
Lawrence Berkeley National Laboratory
LBL Publications

Title
Effective Quantum Resource Optimization via Circuit Resizing in BQSKit

Permalink
https://escholarship.org/uc/item/2ph579n0

Authors
Niu, Siyuan
Hashim, Akel
Iancu, Costin
et al.

Publication Date
2024-06-23

DOI
10.1145/3649329.3656534

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2ph579n0
https://escholarship.org/uc/item/2ph579n0#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Effective Quantum Resource Optimization via Circuit Resizing in
BQSKit

Siyuan Niu1, Akel Hashim2, Costin Iancu1, Wibe Albert de Jong1, Ed Younis1
1Lawrence Berkeley National Laboratory, USA

2University of California, Berkeley, USA
{siyuanniu,cciancu,wadejong,edyounis}@lbl.gov,ahashim@berkeley.edu

ABSTRACT
In the noisy intermediate-scale quantum era, mid-circuit measure-
ment and reset operations facilitate novel circuit optimization strate-
gies by reducing a circuit’s qubit count in a method called resizing.
This paper introduces two such algorithms. The first one lever-
ages gate-dependency rules to reduce qubit count by 61.6% or
45.3% when optimizing depth as well. Based on numerical instanti-
ation and synthesis, the second algorithm finds resizing opportu-
nities in previously unresizable circuits via dependency rules and
other state-of-the-art tools. This resizing algorithm, implemented
in BQSKit, reduces qubit count by 20.7% on average for these previ-
ously impossible-to-resize circuits.
1 INTRODUCTION
Quantum computing promises to address classically intractable
problems, particularly in chemistry, optimization, machine learn-
ing, and physical simulations. With more fields of application con-
tinuously being discovered and quantum hardware consistently im-
proving, the future of quantum computers is auspicious. Neverthe-
less, today’s machines are still considered Noisy Intermediate-Scale
Quantum (NISQ) devices because they consist of a few hundred
imperfect qubits. There is potential for executing quantum algo-
rithms on NISQmachines to outperform their classical counterparts,
however, only if we utilize every quantum resource effectively.

Quantum programs, typically expressed as quantum circuits, are
designed to require a certain number of qubits and gates, collectively
representing their resource demand. While algorithm developers
aim to reduce a program’s resource usage from a domain’s perspec-
tive, in the NISQ-era, there is a heavy burden on the compilation
layer to optimize these circuits. Compilers like Qiskit [13], Tket [16],
and BQSKit [17] traditionally minimize gate or instruction count
and ignore the qubit count. Gate cancellation and removal involve
unitary synthesis [3], peephole-based template matching [12], etc.
All of which cannot reduce circuit width (the number of physical
qubits required).

Mid-circuit measurement and reset (MMR) is a combination
of primitive operations that various quantum technology manu-
facturers have recently integrated into their platforms, including
superconducting [2], trapped-ion [11], and neutral-atom-based [6]
quantum hardware vendors. MMR’s original purpose was to imple-
ment quantum error correcting codes, but it has also enabled new
circuit optimization approaches in the NISQ-era. These approaches
optimize a circuit by reducing their required width in a technique
called circuit resizing, allowing users to execute larger programs

on cheaper, smaller quantum chips with potentially fewer gates.
Circuit resizing fundamentally works by reusing one physical

qubit for two program qubits, reducing the required qubit resources.
To accomplish this, we schedule one qubit’s operations on the
physical line and then measure and reset it, allowing the next qubit
to start its operations on this qubit. Not all circuits are resizable.
Although several circuit resizing algorithms have been proposed [1,
7, 4, 15], they share common limitations: (1) They primarily focus on
circuit resizing, neglecting other optimization opportunities arising
during the process. (2) They only resize circuits that satisfy specific
gate dependence relationships, thereby overlooking opportunities
for resizing at the unitary level. This limitation significantly restricts
the range of programs that can benefit from this powerful strategy.

This work introduces two novel resizing algorithms built on top
of the Berkeley Quantum Synthesis Toolkit (BQSKit). The first com-
bines gate dependencies with traditional optimization strategies
to reduce both circuit width and depth with configurable parame-
ters, leading to a qubit count reduction of 45.3% to 61.6%. Second,
we leverage advancements in numerical instantiation to develop a
resynthesis algorithm that restructures non-resizable circuits into
resizable ones. This algorithm is resource-efficient and topology-
aware, removing the need for expensive mapping and increasing
the potential for optimization. We decrease the number of qubits
by 20.7% in previously impossible-to-resize circuits while reducing
gate counts by an average of 37.9%. These resource optimizations
make for an average improvement of 28.1% improvement in fidelity
when executing on IBM’s quantum machines.

