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Abstract

Nonzero-based fine-grain and medium-grain sparse matrix partitioning models attain the lowest communication volume and com-
putational imbalance among all partitioning models due to their larger solution space. This usually comes, however, at the expense
of a high message count, i.e., high latency overhead. This work addresses this shortcoming by proposing new fine-grain and
medium-grain models that are able to minimize communication volume and message count in a single partitioning phase. The new
models utilize message nets in order to encapsulate the minimization of total message count. We further fine-tune these models by
proposing delayed addition and thresholding for message nets in order to establish a trade-off between the conflicting objectives of
minimizing communication volume and message count. The experiments on an extensive dataset of nearly one thousand matrices
show that the proposed models improve the total message count of the original nonzero-based models by up to 27% on the average,
which is reflected on the parallel runtime of sparse matrix-vector multiplication as an average reduction of 15% on 512 processors.

Keywords: sparse matrix, sparse matrix-vector multiplication, row-column-parallel SpMV, load balancing, communication
overhead, hypergraph, fine-grain partitioning, medium-grain partitioning, recursive bipartitioning.

1. Introduction1

Sparse matrix partitioning plays a pivotal role in scaling ap-2

plications that involve irregularly sparse matrices on distributed3

memory systems. Several decades of research on this subject4

led to elegant combinatorial partitioning models that are able to5

address the needs of these applications.6

A key operation in sparse applications is the sparse matrix-7

vector multiplication (SpMV). The irregular sparsity pattern8

of the coefficient matrix in SpMV necessitates a non-trivial9

parallelization, usually achieved through combinatorial models10

based on graph and hypergraph partitioning. Graph and hyper-11

graph models prove to be powerful tools in their immense abil-12

ity to represent applications with the aim of optimizing desired13

parallel performance metrics. The literature is rich in terms of14

such models for parallelizing SpMV [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,15

11, 12, 13]. We focus on the hypergraph models as they cor-16

rectly encapsulate the total communication volume in SpMV17

and the proposed models in this work rely on hypergraphs. The18

hypergraph models for SpMV are grouped into two depending19

on how they distribute the nonzeros of individual rows/columns20

of the matrix among processors: if all nonzeros that belong to a21

row/column are assigned to a single processor, then they are22

called one-dimensional (1D) models [1], otherwise, they are23

called two-dimensional (2D) models. The 2D models are gener-24

ally superior to the 1D models in terms of parallel performance25
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due to their higher flexibility in distributing the matrix nonze-26

ros. Examples of 2D models include checkerboard [8, 14],27

jagged [14], fine-grain [14, 15], and medium-grain [10] models.28

Among these, the fine-grain and medium-grain models are re-29

ferred to as nonzero-based models as they obtain nonzero-based30

matrix partitions, which are the most general possible [7].31

Among all models, the fine-grain model adopts the finest par-32

titioning granularity by treating the nonzeros of the matrix as in-33

dividual units, which leads it to have the largest solution space.34

For this reason, it achieves the lowest communication volume35

and the lowest imbalance on computational loads of the pro-36

cessors [14]. Since the nonzeros of the matrix are treated in-37

dividually in the fine-grain model, the nonzeros that belong to38

the same row/column are more likely to be scattered to multi-39

ple processors compared to the other models. This may result40

in a high message count and hinder scalability. The fine-grain41

hypergraphs have the largest size for the same reason, causing42

this model to have the highest partitioning overhead. The re-43

cently proposed medium-grain model [10] alleviates this issue44

by operating on groups of nonzeros instead of individual nonze-45

ros. The medium-grain model’s partitioning overhead is com-46

parable to those of the 1D models, (i.e., quite low), while its47

communication volume is comparable to that of the fine-grain48

model.49

The nonzero-based models attain the lowest communication50

volume among all 1D and 2D models, however, the overall51

communication cost is not determined by the volume only, but52

better formulated as a function of multiple communication cost53

metrics. Another important cost metric is the total message54

count, which is not only overlooked by both the fine-grain and55

medium-grain models, but also exacerbated due to the having56

nonzero-based partitions. Among the two basic components of57
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the communication cost, the total communication volume de-58

termines the bandwidth component, whereas the total message59

count determines the latency component.60

In this work, we propose a novel fine-grain model and a novel61

medium-grain model to simultaneously reduce the bandwidth62

and latency costs of parallel SpMV. The original fine-grain [15]63

and medium-grain [10] models already encapsulate the band-64

width cost. We use message nets to incorporate the minimiza-65

tion of the latency cost into the partitioning objective of these66

models. Message nets aim to group the matrix nonzeros and/or67

the vector entries in the SpMV that necessitate a message to-68

gether. The formation of message nets relies on the recursive69

bipartitioning paradigm, which is shown to be a powerful ap-70

proach to optimize multiple communication cost metrics in re-71

cent studies [16, 17]. Message nets are recently proposed for72

certain types of iterative applications that involve a computa-73

tional phase either preceded or followed by a communication74

phase with a restriction of conformal partitions on input and75

output data [17]. 1D row-parallel and column-parallel SpMV76

operations constitute examples for these applications. This77

work differs from [17] in the sense that the nonzero-based par-78

titions necessitate a parallel SpMV that involves two commu-79

nication phases with no restriction of conformal partitions. We80

also propose two enhancements concerning the message nets to81

better exploit the trade-off between the bandwidth and latency82

costs for the proposed models.83

The existing partitioning models that address the bandwidth84

and latency costs in the literature can be grouped into two ac-85

cording to whether they explicitly address the latency cost (the86

bandwidth cost is usually addressed explicitly). The models87

that do not explicitly address the latency cost provide an up-88

per bound on the message counts [8, 14, 18]. We focus on89

the works that explicitly address the latency cost [17, 19, 20],90

which is also the case in this work. Among these works, the91

one proposed in [19] is a two-phase approach which addresses92

the bandwidth cost in the first phase with the 1D models and the93

latency cost in the second phase with the communication hyper-94

graph model. In the two-phase approaches, since different cost95

metrics are addressed in separate phases, a metric minimized in96

a particular phase may get out of control in the other phase. Our97

models fall into the category of single-phase approaches. The98

other two works also adopt a single-phase approach to address99

multiple communication cost metrics, where UMPa [20] uses a100

direct K-way partitioning approach, while [17] exploits the re-101

cursive bipartitioning paradigm. UMPa is rather expensive as102

it introduces an additional cost involving a quadratic factor in103

terms of the number of processors to each refinement pass. Our104

approach introduces an additional cost involving a mere loga-105

rithmic factor in terms of the number of processors to the entire106

partitioning.107

The rest of the paper is organized as follows. Section 2 gives108

background on parallel SpMV, the fine-grain model, recursive109

bipartitioning, and the medium-grain model. Sections 3 and 4110

present the proposed fine-grain and medium-grain models, re-111

spectively. Section 5 describes practical enhancements to these112

models. Section 6 gives the experimental results and Section 7113

concludes.114

Algorithm 1 Row-column-parallel SpMV as performed by pro-
cessor Pk

Require: Ak, Xk

B Pre-communication phase — expands on x-vector entries
Receive the needed x-vector entries that are not in Xk

