer the necessity part of Question (2). That is, we show that if run for at most
k ≤ c log n iterations, the Lanczos algorithm fails to approximate outliers with overwhelming
probability. Thus, in essence we provide a lower bound on the number of iterations required
for accuracy. The aforementioned c depends only on an easily computed global property of
the spectrum which we call equidistribution.

To give some rough context, the result in [111] discussed above shows that if the empirical
spectral distribution of a matrix is close to the semicircle distribution plus an outlying “spike,”
any algorithm in their class will fail to identify the spike with overwhelming probability,
unless given at least c log n queries. In contrast, our result applies exclusively to the Lanczos
algorithm, but shows that outliers are missed for a far more general class of measures than
just the semicircle.

In order to analyze asymptotic behavior, we adopt a similar framework to that used in
[83] and [19], in which a sequence of Hermitian matrices An with convergent spectra was
considered. These papers studied the behavior of the Lanczos algorithm in the regime of
Θ(n) iterations.

To show that the Lanczos algorithm misses outliers when run for at most c log n iterations,
we use the elementary theory of orthogonal polynomials and standard techniques in high-
dimensional probability. Roughly speaking, using a variational principle, we show that for
small enough k, the roots of the kth orthogonal polynomial with respect to a certain random
measure are contained in a small blow-up of the convex hull of the bulk of the true spectrum.
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See Theorem 4.2.10 or Proposition 4.2.12 for a precise statement and Figure 4.1 for an
illustration.

4.1.5 Our result on the locations of the Ritz values

One may ask if finer statements about the location of the Ritz values can be made. Previously,
tools from potential theory have been used to answer this question in the regime of k = Θ(n)
iterations [19, 83, 82]. Results in the regime of fixed k as n→∞ in the deterministic setting
of orthogonal polynomials follow from [59, §4]. In the present work we use determinantal
formulas for orthogonal polynomials and concentration of measure results to locate the Ritz
values in the regime of k = O(

√
log n) iterations. In particular, we prove that the Ritz values

concentrate around the roots of the kth orthogonal polynomials for the limiting eigenvalue
distribution. See Figure 4.2 for an illustration. Moreover, also when k = O(

√
log n), we show

that the Jacobi matrix obtained after k iterations is concentrated around the kth Jacobi
matrix of the limiting measure.

These results may be of particular relevance in applications where an infinite dimensional
operator is discretized with the goal of computing its density. In essence, Theorem 4.2.13
below states that in this situation the first iterations of the Lanczos algorithm are an accurate
approximation of the true Jacobi coefficients of the spectral measure of the infinite dimensional
operator, and hence the procedure is giving valuable information for recovering the limiting
measure.

4.1.6 Organization

The chapter is organized as follows. In Section 4.2, we review the classical background of the
Lanczos procedure and orthogonal polynomials, and formally state our main theorems. In
Section 4.3, we develop machinery that in Section 4.4 will be used to prove concentration for
the output of the Lanczos algorithm. In Section 4.5, we prove our complementary results
about the location of the Ritz values and Jacobi coefficients. Finally, in Section 4.6 we discuss
further research directions that may be of interest.

4.2 Preliminaries and statements of theorems

Throughout this chapter only elementary facts about orthogonal polynomials are used. For
the reader’s convenience in Section 4.2 we include a concise survey of the results that will
be used in the sequel. Chapter 2 in [121] and Chapters 2 and 3 in [41] are introductory
references containing these results.

In Section 1.1, we have described the Lanczos algorithm and its interpretation in terms of
orthogonal polynomials. Some standard references for this matter are Chapter 6 in [124] and
Chapter 6 in [107].
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Figure 4.1: A is a 2000×2000 diagonal matrix with entries {0, 1/2000, 2/2000, . . . , 1999/2000, 1.1}.
This represents a discretization of Unif([0, 1]) plus an outlier at 1.1. Plotted is a histogram of the
Ritz values output by Lanczos after k = 5 iterations (above) and after k = 10 iterations (below).
To generate the histogram the procedure was run 200 times. Notice that to find the outlier with a
decent probability, 10 iterations suffice (but 5 do not).
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Figure 4.2: A is a fixed n× n matrix drawn from the Gaussian Orthogonal Ensemble (GOE) with
n = 2000. Plotted is the histogram of the Ritz values after 200 repetitions of the Lanczos algorithm
with k = 10 iterations. Also plotted are the roots of the 10th orthogonal polynomial with respect to
the (suitably rescaled) semicircle law, which is the limit of the distribution of eigenvalues for GOE
as n→∞.
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In Section 2.3 we introduce the framework in which this chapter is developed and formally
state the main contributions of our work.

4.2.1 Statement of results

Sections 4.3 and 4.4 are devoted to proving concentration results for the output of the Lanczos
algorithm, Algorithm 1. In these sections, the input matrix will be fixed and denoted by
A. We will use n to denote the dimension of A and usually the number of iterations of the
procedure will be denoted by k. Note that the Jacobi coefficients αi and βi are assigned
during the ith iteration of the algorithm and are unchanged during future iterations.

Since for our analysis it is necessary to compare outputs of the algorithm resulting from
different input vectors u ∈ Sn−1, we will stress this dependence by viewing the respective
quantities as a function of u and denoting them by αi(u), βi(u), ri(u), γi(u), puk(x), vi(u) and
Jk(u). Depending on the context, the aforementioned quantities will also be thought as
random variables, random polynomials, random vectors and random matrices, respectively.
One of the main steps in the proof of our concentration result, Theorem 4.2.2, consists of
showing that these quantities are somehow stable under perturbations of the input vector.

For Theorem 4.2.2 a technical feature of the global behaviour of the spectrum is taken into
account. Intuitively, we want to say that the spectrum is equidistributed if it is not grouped in
a small number of small clusters (see Examples 4.2.4 and 4.2.5 below). As we show in Section
4.4, the family of well equidistributed point sets includes, but it is not limited to, those sets
obtained by discretizing an absolutely continuous distribution. We use two parameters, δ and
ω, to quantify how well-distributed the spectrum of a matrix is. We motivate and develop
this notion in Section 4.4.

Definition 4.2.1 (Equidistribution). Let Λ be any finite set of n real numbers. Let δ and ω be
positive real numbers and let j be a natural number. We say that Λ is (δ, ω, j)-equidistributed
if for any finite set T of at most j real numbers it holds that∣∣∣∣∣

{
λ ∈ Λ :

1

|T |
∑
t∈T

log |λ− t| ≥ logω

}∣∣∣∣∣ ≥ δn.

Theorem 4.2.2 (Concentration of Jacobi coefficients after i iterations). Suppose the spectrum
of A is (δ, ω, i)-equidistributed for some δ, ω > 0 and i ∈ N. Let α̃i and β̃i denote the medians
of the Jacobi coefficients αi(u) and βi(u) respectively. Then for all t > 0, the quantities
P[|αi(u)− α̃i| > t‖A‖] and P[|βi(u)− β̃i| > t‖A‖]] are both bounded above by

2 exp

{
−min{δ, 1/50}2

32
n

}
+ 2 exp

{
− 1

64

(
ω

4‖A‖

)2i

δ2t2n

}
. (4.1)

Remark 4.2.3. The constants δ, ω appearing in the above theorem are typically quite
moderate in magnitude, and are easy to compute if one can obtain explicit bounds for certain
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integrals with respect to the spectral distribution of A. Besides the examples provided below,
in Section 4.4.1 we give more examples and a detailed discussion on how to compute these
quantities.

Example 4.2.4. Let Λ be the set of n equally spaced points from 1/n to 1, inclusive. This
represents a discretization of the uniform measure µ = Unif([0, 1]). In Section 4.4.1, we will
show that for j ≤ n

16
, the set Λ is (δ, ω, j)-equidistributed for δ = 1/4 and ω = 4e−2.

Example 4.2.5. Now consider a set (or multiset) Λ of n > 0 points grouped in m equally
spaced small clusters. To make this precise, fix two parameters ε, g > 0 and consider
−1 = a1 ≤ b1 < a2 ≤ b2 < · · · < am ≤ bm = 1 such that for every i = 1, . . . ,m we have
bi − ai = ε and ai+1 − bi = g (we think of ε as small with respect to g and of m as small
with respect to n). If Λ ⊂

⋃m
i=1[ai, bi] with |Λ ∩ [ai, bi]| ≥ b nmc for every i = 1, . . . ,m, then Λ

is (m−j
m
, g, j)-equidistributed and g ≈ 2/m.

Note that in this case we have good equidistribution parameters unless j ≈ m. In Section
4.4 we give a generalization of this assertion in Observation 4.4.9.

Theorem 4.2.2 yields concentration of the entries of the random matrix Jk(u). In general,
controlling the entries of a random matrix does not yield control over its random eigenvalues
or eigenvectors. However, since Jk(u) is symmetric we know that its spectrum is stable with
respect to small perturbations of the entries, and under some conditions its eigenvectors
are stable as well. More precisely, we now invoke two classic results in perturbation theory,
Weyl’s inequality and the Davis-Kahan theorem [39]. See [128] or [75] for more modern
references and (1.65) in [122] for a generalization of this case of Weyl’s inequality from `∞ to
`p that might be of interest in this context.

Lemma 4.2.6 (Weyl). For every matrix X, let λ1(X) ≥ · · · ≥ λn(X) denote the eigenvalues
of X. If A and B are n× n Hermitian matrices, then for all 1 ≤ i ≤ n we have

|λi(A+B)− λi(A)| ≤ ‖B‖.

Theorem 4.2.7 (Davis-Kahan). Here we use the notation of Lemma 4.2.6. Fix i ∈ {1, . . . , n}
and assume that λi(A) has multiplicity 1. Define

ε = min
j:j 6=i
|λi(A)− λj(A)|,

and let θ ∈ [0, π/2] denote the angle between the i-th eigenvectors of A and A+B. Then

sin θ ≤ 2‖B‖
ε

.

Following the notation in Theorem 4.2.2, let J̃k be the k× k Jacobi matrix with entries α̃i
and β̃i, and denote the eigenvalues of J̃k by r̃1 ≥ · · · ≥ r̃k. Also, let w̃i be the eigenvector of
J̃k corresponding to r̃i and let wi(u) be the eigenvector of Jk(u) corresponding to ri(u). Since
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Jk(u) concentrates around J̃k, by the Weyl inequality and the Davis-Kahan theorem, the
Ritz values ri(u) will concentrate around their medians r̃i and, provided that r̃i is sufficiently
separated from the rest of the rj, wi(u) will concentrate around w̃i. Indeed, at the end of
Section 4.4 we show the following proposition.

Proposition 4.2.8 (Concentration of the Ritz values). Assume that the spectrum of A is
(δ, ω, k)-equidistributed for some δ, ω > 0 and k ∈ N. With the notation described above,
let ~r = (r̃1, . . . , r̃k) and let ~r(u) = (r1(u), . . . , rk(u)) be the vector of Ritz values after k
iterations. Then

P[‖~r(u)− ~r‖∞ ≥ t‖A‖]

≤ 4k

[
exp

{
−min{δ, 1/50}2

32
n

}
+ exp

{
− 1

192

(
ω

4‖A‖

)2k

δ2t2n

}]
.

Proposition 4.2.9 (Concentration of the Ritz vectors). Assume that the spectrum of A
is (δ, ω, k)-equidistributed for some δ, ω > 0 and k ∈ N and fix some i ∈ N with 1 ≤ i ≤ k.
With the notation described above, let θ ∈ [0, π/2] be the angle between wi(u) and w̃i and
let ε = minj:j 6=i |r̃i − r̃j|. Then for any 0 ≤ c < 1/2 we have

P
[
sin θ ≥ 2‖A‖

εnc

]
≤ 4k

[
exp

{
−min{δ, 1/50}2

32
n

}
+ exp

{
− 1

192

(
ω

4‖A‖

)2k

δ2n1−2c

}]
.

Note: The same result holds for the Ritz vectors, since these are obtained by applying an
isometry to the wi(u).

Theorem 4.2.2, Proposition 4.2.8 and Proposition 4.2.9 above show that the Lanczos
algorithm is almost deterministic when the number of iterations is a fraction of the logarithm
of the dimension of A.

The results above regard concentration, but do not say anything about the locations of
the medians that our Ritz values and Jacobi coefficients concentrate around. The rest of the
chapter focuses on studying the locations of these quantities. In section 4.5.1, we show that
if k is a certain fraction of log n, the Ritz values obtained after k iterations are contained
in a small blow-up of the convex hull of the bulk of the spectrum of A. This complements
classical guarantees which show that for some multiple of log n, say K, the Lanczos algorithm
approximates with high accuracy the outliers of the spectrum of A when K iterations are
performed. Our results are quantitative and use our notion of equidistribution.

Theorem 4.2.10. Suppose the spectrum of A is (δ, ω, j)-equidistributed for some δ, ω > 0
and j ∈ N. Let M be the diameter of the spectrum of A. Let R be a real number and let
0 < c < 1/2, and suppose there are at most m ≤ min{0.02n, 2nα} “outliers”, eigenvalues of
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A lying above R, for some α < 1− c. Let g = max1≤i≤n{λi −R} and let κ > 0. Then for up
to

k = min

{
j,

1

2 log M
ω

(
c log n+ log

κδ

2mg

)}
iterations, the probability that the top Ritz value exceeds R + κ is at most

2 exp

{
−min{δ, 1/50}2

32
n

}
+ 2 exp

{
− 1

16
n1−2c

}
for n > e

1
1−c−α .

The strength of the above result might be obscured by the appearance of several unintuitive
parameters. For the reader’s benefit we include an example below, and to provide a slightly
different perspective, we include an asymptotic version of the above result, namely Proposition
4.2.12.

Example 4.2.11. Let n > 0 and let A be a matrix whose spectrum consists of n − 1
equally spaced points from 2/n to 1 inclusive, together with an outlier of value 1.1 (compare
with Figure 4.1). In Section 4.4.1 we will show that for j ≤ n/16 the spectrum of A is
(1/4, 4e−2, j)-equidistributed.

In order to apply Theorem 4.2.10, we also note that in this case M = 1.08, m = 1 and
g = 10−1. Take κ = 10−4. Then, for any 0 < c < 1/2, the Ritz values of the Lanczos
algorithm on A after b 7c

10
log n−7/2c iterations will be contained in the interval [2/n, 1+10−4]

with overwhelming probability.

Proposition 4.2.12. Let (An)∞n=1 be a sequence of n×n Hermitian matrices with uniformly
bounded norm. Assume their empirical spectral distributions µn converge in distribution to
a measure µ with nontrivial absolutely continuous part, and further assume Kol(µn, µ) =
O(1/ log n). Suppose there exists m ∈ N such that each An has at most m eigenvalues
(“outliers”) greater than R, where R denotes the right edge of the support of µ.

Then there exists c > 0 such that for every κ > 0, the Ritz values of Lanczos applied to
An after c log n iterations are bounded above by R + κ with overwhelming probability for n
sufficiently large (depending on how small the gap κ is chosen.)

Finally, we give a result about the locations of the Ritz values and Jacobi coefficients
when at most d

√
log n iterations are performed, with d depending only on µ and the speed of

convergence of the sequence µn. Essentially, we show that in this regime the Jacobi matrix
after k iterations is sharply concentrated around the kth Jacobi matrix of the measure µ.

Theorem 4.2.13 (Location of Jacobi coefficients). Let (An)∞n=1 be a sequence of n × n
Hermitian matrices with uniformly bounded operator norm. Assume their empirical spectral
distributions µn converge in distribution to a measure µ with nontrivial absolutely continuous
part, and further assume Kol(µn, µ) = O(n−c) for some c > 0.
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Then there is a constant d > 0 dependent on µ and c, such that for any sequence of
integers 1 ≤ kn ≤ d

√
log n we have

‖Jkn(u)− Jkn(µ)‖ −→P 0,

where Jkn(u) denotes the Jacobi matrix output by the Lanczos algorithm applied to An under
the input u ∼ Unif(Sn−1) after kn iterations, and where Jkn(µ) is the kn-th Jacobi matrix of
the measure µ.

Note that Theorem 4.2.13 may be of particular relevance in applications where an infinite
dimensional operator is discretized with the goal of computing its density. In essence, Theorem
4.2.13 states that, in this situation, the first iterations of the Lanczos algorithm are an accurate
approximation of the true Jacobi coefficients of the measure µ, and hence the procedure gives
valuable information to recover the limiting measure.