2 BACKGROUND
2.1 Numerical Synthesis and Instantiation
Circuit synthesis converts a high-level description of a quantum
program into an executable circuit. Since all quantum operations
can be represented as unitary matrices, this process typically de-
composes a large unitary into a set of small, native operations
commonly consisting of one-qubit parameterized rotations in𝑈 (2)
and fixed two-qubit gates 𝑈 (4) . Our focus is on unitary synthesis;
throughout this paper, we will shorten this term to synthesis unless
otherwise specified.

There are distinct exact and approximate methods for synthesis.
Both aim to synthesize circuits with as few gates as possible, but
approximate methods produce shorter circuits by allowing a small,
configurable amount of error in the calculation: | |𝑈𝑇 −𝑈𝑆 | | < 𝜖.
Here𝑈𝑇 is the target unitary matrix, and 𝑈𝑆 is the synthesized
circuit’s unitary. Every algorithm will measure distance differently,
but the leading algorithms base their metric off the Hilbert-Schmidt
inner product:𝑇𝑟 (𝑈 †

𝑇
𝑈𝑆).

Practitioners commonly use the QSearch [3] approximate syn-
thesis algorithm due to its topology-awareness, efficacy, config-
urability, and composability. This synthesizer uses an optimizer to
tune gate parameters together with a search over circuit structuresDAC '24, June 23–27, 2024, San Francisco, CA, USA

© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06.
https://doi.org/10.1145/3649329.3656534

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. Copyrights for third
-party components of this work must be honored. For all other uses, contact
the Owner/Author.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649329.3656534&domain=pdf&date_stamp=2024-11-07

Figure 1: (a) This is a non-resizable circuit because there is no valid schedule
of the gates that allows for one qubit to finish before another starts. (b) A
resizable circuit because 𝑞0 finishes before 𝑞1 starts. (c) The previous circuit
resized.

to design efficient circuits automatically. This algorithm refers to
the parameter optimization as instantiation. Recently, QFactor, a
fast circuit instantiatier based on a tensor network formulation,
improved on this method by eliminating the need for explicit pa-
rameterization [8].

2.2 Circuit Resizing
By effectively scheduling MMRs with qubit operations, we can de-
crease the required number of qubits in a circuit. This optimization
procedure is called resizing. See Figure 1 for an illustration of a
3-qubit program being resized to a 2-qubit one.

Circuits must satisfy specific dependency properties for resizing
to be possible. For two program qubits to share one physical qubit,
a schedule of gates must exist where one of the qubit’s instructions
completes before the other’s start. In Figure 1a, there is no valid
schedule of the gates that allows for resizing, whereas in Figure 1b,
program qubits, 𝑞0 and 𝑞1 can share a physical qubit utilizing an
MMR. Reducing the qubit counts of a quantum circuit offers sev-
eral benefits: (1) For larger quantum circuits, where the number
of qubits exceeds the capacity of the target quantum hardware,
resizing enables circuit execution. (2) Given that only a limited
number of qubits possess high fidelity for the near-term quantum
hardware, reducing the circuit’s qubit count can exclude less reli-
able qubits, leading to improved circuit fidelity. (3) For quantum
hardware with nearest-neighbor connectivity, such as IBM’s super-
conducting quantum devices, fewer qubits can reduce the number
of SWAPs required during circuit execution on the hardware. How-
ever, there are also challenges to consider: (1) Resizing a quantum
circuit using MMR may necessitate the serial execution of more
gates, potentially increasing the circuit depth or duration. (2) The
duration of MMR is longer than that of the other gates. For example,
on ibmq_auckland, the average length of measurement is 3.8 times
longer than that of a CNOT gate. Consequently, inserting MMRs
may increase the overall circuit duration and introduce more idle
time. Balancing the advantages and limitations of circuit resizing is
crucial to maximizing the benefits derived from MMR.