Send the x-vector entries in Xk needed by other processors

B Computation phase
y(k)

i ← y(k)
i + ai, jx j for each ai, j ∈ Ak

B Post-communication phase — folds on y-vector entries
Receive the partial results for y-vector entries in Yk and

compute yi ←
∑

y(`)
i for each partial result y(`)

i
Send the partial results for y-vector entries not in Yk

return Yk

2. Preliminaries115

2.1. Row-column-parallel SpMV116

We consider the parallelization of SpMV of the form y = Ax117

with a nonzero-based partitioned matrix A, where A = (ai, j) is118

an nr × nc sparse matrix with nnz nonzero entries, and x and y119

are dense vectors. The ith row and the jth column of A are re-120

spectively denoted by ri and c j. The jth entry of x and the ith121

entry of y are respectively denoted by x j and yi. Let A denote122

the set of nonzero entries in A, that is, A = {ai, j : ai, j , 0}. Let123

X and Y respectively denote the sets of entries in x and y, that124

is, X = {x1, . . . , xnc } and Y = {y1, . . . , ynr }. Assume that there125

are K processors in the parallel system denoted by P1, . . . , PK .126

Let ΠK(A) = {A1, . . . ,AK}, ΠK(X) = {X1, . . . ,XK}, and127

ΠK(Y) = {Y1, . . . ,YK} denote K-way partitions of A, X, and128

Y, respectively.129

Given partitions ΠK(A), ΠK(X), and ΠK(Y), without loss130

of generality, the nonzeros in Ak and the vector entries in Xk131

and Yk are assigned to processor Pk. For each ai, j ∈ Ak, Pk132

is held responsible for performing the respective multiply-and-133

add operation y(k)
i ← y(k)

i + ai, jx j, where y(k)
i denotes the partial134

result computed for yi by Pk. Algorithm 1 displays the basic135

steps performed by Pk in parallel SpMV for a nonzero-based136

partitioned matrix A. This algorithm is called the row-column-137

parallel SpMV [19]. In this algorithm, Pk first receives the138

needed x-vector entries that are not in Xk from their owners139

and sends its x-vector entries to the processors that need them140

in a pre-communication phase. Sending x j to possibly mul-141

tiple processors is referred to as the expand operation on x j.142

When Pk has all needed x-vector entries, it performs the local143

SpMV by computing y(k)
i ← y(k)

i + ai, jx j for each ai, j ∈ Ak.144

Pk then receives the partial results for the y-vector entries in145

Yk from other processors and sends its partial results to the146

processors that own the respective y-vector entries in a post-147

communication phase. Receiving partial result(s) for yi from148

possibly multiple processors is referred to as the fold operation149

on yi. Note overlapping of computation and communication is150

not considered in this algorithm for the sake of clarity.151

For an efficient row-column-parallel SpMV, the goal is to find152

ΠK(A), ΠK(X), and ΠK(Y) with low communication overhead153
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Figure 1: A sample y = Ax and the corresponding fine-grain hypergraph.

and good balance on computational loads of processors. Sec-154

tions 2.2 and 2.4 respectively describe the fine-grain [8] and155

medium-grain [10] hypergraph partitioning models, in which156

the goal of reducing communication overhead is met partially157

by only minimizing the bandwidth cost, i.e., the total commu-158

nication volume. Vector partitions ΠK(X) and ΠK(Y) can also159

be found after finding ΠK(A) [19, 21]. This work, on the other160

hand, finds all partitions at once in a single partitioning phase.161

2.2. Fine-grain hypergraph model162

In the fine-grain hypergraph H = (V,N), each entry in A,163

X, and Y is represented by a different vertex. Vertex set V164

contains a vertex va
i, j for each ai, j ∈ A, a vertex vx

j for each165

x j ∈ X, and a vertex vy
i for each yi ∈ Y. That is,166

V = {va
i, j : ai, j , 0} ∪ {vx

1, . . . , v
x
nc
} ∪ {vy

1, . . . , v
y
nr }.

va
i, j represents both the data element ai, j and the computational167

task yi ← yi + ai, jx j associated with ai, j, whereas vx
j and vy

i only168

represent the input and output data elements x j and yi, respec-169

tively.170

The net setN contains two different types of nets to represent171

the dependencies of the computational tasks on x- and y-vector172

entries. For each x j ∈ X and yi ∈ Y, N respectively contains173

the nets nx
j and ny

i . That is,174

N = {nx
1, . . . , n

x
nc
} ∪ {ny

1, . . . , n
y
nr }.

Net nx
j represents the input dependency of the computational175

tasks on x j, hence, it connects the vertices that represent these176

tasks and vx
j . Net ny

i represents the output dependency of the177

computational tasks on yi, hence, it connects the vertices that178

represent these tasks and vy
i . The sets of vertices connected by179

nx
j and ny

i are respectively formulated as180

Pins(nx
j) = {vx

j} ∪ {v
a
t, j : at, j , 0} and

Pins(ny
i ) = {vy

i } ∪ {v
a
i,t : ai,t , 0}.

H contains nnz +nc +nr vertices, nc +nr nets and 2nnz +nc +nr181

pins. Figure 1 displays a sample SpMV instance and its corre-182

sponding fine-grain hypergraph. InH , the vertices are assigned183

the weights that signify their computational loads. Hence,184

w(va
i, j) = 1 for each va

i, j ∈ V as vi, j represents a single multiply-185

and-add operation, whereas w(vx
j) = w(vy

i ) = 0 for each vx
j ∈ V186

and vy
i ∈ V as they do not represent any computation. The nets187

are assigned unit costs, i.e., c(nx
j) = c(ny

i ) = 1 for each nx
j ∈ N188

and ny
i ∈ N .189

A K-way vertex partition ΠK(H) = {V1, . . . ,VK} can be190

decoded to obtain ΠK(A), ΠK(X), and ΠK(Y) by assigning the191

entries represented by the vertices in part Vk to processor Pk.192

That is,193

Ak = {ai, j : va
i, j ∈ Vk},

Xk = {x j : vx
j ∈ Vk}, and

Yk = {yi : vy
i ∈ Vk}.

Let λ(n) denote the number of parts connected by net n in194

ΠK(H), where a net is said to connect a part if it connects at195

least one vertex in that part. A net n is called cut if it connects196

at least two parts, i.e., λ(n) > 1, and uncut, otherwise. The197

cutsize of ΠK(H) is defined as198

cutsize(ΠK(H)) =
∑
n∈N

c(n)(λ(n) − 1). (1)

For a given ΠK(H), a cut net nx
j (ny

i ) incurs an expand (fold) op-199

eration on x j (yi) with a volume of λ(nx
j)− 1 (λ(ny

i )− 1). Hence,200

cutsize(ΠK(H)) is equal to the total communication volume in201

parallel SpMV. Therefore, minimizing cutsize(ΠK(H)) corre-202

sponds to minimizing the total communication volume.203

In ΠK(H), the weight W(Vk) of partVk is defined as the sum204

of the weights of the vertices inVk, i.e., W(Vk) =
∑

v∈Vk
w(v),205

which is equal to the total computational load of processor Pk.206

Then, maintaining the balance constraint207

W(Vk) ≤ Wavg(1 + ε), for k = 1, . . . ,K,

corresponds to maintaining balance on the computational loads208

of the processors. Here, Wavg and ε denote the average part209

weight and a maximum imbalance ratio, respectively.210

2.3. Recursive bipartitioning (RB) paradigm211

In RB, a given domain is first bipartitioned and then this bi-212

partition is used to form two new subdomains. In our case, a213

domain refers to a hypergraph (H) or a set of matrix and vec-214

tor entries (A, X, Y). The newly-formed subdomains are re-215

cursively bipartitioned until K subdomains are obtained. This216

procedure forms a hypothetical full binary tree, which contains217

dlog Ke+1 levels. The root node of the tree represents the given218

domain, whereas each of the remaining nodes represents a sub-219

domain formed during the RB process. At any stage of the RB220

process, the subdomains represented by the leaf nodes of the221

RB tree collectively induce a partition of the original domain.222

The RB paradigm is successfully used for hypergraph parti-223

tioning. Figure 2 illustrates an RB tree currently in the process224

of partitioning a hypergraph. The current leaf nodes induce a225

four-way partition Π4(H) = {V1,V2,V3,V4} and each node226

in the RB tree represents both a hypergraph and its vertex set.227

While forming two new subhypergraphs after each RB step, the228

cut-net splitting technique is used [1] to encapsulate the cutsize229

in (1). The sum of the cutsizes incurred in all RB steps is equal230

to the cutsize of the resulting K-way partition.231
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Figure 2: The RB tree during partitioning H = (V,N). The current RB tree
contains four leaf hypergraphs with the hypergraph to be bipartitioned next be-
ingH1 = (V1,N1).