From the above proposition, a standard application of the Weyl eigenvalue perturbation
inequality yields the following proposition.

Proposition 4.2.14 (Location of the Ritz values). Using the same notation as in Theorem
4.2.13, let ~rkn(u) = (r1(u), . . . , rkn(u)), where r1(u) ≥ · · · ≥ rkn(u) are the random Ritz values
of the Lanczos algorithm after kn iterations are performed. Then under the assumptions in
Theorem 4.2.13, we have that

‖~rkn(u)− ~rkn(µ)‖L∞(Rkn ) −→P 0,

where ~rkn(µ) is the vector whose entries are the roots of the kn-th orthogonal polynomial
with respect to µ in decreasing order.

It remains an open question if similar results can be obtained when O(log n) iterations
are performed. See Section 4.6 for open questions and further research.

4.3 Applying the local Lévy lemma

4.3.1 Strategy

The well known Lévy lemma states, in a quantitative way, that if f : Sn−1 → R is a Lipschitz
function, then f(u) is a random variable concentrated around its median. See Chapter 5.1 in
[128] for a detailed discussion. In this direction, the main obstacle for showing concentration
of the random variables αi(u) and βi(u) is that the functions αi, βi : Sn−1 → R are not
Lipschitz on the entire sphere. However, we will be able to show that these functions are
Lipschitz in a large region of the sphere, which is a common idea in geometric functional
analysis. We will use a local version of Lévy’s lemma, which is recorded as Corollary 5.35 in
[6], and which we restate below with explicit universal constants.
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Lemma 4.3.1 (Local Lévy lemma). Let Ω ⊂ Sn−1 be a subset of measure larger than 3/4.
Let f : Sn−1 → R be a function such that the restriction of f to Ω is Lipschitz with constant
L. Then, for every ε > 0,

P[|f(u)− f̃ | > ε] ≤ P[u ∈ Sn−1 \ Ω] + 2 exp{−4nε2/L2},

where f̃ is the median of f(u) and where u ∼ Sn−1.

One may also consider nonuniform random u ∈ Sn−1, provided that there is a Lipschitz
map g : Sn−1 → Sn−1 such that u is distributed as the pushforward of the uniform measure
under g.

In order to identify the correct region of the sphere in which the functions αi and βi are
Lipschitz, we need a local version of the notion of Lipschitz constant. In what might be a
slight departure from standard definitions, we will define local Lipschitz continuity as follows.

Definition 4.3.2. Let (X1, d1) and (X2, d2) be metric spaces. A function f : X1 → X2 is
said to be locally Lipschitz continuous with constant c at x0 ∈ X1, if for every c′ > c there is
a neighborhood U ⊂ X1 of x0 such that

d2(f(x), f(y)) ≤ c′d1(x, y) ∀x, y ∈ U.

It is obvious that if a function is locally Lipschitz with constant c on every point of
a convex set, then the function is globally Lipschitz on the set with the same constant c.
However, if the convexity assumption is dropped, a similar conclusion is not guaranteed in
general and in order to obtain a global Lipschitz constant the geometry of the set should be
analyzed.

Definition 4.3.3. Let K > 0 and (X, d) be a metric space. We say that S1 ⊂ X is K-
connected in S2, with S1 ⊂ S2 ⊂ X, if for every x, y ∈ S1 there is a rectifiable Jordan arc
α : [0, 1]→ S2 with α(0) = x and α(1) = y, such that the length of the trace of α is less than
or equal to Kd(x, y).

Now that we have introduced the notion of K-connected set we can generalize what we
observed for convex sets.

Lemma 4.3.4. Let (X1, d1) and (X2, d2) be metric spaces. Assume that S1 ⊂ X1 is K-
connected in S2 ⊂ X1 and let f : X1 → X2 satisfy that for every x0 ∈ S2, f is locally
Lipschitz at x0 with constant c. Then f is globally Lipschitz on S1 with constant cK.

Proof. Fix x, y ∈ S1 and ε > 0. We will show that d2(f(x), f(y)) ≤ (c+ε)Kd1(x, y). Consider
a rectifiable Jordan arc α : [0, 1]→ X1, such that α(0) = x, α(1) = y, α([0, 1]) ⊂ S2 and the
length of α is at most Kd1(x, y).

Since the trace of α is contained in S2, for every w ∈ α([0, 1]) we can take an open ball
Uw containing w such that f is (c+ ε)-Lipschitz on Uw. Moreover, observe that since α is
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continuous and injective, for every w ∈ α([0, 1]) we can take Uw small enough such that
α−1(Uw) is connected and hence an open interval in [0, 1].

By compactness of α([0, 1]) we may take w1, . . . , wn ∈ α([0, 1]) such that {Uwi}ni=1 is a
minimal cover for α([0, 1]). Now, since each α−1(Uwi) is connected, and the cover is minimal,
we have that α−1(Uwi) ∩ α−1(Uwi+1

) 6= ∅ for every 1 . . . , n− 1.
Furthermore, we will now see that we can modify the sequence of wi such that wi+1 ∈ Uwi

for every i = 1, . . . , n− 1. Assume that this does not hold and let i be the smallest index
for which wi+1 /∈ Uwi . Now take some t ∈ α−1(Uwi) ∩ α−1(Uwi+1

) and define w′ = α(t). We
construct a new sequence w̃1, . . . , w̃n+1 ∈ α([0, 1]) by taking w̃j = wj for j < i, w̃i = w′,
w̃j+1 = wj for j ≥ i, and Uw̃i to be equal to Uwi+1

. Observe that for the new sequence of
points (w̃i)

n+1
i=1 in α([0, 1]) and sequence of open balls Uw̃i it holds that w̃j+1 ∈ Uw̃j for all

j ≤ i. By iterating this process we will obtain a finite sequence with the desired property.
So, in what follows we can assume without loss of generality that wi+1 ∈ Uwi for every
i = 1, . . . , n− 1. We then will have

d2(f(wi), f(wi+1)) ≤ (c+ ε)d1(wi, wi + 1).

Using the triangle inequality and the fact that
∑

i d1(wi, wi+1) is bounded by the length of
the trace of α the result follows.

In the following section the local Lipschitz constants of the functions αi(u) and βi(u) are
shown to be related to the orthogonal polynomials of the measure µu.

4.3.2 Local Lipschitz constants for Jacobi coefficients

As it can be seen from Algorithm 1, the dependence of the quantities αi(u), βi(u) and vj(u)
on u is highly non-linear, which makes it complicated to show that such quantities are stable
under perturbations of the input vector u. Here we exploit the fact that during every iteration
of the Lanczos algorithm only locally Lipschitz operations are performed. The analysis of the
compound effect of iterating the procedure yields a bound on the local Lipschitz constant of
the quantities of interests. This bound is exponential in the number of iterations, which is
enough to obtain concentration results when O(log(n)) iterations are performed. In what
follows, recall that γi(u) denotes the leading coefficient of the ith orthonormal polynomial
with respect to the measure µu defined in (1.11).

Proposition 4.3.5. Fix ũ ∈ Sn−1 and let vj(u) be as in Algorithm 1. Then, for any
0 ≤ j ≤ n− 1, the functions vj(u) are locally Lipschitz at ũ with constant (4‖A‖)jγj(ũ).

Proof. We proceed by induction. For j = 0, recall v0(u) = u and γ0(ũ) = 1; the statement
follows. Now assume the proposition is true for some j ≥ 0. For every x ∈ Sn−1 denote
Wx = span{v0(x) = x, v1(x), . . . , vj(x)} and for any subspace W ≤ Rn by ProjW we mean
the orthogonal projection onto W .
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Take x, y ∈ Sn−1 in a neighborhood U of ũ to be determined and note that

‖ProjW⊥x (Avj(x))− ProjW⊥y (Avj(y))‖
≤ ‖ProjW⊥x (A(vj(x)− vj(y)))‖+ ‖(ProjW⊥x − ProjWy⊥)(Avj(y))‖
= ‖ProjW⊥x (A(vj(x)− vj(y)))‖+ ‖(ProjWx

− ProjWy
)(Avj(y))‖. (4.2)

From the induction hypothesis we have that, for any ε > 0, we can choose U small enough
so that

‖ProjW⊥x (A(vj(x)− vj(y)))‖ ≤ ‖A‖‖vj(x)− vj(y)‖ ≤ ‖A‖((4‖A‖)jγj(ũ) + ε)‖x− y‖. (4.3)

On the other hand, from Algorithm 1 it follows that βi(ũ) ≤ ‖A‖ for every i = 0, . . . , n−1,
so in view of (1.7), the ‖A‖iγi(ũ) form an increasing sequence. It then follows that

j∑
i=0

(4‖A‖)iγi(ũ) ≤
j∑
i=0

4i‖A‖jγj(ũ) ≤ 4j+1‖A‖jγj(ũ)

3
.

For any unit vector w, by the triangle inequality, we have that

‖ProjWx
(w)− ProjWy

(w)‖ ≤
j∑
i=0

‖〈vi(x), w〉vi(x)− 〈vi(y), w〉vi(y)‖ (4.4)

and we can bound each term on the right-hand side of (4.4) as follows:

‖〈vi(x), w〉vi(x)− 〈vi(y), w〉vi(y)‖ ≤ |〈vi(x)− vi(y), w〉|+ ‖vi(x)− vi(y)‖|〈vi(y), w〉|
≤ ‖vi(x)− vi(y)‖‖w‖+ ‖vi(x)− vi(y)‖‖vi(y)‖‖w‖
≤ 2(4‖A‖)iγi(ũ)‖x− y‖.

Hence, adding over i we obtain

‖ProjWx
(w)− ProjWy

(w)‖ ≤ 2

3
· 4j+1‖A‖jγj(ũ)‖x− y‖

which implies that ‖ProjWx
− ProjWy

‖ ≤ 2
3
· 4j+1‖A‖jγj(ũ)‖x− y‖ and hence

‖(ProjWx
− ProjWy

)(Avj(y))‖ ≤ 2

3
· (4‖A‖)j+1γj(ũ)‖x− y‖ (4.5)

Putting together inequalities (4.2), (4.3) and (4.5), we get for any x, y ∈ U that

‖ProjW⊥x (Avj(x))− ProjW⊥y (Avj(y))‖ ≤ (4‖A‖)j+1γj(ũ)‖x− y‖.

With this we have established that the function u 7→ ProjW⊥u (Avj(u)) is locally Lipschitz
at ũ with constant (4‖A‖)j+1γj(ũ). Now consider the function f : Rn → Rn defined by
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f(x) = x/‖x‖. It is easy to show that for any x0 6= 0, f is locally Lipschitz at x0 with constant
1/‖x0‖. Now recall that by definition βj(ũ) = ‖ProjW⊥ũ (Avj(ũ))‖. Since the composition of
locally Lipschitz functions is locally Lipschitz with the constant being the product of the
constants of each of the functions in the composition, we have that the function

u 7→ vj+1(u) = f(ProjW⊥u (Avj(u)))

is locally Lipschitz at ũ with constant
(4‖A‖)j+1γj(ũ)

βj(ũ)
= (4‖A‖)j+1γj+1(ũ), where this equality

follows from equation (1.7).

Proposition 4.3.6. For any 0 ≤ j ≤ n− 1 and any ũ ∈ Sn−1, the function αj(u) is locally
Lipschitz at ũ with constant 1

2
· (4‖A‖)j+1γj(ũ), while βj(u) is locally Lipschitz at ũ with

constant (4‖A‖)j+1γj(ũ).

Proof. We will use the same notation as in Proposition 4.3.5. Recall from Algorithm 1 that
αj(u) = 〈Avj(u), vj(u)〉. Note that the local Lipschitz constant of the function u 7→ Avj(u)
is obtained by multiplying the local Lipschitz constant of vj(u) by ‖A‖ . Then, for any ε we
can pick U to be a small enough neighborhood of ũ such that for any x, y ∈ U we have

|αj(x)− αj(y)| = |〈Avj(x), vj(x)〉 − 〈Avj(y), vj(y)〉|
≤ |〈A(vj(x)− vj(y)), vj(x)〉|+ |〈Avj(y), vj(x)− vj(y)〉|
≤ 2 · (4j‖A‖j+1γi(ũ) + ε)‖x− y‖.

On the other hand, since βj(u) = ‖ProjW⊥u (Avj(u)))‖ and we established in the proof of
Proposition 4.3.5 that this function is locally Lipschitz with constant (4‖A‖)j+1γj(ũ), the
proof is concluded.

Remark 4.3.7. The local Lipschitz constants presented in the above statements can be
improved; the term 4j next to ‖A‖jγj(ũ) was chosen for the sake of exposition. Nevertheless, it
seems complicated to show that the quantities vj(u) are locally Lipschitz at ũ with a constant
of the form Cj‖A‖jγj and Cj subexponential. In any case, the term ‖A‖jγj is typically
exponential in j, so an improvement on Cj would not yield an asymptotic improvement to
the final result if the same level of generality is considered. However, as we point out in
Section 4.6, sharpening our constants is of relevance for applications.

4.3.3 Incompressibility

In Section 4.4, we will see that our upper bounds for the local Lipschitz constants of the
Jacobi coefficients go to infinity if u becomes too close to a sparse vector, roughly speaking.
So we only have a good local Lipschitz constant in a certain region of the unit sphere that
avoids sparse vectors. In order to upgrade our local Lipschitz constant to a global Lipschitz
constant, we must prove
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1. that this region is large enough to apply the local Lévy lemma (Lemma 4.3.1), and

2. that this region is K-connected for a small enough K.

First we give this region a name. Loosely inspired by the compressed sensing literature
(see for example [129]), we say that a vector u in Sn−1 is (δ, ε)-incompressible if each set
of at least δn coordinates carries at least ε of its “L2 mass.” Otherwise, we say that u is
(δ, ε)-compressible. We denote the set of (δ, ε)-incompressible vectors in Sn−1 by In(δ, ε) and
record the formal definition below:

Definition 4.3.8.

In(δ, ε) =

{
u ∈ Sn−1 :

∑
i∈S

u2
i > ε for all S ⊆ {1, 2, . . . , n}, |S| ≥ δn

}

For incompressible u we prove an adequate bound on the local Lipschitz constant in
Proposition 4.4.1. Fortunately, a uniform random unit vector u is incompressible with high
probability, as we will now show.

Proposition 4.3.9. Let u ∈ Sn−1 be a uniform random unit vector, and let 0 < ε < δ. Then

P[u 6∈ In(δ, ε)] ≤ exp

{
2δ(1 + log 1/δ)n−

(ε
δ
− 1
)2

n

}
+ exp{−ε2n/8}

Corollary 4.3.10. Let u ∈ Sn−1 be a uniform random unit vector, and let 0 < δ ≤ 1/50.
Then

P[u 6∈ In(δ, δ/2)] ≤ 2 exp{−δ2n/32}.

Proof. Set ε = δ/2 in Proposition 4.3.9. Note that ε2/8 = δ2/32 and 2δ(1+log 1/δ)−(1/2)2 <
−1/32 for 0 < δ ≤ 1/50.

The proof of Proposition 4.3.9 consists of two parts. First, we prove a similar proposition
where instead of the ui we have independent Gaussian random variables with the same
variance 1/n. We then use a coupling argument to conclude the desired bound for u drawn
uniformly from the unit sphere.

We will need upper and lower tail bounds on the χ2 distribution. One can get good
enough bounds using the Chernoff method, but rather than develop these from scratch we
will cite the following corollary of Lemma 1 from Section 4.1 of [84].

Lemma 4.3.11. Let Y be distributed as χ2(k) for a positive integer k. Then the following
upper and lower tail bounds hold for any t ≥ 0:

P
[
Y ≤ k − 2

√
kt
]
≤ e−t

P
[
Y ≥ k + 2

√
kt+ 2t

]
≤ e−t
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Proof of Proposition 4.3.9. Let X1, . . . , Xn denote independent Gaussian random variables
each with variance 1/n, and let X = (X1, . . . , Xn). If we set u = X/‖X‖, then u is uniformly
distributed on the unit sphere; see e.g. [96].