2.2.1 State-of-the-Art Resizing Algorithms. Recently, several circuit
resizing algorithms have been proposed, and their effectiveness
has been evaluated on superconducting [1, 15, 7] and trapped-ion
quantum devices [4]. DeCross et al. targeted the trapped-ion ar-
chitecture with a SAT-solver approach for small circuits and a
greedy heuristic for larger programs, aiming for maximal qubit
reuse [4]. In contrast, other methods primarily focused on super-
conducting quantum hardware. Sadeghi et al. presented a circuit
resizing method to minimize output qubits but did not account for
potential increases in circuit depth [15]. Hua et al. introduced the

CaQR compiler, which balanced the trade-off between the number
of qubits reused and the growth in circuit depth [7]. Brandhofer et
al. incorporated circuit resizing and chip connectivity conditions
into an SMT model, thereby achieving simultaneous circuit resizing
and mapping [1]. However, all these previous methods focused
solely on analyzing gate dependencies within the input circuit to
identify resizing opportunities, without considering other resource
optimizations. Moreover, they did not alter the circuit’s structure
through unitary synthesis to modify gate dependencies and explore
additional circuit resizing possibilities.

3 GATE-DEPENDENCY BASED RESIZING

Given a quantum circuit, we assess its resizability by gate de-
pendency analysis. If a circuit is resizable, we apply a search-based
algorithm to minimize a configurable cost function described in this
section. In the following section, we propose a method for resizing
circuits that are not initially resizable.

The gate schedule in a circuit determines the gate-dependency
rules for qubit resizing. We evaluate the qubit pair (𝑞𝑖 , 𝑞 𝑗) to check
whether the completion of 𝑞 𝑗 is independent of 𝑞𝑖 , which would
allow for the reuse of 𝑞𝑖 for 𝑞 𝑗 . To accomplish this, we traverse the
circuit along 𝑞𝑖 until its final instruction and gather all qubits that
interact with 𝑞𝑖 . If a qubit 𝑞 𝑗 is not seen, then the pair (𝑞𝑖 , 𝑞 𝑗) is
recorded as a potential resizing opportunity. From this, we obtain
a list of all resizable qubit pairs. This also gives us the possible
MMR insertion locations because in the resized circuit, we insert an
MMR after 𝑞𝑖 to reuse it for 𝑞 𝑗 . If the list is not empty, the circuit is
resizable based on the current gate dependencies.We can then apply
our search-based algorithm to decide which qubits to reuse and
where to apply MMRs; otherwise, we try the instantiation-based
resizing check described in the following section.

Using a user-inputted cost function, we search over resizable
pairs to determine the best-resized circuit. In this work, we consider
two cost functions: one for maximal reuse, which aims to minimize
the circuit qubit count as much as possible, and the second one
for minimal depth, which aims to balance circuit width and depth
optimization.

Suppose there are only a few potential MMR insertion locations.
In that case, the size of the search tree is small, allowing us to
perform an exhaustive, brute-force search, ensuring we discover
the best circuit. In the scenario with many resizing opportunities,
we relax our search to a greedy-heuristic one. Here, we evaluate
each resizing opportunity independently at each step, calculate
the cost, and continue with the best-scoring circuit. One MMR is
applied during each iteration, and the remaining potential resizing
opportunities are updated to reflect the change. This procedure
continues until no more resizing pairs can be found or the cost
function cannot be reduced further. This heuristic resizing algo-
rithm is efficient and ensures the best local solution at each MMR
insertion step rather than guaranteeing a globally optimal solution.
Figure 2 depicts an example of resizing a quantum circuit.

We further optimize the circuit by synthesis once we obtain the
optimally resized circuit according to our search-based approach.
The resized circuit can be easily segmented into multiple parts
separated by MMRs. Within each partition, we re-synthesize the
corresponding sub-circuit using QSearch and perform gate deletion

Figure 2: Given the 5-qubit input circuit, there are potential resizing oppor-
tunities via MMR insertions. Initially in (a), the potential resizing pairs are
(0, 4), (1, 4), (2, 0), (2, 3), (3, 1), (3, 2), (3, 4), (4, 0), (4, 3) , where (𝑞𝑖 , 𝑞 𝑗) implies
𝑞𝑖 can be reused by𝑞 𝑗 . We select (0, 4) to advance to (b), updating the remaining
possible pairs to (3, 1), (3, 2) . Finally, we reuse 𝑞3 for 𝑞1 to obtain a 3-qubit
circuit in (c), leaving no further resizing opportunities and terminating the
algorithm.

Figure 3: The input circuit in (a) is not resizable via gate dependencies.
Rather than work with the original circuit, in (b), we employ the instantiation-
based resizing algorithm to check if 𝑞0 can be reused for 𝑞3 in some circuit
that implements the original unitary. Here, each box represents a variable
unitary matrix. If we successfully instantiate the template, we can resize the
program as shown in (c).

to reduce the number of gates. After replacing the subcircuits with
their optimized outputs, we return the final resized circuit.