2.4. Medium-grain hypergraph model232

In the medium-grain hypergraph model, the setsA, X andY233

are partitioned into K parts using RB. The medium-grain model234

uses a mapping for a subset of the nonzeros at each RB step.235

Because this mapping is central to the model, we focus on a236

single bipartitioning step to explain the medium-grain model.237

Before each RB step, the nonzeros to be bipartitioned are first238

mapped to their rows or columns by a heuristic and a new hy-239

pergraph is formed according to this mapping.240

Consider an RB tree for the medium-grain model with K′241

leaf nodes, where K′ < K, and assume that the kth node from242

the left is to be bipartitioned next. This node represents Ak,243

Xk, and Yk in the respective K′-way partitions {A1, . . . ,AK′ },244

{X1, . . . ,XK′ }, and {Y1, . . . ,YK′ }. First, each ai, j ∈ Ak is245

mapped to either ri or c j, where this mapping is denoted by246

map(ai, j). With a heuristic, ai, j ∈ Ak is mapped to ri if ri has247

fewer nonzeros than c j in Ak, and to c j if c j has fewer nonze-248

ros than ri inAk. After determining map(ai, j) for each nonzero249

in Ak, the medium-grain hypergraph Hk = (Vk,Nk) is formed250

as follows. Vertex set Vk contains a vertex vx
j if x j is in Xk or251

there exists at least one nonzero inAk mapped to c j. Similarly,252

Vk contains a vertex vy
i if yi is in Yk or there exists at least one253

nonzero inAk mapped to ri. Hence, vx
j represents x j and/or the254

nonzero(s) assigned to c j, whereas vy
i represents yi and/or the255

nonzero(s) assigned to ri. That is,256

Vk = {vx
j : x j ∈ Xk or ∃at, j ∈ Ak s.t. map(at, j) = c j} ∪

{vy
i : yi ∈ Yk or ∃ai,t ∈ Ak s.t. map(ai,t) = ri}.

Besides the data elements, vertex vx
j /v

y
i represents the group of257

computational tasks associated with the nonzeros mapped to258

them, if any.259

The net set Nk contains a net nx
j if Ak contains at least one260

nonzero in c j, and a net ny
i if Ak contains at least one nonzero261

in ri. That is,262

Nk = {nx
j : ∃at, j ∈ Ak} ∪ {n

y
i : ∃ai,t ∈ Ak}.

nx
j represents the input dependency of the groups of computa-263

tional tasks on x j, whereas ny
i represents the output dependency264

of the groups of computational tasks on yi. Hence, the sets of265
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Figure 3: The nonzero assignments of the sample y = Ax and the corresponding
medium-grain hypergraph.

vertices connected by nx
j and ny

i are respectively formulated by266

Pins(nx
j) = {vx

j} ∪ {v
y
t : map(at, j) = rt} and

Pins(ny
i ) = {vy

i } ∪ {v
x
t : map(ai,t) = ct}.

InHk, each net is assigned a unit cost, i.e., c(nx
j) = c(ny

i ) = 1267

for each nx
j ∈ N and ny

i ∈ N . Each vertex is assigned a weight268

equal to the number of nonzeros represented by that vertex.269

That is,270

w(vx
j) = |{at, j : map(at, j) = c j}| and

w(vy
i ) = |{ai,t : map(ai,t) = ri}|.