We seek to upper bound the probability of compressibility {u 6∈ In(δ, ε)}, which is the
event that

∑
i∈S u

2
i < ε for some subset S of coordinates with |S| ≥ δn. This event is

contained in the union of the following two events:

1. E, the event that
∑

i∈S X
2
i ≤ 2ε for some |S| ≥ δn, and

2. F , the event that
∑

i∈S X
2
i ≥ ε+

∑
i∈S u

2
i for some |S| ≥ δn.

Indeed, if neither of these events hold, then for all |S| ≥ δn we have

2ε <
∑
i∈S

X2
i < ε+

∑
i∈S

u2
i ,

so u is incompressible.
To upper bound the probability of E, we use the union bound over all sets of size k = dnδe:

P[E] ≤
(
n

k

)
P

[
k∑
i=1

X2
i ≤ 2ε

]

≤ (en/k)k exp

{
−(k − 2nε)2

4k

}
where in the last step we apply the lower tail bound in Lemma 4.3.11 with t being the solution
to k − 2

√
kt = 2nε. To avoid bookkeeping of ceiling and floor functions we use the extremely

crude inequality nδ ≤ k ≤ 2nδ (valid as long as δn ≥ 1), which will suffice for our purposes:

P[E] ≤ exp

{
2δ(1 + log δ−1)n−

(ε
δ
− 1
)2

n

}
.

We now upper bound the probability of F :

P[F ] = P

[∑
i∈S

(
X2
i −

X2
i

‖X‖2

)
≥ ε for some |S| > δn

]

= P

[(
1− 1

‖X‖2

)∑
i∈S

X2
i ≥ ε for some |S| > δn

]

≤ P
[(

1− 1

‖X‖2

)
‖X‖2 ≥ ε

]
= P

[
‖X‖2 ≥ 1 + ε

]
Since Y = n‖X‖2 is distributed as χ2(n), we may apply the upper tail bound in Lemma
4.3.11 with t = nε2/8 to obtain
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P[F ] ≤ exp{−nε2/8}.

To conclude, we have P[u 6∈ In(δ, ε)] ≤ P[E] + P[F ], and substituting the bounds we just
derived, we obtain the desired inequality.

4.3.4 K-connectedness of the incompressible region

Having proven that the incompressible region In(δ, ε) where we have a good local Lipschitz
constant is almost the entire sphere, we now turn to proving that the region is K-connected
for a small enough K.

One could try to show that any two points in In(δ, ε) can be connected by a short path
contained in In(δ, ε), but for our purposes it is okay to let the path venture out into the larger
region In(4δ, ε/

√
2). When upgrading to a global Lipschitz constant, we will have to use the

slightly worse upper bound for the local Lipschitz constant in this larger region, but this will
still be good enough.

Proposition 4.3.12. In(δ, ε) is
√

2/ε-connected in In(4δ, ε/
√

2).

Proof. Let x and y be any two endpoints in In(δ, ε). The construction will proceed in two
steps. First, we will construct a path from x to y in Rn consisting of dδ−1e pairwise orthogonal
line segments. Then we will project this path radially onto the unit sphere and show that
the result indeed lies in In(4δ, ε/2) and has length at most (2/

√
ε)‖x− y‖.

Roughly speaking, we will partition the coordinates of x into 1/δ blocks of δn coordinates
and move the entries of each block linearly from x to y in parallel, one block at a time.

Because basic quantities such as 1/δ and δn may not be integers, we will be content to
split up Rn as the direct sum

⊕m
i=1 Rni where δn ≤ ni ≤ 2δn for all i.1 Note also that this

implies m ≥ 1
δ
. Similarly, for any vector z ∈ Rn, we will write z =

⊕m
i=1 z

(i), where z(i) ∈ Rni .
Now we may formally define the path Pi to be the line segment

Pi(t) = x(1) ⊕ · · · ⊕ x(i−1) ⊕
(
tx(i) + (1− t)y(i)

)
⊕ y(i+1) ⊕ · · · ⊕ y(m),

and define P to be the concatenation of the segments P1, . . . , Pm. The length of P is

m∑
i=1

‖x(i) − y(i)‖ ≤
√
m‖x− y‖ ≤

√
1/δ‖x− y‖,

by the Cauchy-Schwarz inequality. Also, ‖P (t)‖ ≥
√
ε/2δ, because

‖Pi(t)‖2 ≥
i−1∑
j=1

‖x(j)‖2 +
m∑

j=i+1

‖y(j)‖2 ≥ (m− 1)ε ≥ ε

2δ

1This is possible as long as n/2 ≥ δn ≥ 1, which will be true in our regime.
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where we use that x and y are (δ, ε)-incompressible.
Furthermore, note that P lies inside the closed ball of radius

√
2, because for any i and t,

‖Pi(t)‖2 ≤
m∑
j=1

max{‖x(j)‖, ‖y(j)‖}2 ≤
m∑
j=1

(
‖x(j)‖2 + ‖y(j)‖2

)
= 2.

The path P currently does not lie in the unit sphere, so we project it onto the unit sphere
along radii to get our final path P ′. We now show that P ′ indeed lies in In(4δ, ε/

√
2).

At this stage, we will dispense with the direct sum decomposition and use ordinary
coordinates z = (z1, . . . , zn).

Consider any set S of at least 4δn coordinates, and consider any point Pi(t) in our path P
(before projection). The ith block of coordinates is in motion, and all of the other coordinates
are either frozen at their initial value (from x) or their final value (from y).

The ith block consists of at most 2δn coordinates. Besides these, there are at least
4δn− 2δn = 2δn remaining coordinates in our set S. At least δn of them are from x or at
least δn of them are from y. By incompressibility of x and y, the sum of the squares of these
δn coordinates is at least ε.

After projecting onto the unit sphere, the sum of the same coordinates is still at least
ε/
√

2, because as we saw, the original path had norm at most
√

2 at every point.
Finally, when projecting onto the unit sphere, the length of the path increases by at

most a factor of 1/
√
ε/2δ, because as we saw earlier, originally each segment lay outside

the smaller sphere of radius
√
ε/2δ. The verification is an exercise in plane geometry (using

the fact that tan θ > θ for 0 < θ < π/2) and also follows from the arc length formula
ds =

√
r2 + (dr/dθ)2 dθ ≥ r dθ.

Thus, finally, we have shown that the path P ′ is contained in In(4δ, ε/
√

2) and has length
at most √

1/δ‖x− y‖(1/
√
ε/2δ) =

√
2/ε‖x− y‖.

4.4 Concentration of the Ritz values and Jacobi

coefficients

We now analyze the local Lipschitz constant for the entries αi and βi of the Jacobi matrix.
To simplify notation, in what follows we assume that ‖A‖ = 1 by rescaling A. Recall that
this will also rescale the Ritz values and Jacobi coefficients by a factor 1/‖A‖.

By Corollary 4.3.6, the function αi(u) has local Lipschitz constant 2 · 4iγi(u), and βi(u)
has local Lipschitz constant 4i+1γi(u). Thus we are naturally led to the question of finding
upper bounds for γk(u). Recall that γk(u) is defined as the leading coefficient of the kth
orthogonal polynomial with respect to the measure µu =

∑n
i=1 u

2
i δλi , and that πuk is the monic

orthogonal polynomial with respect to the same measure.
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The equations (1.6) and (1.11) imply

γk(u) =

(
n∑
i=1

u2
iπ

u
k (λi)

2

)− 1
2

.

We seek to upper bound γk(u) in terms of u, so we need to lower bound the quantity

n∑
i=1

u2
iπ

u
k (λi)

2 =
n∑
i=1

u2
i

k∏
j=1

|λi − rj(u)|2,

where r1(u), . . . , rk(u) are the roots of πuk (z), i.e. the Ritz values.
Now, if it happens to be the case that the n eigenvalues λi are all clustered very close to

the k Ritz values rj, then we won’t get a good lower bound. However, if k << n and if the
λi are reasonably spread out, we expect to get a good lower bound for most i. To make this
precise, we are led to the notion of equidistribution, which was stated in Section 4.2.3 and
which we restate below:

Definition 2.1 (Equidistribution). Let Λ be any finite set of n real numbers. Let δ and ω be
positive real numbers and let j be a natural number. We say that Λ is (δ, ω, j)-equidistributed
if for any finite set T of at most j real numbers,∣∣∣∣∣

{
λ ∈ Λ :

1

|T |
∑
t∈T

log |λ− t| ≥ logω

}∣∣∣∣∣ ≥ δn.

We will show in Section 4.4.1 that a wide range of spectra are equidistributed.
Now we apply the definition. Returning to our effort to upper bound γj(u), we see that if

we assume the spectrum of A is (δ, ω, k)-equidistributed, then

n∑
i=1

u2
i

k∏
j=1

|λi − rj(u)|2 ≥
∑
i∈S

u2
iω

2k,

where S is some subset of {1, . . . , n} of size at least δn. However, for an arbitrary unit vector
u and an arbitrary subset S, we have no lower bound on the sum

∑
i∈S u

2
i—it could even be

zero. This leads to our definition of incompressibility in Section 4.3, which is satisfied by u
with high probability.

Indeed, if we assume that the unit vector u is (δ, ε)-incompressible, then the right hand
side expression above is greater than εω2k. Putting together the last few equations, we have
γk(u) ≤ (εω2k)−1/2. We summarize the result in the following proposition:

Proposition 4.4.1. Suppose the spectrum of A is (δ, ω, k)-equidistributed and suppose that
u is (δ, ε)-incompressible for some δ, ω, ε > 0 and k ∈ N. Then

γk(u) ≤ 1

ωk
√
ε
.
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4.4.1 Equidistribution

In this section we establish sufficient conditions for equidistribution that apply to a wide range
of spectra. First, we present an immediate generalization of the notion of equidistribution
which applies to measures µ instead of finite sets Λ. The definitions coincide for finite sets if
one identifies Λ with the uniform probability distribution on Λ.

Definition 4.4.2 (Equidistribution for measures). Let µ be a probability measure on R. Let
δ, ω > 0 and j be a natural number. We say that µ is (δ, ω, j)-equidistributed if for any finite
set T of at most j real numbers,

µ

({
x ∈ R :

1

|T |
∑
t∈T

log |x− t| ≥ logω

})
≥ δ.

If a measure is (δ, ω, j)-equidistributed for every j ∈ N, we will just say that it is (δ, ω)-
equidistributed.

For absolutely continuous measures, we have the following general equidistribution result:

Proposition 4.4.3 (Absolutely continuous measures are equidistributed). Let ν be a com-
pactly supported probability measure on R with a nontrivial absolutely continuous part.
Then there exist constants δ, ω > 0 such that ν is (δ, ω)-equidistributed.

Proof. By the assumption, we may write ν = ν1 + ν2 where ν1 is absolutely continuous with
respect to Lebesgue measure. By cutting off the portion where the density of ν1 is greater
than some large M > 0 and assigning that mass to ν2 instead, we may assume without loss
of generality that the density function of ν1 is bounded.

We now utilize a Markov inequality type argument. Let T be any set of j real numbers.
Define the logarithmic potential

V (x) = −1

j

∑
t∈T

log |x− t|.

Since ν1 has a bounded density function, log |x− t| is integrable against ν1 for all t, so
the integral

∫∞
−∞ Vt(x) dν1(x) is finite for each t ∈ T . Averaging over all t ∈ T , we find that

1

ν1(R)

∫ ∞
−∞

V (x)dν1(x) ≤ a

for some constant a <∞. Then

a ≥ 1

ν1(R)

∫ ∞
−∞

V (x)dν1(x) ≥ 2aν1({x ∈ R : V (x) ≥ 2a})
ν1(R)

.

Relating this back to the definition of equidistribution, we have

ν1

({
x ∈ R :

1

|T |
∑
t∈T

log |x− t| ≥ −2a

})
= ν1({x ∈ R : V (x) ≤ 2a}) ≥ 1

2
ν1(R).
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Hence we may take δ = 1
2
ν1(R) and ω = e−2a.

Given our framework, it will be useful to have a statement relating the equidistribution
of an absolutely continuous measure to a discretization of that measure. If the two measures
are close in Kolmogorov distance, then we can prove such a statement.

Proposition 4.4.4. Let µ and ν be probability measures. If µ is (δ, ω, j)-equidistributed for
some δ, ω > 0 and j ∈ N, then ν is (δ − ε, ω, j)-equidistributed, where ε = 4jKol(µ, ν).

Proof. Let T be any set of at most j real numbers. Since p(x) =
∏

t∈T |x− t| is the absolute
value of a polynomial of degree j, each of its level sets is a union of at most 2j intervals.
Hence,

|µ({x ∈ R : p(x) ≥ ω|T |})− ν({x ∈ R : p(x) ≥ ω|T |})| ≤ 4jKol(µ, ν).

Thus, to prove equidistribution for an atomic measure, it suffices to prove equidistribution
for a nearby absolutely continuous measure.

The above propositions immediately yield a useful corollary for analyzing the Lanczos
procedure in the regime of O(log n) iterations:

Corollary 4.4.5. Let µ be a compactly supported probability measure with nontrivial
absolutely continuous part. Let {µn} be a sequence of probability measures such that
Kol(µn, µ) ≤ C

logn
for some C > 0. Then for all n, for all j ≤ 1

2C
log n we have that µn is

(δ, ω, j)-equidistributed for some δ, ω > 0.

Remark 4.4.6. If µ is (δ, ω, j)-equidistributed and ν is the pushforward of µ under the affine
map x 7→ ax+ b, then ν is (δ, aω, j)-equidistributed.

We now compute the equidistribution for a few example measures, following the proof of
Proposition 4.4.3.

Example 4.4.7. Let µ denote the uniform measure on [0, 1]. Then∫
V (x) dµ(x) ≤

∫
− log

∣∣∣∣x− 1

2

∣∣∣∣ dµ(x) = 1 + log 2.

Thus, µ is (1/2, 4e−2)-equidistributed.

Example 4.4.8. Let ν denote the semicircle law dν = 1
2π

√
(4− x2)+ dx. Then∫

V (x) dν(x) ≤
∫
− log |x| dν(x) = 1/2.

Thus, ν is (1/2, e−1)-equidistributed.
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With the above the claims made in the examples of Section 4.2.3 are now trivial.

Proof of Example 4.2.4 and Example 4.2.11. It is enough to put together Proposition 4.4.4
and Example 4.4.7.

Note that for a given set of points that does not resemble a discretization of an absolutely
continuous distribution, it will still be likely that the equidistribution parameters are well
behaved (relative to their scale) provided that the points are somewhat spread out. On the
other hand, if the points are clustered in a few small clusters the analysis becomes trivial.

Observation 4.4.9. Let Λ be a set (or multiset) of n points. Let a1 ≤ b1 < a2 ≤ b2 < · · · <
am ≤ bm be such that Λ ⊂

⋃m
i=1[ai, bi]. Define ni = |Λ ∩ [ai, bi]| and let g the minimal gap

between clusters, namely g = min1≤i≤m−1 ai+1 − bi . Then Λ is (
kj
n
, g

2
, j)-distributed, where

kj = minS
∑

i∈Sc ni and S runs over all subsets of {1, . . . ,m} of size j.

Proof. The proof follows directly from the definition of equidistribution.

Remark 4.4.10. A particular case of Observation 4.4.9 is when ni ≥ b nmc and g = ai+1 − bi
for every i = 1, . . . ,m, which yields Example 4.2.5 above. More generally, if each ni is roughly
n/m then kj will be roughly m− j, and hence the δ parameter for the equidistribution of
Λ will only degrade when j ≈ m. In other words, Theorem 4.2.2 is still strong for matrices
whose spectrum consists of small clusters if the number of such clusters exceeds the number
of iterations of the Lanczos procedure. On the other hand, if the number of iterations exceeds
the number of clusters it is not hard to show that the Lanczos procedure will output (with
overwhelming probability) at least one Ritz value per cluster.

4.4.2 Proof of Theorem 4.2.2

We now have the necessary tools to prove concentration for the entries of the Jacobi matrix.

Proposition 4.4.11 (Jacobi coefficients are globally Lipschitz). Suppose the spectrum of An
is (4δ, ω, i)-equidistributed for some δ, ω > 0 and i ∈ N. Then for any 0 < ε < δ, functions

αi(u) and βi(u) are globally Lipschitz on In(δ, ε) with constant Li,ε ≤ 4i+2‖A‖i+1

ωiε
.