4 INSTANTIATION-BASED RESIZING

Instantiation, commonly used in unitary synthesis, enables one
to separate a circuit’s function – the unitary it implements – from its
structure – its decomposition into gates. We can vary the structure
of a circuit to coerce it to something more amenable to resizing.
This process facilitates finding non-intuitive circuit optimizations
beyond simple commutativity or pattern-matching rules. In this
section, we first describe how we use instantiation to check if the
program that a circuit implements could ever be built in a resizable
way. If we get a positive result, we then use a novel numerical-
instantiation-based synthesis algorithm to resize the circuit for any
native gates.

4.1 Resizable Checking via Instantiation
Previously, we used gate dependencies to find resizing opportunities
in a given circuit. This checking procedure requires a pre-built
circuit and suffers from being downstream of a domain-specific
circuit generator, which does not consider resizing. Here, we throw
away the circuit structure entirely and create resizing opportunities
by forming a fundamentally resizable, parameterized circuit. With
the successful instantiation of this specific parameterized circuit
to the original function, given as the program’s unitary matrix, we
know that this program is resizable at the unitary level. That is,
there exists some circuit that implements the program’s unitary that
is resizable. Figure 3 illustrates an example and the parameterized
circuit style.

During resize-checking, our parameterized 𝑛-qubit circuits con-
sist of two arbitrary unitary gates with 𝑛 − 1-qubits. We place the
first block on all qubits except for 𝑞 𝑗 and the second block afterward
on all qubits except for 𝑞𝑖 . Therefore, this template parameterizes
all resizable circuits where 𝑞𝑖 can be reused for 𝑞 𝑗 . We then employ
the QFactor tool to instantiate the circuit to the original unitary. We
chose QFactor because it does not require explicit parameterization
of variable unitary matrices. This feature makes it especially fast at
solving these instantiation problems with rapid convergence. If the
resulting instantiated circuit has a distance of less than some config-
urable epsilon to the input, we have successfully created a resizing
pair for this algorithm. The distance is measured as explained in
Section 2.1.

We evaluate each qubit pair of the input circuit, amounting to
𝑛(𝑛 − 1) parallelizable instantiation calls, and collect all successful
outcomes. Before proceeding to the following synthesis step, we
employ QFactor to downsize blocks in each successful circuit, lead-
ing to a higher-quality, accelerated synthesis step. We can reduce
the size of parametrized blocks by removing an arbitrary qubit and
reinstantiating like before. We continue until we have minimally
sized blocks for each resizing pair. Finally, we select the pair with
the smallest blocks to resynthesize.

4.2 Circuit Resizing as Bottom-up Resynthesis
After checking the resizability with instantiation, downsizing the
blocks, and selecting a resizing pair (𝑞𝑖 , 𝑞 𝑗), we start our synthesis
with an 𝑛-qubit circuit composed of two parameterized unitary
blocks of at most 𝑛 − 1-qubits. These blocks ensure the reuse of 𝑞𝑖
for 𝑞 𝑗 . The next step is to synthesize these blocks into native gates
provided by the user. We propose modifying the QSearch algorithm
to decompose the two blocks into native gates in a topology-aware
manner, removing the need for expensive mapping.

QSearch is a bottom-up synthesis strategy that utilizes 𝐴∗ to
search over circuit structures and numerical instantiation to evalu-
ate each structure. The algorithm incorporates an additional layer of
configurable parameterized gates into the circuit with each deeper
step in the search tree. This process terminates after discovering
a program design successfully instantiating the target unitary. By
only allowing valid instructions from a given topology, this pro-
cess is made topology-aware, i.e., all gates in the final circuit occur
between qubits connected in a target quantum chip.

Our novel adaptation changes how QSearch builds its circuit
structures to expand gates within the bounds of the input blocks.
This modification maintains the resizability property of the circuit
while allowing QSearch to modify parameters globally in the cir-
cuit. Naively, we could synthesize each block independently with
QSearch off-the-shelf; however, this produces longer gate sequences
due to a limited instantiation scope – the area of variable parame-
ters in a circuit. In other words, instantiation and synthesis tools
will find higher-quality solutions when operating in a larger space,
i.e., n-qubit circuit versus n-1-qubit block. Figure 4 demonstrates
how we expand the blocks into native gates.