Hk is bipartitioned with the objective of minimizing the271

cutsize and the constraint of maintaining balance on the part272

weights. The resulting bipartition is further improved by an273

iterative refinement algorithm. In every RB step, minimizing274

the cutsize corresponds to minimizing the total volume of com-275

munication, whereas maintaining balance on the weights of the276

parts corresponds to maintaining balance on the computational277

loads of the processors.278

Figure 3 displays a sample SpMV instance with nonzero279

mapping information and the corresponding medium-grain hy-280

pergraph. This example illustrates the first RB step, hence,281

A1 = A, X1 = X, Y1 = Y, and K′ = k = 1. Each nonzero282

in A is denoted by an arrow, where the direction of the arrow283

shows the mapping for that nonzero. For example, nx
3 connects284

vx
3, vy

1, vy
2, and vy

3 since map(a1,3) = r1, map(a2,3) = r2, and285

map(a3,3) = r3.286

3. Optimizing fine-grain partitioning model287

In this section, we propose a fine-grain hypergraph partition-288

ing model that simultaneously reduces the bandwidth and la-289

tency costs of the row-column-parallel SpMV. Our model is290

built upon the original fine-grain model (Section 2.2) via uti-291

lizing the RB paradigm. The proposed model contains two dif-292

ferent types of nets to address the bandwidth and latency costs.293

The nets of the original fine-grain model already address the294

bandwidth cost and they are called “volume nets” as they en-295

capsulate the minimization of the total communication volume.296

At each RB step, our model forms and adds new nets to the hy-297

pergraph to be bipartitioned. These new nets address the latency298

cost and they are called “message nets” as they encapsulate the299

minimization of the total message count.300

4



Message nets aim to group the matrix nonzeros and vector301

entries that altogether necessitate a message. The formation302

and addition of message nets rely on the RB paradigm. To de-303

termine the existence and the content of a message, a partition304

information is needed first. At each RB step, prior to biparti-305

tioning the current hypergraph that already contains the volume306

nets, the message nets are formed using the K′-way partition307

information and added to this hypergraph, where K′ is the num-308

ber of leaf nodes in the current RB tree. Then this hypergraph309

is bipartitioned, which results in a (K′ + 1)-way partition as the310

number of leaves becomes K′ + 1 after bipartitioning. Adding311

message nets just before each bipartitioning allows us to utilize312

the most recent global partition information at hand. In contrast313

to the formation of the message nets, the formation of the vol-314

ume nets via cut-net splitting requires only the local bipartition315

information.316

3.1. Message nets in a single RB step317

Consider an SpMV instance y = Ax and its corresponding318

fine-grain hypergraph H = (V,N) with the aim of partition-319

ing H into K parts to parallelize y = Ax. The RB process320

starts with bipartitioning H , which is represented by the root321

node of the corresponding RB tree. Assume that the RB pro-322

cess is at the state where there are K′ leaf nodes in the RB323

tree, for 1 < K′ < K, and the hypergraphs corresponding324

to these nodes are denoted by H1, . . . ,HK′ from left to right.325

Let ΠK′ (H) = {V1, . . . ,VK′ } denote the K′-way partition in-326

duced by the leaf nodes of the RB tree. ΠK′ (H) also induces327

K′-way partitions ΠK′ (A), ΠK′ (X), and ΠK′ (Y) of sets A, X,328

and Y, respectively. Without loss of generality, the entries in329

Ak, Xk, and Yk are assigned to processor group Pk. Assume330

thatHk = (Vk,Nk) is next to be bipartitioned among these hy-331

pergraphs. Hk initially contains only the volume nets. In our332

model, we add message nets toHk to obtain the augmented hy-333

pergraphHM
k = (Vk,N

M
k ). Let Π(HM

k ) = {Vk,L,Vk,R} denote a334

bipartition of HM
k , where L and R in the subscripts refer to left335

and right, respectively. Π(HM
k ) induces bipartitions Π(Ak) =336

{Ak,L,Ak,R}, Π(Xk) = {Xk,L,Xk,R}, and Π(Yk) = {Yk,L,Yk,R}337

on Ak, Xk, and Yk, respectively. Let Pk,L and Pk,R denote the338

processor groups to which the entries in {Ak,L,Xk,L,Yk,L} and339

{Ak,R,Xk,R,Yk,R} are assigned.340

Algorithm 2 displays the basic steps of forming message nets341

and adding them to Hk. For each processor group P` that Pk342

communicates with, four different message nets may be added343

to Hk: expand-send net, expand-receive net, fold-send net and344

fold-receive net, respectively denoted by se
`, re

` , s f
`

and r f
`
. Here,345

s and r respectively denote the messages sent and received, the346

subscript ` denotes the id of the processor group communicated347

with, and the superscripts e and f respectively denote the ex-348

pand and fold operations. These nets are next explained in de-349

tail.350

• expand-send net se
`: Net se

` represents the message sent351

from Pk to P` during the expand operations on x-vector352

entries in the pre-communication phase. This message353

consists of the x-vector entries owned by Pk and needed354

by P`. Hence, se
` connects the vertices that represent the355

Algorithm 2 ADD-MESSAGE-NETS

Require: Hk = (Vk,Nk), ΠK′ (A) = {A1, . . . ,AK′ }, ΠK′ (X) =

{X1, . . . ,XK′ }, ΠK′ (Y) = {Y1, . . . ,YK′ }.
1: NM

k ← Nk

B Expand-send nets
2: for each x j ∈ Xk do
3: for each at, j ∈ A`,k do
4: if se

` < N
M
k then

5: Pins(se
`)← {v

x
j}, N

M
k ← N

M
k ∪ {s

e
`}

6: else
7: Pins(se

`)← Pins(se
`) ∪ {v

x
j}

B Expand-receive nets
8: for each at, j ∈ Ak do
9: for each x j ∈ X`,k do

10: if re
` < N

M
k then

11: Pins(re
`)← {v

a
t, j}, N

M
k ← N

M
k ∪ {r

e
`}

12: else
13: Pins(re

`)← Pins(re
`) ∪ {v

a
t, j}

B Fold-send nets
14: for each ai,t ∈ Ak do
15: for each yi ∈ Y`,k do
16: if s f

`
< NM

k then
17: Pins(s f

`
)← {va

i,t}, N
M
k ← N

M
k ∪ {s

f
`
}

18: else
19: Pins(s f

`
)← Pins(s f

`
) ∪ {va

i,t}

B Fold-receive nets
20: for each yi ∈ Yk do
21: for each ai,t ∈ A`,k do
22: if r f

`
< NM

k then
23: Pins(r f

`
)← {vy

i }, N
M
k ← N

M
k ∪ {r

f
`
}

24: else
25: Pins(r f

`
)← Pins(r f

`
) ∪ {vy

i }

26: return HM
k = (Vk,N

M
k )

x-vector entries required by the computational tasks in P`.356

That is,357

Pins(se
`) = {vx

j : x j ∈ Xk and ∃at, j ∈ A`}.

The formation and addition of expand-send nets are per-358

formed in lines 2–7 of Algorithm 2. After bipartitioning359

HM
k , if se

` becomes cut in Π(HM
k ), both Pk,L and Pk,R send360

a message to P`, where the contents of the messages sent361

from Pk,L and Pk,R to P` are {x j : vx
j ∈ Vk,L and at, j ∈ A`}362

and {x j : vx
j ∈ Vk,R and at, j ∈ A`}, respectively. The363

overall number of messages in the pre-communication364

phase increases by one in this case since Pk was sending a365

single message to P` and it is split into two messages after366

bipartitioning. If se
` becomes uncut, the overall number of367

messages does not change since only one of Pk,L and Pk,R368

sends a message to P`.369

370

• expand-receive net re
` : Net re

` represents the message re-371

ceived by Pk from P` during the expand operations on372
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x-vector entries in the pre-communication phase. This373

message consists of the x-vector entries owned by P` and374

needed by Pk. Hence, re
` connects the vertices that rep-375

resent the computational tasks requiring x-vector entries376

from P`. That is,377

Pins(re
`) = {va

t, j : at, j ∈ Ak and x j ∈ X`}.

The formation and addition of expand-receive nets378

are performed in lines 8–13 of Algorithm 2. Af-379

ter bipartitioning HM
k , if re

` becomes cut in Π(HM
k ),380

both Pk,L and Pk,R receive a message from P`, where381

the contents of the messages received by Pk,L and382

Pk,R from P` are {x j : va
t, j ∈ Vk,L and x j ∈ X`} and383

{x j : va
t, j ∈ Vk,R and x j ∈ X`}, respectively. The overall384

number of messages in the pre-communication phase385

increases by one in this case and does not change if re
`386

becomes uncut.387

388

• fold-send net s f
`
: Net s f

`
represents the message sent from389

Pk to P` during the fold operations on y-vector entries in390

the post-communication phase. This message consists of391

the partial results computed by Pk for the y-vector entries392

owned by P`. Hence, s f
`

connects the vertices that repre-393

sent the computational tasks whose partial results are re-394

quired by P`. That is,395

Pins(s f
`
) = {va

i,t : ai,t ∈ Ak and yi ∈ Y`}.

The formation and addition of fold-send nets are396

performed in lines 14–19 of Algorithm 2. After397

bipartitioning HM
k , if s f

`
becomes cut in Π(HM

k ),398

both Pk,L and Pk,R send a message to P`, where399

the contents of the messages sent from Pk,L and400

Pk,R to P` are {y(k,L)
i : va

i,t ∈ Vk,L and yi ∈ Y`} and401

{y(k,R)
i : va

i,t ∈ Vk,R and yi ∈ Y`}, respectively. The overall402

number of messages in the post-communication phase403

increases by one in this case and does not change if s f
`

404

becomes uncut.405

406

• fold-receive net r f
`
: Net r f

`
represents the message re-407

ceived by Pk from P` during the fold operations on y-408

vector entries in the post-communication phase. This mes-409

sage consists of the partial results computed by P` for the410

y-vector entries owned by Pk. Hence, r f
`

connects the ver-411

tices that represent the y-vector entries for which P` pro-412

duces partial results. That is,413

Pins(r f
`
) = {vy

i : yi ∈ Yk and ∃ai,t ∈ A`}.

The formation and addition of fold-receive nets are per-414

formed in lines 20–25 of Algorithm 2. After bipartition-415

ing HM
k , if r f

`
becomes cut in Π(HM

k ), both Pk,L and Pk,R416

receive a message from P`, where the contents of the mes-417

sages received by Pk,L and Pk,R from P` are {y(`)
i : vy

i ∈418

Vk,L and ai,t ∈ A`} and {y(`)
i : vy

i ∈ Vk,R and ai,t ∈ A`},419

1
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Figure 4: A 5-way nonzero-based partition of an SpMV instance y = Ax.