Proof. Proposition 4.3.6 says that αi(u) and βi(u) both have local Lipschitz constant at most
4i+1‖A‖i+1γi(u) for all u ∈ Sn−1. Proposition 4.4.1 says that because the spectrum of An is
(4δ, ω, i)-equidistributed, γi(u) ≤ 1

ωi
√
ε/
√

2
for all u ∈ In(4δ, ε/

√
2). Combining these, we have

that αi(u) and βi(u) are locally Lipschitz with constant

4i+1‖A‖i+1

ωi
√
ε/
√

2
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for all u ∈ In(4δ, ε/
√

2). Proposition 4.3.12 says that In(δ, ε) is
√

2/ε-connected in the larger

set In(4δ, ε/
√

2), so Lemma 4.3.4 implies that αi(u) and βi(u) are globally Lipschitz on In(δ, ε)
with constant

Li,ε =

√
2√
ε

4i+1‖A‖i+1

ωi
√
ε/
√

2

 ≤ 4i+2‖A‖i+1

ωiε
.

We now have the tools to prove our first main theorem, which quantifies the concentration
of the Jacobi coefficients around their medians.

Proof of Theorem 4.2.2. The local Lévy lemma (Lemma 4.3.1) yields that P[|αi(u)− α̃i| >
t‖A‖] and P[|βi(u)− β̃i| > t‖A‖] are both at most

P[u 6∈ In(δ, ε)] + 2 exp{−4nt2‖A‖2/L2
i,ε},

where Li,ε is the global Lipschitz constant on In(δ, ε) obtained in Proposition 4.4.11. Note
that if δ > 1/50, then A is still (1/50, ω, i)-equidistributed, so we may set ε = δ/7 and apply
Corollary 4.3.10 to bound P[u 6∈ In(δ, ε)]. We obtain the upper bound

2 exp

{
−min{δ, 1/50}2

32
n

}
+ 2 exp

{
−4nt2‖A‖2ω2i(δ/2)2

42i+4‖A‖2i+2

}

≤ 2 exp

{
−min{δ, 1/50}2

32
n

}
+ 2 exp

{
− 1

64

(
ω

4‖A‖

)2i

δ2t2n

}
as desired.

Now we show how Theorem 4.2.2 implies Propositions 4.2.8 and 4.2.9.

Proof of Proposition 4.2.8. Throughout this proof we will use the same notation as in the
statement of Proposition 4.2.8. Since J̃k and Jk(u) are tridiagonal matrices, we may split
Jk − J̃k into the sum of three matrices consisting of the diagonal, the subdiagonal and the
superdiagonal and then use the triangle inequality to obtain

‖Jk(u)− J̃k‖ ≤ max
0≤i≤k−1

{|αi(u)− α̃i|}+ 2 max
0≤i≤k−2

{|βi(u)− β̃i|}. (4.6)

Hence, we deduce that

P[‖~r(u)− ~r‖∞ ≥ t] ≤ P[‖Jk(u)− J̃k‖ ≥ t]

≤ P
[

max
0≤i≤k−1

{|αi(u)− α̃i|}+ 2 max
0≤i≤k−2

{|βi(u)− β̃i|} ≥ t

]
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where the first inequality follows from Lemma 4.2.6 and the second inequality from (4.6).
Now observe that the event {max0≤i≤k−1{|αi(u)− α̃i|}+ 2 max0≤i≤k−2{|βi(u)− β̃i|} ≥ t} is
contained in the event{

max
0≤i≤k−1

{|αi(u)− α̃i|} ≥
t

3

}
∪
{

max
0≤i≤k−2

{|βi(u)− β̃i|} ≥
t

3

}
,

which in turn is contained in the event

k⋃
i=1

{
|αi(u)− α̃i| ≥

t

3

}⋃{
|βi(u)− β̃i| ≥

t

3

}
.

Using a union bound and applying Theorem 4.2.2, we obtain the desired result.

Proof of Proposition 4.2.9. From Theorem 4.2.7 we have that sin θ ≤ 2‖J̃k(u)−J̃k(u)‖
ε

and hence

P[sin θ ≥ t] ≤ P[‖Jk(u)− J̃k‖ ≥ t]

≤ P
[

max
0≤i≤k−1

{|αi(u)− α̃i|}+ 2 max
0≤i≤k−2

{|βi(u)− β̃i|} ≥ t

]
,

where the latter inequality was established in the proof of Proposition 4.2.8. Using the
bound obtained in the aforementioned proof and substituting t = 2

εnc
we obtain the desired

result.

Remark 4.4.12. Using the same techniques one can prove an analogous result to Theorem
4.2.2 in the case where An is not Hermitian, and even not normal. In the non-Hermitian
case, the Lanczos algorithm is called the Arnoldi algorithm and is still used in practice to
identify extreme (complex) eigenvalues. If An is non-Hermitian, the k × k matrix output
by the Arnoldi algorithm is guaranteed to be upper Hessenberg—that is, zero above the
superdiagonal—but not necessarily normal. Thus, its eigenvalues may be highly unstable,
due to the phenomenon of pseudospectrum—see [125] for a discussion of this issue. Thus,
even though we have concentration of the entries of the Hessenberg matrix, this does not
imply concentration of the Ritz values. Achieving concentration for the Ritz values of a
non-Hermitian matrix remains an open question.

Combining the previous theorem with Corollary 4.4.5 we get convergence in probability
of the Jacobi matrices in the regime k = O(log n):

Proposition 4.4.13. Let the spectra µn of An converge to the spectrum µ of A in Kolmogorov
distance with rate O(1/ log n). Suppose µ has a nontrivial absolutely continuous part. Then
there exists c2 > 0 and a sequence kn ≥ c2 log n such that the Jacobi matrices Jkn output by
the Lanczos algorithm after kn iterations converge to entrywise in probability to deterministic
constants.
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Proof. By Corollary 4.4.5, we have that µn is (δ, ω, k)-equidistributed for all k ≤ c1 log n.
Picking c2 < c1 and applying Theorem 4.2.2, for i ≤ c2 log n this yields the bound

P[|αi − α̃i| > t] ≤ exp{−δ2n/32}+ 2 exp

{
− 4

43
(ω/4)2c2 lognnt2

}
= exp{−δ2n/32}+ 2 exp

{
− 4

43
n2c2 log(ω/4)+1t2

}
so as long as 2c2 log(ω/4)+1 > 0, we have convergence in probability of the Jacobi coefficients
as n→∞. But this is certainly true for small enough c1. The βi have the same bound as
the αi, so we are done.

Convergence for fixed k to the infinite Jacobi matrix J of µ (with no hypothesis on the
rate of convergence of µn) is proven in [59], §4. In Proposition 4.4.13 we leave it open to
prove that the limit is actually J (see Question 2), but if we reduce the number of iterations
from k = O(log n) to k = O(

√
log n), we can indeed prove that the limit is J . This is the

content of Theorem 4.2.13, proven in Section 4.5.

4.5 Proofs of Proposition 4.2.12 and Theorem 4.2.13

4.5.1 Proof of Proposition 4.2.12

We now prove our theorem about the Lanczos algorithm missing outliers in the spectrum.

Proof of Proposition 4.2.12. By Proposition 4.4.4, we have that µn is (δ, ω, j)-equidistributed
for some δ, ω > 0 and all j < c log n. Suppose u ∈ In(δ, ε), which happens with overwhelming
probability by Proposition 4.3.9. Then by Proposition 4.4.1, we have an upper bound on
the leading coefficient of the jth orthogonal polynomial: γj(u) ≤ 1

ωj
√
ε
. Equivalently, this is a

lower bound on the L2 norm of the jth monic orthogonal polynomial: ‖πuj ‖L2(µu) ≥ ωj
√
ε. As

mentioned in the preliminaries in Section 1.1, it is a classical fact that the monic orthogonal
polynomial of any given degree has minimal L2 norm over all monic polynomials of that
degree. Thus, we in fact have

∫
q(x)2 dµu(x) ≥ εω2j (4.7)

for all monic polynomials q of degree j, with equality when q(x) is the kth orthogonal
polynomial puk(x).

For all unit vectors u, let ρ(u) denote the top Ritz value, i.e. the maximum root of puk(x).
We wish to show that ρ(u) < R + κ with high probability.

Take puk(x) and replace its top root by t to form the monic polynomial Pt. By the
first-order condition for the variational characterization of puk mentioned above, to show
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ρ(u) ≤ R + κ it suffices to show that ‖Pt‖L2(µu) is strictly increasing in t for t > R + κ. We
have

‖Pt‖2
L2(µu) =

∫ (
πuk (x)

x− ρ(u)
(x− t)

)2

dµu(x) =
k∑
i=1

u2
i (λi − t)2

k∏
j=2

(λi − rj)2

where we let r2, . . . , rk denote the roots of puk(x) besides the maximum root ρ(u), and we
omit the argument u for brevity. We calculate the derivative

d

dt
‖Pt‖2

L2(µu) = −2
m∑
i=1

u2
i (λi − t)

k−1∏
j=1

(λi − rj)2 − 2
n∑

i=m+1

u2
i (λi − t)

k∏
j=2

(λi − rj)2.

We wish to show that this quantity is positive whenever t ≥ R + κ. We have assumed
that there are only m outliers, so assume λi ≤ R for all i > m. Then t − λi ≥ κ for every
m < i ≤ n.

Thus,

d

dt
‖Pt‖2

L2(µu) ≥ −2
m∑
i=1

u2
i (λi − t)

k−1∏
j=1

(λi − rj)2 + 2
n∑

i=m+1

u2
iκ

k∏
j=2

(λi − rj)2

= −2
m∑
i=1

u2
i (λi − t)

k∏
j=2

(λi − rj)2

+

[
2κ

∫ (
puk(x)

x− ρ(u)

)2

dµu(x)− 2
m∑
i=1

u2
iκ

k∏
j=2

(λi − rj)2

]

≥ −2
m∑
i=1

u2
i (λi − t)

k∏
j=2

(λi − rj)2 + 2κεω2(k−1) − 2
m∑
i=1

u2
iκ

k∏
j=2

(λi − rj)2

where in the last step we used the inequality (4.7) on the degree k− 1 polynomial puk(x)/(x−
ρ(u)). Simplifying, we have

d

dt
‖Pt‖2

L2(µu) ≥ 2κεω2(k−1) − 2
m∑
i=1

u2
i (λi + κ− t)

k∏
j=2

(λi − rj)2.

By uniform boundedness of the spectra, there exists M large such that λi − rj ≤M for all
1 ≤ i ≤ m. Let g be the maximum of the outlier gaps λi −R over all 1 ≤ i ≤ m. Recall that
t ≥ R+ κ, so λi + κ− t ≤ λi −R ≤ g for all 1 ≤ i ≤ m. Finally, we have with overwhelming
probability

∑m
i=1 u

2
i < n−c for any positive c < 1/2; we will defer the proof to Lemma 4.5.3

below. Putting this all together, we have

d

dt
‖Pt‖2

L2(µu) ≥ 2κεω2k−2 − 2n−cM2k−2mg.
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This quantity is strictly positive when

log κε+ (2k − 2) logω > −c log n+ (2k − 2) logM + logmg

Rearranging, we get

(2k − 2) log(ω/M) > −c log n+ logmg − log κε

for n large. Note that ω < M , because ω is a lower bound on geometric means of distances
that are all less than M . In conclusion, with high probability, d

dt
‖Pt‖2

L2(µu) > 0 for all
t > R + κ when

2k − 2 <
1

log M
ω

(
c log n+ log

κε

mg

)
. (4.8)

For n large, we may absorb the constants m, g, κ, ε, ω (which do not depend on n) into a
single constant c′ > 0, and we get the desired k ≤ c′ log n.

Remark 4.5.1. We have focused on the right hand side of the spectrum for ease of exposition.
Similar results hold for outliers on both sides.

Remark 4.5.2. There are several parameters that can be tuned in the above proof. For
example, one could envision a situation in which κ converges to zero as n → ∞, at the
expense of some other parameter.

Lemma 4.5.3. Let 0 < c < 1/2 and suppose m ≤ nα, where α < 1− c. Then
∑m

i=1 u
2
i < n−c

with overwhelming probability. To be precise,

P

[
m∑
i=1

u2
i ≥ n−c

]
≤ exp

{
− 1

16

(
4nα − 4

√
2n

1
2
− c

2
+α

2 + 2n1−c
)}

+ exp

{
− 1

16
n1−2c

}
.

Proof. We proceed just as in the proof of Proposition 4.3.9. Define Xi as in that proof. Then

P

[
m∑
i=1

u2
i > n−c

]
≤ P

[
m∑
i=1

X2
i >

1

2
n−c

]
+ P

[
m∑
i=1

X2
i < −

1

2
n−c +

m∑
i=1

u2
i

]
.

Using Lemma 4.3.11, we solve for the parameter
√
t = −2

√
m+
√

2n
1
2−

c
2

4
(which requires α < 1−c)

and then we get

P

[
m∑
i=1

X2
i >

1

2
n−c

]
≤ exp

−
(
−2
√
m+

√
2n

1
2
− c

2

4

)2


= exp

{
− 1

16

(
4nα − 4

√
2n

1
2
− c

2
+α

2 + 2n1−c
)}

,
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which is an overwhelmingly small probability because 1
2
− c

2
+ α

2
< 1− c when α < 1− c.

Now following the same coupling argument in the proof of Proposition 4.3.9 and using
Lemma 4.3.11 again, we get

P

[
m∑
i=1

X2
i < −

1

2
n−c +

m∑
i=1

u2
i

]
≤ exp

{
− 1

16
n1−2c

}
.

Proof of Theorem 4.2.10. From the proof of Proposition 4.2.12, setting ε = δ/2 we have that
the Ritz values are contained in the desired interval for

k ≤ 1

2 log M
ω

(
c log n+ log

κδ

2mg

)
as long as k ≤ j, u ∈ In(δ, δ/2) and

∑m
i=1 u

2
i > n−c. Applying Corollary 4.3.10, the probability

that u violates either condition is at most

P[u 6∈ In(δ, δ/2)] + P

[
m∑
i=1

u2
i > n−c

]

≤ 2 exp

{
−min{δ, 1/50}2

32
n

}
+ P

[
m∑
i=1

u2
i > n−c

]

≤ 2 exp

{
−min{δ, 1/50}2

32
n

}
+ 2 exp

{
− 1

16
n1−2c

}
where in the last step, we apply Lemma 4.5.3 and note that for n ≥ e

1
1−c−α we have

4
√

2n
1−c+α

2 ≤ n1−c.

4.5.2 Proof of Theorem 4.2.13

For C > 0 let PC denote the space of Borel probability measures supported on [−C,C]. In
order to prove Theorem 4.2.13 we will show that the Jacobi coefficients of a measure are
locally Lipschitz quantities on the space PC equipped with the Kolmogorov metric. Note
that in Section 4.3 similar results were obtained in the case in which the space of measures
in consideration is restricted to atomic measures supported on n fixed points, namely the
eigenvalues of An. Since PC is a much larger and complicated space we are not able to obtain
results as strong as in Proposition 4.3.6. It remains an open question if a better rate can be
achieved at this level of generality. Specifically, two natural questions can be asked. Question
1 posed in Section 4.6 may be of independent interest in the area of orthogonal polynomials,
while Question 2 is problem-specific.

We will use the following well known result which, for convenience of the reader, we
restate as it appears in Lemma 1.1 in [62].
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Lemma 4.5.4. Let A and B be two k × k matrices. Then det(A+B) is equal to the sum
of the determinants of the 2k matrices obtained by replacing each subset of the columns of A
by the corresponding subset of the columns of B.

Proof. The result follows directly from the fact that the determinant is multilinear in the
columns of the matrix.

Lemma 4.5.5. Let A and B be two k × k matrices. For 1 ≤ i ≤ k, let A(i) and B(i) be the
ith columns of A and B respectively. Let C, ε > 0 and assume that

‖A(i) −B(i)‖2 ≤ ε and max{‖A(i)‖2, ‖B(i)‖2} ≤ C. (4.9)

Then
| det(A)− det(B)| ≤ εk(C + ε)k−1.