By default, QSearch is topology-aware, yet we must pay special
attention to how we expand our circuit structures to maintain this
property because our circuit will eventually be resized. Since we
are synthesizing the circuit before resizing it, we must ensure that

Figure 4: This example demonstrates howwe expand the input block-circuit
from resize-checking into native gates. We target a chip with linear topology
in the final circuit and the CNOT and U3 gate set. Every small box on one wire
represents a U3 gate, a fully parameterized single-qubit rotation. With every
expansion, we get four successors by adding one possible group of gates in
every valid location.

Figure 5: This example showcases how we derive the connectivity restraints
for the 4-qubit input circuit from the target 3-qubit chip connectivity. This
process is necessary because we synthesize circuits before they are resized,
and the resizing process changes the program’s qubit connections. We start in
(a) with the target coupling given by the quantum chip. In this example, we
reused 𝑞0 for 𝑞3, so we fragment the zero node in (b). Finally, in (c), we relabel
the fragmented node to the reused qubit, giving us the reverse-engineered
topology. In the pre-resized circuit, gates between 𝑞1 and 𝑞3 will map to valid
gates between 𝑞1 and 𝑞0.

our allowed two-qubit gate interactions will reflect the reality af-
ter resizing. Let’s assume we have a four-qubit problem, with 𝑞3
being reused on 𝑞0, and are targeting a chip with linear connec-
tivity. If we allow linear interactions in our synthesis, then after
resizing, we will replace the gates between (𝑞2, 𝑞3) with gates be-
tween (𝑞2, 𝑞0), which are illegal instructions. To combat this, we
reverse-engineer a pre-resized topology that allows connections
between qubits(𝑞3, 𝑞1) but not (𝑞3, 𝑞2). Now, after resizing, these
gates will be valid linear interactions. Figure 5 displays how we
reverse engineer the topology.

After synthesis, we finalize our result by performing gate dele-
tion for further optimization. At this stage, the circuit is optimized
and resizable. Since we selected the resizable pair (𝑞𝑖 , 𝑞 𝑗) before
and maintained it throughout the synthesis process, inserting an
MMR to 𝑞𝑖 and reusing it for 𝑞 𝑗 completing the circuit resizing
algorithm is straightforward.

5 EXPERIMENTAL SETUP
We implemented both algorithms on top of version 1.1 of the Berke-
ley Quantum Synthesis Toolkit [17], a compilation framework us-
ing Python 3.11.4. We utilized BQSKit’s implementation of the
QSearch and QFactor techniques to accelerate the development of
our algorithms. We used QSearch as-is during post-processing in
our gate-dependency-based resizer, whereas we directly modified
QSearch in our numerical-instantiation-based resizer. We called
QFactor with default settings and used an epsilon of 10−10 for all

instantiations calls throughout the evaluation. Our source code will
be made available publically on GitHub.

The benchmarks collected from [14, 18], cover a variety of quan-
tum algorithms, such as Variational Quantum Eigensolver (VQE),
QuantumApproximateOptimizationAlgorithm (QAOA), and Bernstein-
Vazirani (BV), alongside applications in quantum arithmetic and
error correction, among others. Note that QAOA circuits are gener-
ated based on two-regular graphs.

To evaluate the efficacy of our proposed resizing algorithms, we
consider the following metrics: the number of qubits required by
the circuits, the number of two-qubit gates, and the circuit depth.
The depth only considers two-qubit gates in the critical path to
remove the impact of the variance of single-qubit gates due to the
different basis gate sets. Furthermore, we employ two distinct met-
rics when assessing the fidelity of programs executed on quantum
hardware. For circuits that ideally produce a single correct output in
the absence of noise, we use the Probability of Success Trial (PST),
defined as the proportion of trials yielding the correct result out of
the total conducted. Conversely, for circuits where the output is a
probabilistic distribution, we utilize Hellinger fidelity to quantify
the closeness of the experimentally obtained distribution on real
quantum hardware to that predicted by ideal simulations.

We compare our algorithms against state-of-the-art compilation
tools: BQSKit, Qiskit, and Tket. For each, we use the highest level of
optimization, which is level 3 for qiskit, level 4 for BQSKit (which
implements the PAM algorithm [10]), and level 2 for Tket. We
targeted the two ibmq_auckland and ibm_hanoi quantum IBM Q
architectures for large circuits. When executing on real machines,
we targeted the linear- and T-topologies for 3-5 qubit circuits.