respectively. The overall number of messages in the post-420

communication phase increases by one in this case and421

does not change if r f
`

becomes uncut.422

Note that at most four message nets are required to encap-423

sulate the messages between processor groups Pk and P`. The424

message nets inHM
k encapsulate all the messages that Pk com-425

municates with other processor groups. Since the number of426

leaf hypergraphs is K′,Pk may communicate with at most K′−1427

processor groups, hence the maximum number of message nets428

that can be added toHk is 4(K′ − 1).429

Figure 4 displays an SpMV instance with a 6 × 8 matrix A,430

which is being partitioned by the proposed model. The RB431

process is at the state where there are five leaf hypergraphs432

H1, . . . ,H5, and the hypergraph to be bipartitioned next is433

H3. The figure displays the assignments of the matrix nonze-434

ros and vector entries to the corresponding processor groups435

P1, . . . ,P5. Each symbol in the figure represents a distinct pro-436

cessor group and a symbol inside a cell signifies the assign-437

ment of the corresponding matrix nonzero or vector entry to438

the processor group represented by that symbol. For example,439

the nonzeros inA3 = {a1,3, a1,7, a2,3, a2,4, a4,5, a4,7}, x-vector en-440

tries in X3 = {x3, x7}, and y-vector entries in Y3 = {y1, y4} are441

assigned to P3. The left of Figure 5 displays the augmented442

hypergraph HM
3 that contains volume and message nets. In443

the figure, the volume nets are illustrated by small black cir-444

cles with thin lines, whereas the message nets are illustrated by445

the respective processor’s symbol with thick lines.446

The messages communicated by P3 under the assignments447

given in Figure 4 are displayed at the top half of Table 1. In448

the pre-communication phase, P3 sends a message to P4 and449

receives a message from P1, and in the post-communication450

phase, it sends a message to P2 and receives a message from451

P4. Hence, we add four message nets to H3: expand-send net452

se
4, expand-receive net re

1, fold-send net s f
2 , and fold-receive net453

r f
4 . In Figure 5, for example, re

1 connects the vertices va
2,4 and454

va
4,5 since it represents the message received byP3 fromP1 con-455

taining {x4, x5} due to nonzeros a2,4 and a4,5. The right of Fig-456

ure 5 displays a bipartition Π(HM
3 ) and the messages that P3,L457

and P3,R communicate with the other processor groups due to458
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Figure 5: Left: Augmented hypergraphHM
3 with 5 volume and 4 message nets. Right: A bipartition Π(HM

3 ) with two cut message nets (s f
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f
4 ) and two cut volume

nets (nx
7, n

y
2).

Table 1: The messages communicated by P3 in pre- and post-communication
phases before and after bipartitioning HM

3 . The number of messages commu-
nicated by P3 increases from 4 to 6 due to two cut message nets in Π(HM

3 ).

RB state phase message due to

before
Π(HM

3 )

pre P3 sends {x3, x7} to P4 a5,3, a5,7
P3 receives {x4, x5} from P1 a2,4, a4,5

post P3 sends {y(3)
2 } to P2 a2,3, a2,4

P3 receives {y(4)
1 , y(4)

4 } from P4 a1,1, a4,1

after
Π(HM

3 )

pre P3,L sends {x3, x7} to P4 a5,3, a5,7
P3,R receives {x4, x5} from P1 a2,4, a4,5

post

P3,L sends {y(3,L)
2 } to P2 a2,3

P3,R sends {y(3,R)
2 } to P2 a2,4

P3,L receives {y(4)
1 } from P4 a1,1

P3,R receives {y(4)
4 } from P4 a4,1

Π(HM
3 ) are given in the bottom half of Table 1. Since se

4 and re
1459

are uncut, only one of P3,L and P3,R participates in sending or460

receiving the corresponding message. Since s f
2 is cut, both P3,L461

and P3,R send a message to P2, and since r f
4 is cut, both P3,L462

and P3,R receive a message from P4.463

InHM
k , each volume net is assigned the cost of the per-word464

transfer time, tw, whereas each message net is assigned the cost465

of the start-up latency, tsu. Let v and m respectively denote the466

number of volume and message nets that are cut in Π(HM
k ).467

Then,468

cutsize(Π(HM
k )) = vtw + mtsu.

Here, v is equal to the increase in the total communication vol-469

ume incurred by Π(HM
k ) [1]. Recall that each cut message net470

increases the number of messages that Pk communicates with471

the respective processor group by one. Hence, m is equal to472

the increase in the number of messages that Pk communicates473

with other processor groups. The overall increase in the total474

message count due to Π(HM
k ) is m + δ, where δ denotes the475

number of messages between Pk,L and Pk,R, and is bounded by476

two (empirically found to be almost always two). Hence, min-477

imizing the cutsize of Π(HM
k ) corresponds to simultaneously478

reducing the increase in the total communication volume and479

the total message count in the respective RB step. Therefore,480

minimizing the cutsize in all RB steps corresponds to reducing481

the total communication volume and the total message count482

simultaneously.483

After obtaining a bipartition Π(HM
k ) = {Vk,L,Vk,R} of the484

augmented hypergraph HM
k , the new hypergraphs Hk,L =485

(Vk,L,Nk,L) and Hk,R = (Vk,R,Nk,R) are immediately formed486

with only volume nets. Recall that the formation of the volume487

nets of Hk,L and Hk,R is performed with the cut-net splitting488

technique and it can be performed using the local bipartition489

information Π(HM
k ).490

3.2. The overall RB491

After completing an RB step and obtaining Hk,L and Hk,R,492

the labels of the hypergraphs represented by the leaf nodes of493

the RB tree are updated as follows. For 1 ≤ i < k, the label494

of Hi = (Vi,Ni) does not change. For k < i < K′, Hi =495

(Vi,Ni) becomes Hi+1 = (Vi+1,Ni+1). Hypergraphs Hk,L =496

(Vk,L,Nk,L) andHk,R = (Vk,R,Nk,R) becomeHk = (Vk,Nk) and497

Hk+1 = (Vk+1,Nk+1), respectively. As a result, the vertex sets498

corresponding to the updated leaf nodes induce a (K′ + 1)-way499

partition ΠK′+1(H) = {V1, . . . ,VK′+1}. The RB process then500

continues with the next hypergraph Hk+2 to be bipartitioned,501

which was labeled withHk+1 in the previous RB state.502

We next provide the cost of adding message nets through Al-503

gorithm 2 in the entire RB process. For the addition of expand-504

send nets, all nonzeros at, j ∈ A`,k with x j ∈ Xk are visited505

once (lines 2–7). Since Xk ∩ X` = ∅ for 1 ≤ k , ` ≤ K′ and506
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X =
⋃K′