Proof. By the assumption in (4.9) we can write B = A+E, where E is a matrix with columns
of norm less or equal to ε. Then, using Lemma 4.5.4, the inequalities in (4.9) and the fact
that the determinant of a matrix is bounded by the product of the Euclidean norms of its
columns, we obtain

| det(A+ E)− det(A)| ≤
n∑
k=1

(
n

k

)
Cn−kεk = (C + ε)k − Ck ≤ εk(C + ε)k−1

where the last inequality follows from the mean value theorem.

We now argue that the moments of a measure are Lipschitz quantities in PC , where the
constant is exponential in the order of the moment. With this end fix a Borel measure µ on
R and denote

mk(µ) =

∫
R
xkdµ(x).

A standard application of Fubini’s theorem yields that if µ is a finite positive Borel measure
supported in [0,∞) then

mk(µ) = k

∫ ∞
0

xk−1µ(x,∞)dx. (4.10)

This identity is enough to obtain the following bound.

Lemma 4.5.6. Let µ, ν ∈ PC and k > 0, then |mk(µ)−mk(ν)| ≤ 2CkKol(µ, ν).

Proof. Start by decomposing µ into µ+ and µ− as follows:

µ+(A) = µ(A ∩ [0,∞)), µ−(A) = µ(−A ∩ (−∞, 0)) ∀A ∈ B(R).

Hence µ(A) = µ+(A)+µ−(−A). Define ν+ and ν− analogously. Note that these new measures
are supported on [0,∞).
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Observe that mk(µ) = mk(µ+) + (−1)kmk(µ−) and that the analogous formula holds for
mk(ν). Hence

|mk(µ)−mk(ν)| ≤ |mk(µ+)−mk(ν+)|+ |mk(µ−)−mk(ν−)|.

Now, for t ≥ 0 define Fµ+(t) = µ+(t,∞) and Fν+(t) = ν+(t,∞). By definition of
Kolmogorov distance we have that

|Fµ+(t)− Fν+(t)| ≤ Kol(µ, ν).

On the other hand, by equation (4.10) we have that

|mk(µ+)−mk(ν+)| ≤ k

∫ ∞
0

xk−1|Fµ+(x)− Fν+(x)|dx

≤ kKol(µ, ν)

∫ C

0

xk−1dx

= CkKol(µ, ν).

In the exact same way we can bound |mk(µ−)−mk(ν−)| to conclude the proof.

Given µ ∈ PC we denote the (k + 1)× (k + 1) Hankel matrix of µ by Mk(µ) and define
Dk(µ) = detMk(µ). We will denote the Jacobi coefficients of µ by αµi and βµi . For the proof
of the following results, many of the facts stated in Section 1.1 will be used.

Proposition 4.5.7. Let µ, ν ∈ PC and let sk > 0 be constants satisfying

min{Dj(µ), Dj(ν)} ≥ sk

for j = 1, . . . , k. Then

|βµk − β
ν
k | ≤

exp{gk2}Kol(µ, ν)

s2
k

.

for some g > 0 dependent of µ and ν but independent of k.

Proof. To shorten notation let xj = Dj(µ) and yj = Dj(ν). Without loss of generality
C > 1. A direct application of Lemma 4.5.6 yields a rough bound between the distance in the
Euclidean norm of the corresponding columns of the matrices Mj(µ) and Mj(ν). Namely, the
columns are at distance less than

√
j + 1C2j−1Kol(µ, ν). The same reasoning yields that the

norm of any column in Mj(µ) or Mj(ν) is bounded by
√
j + 1C2j−1. Hence, using Lemma

4.5.5 we get

|xj − yj| ≤ (
√
j + 1)j+1j(C(2j−1) + ε)j+1Kol(µ, ν) ≤ exp{gj2}Kol(µ, ν)

for some g > 0 independent of k.
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In what follows we will bound two other terms whose logarithm is also O(k2). The implied
constants depend only on µ and ν, so we can modify g to be big enough for the following
inequalities to hold as well. By the first expression in equation (1.8) we have that

|βµk − β
ν
k | =

∣∣∣∣√xk−1xk+1

xk
−
√
yk−1yk+1

yk

∣∣∣∣
≤ 1

xk
|√xk−1xk+1 −

√
yk−1yk+1|+

√
yk−1yk+1

∣∣∣∣ 1

xk
− 1

yk

∣∣∣∣ . (4.11)

To bound the first term on the right-hand side of the above inequality we see that

|√xk−1xk+1 −
√
yk−1yk+1| =

|xk−1xk+1 − yk−1yk+1|√
xk−1xk+1 +

√
yk−1yk+1

and

|xk−1xk+1 − yk−1yk+1| ≤ xk−1|xk+1 − yk+1|+ yk+1|xk−1 − yk−1|
≤ exp{ak2}Kol(µ, ν)

which yields
1

xk
|√xk−1xk+1 −

√
yk−1yk+1| ≤

exp{gk2}Kol(µ, ν)

2s2
k

. (4.12)

On the other hand,

√
yk−1yk+1

∣∣∣∣ 1

xk
− 1

yk

∣∣∣∣ =
√
yk−1yk+1

|xk − yk|
xkyk

≤ exp{gk2}Kol(µ, ν)

2s2
k

. (4.13)

The result then follows from combining the previous inequalities (4.11), (4.12) and (4.13).

Remark 4.5.8. The constants sk have already been studied with sophisticated techniques
for some families of measures; see [120] for an example. However, using results only from
Section 4.4 it will be easy to show that for measures with an absolutely continuous part we
have | log(sk)| = O(k2) where the implied constant depends only on µ, which is enough for
the proof of Theorem 4.2.13.

In a similar fashion we can show that the coefficients of pµk(x) are locally Lipschitz:

Proposition 4.5.9. Fix a positive integer k. Let µ, ν and sk be as in Proposition 4.5.7.
Denote the coefficients of xi in pµk(x) and pνk(x) by aµi and aνi respectively. Then

|aµi − aνi | ≤
(

2

sk
+

1

s2
k

)
Kol(µ, ν) exp{gk2}

for some g > 0 dependent on µ and ν but independent of k.
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Proof. For 1 ≤ i ≤ k let M
(i)
k (µ) be the matrix obtained by removing the kth row and ith

column of Mk(µ) and let di(µ) = det(M
(i)
k (µ)). From identity (1.10) we have

aµi =
di(µ)√

Dk−1(µ)Dk(µ)
.

Using the same notation as in the proof of Proposition 4.5.7 we have that

|ai(µ)− ai(ν)| ≤
∣∣∣∣ di(µ)
√
xk−1xk

− di(ν)
√
yk−1yk

∣∣∣∣
≤ 1
√
xk−1xk

|di(µ)− di(ν)|+ di(ν)

∣∣∣∣ 1
√
xk−1xk

− 1
√
yk−1yk

∣∣∣∣ .
As before 1√

xk−1xk
≤ 1

sk
, while |di(µ) − di(ν)| ≤ 2Kol(µ, ν) exp{gk2} for some g > 0

dependent on µ and ν only. To bound the second term on the right-hand side of the above
inequality note that di(ν) ≤ exp{gk2} and that

1
√
xk−1xk

− 1
√
yk−1yk

= (xk−1xkyk−1yk)
− 1

2 |√xk−1xk −
√
yk−1yk|

≤ 1

s3
k

exp{gk2}Kol(µ, ν).

where the last inequality is a consequence of (4.12). The result follows.

Corollary 4.5.10. Let µ, ν, sk be as in Proposition 4.5.7. Then

|αµk − α
ν
k| ≤

Kol(µ, ν) exp{−gk2}
s3
k

.

Proof. Recall that

αµk =

∫
xp2

k(x)dµ(x) =
k∑

i,j=1

aµi a
µ
jmi+j+1(µ).

As mentioned above, the quantities aµi , a
ν
i and mi(µ), ni(ν) are of size O(exp{gk2}). Putting

this together with Proposition 4.5.9 and Lemma 4.5.6 we get that

|aµi a
µ
jmi+j−1(µ)− aνi aνjmi+j−1(ν)| ≤ exp{gk2}

s3
k

.

By adding over i, j and modifying g the result follows.

In order to prove Theorem 4.2.13 and Proposition 4.2.14 we need one final lemma, which
states that with overwhelming probability, the random measure µun is close in Kolmogorov
distance to µn.
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Lemma 4.5.11. For n large enough we have that

P[Kol(µun, µn) ≥ n−
1
4 ] ≤ exp{−n

1
4/8}.

Proof. We must show that ∣∣∣∣∣
k∑
i=1

u2
i −

k

n

∣∣∣∣∣ ≤ n−
1
4

for all 1 ≤ k ≤ n with probability at least 1− exp{−n1/4/8}.
Fix 1 ≤ k ≤ n. As in Section 4.3.3 start by considering X1, . . . , Xk independent centered

Gaussian random variables of variance 1
n

and let Zk =
∑k

i=1X
2
i . Then by Lemma 4.3.11 we

have that

P
[
Zk ≥

k

n
+ n−

1
4

]
≤ e−t1 and P

[
Zk ≤

k

n
− n−

1
4

]
≤ e−t2

where t1 and t2 the solutions to

n−
1
4 =

2
√
kt1
n

and n−
1
4 =

2
√
kt2 + 2t2
n

(4.14)

respectively. Since k ≤ n it is clear from (4.14) that min{t1, t2} ≥ n
1
4

4
. This implies that

P
[∣∣∣∣Zk − k

n

∣∣∣∣ ≥ n−
1
4

]
≤ exp{−n

1
4/4}.

Now, letting k run from 1 to n, a union bound yields that

P
[

max
1≤k≤n

∣∣∣∣Zk − k

n

∣∣∣∣ > n−
1
4

]
≤ n exp{−n

1
4/4} ≤ 1

2
exp{−n

1
4/8},

where the last equality holds for n large enough. Now, as in the proof of Proposition (4.3.9)
we can show by a standard coupling argument that if we take ui = Xi/

√
Zn, we will have

that

P

[
max

1≤k≤n

∣∣∣∣∣Zk −
k∑
i=1

u2
i

∣∣∣∣∣
]
≤ 1

2
exp{−n

1
4/8}

and the result follows.

Proof of Theorem 4.2.13. From Lemma 4.5.11, for n large enough, we have that Kol(µu, µn) ≤
n−

1
4 with overwhelming probability. By the assumption Kol(µn, µ) = n−c we then have that

Kol(µu, µ) ≤ n−c
′

also with overwhelming probability for c′ = min{1/4, c}. Hence, under the
event {Kol(µu, µ) ≤ n−c

′} we can apply Proposition 4.5.7 and Corollary 4.5.10 and use the
fact that the Jacobi matrices are tridiagonal to obtain that

‖Jkn(u)− Jkn(µ)‖ ≤ 6C exp{d′k2}
nc′ min{s2

k, s
3
k}
.
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Since µ has an absolutely continuous part we know from Proposition 4.4.3 and Corollary
4.4.5 that | log(γµk )| = O(k). Hence, from equation (1.9) we get | log sk| = O(k2), which
makes it clear that there exists d > 0 and a sequence kn ≤ d

√
log n satisfying the theorem

statement.

Proof of Proposition 4.2.14. As mentioned in Section 4.2, this proposition is a direct conse-
quence of Theorem 4.2.13 and Lemma 4.2.6.

Remark 4.5.12. Observe that the above proofs repeatedly use the fact that moments are
Lipschitz quantities on PC and that the Jacobi coefficients are an explicit function of the
moments. However, going from moments to Jacobi coefficients is an expensive process which
we pay for by getting a rate of O(

√
log n) instead of Θ(log n). At a first glance, it may seem

that the results in Section 4.3.2 may be used in a similar fashion to obtain a better rate;
however, even if we have strong concentration results for the Jacobi coefficients of the random
measures µun, it is a difficult task to control the location of the medians (or means) of αj(u)
and βj(u) and hence it is hard to show that these quantities converge at a good enough rate
to the Jacobi coefficients of µ.

4.6 Concluding remarks

Several directions can be pursued to expand the results presented throughout this chapter.
Currently, we have only analyzed the Lanczos algorithm in its prototypical form, but have
not analyzed the more sophisticated variants that are used in practice. Obtaining similar
concentration results and negative results for these modifications, and more generally for
Krylov subspace methods, would be of great interest.

The Lanczos algorithm is used in practice for non-Hermitian matrices and even non-normal
matrices, despite these cases being far less understood. In this incarnation, the algorithm is
referred to as the Arnoldi algorithm. Extending the results of this chapter to the Arnoldi
algorithm is a natural direction to pursue. As mentioned in Remark 4.4.12, it is easy to extend
Theorem 4.2.2 to the non-Hermitian setting, but no longer so easy to prove concentration of
the Ritz values or to say anything about their location.

A less fundamental but still important task is to sharpen the constants in the results in
this article. Currently, our concentration inequalities become meaningful when the matrices
involved have dimension of the order n = 107. The main offending term is the coefficient(

ω
4‖A‖

)k
in the exponential, which limits us to k very small. We believe that the constants

can be sharpened significantly, which would allow the results to apply to smaller matrices,
more iterations, and yield tighter probability bounds.

Finally, Theorem 4.2.13 and Proposition 4.2.14 have natural places for improvement.
Below we pose two concrete questions in this setting which we leave open.
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Question 1. Is there a natural metric on PC inducing a topology for which the set of atomic
measures is a dense subset of PC and such that the Jacobi coefficients

αj : PC → R and βj : PC → R,

have a local Lipschitz constant of size at most exponential in j?

Question 2. Do Proposition 4.2.13 and Theorem 4.2.14 still hold if the hypothesis 1 ≤ kn ≤
d
√

log n is replaced by 1 ≤ kn ≤ d′ log n?
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Appendix A

Deferred Proofs

A.1 SDE analysis

The goal of this section is to adapt Śniady’s [116] proof of Theorem 3.3.2, as outlined below
the statement of Theorem 3.3.2, to the case of real matrices with real Ginibre perturbations.

The stochastic differential equation satisfied by the squared singular values of a real
matrix Brownian motion was derived by Bru in her work on Wishart processes [25, 26] and
independently by Le in her work on shape theory [85, 86]. The equation reads as follows:

dλi =
2
√
λi
n

dBi +

(
1 +

∑
j 6=i

λi + λj
λi − λj

)
dt, 1 ≤ i ≤ n. (A.1)

The proof strategy of Śniady crucially relies on the existence and uniqueness of strong
solutions to the singular value SDE. This is needed in order to obtain two solutions driven
by the same Brownian motion, and to assert that the law of each solution indeed matches
the law of the singular values of a noncentered Ginibre matrix. See [2] for a definition of
strong solution and a rigorous proof of existence and uniqueness of strong solutions for Dyson
Brownian motion, the Hermitian analogue of the Ginibre singular values process.

Fortunately, such results are known for the SDE (A.1). Let Λ denote the domain

Λ ∈ Rn := {λ : 0 ≤ λn < · · · < λ1}.

For any initial data λ(0) lying in the closure Λ, it is known that strong solutions to (A.1)
exist, are unique, and lie in Λ for all t > 0, almost surely [64, Corollary 6.5]. Combining this
with [25, Theorem 1], we have that for initial data λ(0) lying in Λ, the law of the strong
solutions to (A.1) matches the law of the squared singular values process of A + M/

√
n,

where M is a matrix of i.i.d. standard real Brownian motions and A has squared singular
values λ(0). (It should be possible to extend this last statement for initial data in Λ, but
the proof may be somewhat involved—cf. [2], which contains a proof of the corresponding
extension for Dyson Brownian motion.)
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Let ai(λ) = 1 +
∑

j 6=i
λi+λj
λi−λj denote the drift coefficient in (A.1). As in Śniady’s proof for

the complex Ginibre case (Theorem 3.3.2), the key property of a allowing for the comparison
theorem is the so-called quasi-monotonicity (see [50]) or Kamke–Ważewski condition [93,
§XI.13] from differential inequalities, which is simply that

for all i, ai(λ
(1)) ≤ ai(λ

(2)) whenever λ
(1)
i = λ

(2)
i and λ

(1)
j ≤ λ

(2)
j for all j 6= i. (A.2)

One easily checks that a satisfies this condition on the domain Λ.
The nonconstant (indeed, non-Lipschitz) diffusion coefficient 2

√
λi/n in (A.1) is a technical

obstacle which does not appear in the SDE (2.3) for the complex case. Consequently, the final
step of Śniady’s proof as sketched below Theorem 3.3.2 cannot be repeated naively, because
taking the difference of two solutions no longer cancels out the diffusion terms. Fortunately,
theory has been developed to handle Hölder-1/2 diffusion coefficients; see [104, §IX.3] for
exposition of the one-dimensional case and see [80] for a survey of comparison theorems for
SDEs in general.