6 RESULTS AND ANALYSIS
Table 1 details the comparison between our gate-dependency-based
circuit resizing algorithm and state-of-the-art tools. When the cost
function is optimized for maximal qubit reuse, there is a substantial
61.6% reduction in qubit count. In all benchmarks, except for routing
and tsp, reducing the qubit count leads our resizer to decrease
CNOT gate count by 11.4% compared with the best of the other
compilers. This does increase the circuit depth by 22.4%. However,
when the cost function prioritizes minimizing depth, the resulting
depth is now only increased by 5%. In this scenario, the qubit count
is lowered by 45.3%. The minimal depth cost increases the CNOT
gate count by 2.6% compared to maximal reuse. These experimental
results effectively highlight the trade-off between circuit depth and
the number of qubits required. The slight increase in CNOT gates for
our gate-dependency-based resizer, compared with BQSKit stems
from the differences in the mapping algorithms, SABRE [9] and
PAM respectively. We anticipate adapting PAM to our resizer to
potentially further reduce the number of CNOT gates.

We also compare our gate-dependency-based circuit resizer with
CaQR [7], another circuit resizing method also pursuing maximal
reuse and minimal circuit depth metrics. Due to the inaccessibil-
ity of their source code, executable, and benchmark dataset, our
comparison is confined to the four benchmarks (4mod, multiply-13,
system-9, BV) with extractable results from their paper. When max-
imizing qubit reuse, our method achieves an additional reduction of
28.6% in qubit count and 21.4% in the total number of CNOT gates

Benchmarks Tket Qiskit BQSKit Maximal reuse Minimal depth
name 𝑛 CX depth CX depth CX depth CX 𝑛 depth CX 𝑛 depth CX
4mod 5 10 12 12 16 17 10 12 3 12 12 3 18 18
multiply-13 13 40 65 97 46 81 59 87 5 66 73 7 73 91
system-9 12 148 256 338 252 338 171 239 5 223 231 7 195 264
BV 10 9 27 29 17 17 12 15 2 9 9 4 13 18
QAOA-5 5 10 16 23 11 14 13 13 3 13 13 3 13 13
QAOA-10 10 20 28 30 21 32 23 33 3 20 20 5 24 29
DJ 10 9 27 29 17 22 12 15 2 9 9 4 14 15
routing 12 33 15 33 15 33 46 71 4 67 102 7 33 60
tsp 9 40 16 40 16 40 51 75 6 67 106 7 34 82

Table 1: Compiling circuits to IBM quantum hardware using gate-dependency-based resizing algorithm. 𝑛: qubit number.𝐶𝑋 : total number of CX gates. depth:
length of the critical path excluding single-qudit gates.

Benchmarks BQSKit_L Resize_L BQSKit_T Resize_T
name 𝑛 CX 𝑛 CX 𝑛 CX 𝑛 CX 𝑛 CX
adder 4 10 4 16 3 14 4 17 3 14
vqe 5 25 5 55 4 35 5 52 4 28
qec 5 11 5 25 4 11 5 27 4 12
decod 5 27 5 36 4 27 5 42 4 27
alu 5 32 5 41 4 40 5 45 4 25
mod5 5 22 5 45 4 19 5 30 4 16

Table 2: Compiling circuits to linear and T topology using numerical-
instantiation-based resizing algorithm. All the circuits are not resizable by
any other tool.

in contrast to CaQR. In the scenario prioritizing minimal circuit
depth, we observe a decrease of 25% in qubit count and 8.2% in
CNOT gates. Our approach, however, increases depth by 47% and
43% respectively when counting the overal circuit depth includ-
ing both single and two-qubit gates. This is due to our substantial
use of off-the-shelf QSearch synthesis, which is primed to reduce
two-qubit gate count without consideration of single-qubit depth.
CaQR calculates circuit depth to include both single- and two-qubit
gate critical path. If we tune QSearch to minimize depth, the algo-
rithm will produce shallower circuits at potentially the cost of more
gates. The current trade-offs are beneficial since two-qubit gate
error dominates in NISQ devices, but we can tune as this changes.

Table 2 presents the results of compiling circuits to linear and
T topology using our numerical-instantiation-based resizing algo-
rithm. This approach enabled the reuse of one qubit per tested
benchmark, yielding an average reduction in circuit size by 20.7%.
Compared with the BQSKit of linear and T topology, the number
of two-qubit gates decreased by 33% and 42.7%. To facilitate fair
execution on IBM quantum hardware, we carefully chose three
placements that align with the linear and T topologies while avoid-
ing qubits and connections with high error rates. We then mapped
the benchmarks to these placements. As reported by [1], the number
of reset repetitions affects fidelity. To assess this, we vary the resets
from one to three. The experimental results show that a single reset
yields the highest fidelity, surpassing two and three resets by 17.1%
and 26.9%, respectively. Therefore, in Figure 6, we report only the
single reset results.