k=1Xk, each nonzero of A is visited once. For the addi-507

tion of expand-receive nets, all nonzeros inAk are visited once508

(lines 8–13). Hence, each nonzero of A is visited once during509

the bipartitionings in a level of the RB tree since Ak ∩ A` = ∅510

for 1 ≤ k , ` ≤ K′ and A =
⋃K′

k=1Ak. Therefore, the cost of511

adding expand-send and expand-receive nets is O(nnz) in a sin-512

gle level of the RB tree. A dual discussion holds for the addition513

of fold-send and fold-receive nets. Since the RB tree contains514

dlog Ke levels in which bipartitionings take place, the overall515

cost of adding message nets is O(nnz log K).516

3.3. Adaptation for conformal partitioning517

Partitions on input and output vectors x and y are said to be518

conformal if xi and yi are assigned to the same processor, for519

1 ≤ i ≤ nr = nc. Note that conformal vector partitions are valid520

for y = Ax with a square matrix. The motivation for a conformal521

partition arises in iterative solvers in which the yi in an iteration522

is used to compute the xi of the next iteration via linear vector523

operations. Assigning xi and yi to the same processor prevents524

the redundant communication of yi to the processor that owns525

xi.526

Our model does not impose conformal partitions on vectors527

x and y, i.e., xi and yi can be assigned to different processors.528

However, it is possible to adapt our model to obtain confor-529

mal partitions on x and y using the vertex amalgamation tech-530

nique proposed in [9]. To assign xi and yi to the same processor,531

the vertices vx
i and vy

i are amalgamated into a new vertex vx/y
i ,532

which represents both xi and yi. The weight of vx/y
i is set to533

be zero since the weights of vx
i and vy

i are zero. In HM
k , each534

volume/message net that connects vx
i or vy

i now connects the535

amalgamated vertex vx/y
i . At each RB step, xi and yi are both536

assigned to the processor group corresponding to the leaf hy-537

pergraph that contains vx/y
i .538

4. Optimizing medium-grain partitioning model539

In this section, we propose a medium-grain hypergraph par-540

titioning model that simultaneously reduces the bandwidth and541

latency costs of the row-column-parallel SpMV. Our model is542

built upon the original medium-grain partitioning model (Sec-543

tion 2.4). The medium-grain hypergraphs in RB are augmented544

with the message nets before they are bipartitioned as in the545

fine-grain model proposed in Section 3. Since the fine-grain and546

medium-grain models both obtain nonzero-based partitions, the547

types and meanings of the message nets used in the medium-548

grain model are the same as those used in the fine-grain model.549

However, forming message nets for a medium-grain hypergraph550

is more involved due to the mappings used in this model.551

Consider an SpMV instance y = Ax and the corresponding552

sets A, X, and Y. Assume that the RB process is at the state553

before bipartitioning the kth leaf node where there are K′ leaf554

nodes in the current RB tree. Recall from Section 2.4 that the555

leaf nodes induce K′-way partitions ΠK′ (A) = {A1, . . . ,AK′ },556

ΠK′ (X) = {X1, . . . ,XK′ } and ΠK′ (Y) = {Y1, . . . ,YK′ }, and the557

kth leaf node representsAk, Xk, and Yk. To obtain bipartitions558

ofAk, Xk, and Yk, we perform the following four steps.559

1) Form the medium-grain hypergraphHk = (Vk,Nk) using560

Ak, Xk, and Yk. This process is the same with that in the orig-561

inal medium-grain model (Section 2.4). Recall that the nets in562

the medium-grain hypergraph encapsulate the total communi-563

cation volume. Hence, these nets are assigned a cost of tw.564

2) Add message nets to Hk to obtain augmented hypergraph565

HM
k . For each processor group P` other than Pk, there are four566

possible message nets that can be added toHk:567

• expand-send net se
`: The set of vertices connected by se

` is568

the same with that of the expand-send net in the fine-grain569

model.570

• expand-receive net re
` : The set of vertices connected by571

re
` is given by572

Pins(re
`)= {vx

j : ∃at, j ∈ Ak s.t. map(at, j) = c j and x j ∈ X`} ∪

{vy
t : ∃at, j ∈ Ak s.t. map(at, j) = rt and x j ∈ X`}.

• fold-send net s f
`
: The set of vertices connected by s f

`
is573

given by574

Pins(s f
`
)= {vx

t : ∃ai,t ∈ Ak s.t. map(ai,t) = ct and yi ∈ Y`} ∪

{vy
i : ∃ai,t ∈ Ak s.t. map(ai,t) = ri and yi ∈ Y`}.

• fold-receive net r f
`
: The set of vertices connected by r f

`
is575

the same with that of the fold-receive net in the fine-grain576

model.577

The message nets are assigned a cost of tsu as they encapsulate578

the latency cost.579

3) Obtain a bipartition Π(HM
k ). HM

k is bipartitioned to ob-580

tain Π(HM
k ) = {Vk,L,Vk,R}.581

4) Derive bipartitions Π(Ak) = {Ak,L,Ak,R}, Π(Xk) =582

{Xk,L,Xk,R} and Π(Yk) = {Yk,L,Yk,R} from Π(HM
k ). For each583

nonzero ai, j ∈ Ak, ai, j is assigned toAk,L if the vertex that rep-584

resents ai, j is inVk,L, and toAk,R, otherwise. That is,585

Ak,L = {ai, j : map(ai, j) = c j with vx
j ∈ Vk,L or

map(ai, j) = ri with vy
i ∈ Vk,L} and

Ak,R = {ai, j : map(ai, j) = c j with vx
j ∈ Vk,R or

map(ai, j) = ri with vy
i ∈ Vk,R}.

For each x-vector entry x j ∈ Xk, x j is assigned to Xk,L if vx
j ∈586

Vk,L, and to Xk,R, otherwise. That is,587

Xk,L = {x j : vx
j ∈ Vk,L} and Xk,R = {x j : vx

j ∈ Vk,R}.

Similarly, for each y-vector entry yi ∈ Yk, yi is assigned to Yk,L588

if vy
i ∈ Vk,L, and to Yk,R, otherwise. That is,589

Yk,L = {yi : vy
i ∈ Vk,L} and Yk,R = {yi : vy

i ∈ Vk,R}.

Figure 6 displays the medium-grain hypergraph HM
3 =590

(V3,N
M
3 ) augmented with message nets, which is formed dur-591

ing bipartitioning A3, X3 and Y3 given in Figure 4. The ta-592

ble in the figure displays map(ai, j) value for each nonzero in593

A3 computed by the heuristic described in Section 2.4. Aug-594

mented medium-grain hypergraph H3 has four message nets.595
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Figure 6: The augmented medium-grain hypergraphHM
3 formed during the RB

process for the SpMV instance given in Figure 4.

Observe that the sets of vertices connected by expand-send net596

se
4 and fold-receive net r f

4 are the same for the fine-grain and597

medium-grain hypergraphs, which are respectively illustrated598

in Figures 5 and 6. Expand-receive net re
1 connects vx

4 and vx
5599

since P3 receives {x4, x5} due to nonzeros in {a2,4, a4,5} with600

map(a2,4) = c4 and map(a4,5) = c5. Fold-send net s f
2 connects601

vx
4 and vy

2 since P3 sends partial result y(3)
2 due to nonzeros in602

{a2,3, a2,4} with map(a2,3) = r2 and map(a2,4) = c4.603

Similar to Section 3, after obtaining bipartitions Π(Ak) =604

{Ak,L,Ak,R}, Π(Xk) = {Xk,L,Xk,R}, and Π(Yk) = {Yk,L,Yk,R},605

the labels of the parts represented by the leaf nodes are up-606

dated in such a way that the resulting (K′ + 1)-way parti-607

tions are denoted by ΠK′+1(A) = {A1, . . . ,AK′+1}, ΠK′+1(X) =608

{X1, . . . ,XK′+1}, and ΠK′ (Y) = {Y1, . . . ,YK′+1}.609

4.1. Adaptation for conformal partitioning610

Adapting the medium-grain model for a conformal partition611

on vectors x and y slightly differs from adapting the fine-grain612

model. Vertex setVk contains an amalgamated vertex vx/y
i if at613

least one of the following conditions holds:614

• xi ∈ Xk, or equivalently, yi ∈ Yk.615

• ∃at,i ∈ Ak s.t. map(at,i) = ci.616

• ∃ai,t ∈ Ak s.t. map(ai,t) = ri.617

The weight of vi is assigned as618

w(vi) = |{at,i : at,i ∈ Ak and map(at,i) = ci}|+

|{ai,t : ai,t ∈ Ak and map(ai,t) = ri}|.