Quasi-monotonicity and the one-dimensional Hölder-1/2 comparison theory are combined
in a rather general multidimensional comparison theorem of Geiß and Manthey [61, Theorem
1.2]. Applied to the SDE (A.1), this theorem provides exactly the right conclusion to replace
the final step of Śniady’s proof. We state the relevant special case of their theorem below:

Theorem A.1.1 (Geiß-Manthey). Consider the SDE

dXi = σi(X) dBi + ai(X) dt, 1 ≤ i ≤ n,

where the Bi are independent standard real Brownian motions, and σi, ai : Rn → R are
continuous. Suppose the following conditions are satisfied:

1. the drift coefficient a satisfies the quasi-monotonicity condition (A.2)

2. there exists ρ : R+ → R+ increasing with
∫ ε

0
ρ−2(u) du =∞ for some ε > 0, such that

|σi(x)− σi(y)| ≤ ρ(|xi − yi|) for all i and all x, y ∈ Rn

3. strong solutions for the SDE exist for all time and are unique.

Suppose initial conditions X(1)(0) and X(2)(0) satisfy the inequality X
(1)
i (0) ≤ X

(2)
i (0) for all

i. Then almost surely, X
(1)
i (t) ≤ X

(2)
i (t) for all i and for all t > 0.

Setting ρ(u) :=
√
u, the SDE (A.1) satisfies the conditions of the Geiß-Manthey theorem,

except that our domain for both ai and σi is Λ, not Rn. We address these two coefficients in
turn.

First we deal with the drift coefficient ai, using a standard localization argument already
implicit in the proof of Geiß and Manthey. They (implicitly) define the stopping time ϑN
to be the first time ‖X(1)‖ ≥ N or ‖X(2)‖ ≥ N , and use the fact that a is Lipschitz on the
restricted domain ‖X‖ ≤ N to show that

P
[
X

(1)
i (t) ≤ X

(2)
i (t) for all 0 ≤ t ≤ ϑN

]
= 1.
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Since strong solutions exist for all time, we have ϑN →∞ as N →∞ almost surely, which
proves the theorem. We modify this strategy for our SDE (A.1) in the standard way: Define
the stopping time τ1/m to be the first time either λ(1) or λ(2) leaves the set

Λ1/m := {λ ∈ Λ : |λi − λi+1| > 1/m for all 1 ≤ i ≤ n− 1.}.

Since strong solutions starting in Λ stay in Λ for all t ≥ 0 and are continuous, we have
τ1/m →∞ as m→∞ almost surely. Since our a is Lipschitz on Λ1/m, the proof of Theorem
A.1.1 shows that

P
[
λ

(1)
i (t) ≤ λ

(2)
i (t) for all 0 ≤ t ≤ τ1/m

]
= 1

for all m. Taking m→∞, the result follows.
Finally, we address the diffusion coefficient σi(λ) = 2

√
λi/n. The standard fix is to first

modify the SDE to have diffusion coefficients 2
√
|λi|/n for all i, so that the domain of σi is

enlarged to Rn and Theorem A.1.1 may be applied. For this modified SDE, note that the
constant zero function λ(1)(t) = 0 is a strong solution. Now let λ(2) be any solution with

λ
(2)
i (0) ≥ 0 for all i. Applying Theorem A.1.1 to λ(1) and λ(2), we conclude that in fact,
λ(2)(t) ≥ 0 for all t ≥ 0. Thus, the absolute value bars in the modified SDE can be removed
a posteriori. This argument is used, for example, when setting up the SDE for the so-called
Bessel process, which shares this square-root diffusion coefficient—see [104, §XI.1] for details.

A.2 Deferred Proofs from Section 3.4

Lemma A.2.1 (Restatement of Lemma 3.4.11). Assume the matrix inverse is computed by
an algorithm INV satisfying the guarantee in Definition 3.2.3. Then G(A) = g(A) + E for
some error matrix E with norm

‖E‖ ≤
(
‖A‖+ ‖A−1‖+ µINV(n)κ(A)cINV logn‖A−1‖

)
4
√
nu. (A.3)

Proof. The computation of G(A) consists of three steps:

1. Form A−1 according to Definition 3.2.3. This incurs an additive error of EINV =
µINV(n) · u · κ(A)cINV logn‖A−1‖. The result is INV(A) = A−1 + EINV.

2. Add A to INV(A). This incurs an entry-wise relative error of size u: The result is

(A+ A−1 + EINV) ◦ (J + Eadd)

where J denotes the all-ones matrix, ‖Eadd‖max ≤ u, and where ◦ denotes the entrywise
(Hadamard) product of matrices.

3. Divide the resulting matrix by 2. This incurs an entrywise relative error of size u. The
final result is

G(A) =
1

2
(A+ A−1 + EINV) ◦ (J + Eadd) ◦ (J + Ediv)

where ‖Ediv‖max ≤ u.
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Finally, recall that for any n× n matrices M and E, we have the relation (3.8)

‖M ◦ E‖ ≤ ‖M‖‖E‖max
√
n.

Putting it all together, we have

‖G(A)− g(A)‖ ≤ 1

2

(
‖A‖+ ‖A−1‖

)
(2u + u2)

√
n+ ‖EINV‖(1 + u)2

√
n

≤ 1

2

(
‖A‖+ ‖A−1‖

)
(2u + u2)

√
n+ µINV(n) · u · κ(A)cINV logn‖A−1‖(1 + u)2

√
n

≤
(
‖A‖+ ‖A−1‖+ µINV(n)κ(A)cINV logn‖A−1‖

)
4
√
nu

where we use u < 1 in the last line.

In what remains of this section we will repeatedly use the following simple calculus fact.

Lemma A.2.2. Let x, y > 0, then

log(x+ y) ≤ log(x) +
y

x
and lg(x+ y) ≤ lg(x) +

1

log 2

y

x
.

Proof. This follows directly from the concavity of the logarithm.

Lemma A.2.3 (Restatement of Lemma 3.4.15). Let 1/800 > t > 0 and 1/2 > c > 0 be
given. Then for

j ≥ lg(1/t) + 2 lg lg(1/t) + lg lg(1/c) + 1.62,

we have
(1− t)2j

t2j
< c.

Proof of Lemma 3.4.15. An exact solution for j can be written in terms of the Lambert
W -function; see [33] for further discussion and a useful series expansion. For our purposes, it
is simpler to derive the necessary quantitative bound from scratch.

Immediately from the assumption t < 1/800, we have j > log(1/t) ≥ 9.
First let us solve the case c = 1/2. We will prove the contrapositive, so assume

(1− t)2j

t2j
≥ 1/2.

Then taking log on both sides, we have

2j log(1/t) + 1 ≥ −2j log(1− t) ≥ 2jt.

Taking lg and applying Lemma A.2.2, we obtain

1 + lg j + lg log(1/t) +
1

log 2

1

2j log(1/t)
≥ j + lg t.



APPENDIX A. DEFERRED PROOFS 126

Since t < 1/800 we have 1
log 2

1
2j log(1/t)

< 0.01, so

j − lg j ≤ lg(1/t) + lg log(1/t) + 1.01 ≤ lg(1/t) + lg lg(1/t) + 0.49 =: K.

But since j ≥ 9, we have j − lg j ≥ 0.64j, so

j ≤ 1

0.64
(j − lg j) ≤ 1

0.64
K

which implies
j ≤ K + lg j ≤ K + lg(1.57K) = K + lgK + 0.65.

Note K ≤ 1.39 lg(1/t), because K− lg(1/t) = lg lg(1/t)+0.49 ≤ 0.39 lg(1/t) for t ≤ 1/800.
Thus

lgK ≤ lg(1.39 lg(1/t)) ≤ lg lg(1/t) + 0.48,

so for the case c = 1/2 we conclude the proof of the contrapositive of the lemma:

j ≤ K + lgK + 0.65

≤ lg(1/t) + lg lg(1/t) + 0.49 + (lg lg(1/t) + 0.48) + 0.65

= lg(1/t) + 2 lg lg(1/t) + 1.62.

For the general case, once (1− t)2j/t2j ≤ 1/2, consider the effect of incrementing j on the
left hand side. This has the effect of squaring and then multiplying by t2j−2, which makes it
even smaller. At most lg lg(1/c) increments are required to bring the left hand side down to

c, since (1/2)2lg lg(1/c)
= c. This gives the value of j stated in the lemma, as desired.

Lemma A.2.4 (Restatement of Lemma 3.4.18). If

N = dlg(1/s) + 3 lg lg(1/s) + lg lg(1/(βε0)) + 7.59e,

then
N ≥ lg(8/s) + 2 lg lg(8/s) + lg lg(16/(βs2ε0)) + 1.62.

Proof of Lemma 3.4.18. We aim to provide a slightly cleaner sufficient condition on N than
the current condition

N ≥ lg(8/s) + 2 lg lg(8/s) + lg lg(16/(βs2ε0)) + 1.62.

Repeatedly using Lemma A.2.2, as well as the cruder fact lg lg(ab) ≤ lg lg a+ lg lg b provided
a, b ≥ 4, we have

lg lg(16/(βs2ε0)) ≤ lg lg(16/s2) + lg lg(1/(βε0))

= 1 + lg(3 + lg(1/s)) + lg lg(1/(βε0))

≤ 1 + lg lg(1/s) +
3

log 2 lg(1/s)
+ lg lg(1/(βε0))

≤ lg lg(1/s) + lg lg(1/(βε0)) + 1.66
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where in the last line we use the assumption s < 1/100. Similarly,

lg(8/s) + 2 lg lg(8/s) ≤ 3 + lg(1/s) + 2 lg(3 + lg(1/s))

≤ 3 + lg(1/s) + 2

(
lg lg(1/s) +

3

log 2 lg(1/s)

)
≤ lg(1/s) + 2 lg lg(2/s) + 4.31

Thus, a sufficient condition is

N = dlg(1/s) + 3 lg lg(1/s) + lg lg(1/(βε0)) + 7.59e.

A.3 Analysis of SPLIT

Although it has many potential uses in its own right, the purpose of the approximate matrix
sign function in our algorithm is to split the spectrum of a matrix into two roughly equal
pieces, so that approximately diagonalizing A may be recursively reduced to two sub-problems
of smaller size.

First, we need a lemma ensuring that a shattered pseudospectrum can be bisected by a
grid line with at least n/5 eigenvalues on each side.

Lemma A.3.1. Let A have ε-pseudospectrum shattered with respect to some grid g. Then
there exists a horizontal or vertical grid line of g partitioning g into two grids g±, each
containing at least min{n/5, 1} eigenvalues.

Proof. We will view g as a s1 × s2 array of squares. Write r1, r2, ..., rs1 for the number of
eigenvalues in each row of the grid. Either there exists 1 ≤ i < s2 such that r1 + · · ·+ri ≥ n/5
and ri+1 + · · ·+ rs1 ≥ n/5—in which case we can bisect at the grid line dividing the ith from
(i+ 1)st rows—or there exists some i for which ri ≥ 3/5. In the latter case, we can always
find a vertical grid line so that at least n/5 of the eigenvalues in the ith row are on each of
the left and right sides. Finally, if n ≤ 5, we may trivially pick a grid line to bisect along so
that both sides contain at least one eigenvalue.

Proof of Theorem 3.5.2. We’ll prove first that SPLIT has the advertised guarantees. The
main observation is that, given any matrix A, we can determine how many eigenvalues are
on either side of any horizontal or vertical line by approximating the matrix sign function. In
particular, Tr sgn(A− h) = n+ − n−, where n± are the eigenvalue counts on either side of
the line <z = h.

Running SGN to a final accuracy of β,

|Tr, SGN(A− h) + e4 − Tr, sgn(A− h)| ≤ |Tr, SGN(A− h)− Tr, sgn(A− h)|+ |e4|
≤ n

(
‖SGN(A− h)− sgn(A− h)‖+ ‖SGN(A− h)‖u

)
≤ n

(
β + βu + ‖sgn(A− h)‖u

)
.
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SPLIT

Input: Matrix A ∈ Cn×n, grid g = grid(z0, ω, s1, s2) pseudospectral guarantee ε, and a
desired accuracy ν.
Requires: Λε(A) is shattered with respect to g, and β ≤ 0.05/n.

Algorithm: (P̃+, P̃−, g+, g−) = SPLIT(A, g, ε, β)

1. h← <z0 + ωs1/2

2. M ← A− h+ E2

3. α0 ← 1− ε
2 diam(g)2

4. φ← round (Tr SGN(M, ε/4, α0, β) + e4)

5. If |φ| < min(3n/5, n− 1)

a) g− = grid(z0, ω, s1/2, s2)

b) z0 ← z0 + h

c) g+ = grid(z0, ω, s1/2, s2)

d) (P̃+, P̃−) = 1
2
(1± SGN(A− h, β))

6. Else, execute a binary search over horizontal grid-line shifts h until SGN(A −
h, ε/4, α0, β), at which point output g±, the subgrids on either side of the shift

h, and set P̃± ← 1
2

(SGN(h− A, ε/4, α0, β)).

7. If this fails, set A← iA, and execute a binary search among vertical shifts from the
original grid.

Output: Sub-grids g±, approximate spectral projectors P̃±, and ranks n±.
Ensures: There exist true spectral projectors P± satisfying (i) P+ +P− = 1, (ii)rank(P±) =

n± ≥ n/5, (iii) ‖P± − P̃±‖ ≤ β, and (iv) P± are the spectral projectors onto the interiors of
g±.

Since we can form sgn(A− h) by integrating around the boundary of the portions of g on
either side of the line <z = h, the fact that Λε(A) is shattered means that

‖sgn(A− h)‖ ≤ 1

2π

1

ε
ω(2s1 + 4s2) ≤ 8/ε;

in the last inequality we have used that g has side lengths of at most 8. Since we have run
SGN to accuracy β, this gives a total additive error of n(β + βu + 8u/ε) in computing the
trace. If β ≤ 0.1/n and u ≤ ε/100n, then this error will strictly less than 0.5 and we can
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round Tr, SGN(A− h) to the nearest real integer. Horizontal bisections work similarly, with
iA− h instead.

Since we need only modify the diagonal entries of A when creating M , we incur a diagonal
error matrix E3 of norm at most u|maxiAi,i − h| when creating M . Using |Ai,i| ≤ ‖A‖ ≤ 4
and |h| ≤ 4, the fact that u ≤ ε/100n ≤ ε/16 ensures that the ε/2-pseudospectrum of M will
still be shattered with respect to a translation of the original grid g that includes a segment
of the imaginary axis. Using Lemma 3.4.10 and the fact that diam(g)2 = 128, we can safely
call SGN with parameters ε0 = ε/4 and

α0 = 1− ε

256
.

Plugging these in to the Theorem 3.4.9 (ε < 1/2 so 1− α0 ≤ 1/100, and β ≤ 0.05/n ≤ 1/12
so the hypotheses are satisfied) for final accuracy β a sufficient number of iterations is

NSPLIT := lg
256

ε
+ 3 lg lg

256

ε
+ lg lg

4

βε
+ 7.59.

In the course of these binary searches, we make at most lg s1s2 calls to SGN at accuracy β.
These require at most

lg s1s2 TSGN

(
n, ε/2, 1− ε

2 diam(g)2
, β

)
arithmetic operations. In addition, creating M and computing the trace of the approximate
sign function cost us O(n lg s1s2) scalar addition operations. We are assuming that g has side
lengths at most 8, so lg s1s2 ≤ 12 lg 1/ω(g). Combining all of this with the runtime analysis
and machine precision of SGN appearing in Theorem 3.4.9, we obtain

TSPLIT(n, g, ε, β) ≤ 12 lg
1

ω(g)
·NSPLIT ·

(
TINV(n,u) +O(n2)

)
.

A.4 Analysis of DEFLATE

The algorithm DEFLATE, defined in Section 3.5, can be viewed as a small variation of the
randomized rank revealing algorithm introduced in [47] and revisited subsequently in [10].
Following these works, we will call this algorithm RURV.