Resizing enhanced the fidelity of all tested circuits and topologies
except for the linearly compiled VQE circuit. The fidelity of the
VQE circuit was high before resizing, making it difficult to improve.
Overall, for ibmq_auckland, the circuit fidelity is enhanced by 28.5%
and 28.9% for linear and T topologies respectively. Similarly, for

Figure 6: Circuit fidelity results from executions on (a) ibmq_auckland and
(b) ibmq_hanoi.

ibmq_hanoi, improvements are noted at 28.4% for linear topology
and 26.6% for T topology.

7 DISCUSSION AND CONCLUSION
Mid-circuit measurement and reset provide circuit optimization
opportunities by circuit resizing, which lowers the required number
of qubits, reducing required gates and enhancing fidelity. This pa-
per introduced two resizing algorithms: one that leverages search
and gate dependencies and another that uses numerical instantia-
tion to find non-intuitive restructures. We conclude with two brief
discussions, one on runtimes and scalability and another on the
search-based cost function.

For the gate-dependency-based resizer, we use brute-force search
for circuits with fewer than 7 initial resizable pairs; for circuits with
more resizing opportunities, we switch to the heuristic method.
This empirically-informed decision guarantees that runtimes for
the gate-dependency-based algorithm are within seconds and that
it is scalable to large system sizes. The gate-dependency-based ap-
proach, however, requires circuits to have resizable opportunities
before application, whereas the numerical-instantiation-based algo-
rithm does not have the same restriction. Our resynthesis prototype
has successfully demonstrated its effectiveness on circuits up to
five qubits, showcasing the strength of instantiation in restructur-
ing circuits for better optimization potential. Instantiation does
incur an exponential scaling due to the optimization of larger sys-
tems; QFactor was shown to scale to 12 qubits directly with GPUs.
Prior works have overcome this challenge with divide-and-conquer
strategies using vertical circuit partitioning scaling instantiation-
based methods to thousands of qubits. In a production compiler
pipeline, we envision a scalable approach using a similar paradigm
but leave this to future work.

Mid-circuit measurements and resets come with a substantial
physical cost. On some hardware platforms, measurements are
longer in duration and more error-prone than unitary gates. For
example, in superconducting circuits, typical gate times are ∼ 10
ns for single-qubit gates and ∼ 100 ns for two-qubit gates, whereas
measurements typically take anywhere from ∼ 500 ns to a few
𝜇s. Therefore, naive application of mid-circuit measurements can
drastically increase the total execution time of a quantum circuit.
Moreover, mid-circuit measurements can incur errors on “active”
spectator qubits during their execution [5], increasing their total
cost. In this work, we demonstrated an improvement in fidelity
using our simple maximal reuse or minimal depth cost models.
Looking forward, with a more meticulous application of our algo-
rithm, a user may tweak the cost function to include these additional
physical constraints, such as circuit duration or spectator errors.

ACKNOWLEDGMENTS
This work was supported by the U.S. Department of Energy, Of-
fice of Science, Office of Advanced Scientific Computing Research
through the Accelerated Research in Quantum Computing Pro-
gram. This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility
supported under Contract No. DE-AC05-00OR22725. A.H. acknowl-
edges financial support from the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research Quan-
tum Testbed Program under Contract No. DE-AC02-05CH11231.
The authors also acknowledge the use of IBM Quantum services.
The views expressed are those of the authors and do not reflect the
official policy or position of IBM or the IBM Quantum team.

REFERENCES
[1] Sebastian Brandhofer, Ilia Polian, and Kevin Krsulich. 2023.

Optimal Qubit Reuse for Near-Term Quantum Computers.
arXiv preprint arXiv:2308.00194 (2023).

[2] Antonio D Córcoles, Maika Takita, Ken Inoue, Scott Lekuch,
Zlatko K Minev, Jerry M Chow, and Jay M Gambetta. 2021.
Exploiting dynamic quantum circuits in a quantum algorithm
with superconducting qubits. Physical Review Letters 127, 10
(2021), 100501.