Each volume/message net that connects vx
i or vy

i in HM
k now619

connects the amalgamated vertex vx/y
i .620

5. Delayed addition and thresholding for message nets621

Utilization of the message nets decreases the importance at-622

tributed to the volume nets in the partitioning process and this623

may lead to a relatively high bandwidth cost compared to the624

case where no message nets are utilized. The more the number625

of RB steps in which the message nets are utilized, the higher626

the total communication volume. A high bandwidth cost can627

especially be attributed to the bipartitionings in the early levels628

of the RB tree. There are only a few nodes in the early levels of629

the RB tree compared to the late levels and each of these nodes630

represents a large processor group. The messages among these631

large processor groups are difficult to refrain from. In terms of632

hypergraph partitioning, since the message nets in the hyper-633

graphs at the early levels of the RB tree connect more vertices634

and the cost of the message nets is much higher than the cost of635

the volume nets (tsu � tw), it is very unlikely for these message636

nets to be uncut. While the partitioner tries to save these nets637

from the cut in the early bipartitionings, it may cause high num-638

ber of volume nets to be cut, which in turn are likely to intro-639

duce new messages in the late levels of the RB tree. Therefore,640

adding message nets in the early levels of the RB tree adversely641

affects the overall partition quality in multiple ways.642

The RB approach provides the ability to adjust the partition-643

ing parameters in the individual RB steps for the sake of the644

overall partition quality. In our model, we use this flexibility to645

exploit the trade-off between the bandwidth and latency costs646

by selectively deciding whether to add message nets in each647

bipartitioning. To make this decision, we use the level informa-648

tion of the RB steps in the RB tree. For a given L < log K, the649

addition of the message nets is delayed until the Lth level of the650

RB tree, i.e., the bipartitionings in level ` are performed only651

with the volume nets for 0 ≤ ` < L. Thus, the message nets652

are included in the bipartitionings in which they are expected to653

connect relatively fewer vertices.654

Using a delay parameter L aims to avoid large message nets655

by not utilizing them in the early levels of the RB tree. How-656

ever, there may still exist such nets in the late levels depending657

on the structure of the matrix being partitioned. Another idea is658

to eliminate the message nets whose size is larger than a given659

threshold. That is, for a given threshold T > 0, a message net n660

with |Pins(n)| > T is excluded from the corresponding biparti-661

tion. This approach also enables a selective approach for send662

and receive message nets. In our implementation of the row-663

column-parallel SpMV, the receive operations are performed664

by non-blocking MPI functions (i.e., MPI Irecv), whereas the665

send operations are performed by blocking MPI functions (i.e.,666

MPI Send). When the maximum message count or the maxi-667

mum communication volume is considered to be a serious bot-668

tleneck, blocking send operations may be more limiting com-669

pared to non-blocking receive operations. Note that saving mes-670

sage nets from the cut tends to assign the respective commu-671

nication operations to fewer processors, hence the maximum672

message count and maximum communication volume may in-673

crease. Hence, a smaller threshold is preferable for the send674

message nets while a higher threshold is preferable for the re-675

ceive nets.676

6. Experiments677

We consider a total of five partitioning models for evalua-678

tion. Four of them are nonzero-based partitioning models: the679

fine-grain model (FG), the medium-grain model (MG), and the680
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proposed models which simultaneously reduce the bandwidth681

and latency costs, as described in Section 3 (FG-LM) and Sec-682

tion 4 (MG-LM). The last partitioning model tested is the one-683

dimensional model (1D-LM) that simultaneously reduces the684

bandwidth and latency costs [17]. Two of these five models (FG685

and MG) encapsulate a single communication cost metric, i.e.,686

total volume, while three of them (FG-LM, MG-LM, and 1D-LM)687

encapsulate two communication cost metrics, i.e., total volume688

and total message count. The partitioning constraint of balanc-689

ing part weights in all these models corresponds to balancing690

of the computational loads of processors. In the models that691

address latency cost with the message nets, the cost of the vol-692

ume nets is set to 1 while the cost of the message nets is set693

to 50, i.e., it is assumed tsu = 50tw, which is also the setting694

recommended in [17].695

The performance of the compared models are evaluated in696

terms of the partitioning cost metrics and the parallel SpMV697

runtime. The partitioning cost metrics include total volume, to-698

tal message count, load imbalance, etc. (these are explained699

in detail in following sections) and they are helpful to test700

the validity of the proposed models. The hypergraphs in all701

models are partitioned using PaToH [1] in the default set-702

tings. An imbalance ratio of 10% is used in all models, i.e.,703

ε = 0.10. We test for five different number of parts/processors,704

K ∈ {64, 128, 256, 512, 1024}. The parallel SpMV is imple-705

mented using the PETSc toolkit [22] and run on a Blue Gene/Q706

system using the partitions provided by these five models. A707

node on Blue Gene/Q system consists of 16 PowerPC A2 pro-708

cessors with 1.6 GHz clock frequency and 16 GB memory.709

The experiments are performed on an extensive dataset con-710

taining matrices from the SuiteSparse Matrix Collection [23].711

We consider the case of conformal vector partitioning as it is712

more common for the applications in which SpMV is use as713

a kernel operation. Hence, only the square matrices are con-714

sidered. We use the following criteria for the selection of test715

matrices: (i) the minimum and maximum number of nonzeros716

per processor are respectively set to 100 and 100,000, (ii) the717

matrices that have more than 50 million nonzeros are excluded,718

and (iii) the minimum number of rows/columns per processor is719

set to 50. The resulting number of matrices are 833, 730, 616,720

475, and 316 for K = 64, 128, 256, 512, and 1024 processors,721

respectively. The union of these sets of matrices makes up to a722

total of 978 matrices.723

6.1. Tuning parameters for nonzero-based partitioning models724

There are two important issues described in Section 5 regard-725

ing the addition of the message nets for the nonzero-based par-726

titioning models. We next discuss setting these parameters.727

6.1.1. Delay parameter (L)728

We investigate the effect of the delay parameter L on four729

different communication cost metrics for the fine-grain and730

medium-grain models with the message nets. These cost met-731

rics are maximum volume, total volume, maximum message732

count, and total message count. The volume metrics are in733

terms of number of words communicated. We compare FG-LM734

Table 2: The communication cost metrics obtained by the nonzero-based parti-
tioning models with varying delay values (L).

volume message

model L max total max total

FG - 567 52357 60 5560
FG-LM 1 2700 96802 56 2120
FG-LM 4 2213 94983 49 2186
FG-LM 5 1818 90802 46 2317
FG-LM 6 1346 82651 46 2694
FG-LM 7 926 69572 49 3574

MG - 558 49867 57 5103
MG-LM 1 1368 77479 50 2674
MG-LM 4 1264 77227 48 2735
MG-LM 5 1148 74341 47 2809
MG-LM 6 969 69159 47 3066
MG-LM 7 776 61070 50 3695

with delay against FG, as well as MG-LM with delay against MG.735

We only present the results for K = 256 since the observations736

made for the results of different K values are similar. Note that737

there are log 256 = 8 bipartitioning levels in the corresponding738

RB tree. The tested values of the delay parameter L are 1, 4,739

5, 6, and 7. Note that the message nets are added in a total of740

4, 3, 2, and 1 levels for the L values of 4, 5, 6, and 7, respec-741

tively. When L = 1, it is equivalent to adding message nets742

throughout the whole partitioning without any delay. Note that743

it is not possible to add message nets at the root level (i.e., by744

setting L = 0) since there is no partition available yet to form745

the message nets. The results for the remaining values of L746

are not presented as the tested values contain all the necessary747

insight for picking a value for L. Table 2 presents the results748

obtained. The value obtained by a partitioning model for a spe-749

cific cost metric is the geometric mean of the values obtained750

for the matrices by that partitioning model (i.e., the mean of751

the results for 616 matrices). We also present two plots in Fig-752

ure 7 to provide a visual comparison of the values presented753

in Table 2. The plot at the top belongs to the fine-grain mod-754

els and each different cost metric is represented by a separate755

line in which the values are normalized with respect to those756

of the standard fine-grain model FG. Hence, a point on a line757

below y = 1 indicates the variants of FG-LM attaining a better758

performance in the respective metric compared to FG, whereas759

a point in a line above indicates a worse performance. For ex-760

ample, FG-LM with L = 7 attains 0.72 times the total message761

count of FG, which corresponds to the second point of the line762

marked with a filled circle. The plot at the bottom compares the763

medium-grain models in a similar fashion.764

It can be seen from Figure 7 that, compared to FG, FG-LM at-765

tains better performance in maximum and total message count,766

and a worse performance in maximum and total volume. A767

similar observation is also valid for comparing MG with MG-LM.768
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Figure 7: The effect of the delay parameter on nonzero-based partitioning mod-
els in four different communication metrics.