Roughly speaking, in finite arithmetic, RURV takes a matrix A with σr(A)/σr+1(A)� 1,
for some 1 ≤ r ≤ n − 1, and finds nearly unitary matrices U, V and an upper triangular
matrix R such that URV ≈ A. Crucially, R has the block decomposition

R =

(
R11 R12

R22

)
, (A.4)
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RURV

Input: Matrix A ∈ Cn×n

Algorithm: RURV(A)

1. G← n× n complex Ginibre matrix +E1

2. (V,R)← QR(G)

3. B ← AV ∗ + E3

4. (U,R)← QR(B)

Output: A pair of matrices (U,R).

Ensures: ‖R22‖ ≤
√
r(n−r)
θ

σr+1(A) with probability 1− θ2, for every 1 ≤ r ≤ n− 1 and
θ > 0, where R22 is the (n− r)× (n− r) lower-right corner of R.

where R11 ∈ Cr×r has smallest singular value close to σr(A), and R22 has largest singular
value roughly σr+1(A). We will use and analyze the following implementation of RURV.

As discussed in Section 3.5, we hope to use DEFLATE to approximate the range of a
projector P with rank r < n, given an approximation P̃ close to P in operator norm. We
will show that from the output of RURV(P̃ ) we can obtain a good approximation to such a

subspace. More specifically, under certain conditions, if (U,R) = RURV(P̃ ), then the first
r columns of U carry all the information we need. For a formal statement see Proposition
A.4.12 and Proposition A.4.18 below.

Since it may be of broader use, we will work in somewhat greater generality, and define
the subroutine DEFLATE which receives a matrix A and an integer r and returns a matrix
S ∈ Cn×r with nearly orthonormal columns. Intuitively, if A is diagonalizable, then under
the guarantee that r is the smallest integer k such that σk(A)/σk+1(A)� 1, the columns of
the output S span a space close (in some sense) to the span of the top r eigenvectors of A.
Our implementation of DEFLATE is as follows.

Throughout this section we use rurv(·) and deflate(·, ·) to denote the exact arithmetic
versions of RURV and DEFLATE respectively. In Subsection A.4.1 we present a random
matrix result that will be needed in the analysis of DEFLATE. In Subsection A.4.3 we state
the properties of RURV that will be needed. Finally in Subsections A.4.4 and A.4.5 we prove
the main guarantees of deflate and DEFLATE, respectively, that are used throughout this
chapter.

A.4.1 Smallest Singular Value of the Corner of a Haar Unitary

We recall the defining property of the Haar measure on the unitary group:
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DEFLATE

Input: Matrix Ã ∈ Cn×n and parameter r ≤ n
Requires: 1/3 ≤ ‖A‖, and ‖Ã−A‖ ≤ β for some A ∈ Cn×n with rank(A) = rank(A2) = r,

as well as β ≤ 1/4 ≤ ‖Ã‖ and 1 ≤ µMM(n), µQR(n), cN.

Algorithm: S̃ = DEFLATE(A, r).

1. (U,R)← RURV(A)

2. S̃ ← first r columns of U .

3. Output S̃

Output: Matrix S ∈ Cn×r.
Ensures: There exists a matrix S ∈ Cn×k whose orthogonal columns span range(A), such

that ‖S̃ − S‖ ≤ η, with probability at least 1− (20n)3
√
β

η2σr(A)
.

Definition A.4.1. A random n× n unitary matrix V is Haar-distributed if, for any other
unitary matrix W , VW and WV are Haar-distributed as well.

For short, we will often refer to such a matrix as a Haar unitary.
Let n > r be positive integers. In what follows we will consider an n× n Haar unitary

matrix V and denote by X its upper-left r× r corner. The purpose of the present subsection
is to derive a tail bound for the random variable σn(X). We begin with the well-known fact
that we can always reduce our analysis to the case when r ≤ n/2.

Observation A.4.2. Let n > r > 0 and V ∈ Cn×n be a unitary matrix and denote by V11

and V22 its upper-left r× r corner and its lower-right (n− r)× (n− r) corner respectively. If
r ≥ n/2, then 2r − n of the singular values of V22 are equal to 1, while the remaining n− r
are equal to those of V11.

Proposition A.4.3 (σn of a submatrix of a Haar unitary). Let n > r > 0 and let V be an
n× n Haar unitary. Let X be the upper left r × r corner of V . Then, for all θ > 0

P
[

1

σn(X)
≤ 1

θ

]
= (1− θ2)r(n−r). (A.5)

In particular, for every θ > 0 we have

P

[
1

σn(X)
≤
√
r(n− r)
θ

]
≥ 1− θ2. (A.6)

This exact formula for the CDF of the smallest singular value of X is remarkably simple,
and we have not seen it anywhere in the literature. It is an immediate consequence of
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substantially more general results of Dumitriu [51], from which one can extract and simplify
the density of σn(X). We will begin by introducing the relevant pieces of [51], deferring the
final proof until the end of this subsection.

Some of the formulas presented here are written in terms of the generalized hypergeometric
function which we denote by 2F

β
1 (a, b; c; (x1, . . . , xm)). For our application it is sufficient to

know that

2F
β
1 (0, b; c, (x1, . . . , xm)) = 1, (A.7)

whenever c > 0 and 2F1 is well defined. The above equation can be derived directly from the
definition of 2F

β
1 (see Definition 13.1.1 in [57] or Definition 2.2 in [51]).

The generic results in [51] concern the β-Jacobi random matrices, which we have no cause
here to define in full. Of particular use to us will be [51, Theorem 3.1], which expresses
the density of the smallest singular value of such a matrix in terms of the generalized
hypergeometric function:

Theorem A.4.4 ([51]). The probability distribution of the smallest eigenvalue λ of the
β-Jacobi ensembles of parameters a, b and size m is given by

fλn(λ) := Cβ,a,b,mλ
β
2

(a+1)−1(1− λ)
β
2
m(b+m)−1

2F
2/β
1

×
(

1− β(a+ 1)

2
,
β(b+m− 1)

2
;
β(b+ 2m− 1)

2
+ 1; (1− λ)m−1

)
, (A.8)

for some normalizing constant Cβ,a,b,m.

For a particular choice of parameters, the above theorem can be applied to describe the
the distribution of σ2

n(X). The connection between singular values of corners of Haar unitary
matrices and β-Jacobi ensembles is the content of [54, Theorem 1.5], which we rephrase below
to match our context.

Theorem A.4.5 ([54]). Let V be an n× n Haar unitary matrix and let r ≤ n
2
. Let X be

the r × r upper-left corner of V . Then, the eigenvalues of XX∗ distribute as the eigenvalues
of a β−Jacobi matrix of size r with parameters β = 2, a = 0 and b = n− 2r.

In view of the above result, Theorem A.4.4 gives a formula for the density of σ2
n(X).

Corollary A.4.6 (Density of σ2
n(X)). Let V be an n×n Haar unitary and X be its upper-left

r × r corner with r < n, then σ2
n(X) has the following density

fσ2
n
(x) :=

{
r(n− r) (1− x)r(n−r)−1 if 0 ≤ x ≤ 1,

0 otherwise.
(A.9)

Proof. If r > n/2, since we care only about the smallest singular value of X, we can use
Observation A.4.2 to analyse the (n− r)× (n− r) lower right corner of V instead. Hence,
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we can assume that r ≤ n/2. Now, substitute β = 2, a = 0, b = n− 2r,m = r in Theorem
A.4.4 and observe that in this case

fλn(x) = C(1− x)r(n−r)−1
2F

1
1 (0, n− r − 1;n; (1− x)r−1) = C(1− x)r(n−r)−1 (A.10)

where the last equality follows from (A.7). Using the relation between the distribution of
σ2
n(X) and the distribution of the minimum eigenvalue of the respective β-Jacobi ensemble

described in Theorem A.4.5 we have fσ2
n
(x) = fλn(x). By integrating on [0, 1] the right side

of (A.10) we find C = r(n− r).

Proof of Proposition A.4.3. From (A.9) we have that

P
[
σ2
n(X) ≤ θ

]
= r(n− r)

∫ θ

0

(1− x)r(n−r)−1dx = 1− (1− θ)r(n−r),

from where (A.5) follows. To prove (A.6) note that g(t) := (1− t)r(n−r) is convex in [0, 1],
and hence g(t) ≥ g(0) + tg′(0) for every t ∈ [0, 1].

A.4.2 Sampling Haar Unitaries in Finite Precision

It is a well-known fact that Haar unitary matrices can be numerically generated from complex
Ginibre matrices. We refer the reader to [53, Section 4.6] and [92] for a detailed discussion.
In this subsection we carefully analyze this process in finite arithmetic.

The following fact (see [92, Section 5]) is the starting point of our discussion.

Lemma A.4.7 (Haar from Ginibre). Let Gn be a complex n × n Ginibre matrix and
U,R ∈ Cn×n be defined implicitly, as a function of Gn, by the equation Gn = UR and the
constraints that U is unitary and R is upper-triangular with nonnegative diagonal entries1.
Then, U is Haar distributed in the unitary group.

The above lemma suggests that QR(·) can be used to generate random matrices that are
approximately Haar unitaries. While doing this, one should keep in mind that when working
with finite arithmetic, the matrix G̃n passed to QR is not exactly Ginibre-distributed, and
the algorithm QR itself incurs round-off errors.

Following the discussion in Section 3.2.2 we can assume that we have access to a random
matrix G̃n, with

G̃n = Gn + E,

where Gn is a complex n× n Ginibre matrix and E ∈ Cn×n is an adversarial perturbation
whose entries are bounded by 1√

n
cNu. Hence, we have ‖E‖ ≤ ‖E‖F ≤

√
ncNu.

In what follows we use QR(·) to denote the exact arithmetic version of QR(·). Furthermore,
we assume that for any A ∈ Cn×n, QR(A) returns a pair (U,R) with the property that R

1Gn is almost surely invertible and under this event U and R are uniquely determined by these conditions.
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has nonnegative entries on the diagonal. Since we want to compare QR(Gn) with QR(G̃n) it
is necessary to have a bound on the condition number of the QR decomposition. For this, we
cite the following consequence of a result of Sun [118, Theorem 1.6]:

Lemma A.4.8 (Condition number for the QR decomposition [118]). Let A,E ∈ Cn×n

with A invertible. Furthermore assume that ‖E‖‖A−1‖ ≤ 1
2
. If (U,R) = QR(A) and

(Ũ , R̃) = QR(A+ E), then

‖Ũ − U‖F ≤ 4‖A−1‖‖E‖F .

We are now ready to prove the main result of this subsection. As in the other sections
devoted to finite arithmetic analysis, we will assume that u is small compared to µQR(n);
precisely, let us assume that

uµQR(n) ≤ 1. (A.11)

Proposition A.4.9 (Guarantees for finite-arithmetic Haar unitary matrices). Suppose that
QR satisfies the assumptions in Definition 3.2.4 and that it is designed to output upper
triangular matrices with nonnegative entries on the diagonal2. If (V,R) = QR(G̃n), then

there is a Haar unitary matrix U and a random matrix E such that Ṽ = U + E. Moreover,
for every 1 > α > 0 and t > 2

√
2 + 1 we have

P

[
‖E‖ < 8tn

3
2

α
cNµQR(n)u +

10n2

α
cNu

]
≥ 1− 2eα2 − 2e−t

2n.

Proof. From our Gaussian sampling assumption, G̃n = Gn + E where ‖E‖ ≤
√
ncNu. Also,

by the assumptions on QR from Definition 3.2.4, there are matrices
˜̃
Gn and Ṽ such that

(Ṽ , R) = QR(
˜̃
Gn), and

‖Ṽ − V ‖ < µQR(n)u

‖˜̃Gn − G̃n‖ ≤ µQR(n)u‖G̃n‖ ≤ µQR(n)u
(
‖Gn‖+

√
ncNu

)
.

The latter inequality implies, using (A.11), that

‖˜̃Gn −Gn‖ ≤ µQR(n)u
(
‖Gn‖+

√
ncNu

)
+
√
ncNu ≤ µQR(n)u‖Gn‖+ 2

√
ncNu. (A.12)

Let (U,R′) := QR(Gn). From Lemma A.4.7 we know that U is Haar distributed on the
unitary group, so using (A.12) and Lemma A.4.8, and the fact that ‖M‖ ≤ ‖M‖F ≤

√
n‖M‖

for any n× n matrix M , we know that

‖U−V ‖−µQR(n)u ≤ ‖U−V ‖−‖Ṽ−V ‖ ≤ ‖U−Ṽ ‖ ≤ 4
√
ncNµQR(n)u‖Gn‖‖G−1

n ‖+10ncNu‖G−1
n ‖.

(A.13)

2Any algorithm that yields the QR decomposition can be modified in a stable way to satisfy this last
condition at the cost of O∗(n log(1/u)) operations
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Now, from ‖G−1
n ‖ = 1/σn(Gn) and from Theorem 3.3.1 we have that

P
[
‖G−1

n ‖ ≥
n

α

]
≤ (
√

2eα)2 = 2eα2.

On the other hand, from Lemma 2.2 of [11] we have P
[
‖Gn‖ > 2

√
2 + t

]
≤ e−nt

2
. Hence,

under the events ‖G−1
n ‖ ≤ n

α
and ‖Gn‖ ≤ 2

√
2 + t, inequality (A.13) yields

‖U − V ‖ ≤ 4n
3
2

α
cNµQR(n)u

(
2
√

2 + t+ 1
)

+
10n2

α
cNu.

Finally, if t > 2
√

2 + 1 we can exchange the term 2
√

2 + t + 1 for 2t in the bound. Then,
using a union bound we obtain the advertised guarantee.

A.4.3 Preliminaries of RURV

Let A ∈ Cn×n and (U,R) = rurv(A). As will become clear later, in order to analyze
DEFLATE(A, r) it is of fundamental importance to bound the quantity ‖R22‖, where R22 is
the lower-right (n− r)× (n− r) block of R. To this end, it will suffice to use Corollary A.4.11
below, which is the complex analog to the upper bound given in equation (4) of [10, Theorem
5.1]. Actually, Corollary A.4.11 is a direct consequence of Lemma 4.1 in the aforementioned
paper and Proposition A.4.3 proved above. We elaborate below.

Lemma A.4.10 ([10]). Let n > r > 0, A ∈ Cn×n and A = PΣQ∗ be its singular value
decomposition. Let (U,R) = rurv(A), R22 be the lower right (n− r)× (n− r) corner of R,
and V be such that A = URV . Then, if X = Q∗V ∗,

‖R22‖ ≤
σr+1(A)

σn(X11)
,

where X11 is the upper left r × r block of X.

This lemma reduces the problem to obtaining a lower bound on σn(X11). But, since V is
a Haar unitary matrix by construction and X = Q∗V with Q∗ unitary, we have that X is
distributed as a Haar unitary. Combining Lemma A.4.10 and Proposition A.4.3 gives the
following result.

Corollary A.4.11. Let n > r > 0, A ∈ Cn×n, (U,R) = rurv(A) and R22 be the lower right
(n− r)× (n− r) corner of R. Then for any θ > 0

P

[
‖R22‖ ≤

√
r(n− r)
θ

σr+1(A)

]
≥ 1− θ2.
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A.4.4 Exact Arithmetic Analysis of DEFLATE

It is a standard consequence of the properties of the QR decomposition that if A is a matrix
of rank r, then almost surely deflate(A, r) is a n× r matrix with orthonormal columns that
span the range of A. As a warm-up let’s recall this argument.

Let (U,R) = rurv(A) and V be the unitary matrix used by the algorithm to produce this
output. Since we are working in exact arithmetic, V is a Haar unitary matrix, and hence
it is almost surely invertible. Therefore, with probability 1 we have rank(AV ∗) = r, so if
UR = AV ∗ we will have R22 = 0 and R11 ∈ Cr×r, where R11 and R22 are as in (A.4). Writing

U =

(
U11 U12

U21 U22

)
for the block decomposition of U with U11 ∈ Cr×r, note that

AV ∗ = UR =

(
U11R11 U11R12 + U12R22

U21R11 U21R12 + U22R22

)
. (A.14)

On the other hand, almost surely the first r columns of AV ∗ span the range of A. Using the
right side of equation (A.14) we see that this subspace also coincides with the span of the
first r columns of U , since R11 is invertible.