[3] Marc G Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan
Siddiqi, and Costin Iancu. 2020. Towards optimal topology
aware quantum circuit synthesis. In 2020 IEEE International
Conference on Quantum Computing and Engineering (QCE).
IEEE, 223–234.

[4] MatthewDeCross, Eli Chertkov, Megan Kohagen, andMichael
Foss-Feig. 2022. Qubit-reuse compilation with mid-circuit
measurement and reset. arXiv preprint arXiv:2210.08039
(2022).

[5] LCG Govia, Petar Jurcevic, ST Merkel, and DC McKay. 2022.
A randomized benchmarking suite for mid-circuit measure-
ments. arXiv preprint arXiv:2207.04836 (2022).

[6] TM Graham, L Phuttitarn, R Chinnarasu, Y Song, C Poole, K
Jooya, J Scott, A Scott, P Eichler, and M Saffman. 2023. Mid-
circuit measurements on a neutral atom quantum processor.
arXiv preprint arXiv:2303.10051 (2023).

[7] Fei Hua, Yuwei Jin, Yanhao Chen, Suhas Vittal, Kevin Krsulich,
Lev S Bishop, John Lapeyre, Ali Javadi-Abhari, and Eddy Z
Zhang. 2023. CaQR: A Compiler-Assisted Approach for Qubit
Reuse through Dynamic Circuit. In Proceedings of the 28th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3.
59–71.

[8] Alon Kukliansky, Ed Younis, Lukasz Cincio, and Costin Iancu.
2023. QFactor–A Domain-Specific Optimizer for Quantum
Circuit Instantiation. arXiv preprint arXiv:2306.08152 (2023).

[9] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit
mapping problem for NISQ-era quantum devices. In Proceed-
ings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems. 1001–1014.

[10] Ji Liu, Ed Younis, Mathias Weiden, Paul Hovland, John Kubia-
towicz, and Costin Iancu. 2023. Tackling the Qubit Mapping
Problem with Permutation-Aware Synthesis. arXiv preprint
arXiv:2305.02939 (2023).

[11] Juan M Pino, Jennifer M Dreiling, Caroline Figgatt, John P
Gaebler, Steven A Moses, MS Allman, CH Baldwin, Michael
Foss-Feig, D Hayes, K Mayer, et al. 2021. Demonstration of
the trapped-ion quantum CCD computer architecture. Nature
592, 7853 (2021), 209–213.

[12] Aditya K Prasad, Vivek V Shende, Igor LMarkov, John PHayes,
and Ketan N Patel. 2006. Data structures and algorithms for
simplifying reversible circuits. ACM Journal on Emerging
Technologies in Computing Systems (JETC) 2, 4 (2006), 277–
293.

[13] Qiskit contributors. 2023. Qiskit: An Open-source Framework
for Quantum Computing. https://doi.org/10.5281/zenodo.
2573505

[14] Nils Quetschlich, Lukas Burgholzer, and Robert Wille. 2023.
MQT Bench: Benchmarking Software and Design Automation
Tools for Quantum Computing. Quantum (2023). MQT Bench
is available at https://www.cda.cit.tum.de/mqtbench/.

[15] Movahhed Sadeghi, Soheil Khadirsharbiyani, and Mah-
mut Taylan Kandemir. 2022. Quantum Circuit Resizing. arXiv
preprint arXiv:2301.00720 (2022).

[16] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Sim-
mons, Alec Edgington, and Ross Duncan. 2020. t| ket>: a
retargetable compiler for NISQ devices. Quantum Science and
Technology 6, 1 (2020), 014003.

[17] Ed Younis, Costin C Iancu, Wim Lavrijsen, Marc Davis, Ethan
Smith, and USDOE. 2021. Berkeley Quantum Synthesis Toolkit
(BQSKit) v1. https://doi.org/10.11578/dc.20210603.2

[18] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. An
efficient methodology for mapping quantum circuits to the
IBM QX architectures. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 38, 7 (2018), 1226–
1236.

https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://www.cda.cit.tum.de/mqtbench/
https://doi.org/10.11578/dc.20210603.2

	Abstract
	1 Introduction
	2 Background
	2.1 Numerical Synthesis and Instantiation
	2.2 Circuit Resizing

	3 Gate-dependency Based Resizing
	4 Instantiation-based Resizing
	4.1 Resizable Checking via Instantiation
	4.2 Circuit Resizing as Bottom-up Resynthesis

	5 Experimental Setup
	6 Results and Analysis
	7 Discussion and Conclusion
	Acknowledgments