We will now prove a robust version of the above observation for a large class of matrices,
namely those A for which rank(A) = rank(A2).3 We make this precise below and defer the
proof to the end of the subsection.

Proposition A.4.12 (Main guarantee for deflate). Let β > 0 and A, Ã ∈ Cn×n be such that

‖A− Ã‖ ≤ β and rank(A) = rank(A2) = r. Denote S := deflate(Ã, r) and T := deflate(A, r).
Then, for any θ ∈ (0, 1), with probability 1− θ2 there exists a unitary W ∈ Cr×r such that

‖S − TW ∗‖ ≤

√
8
√
r(n− r)

σr(T ∗AT )
·
√
β

θ
. (A.15)

Remark A.4.13 (The projector case). In the case in which the matrix A of Proposition
A.4.12 is a (not necessarily orthogonal) projector, T ∗AT = Ir, and the σr term in the
denominator of (A.15) becomes a 1.

We begin by recalling a result about the stability of singular values which will be important
throughout this section. This fact is a consequence of Weyl’s inequalities; see for example
[75, Theorem 3.3.16] .

Lemma A.4.14 (Stability of singular values). Let X,E ∈ Cn×n. Then, for any k = 1, . . . , n
we have

|σk(X + E)− σk(X)| ≤ ‖E‖.
3For example, diagonalizable matrices satisfy this criterion.
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We now show that the orthogonal projection P := deflate(Ã, r)deflate(Ã, r)∗ is close to a
projection onto the range of A, in the sense that PA ≈ A.

Lemma A.4.15. Let β > 0 and A, Ã ∈ Cn×n be such that rank(A) = r and ‖A− Ã‖ ≤ β.

Let (U,R) := rurv(Ã) and S := deflate(Ã, r). Then, almost surely

‖(SS∗ − In)A‖ ≤ ‖R22‖+ β, (A.16)

where R22 is the lower right (n− r)× (n− r) block of R.

Proof. We will begin by showing that ‖(SS∗ − In)Ã‖ is small. Let V be the unitary matrix
that was used to generate (U,R). As deflate(·, ·) outputs the first r columns of U , we have
the block decomposition U =

(
S U ′

)
, where S ∈ Cn×r and U ′ ∈ Cn×(n−r).

On the other hand we have Ã = URV , so

(SS∗ − In)Ã = (SS∗ − I)
(
S U ′

)
RV =

(
0 −U ′

)
RV =

(
0 −U ′R2,2

)
V.

Since ‖U ′‖ = ‖V ‖ = 1 from the above equation we get ‖(SS∗ − In)Ã‖ ≤ ‖R22‖. Now we can
conclude that

‖(SS∗ − In)A‖ ≤ ‖(SS∗ − In)Ã‖+ ‖(SS∗ − In)(A− Ã)‖ ≤ ‖R22‖+ β.

The inequality (A.16) can be applied to quantify the distance between the ranges of

deflate(Ã, r) and deflate(A, r) in terms of ‖R22‖, as the following result shows.

Lemma A.4.16 (Bound in terms of ‖R22‖). Let β > 0 and A, Ã ∈ Cn×n be such that

rank(A) = rank(A2) = r and ‖A− Ã‖ ≤ β. Denote by (U,R) := rurv(Ã), S := deflate(Ã, r)
and T := deflate(A, r). Then, almost surely there exists a unitary W ∈ Cr×r such that

‖S − TW ∗‖ ≤ 2

√
‖R22‖+ β

σr(T ∗AT )
, (A.17)

where R22 is the lower right (n− r)× (n− r) block of R.

Proof. From Lemma A.4.15 we know that almost surely ‖(SS∗ − In)A‖ ≤ ‖R22‖ + β. We
will use this to show that ‖T ∗SS∗T − Ir‖ is small, which can be interpreted as S∗T being
close to unitary. First note that

‖T ∗SS∗T − Ir‖ = sup
w∈Cr,‖w‖=1

‖T ∗(SS∗ − Ir)Tw‖ = sup
w∈range(A),‖w‖=1

‖T ∗(SS∗ − Ir)w‖. (A.18)

Now, since rank(A) = rank(A2), if w ∈ range(A) then w = Av for some v ∈ range(A). So by
the Courant-Fischer formula

‖w‖
‖v‖

=
‖Av‖
‖v‖

≥ inf
u∈range(A)

‖Au‖
‖u‖

= σr(T
∗AT ).
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We can then revisit (A.18) and get

sup
w∈range(A),‖w‖=1

‖T ∗(SS∗ − Ir)w‖ = sup
v∈range(A),‖v‖≤1

‖T ∗(SS∗ − Ir)Av‖
σr(T ∗AT )

≤ ‖T
∗(SS∗ − Ir)AT‖
σr(T ∗AT )

.

(A.19)
On the other hand ‖T ∗(SS∗ − Ir)AT‖ ≤ ‖(SS∗ − Ir)A‖ ≤ ‖R22‖+ β, so combining this

fact with (A.18) and (A.19) we obtain

‖T ∗SS∗T − Ir‖ ≤
‖R22‖+ β

σr(T ∗AT )
.

Now define X := S∗T , β′ := ‖R22‖+β
σr(T ∗AT )

and let X = W |X| be the polar decomposition of X.
Observe that

‖|X| − Ir‖ ≤ σ1(X)− 1 ≤ |σ1(X)2 − 1| = ‖X∗X − Ir‖ ≤ β′.

Thus ‖S∗T −W‖ = ‖X −W‖ = ‖(|X| − In)W‖ ≤ β′. Finally note that

‖S − TW ∗‖2 = ‖(S∗ −WT ∗)(S − TW ∗)‖
= ‖2Ir − S∗TW ∗ −WT ∗S‖
= ‖2Ir − S∗T (T ∗S +W ∗ − T ∗S)− (S∗T +W − S∗T )T ∗S‖
≤ 2‖Ir − S∗TT ∗S‖+ ‖S∗T (W ∗ − T ∗S)‖+ ‖(W − S∗T )T ∗S‖ ≤ 4β′,

which concludes the proof.

Note that so far our results have been deterministic. The possibility of failure of the
guarantee given in Proposition A.4.12 comes from the non-deterministic bound on ‖R22‖.

Proof of Proposition A.4.12. From Lemma A.4.14 we have σr+1(Ã) ≤ β. Now combine
Lemma A.4.16 with Corollary A.4.11.

A.4.5 Finite Arithmetic Analysis of DEFLATE

In what follows we will have an approximation Ã of a matrix A of rank r with the guarantee
that ‖A− Ã‖ ≤ β.

For the sake of readability we will not present optimal bounds for the error induced by
roundoff, and we will assume that

4‖A‖ ·max{cNµMM(n)u, cNµQR(n)u} ≤ β ≤ 1

4
≤ ‖A‖ and 1 ≤ min{µMM(n), µQR(n), cN}.

(A.20)
We begin by analyzing the subroutine RURV in finite arithmetic. This was done in [47,

Lemma 5.4]. Here we make the constants arising from this analysis explicit and take into
consideration that Haar unitary matrices cannot be exactly generated in finite arithmetic.
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Lemma A.4.17 (RURV analysis). Assume that QR and MM satisfy the guarantees in
Definitions 3.2.2 and 3.2.4. Also suppose that the assumptions in (A.20) hold. Then, if
(U,R) := RURV(A) and V is the matrix used to produce such output, there are unitary

matrices Ũ , Ṽ and a matrix Ã such that Ã = ŨRṼ and the following guarantees hold:

1. ‖U − Ũ‖ ≤ µQR(n)u.

2. Ṽ is Haar distributed in the unitary group.

3. For every 1 > α > 0 and t > 2
√

2 + 1, the event:

‖Ṽ − V ‖ < 8tn
3
2

α
cNµQR(n)u +

10n2

α
u

and ‖A− Ã‖ < ‖A‖

(
9tn

3
2

α
cNµQR(n)u + 2µMM(n)u +

10n2

α
cNu

)
(A.21)

occurs with probability at least 1− 2eα2 − 2e−t
2n.

Proof. By definition V = QR(G̃n) with G̃n = Gn + E, where Gn is an n× n Ginibre matrix
and ‖E‖ ≤

√
nu. A direct application of the guarantees on each step yields the following:

1. From Proposition A.4.9, we know that there is a Haar unitary Ṽ and a random matrix
E0, such that V = Ṽ + E0 and

P

[
‖E0‖ <

8tn
3
2

α
cNµQR(n)u +

10n2

α
cNu

]
≥ 1− 2eα2 − 2e−t

2n. (A.22)

2. If B := MM(A, V ∗) = AV ∗ + E1, then from the guarantees for MM we have ‖E1‖ ≤
‖A‖‖V ‖µMM(n)u. Now from the guarantees for QR we know that V is µQR(n)u away
from a unitary, and hence

‖V ‖µMM(n)u ≤ (1 + µQR(n)u)µMM(n)u ≤ 5

4
µMM(n)u

where the last inequality follows from the assumptions in (A.20). This translates into

‖B‖ ≤ ‖A‖‖V ‖+ ‖E1‖ ≤ (1 + µQR(n)u)‖A‖+ ‖E1‖ ≤
5

4
‖A‖+ ‖E1‖.

Putting the above together and using (A.20) again, we get

‖E1‖ ≤
5

4
‖A‖µMM(n)u and B ≤ 5

4
‖A‖(1 + µMM(n)u) < 2‖A‖. (A.23)
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3. Let (U,R) = QR(B). Then there is a unitary Ũ and a matrix B̃ such that U = Ũ +E2,

B = B̃+E3, and B̃ = ŨR, with error bounds ‖E2‖ ≤ µQR(n)u and ‖E3‖ ≤ ‖B‖µQR(n)u.
Using (A.23) we obtain

‖E3‖ ≤ ‖B‖µQR(n)u < 2‖A‖µQR(n)u. (A.24)

4. Finally, define Ã := B̃Ṽ . Note that Ã = ŨRṼ and

Ã = B̃Ṽ = (B−E3)Ṽ = (AV ∗+E1−E3)Ṽ = (A(Ṽ+E0)∗+E1−E3)Ṽ = A+(AE∗0+E1−E3)Ṽ ,

which translates into

‖A− Ã‖ ≤ ‖A‖‖E0‖+ ‖E1‖+ ‖E3‖.

Hence, on the event described in the left side of (A.22), we have

‖A− Ã‖ ≤ ‖A‖

(
8tn

3
2

α
cNµQR(n)u +

10n2

α
cNu +

5

4
µMM(n)u + 2µQR(n)u

)
,

and using some crude bounds, the above inequality yields the advertised bound.

We can now prove a finite arithmetic version of Proposition A.4.12.

Proposition A.4.18 (Main guarantee for DEFLATE). Let n > r be positive integers, and

let β, θ > 0 and A, Ã ∈ Cn×n be such that ‖A − Ã‖ ≤ β and rank(A) = rank(A2) = r.

Let S := DEFLATE(Ã, r) and T := deflate(A, r). If QR and MM satisfy the guarantees in
Definitions 3.2.2 and 3.2.4, and (A.20) holds, then, for every t > 2

√
2 + 1 there exist a unitary

W ∈ Cr×r such that

‖S − TW ∗‖ ≤ µQR(n)u + 12

√
tn2
√
r(n− r)

σr(T ∗AT )
.

√
β

θ2
, (A.25)

with probability at least 1− 7θ2 − 2e−t
2n.

Proof. Let (U,R) = RURV(Ã). From Lemma A.4.17 we know that there exist Ũ ,
˜̃
A ∈ Cn×n,

such that ‖U− Ũ‖ and ‖Ã− ˜̃A‖ are small, and (Ũ , R) = rurv(
˜̃
A) for the respective realization

of an exact Haar unitary matrix. Then, from ‖Ã‖ ≤ ‖A‖+β and (A.21), for every 1 > α > 0
and t > 2

√
2 + 1 we have∥∥∥∥A− ˜̃A∥∥∥∥ ≤ ∥∥∥∥˜̃A− Ã∥∥∥∥+‖Ã−A‖ ≤ (‖A‖+β)

(
9tn

3
2

α
µQR(n)cNu + 2µMM(n)u +

10n2

α
cNu

)
+β,

(A.26)
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with probability 1− 2eα2 − 2e−t
2n.

Now, from (A.20) we have u ≤ β ≤ 1
4

and cN‖A‖µu ≤ β for µ = µQR(n), µMM(n), so we
can bound the respective terms in (A.26) by β:

(‖A‖+ β)

(
9tn

3
2

α
cNµQR(n)u + 2µMM(n)u +

10n2

α
cNu

)
+ β

≤ (1 + β)

(
9tn

3
2

α
β + 2β +

10n2

α
β

)
+ β ≤ (12t+ 16)

α
n2β, (A.27)

where the last crude bound uses 1 ≤ n
3
2 ≤ n2, 1 + β ≤ 5

4
and t > 2.

Observe that S̃ = deflate(
˜̃
A, r) is the matrix formed by the first r columns of Ũ , and that

by Proposition A.4.12 we know that for every θ > 0, with probability 1− θ2 there exists a
unitary W such that

‖S̃ − TW ∗‖ ≤

√
8
√
r(n− r)

σr(T ∗AT )
.

√√√√√
∥∥∥∥A− ˜̃A∥∥∥∥

θ
. (A.28)

On the other hand, S is the matrix formed by the first r columns of U . Hence

‖S − S̃‖ ≤ ‖U − Ũ‖ ≤ µQR(n)u.

Putting the above together we get that under this event

‖S − TW ∗‖ ≤ ‖S − S̃‖+ ‖S̃ − TW ∗‖ ≤ µQR(n)u +

√
8
√
r(n− r)

σr(T ∗AT )
.

√√√√√
∥∥∥∥A− ˜̃A∥∥∥∥

θ
. (A.29)

Now, taking α = θ, we note that both events in (A.26) and (A.28) happen with probability
at least 1− (2e+ 1)θ2 − 2e−t

2n. The result follows from replacing the constant 2e+ 1 with
7, using t > 2

√
2 + 1 and replacing 8(12t + 16) with 144t, and combining the inequalities

(A.26), (A.27) and (A.29).

We end by proving Theorem 3.5.3, the guarantees on DEFLATE that we will use when
analyzing the main algorithm.

Proof of Theorem 3.5.3. As Remark A.4.13 points out, in the context of this theorem we are
passing to DEFLATE an approximate projector P̃ , and the above result simplifies. Using this
fact, as well as the upper bound r(n− r) ≤ n2/4, we get that

‖S − TW ∗‖ ≤ µQR(n)u +
12
√
tn3β

θ
.
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with probability at least 1 − 7θ2 − 2e−t
2n for every t > 2

√
2. If our desired quality of

approximation is ‖S − TW ∗‖ = η, then some basic algebra gives the success probability as at
least

1− 1008
n3tβ

(η − µQR(n)u)2
− 2e−t

2n.

Since β ≤ 1/4, we can safely set t =
√

2/β, giving

1− 1426
n3
√
β

(η − µQR(n)u)2
− 2e−2n/β.

To simplify even further, we’d like to use the upper bound 2e−2n/β ≤ n3
√
β

(η−µQR(n)u)2
. These two

terms have opposite curvature in β on the interval (0, 1), and are equal at zero, so it suffices
to check that the inequality holds when β = 1. The terms only become closer by setting
n = 1 everywhere except in the argument of µQR(·), so we need only check that

2

e2
≤ 1

(η − µQR(n)u)2
.

Under our assumptions η, µQR(n)u ≤ 1, the right hand side is greater than one, and the left
hand less. Thus we can make the replacement, use u ≤ η

2µQR(n)
, and round for readability to

a success probability of no worse than

1− 6000
n3
√
β

η2
;

the constant here is certainly not optimal.
Finally, for the running time, we need to sample n2 complex Gaussians, perform two QR

decompositions, and one matrix multiplication; this gives the total bit operations as

TDEFLATE(n) = n2TN + 2TQR(n) + TMM(n).

Remark A.4.19. Note that the exact same proof of Theorem 3.5.3 goes through in the more
general case where the matrix in question is not necessarily a projection, but any matrix close
to a rank-deficient matrix A. In this case an extra σr(T

∗AT ) term appears in the probability
of success (see the guarantee given in the box for the Algorithm DEFLATE that appears in
this appendix).
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