As the number of RB tree levels in which the message nets are769

added increases, FG-LM and MG-LM obtain lower latency and770

higher bandwidth overheads compared to FG and MG, respec-771

tively. The improvement rates in latency cost obtained by the772

partitioning models utilizing the message nets saturate around773

L = 6 or L = 5, whereas the deterioration rates in bandwidth774

cost continue to increase. In other words, adding message nets775

in the bipartitionings other than those in the last two or three776

levels of the RB tree has small benefits in terms of improving777

the latency cost but it has a substantial negative effect on the778

bandwidth cost, especially on maximum volume. For this rea-779

son, we choose FG-LM and MG-LM with L = 6, i.e., add message780

nets in the last two levels of the RB tree.781

6.1.2. Message net threshold parameters (TS ,TR)782

The message net threshold parameters for the send and re-783

ceive message nets are respectively denoted with TS and TR.784

The tested values are set based upon the average degree of785

the message nets throughout the partitioning, which is found786

to be close to 30. We evaluate threshold values smaller than,787

roughly equal to, and greater than this average degree: TS ,TR ∈788

{15, 30, 50}. We follow a similar experimental setting as for the789

delay parameter and only present the results for K = 256. In790

addition, we omit the discussions for the medium-grain models791

Table 3: The communication cost metrics of FG-LM with varying message net
thresholds (TS ,TR).

volume message

TS TR max total max total

- - 1346 82651 46 2694
15 15 706 56218 58 4539
15 30 773 58452 56 4258
15 50 835 60864 54 4043
30 15 793 58418 59 4251
30 30 827 60086 57 4087
30 50 900 62393 55 3879
50 15 879 61099 59 4037
50 30 908 62516 58 3877
50 50 952 64041 56 3729

as the observations made for the fine-grain and medium-grain792

models are alike. Table 3 presents the values for four different793

cost metrics obtained by FG-LM and FG-LM with nine different794

threshold settings. Note that the delay value of L = 6 is utilized795

in all these experiments.796

The partitionings without large message nets lead to lower797

bandwidth and higher latency costs as seen in Table 3 com-798

pared to the case without any threshold, i.e., FG-LM. The more799

the number of eliminated message nets, the higher the latency800

cost and the lower the bandwidth cost. Among the nine combi-801

nations for TS and TR in the table, we pick TS = 15 and TR = 50802

due to its reasonable maximum volume and maximum message803

count values for the reasons described in Section 5.804

6.2. Comparison of all partitioning models805

6.2.1. Partitioning cost metrics806

We present the values obtained by the four nonzero-based807

partitioning models in six different partitioning cost metrics in808

Table 4. These cost metrics are computational imbalance (in-809

dicated in the column titled “imb (%)”), maximum and total810

volume, maximum and total message count, and partitioning811

time in seconds. Each entry in the table is the geometric mean812

of the values for the matrices that belong to the respective value813

of K. The columns three to eight in the table display the ac-814

tual values, whereas the columns nine to fourteen display the815

normalized values, where the results obtained by FG-LM and816

MG-LM at each K value are normalized with respect to those ob-817

tained by FG and MG at that K value, respectively. The top half818

of the table displays the results obtained by the fine-grain mod-819

els, whereas the bottom half displays the results obtained by the820

medium-grain models.821

Among the four nonzero-based partitioning models com-822

pared in Table 4, the models that consider both the bandwidth823

and latency overheads achieve better total and maximum mes-824

sage counts compared to the models that solely consider the825

bandwidth overhead. For example at K = 256, FG-LM at-826

tains 27% improvement in total message count compared to FG,827
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Table 4: Comparison of nonzero-based partitioning models in six cost metrics.

actual values normalized values w.r.t. FG/MG

volume message part.
time

volume message part.
timeK model imb (%) max total max total imb max total max total

64 FG 0.91 413 11811 32 968 7.7 - - - - - -
FG-LM 0.88 542 13267 29 753 7.4 0.97 1.31 1.12 0.91 0.78 0.97

128 FG 1.11 484 24670 45 2332 16.4 - - - - - -
FG-LM 1.01 669 28159 40 1751 16.3 0.91 1.38 1.14 0.89 0.75 1.00

256 FG 1.36 567 52357 60 5560 40.9 - - - - - -
FG-LM 1.21 835 60864 54 4043 40.8 0.89 1.47 1.16 0.90 0.73 1.00

512 FG 1.67 584 92141 72 11186 77.9 - - - - - -
FG-LM 1.61 863 108497 66 8218 77.2 0.96 1.48 1.18 0.92 0.73 0.99

1024 FG 1.87 530 165923 69 20209 156.2 - - - - - -
FG-LM 1.81 811 196236 66 15415 159.6 0.97 1.53 1.18 0.96 0.76 1.02

64 MG 0.90 412 11655 31 928 3.9 - - - - - -
MG-LM 0.87 521 13205 28 732 4.1 0.97 1.26 1.13 0.90 0.79 1.06

128 MG 1.13 482 24256 44 2217 8.1 - - - - - -
MG-LM 1.08 634 27799 39 1690 8.4 0.96 1.32 1.15 0.89 0.76 1.04

256 MG 1.48 558 49867 57 5103 19.1 - - - - - -
MG-LM 1.39 766 58981 52 3876 20.6 0.94 1.37 1.18 0.91 0.76 1.08

512 MG 1.91 588 91856 67 10265 39.7 - - - - - -
MG-LM 1.80 785 108128 62 7878 43.7 0.94 1.34 1.18 0.93 0.77 1.10

1024 MG 2.05 530 165722 65 18692 82.2 - - - - - -
MG-LM 2.00 724 196443 61 14827 87.5 0.98 1.37 1.19 0.94 0.79 1.06

while MG-LM attains 24% improvement in total message count828

compared to MG. On the other hand, the two models that solely829

consider the bandwidth overhead achieve better total and maxi-830

mum volume compared to the two models that also consider the831

latency overhead. This is because FG and MG optimize a single832

cost metric, while FG-LM and MG-LM aim to optimize two cost833

metrics at once. At K = 256, FG-LM causes 16% deterioration834

in total volume compared to FG, while MG-LM causes 18% dete-835

rioration in total volume compared to MG. Note that the models836

behave accordingly in maximum volume and maximum mes-837

sage count metrics as although these metrics are not directly838

addressed by any of the models, the former one is largely de-839

pendent on the total volume while the latter one is largely de-840

pendent on the total message count. FG-LM and MG-LM have841

slightly lower imbalance compared to FG and MG, respectively.842

Addition of the message nets does not seem to change the par-843

titioning overhead, a result likely to be a consequence of the844

choice of the delay and net threshold parameters.845

Another observation worth discussion is the performance of846

the medium-grain models against the performance of the fine-847

grain models. When MG is compared to FG or MG-LM is com-848

pared to FG-LM, the medium-grain models achieve slightly bet-849

ter results in volume and message cost metrics, and slightly850

worse results in imbalance. However, the partitioning overhead851

Table 5: Comparison of partitioning models in six cost metrics at K = 256.

volume message part.
timemodel imb (%) max total max total

1D-LM 2.50 968 101565 33 2448 13.2
FG 1.36 567 52357 60 5560 40.9

FG-LM 1.21 835 60864 54 4043 40.8
MG 1.48 558 49867 57 5103 19.1

MG-LM 1.39 766 58981 52 3876 20.6

of the medium-grain models is much lower than the partition-852

ing overhead of the fine-grain models: the medium grain mod-853

els are 1.8-2.2x faster. This is also one of the main findings854

of [10], which makes the medium-grain model a better alterna-855

tive for obtaining nonzero-based partitions.856

1D-LM and nonzero-based partitioning models are compared857

in Table 5 at K = 256. 1D-LM has higher total volume and858

imbalance, and lower total message count compared to the859

nonzero-based partitioning models. The nonzero-based mod-860

els have broader search space due to their representation of the861

SpMV via smaller units, which allows them to attain better vol-862
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ume and imbalance. The latency overheads of FG and MG are863

higher than the latency overhead of 1D-LM simply because la-864

tency is not addressed in the former two. Although FG-LM and865

MG-LM may as well obtain comparable latency overheads with866

1D-LM (e.g., compare total message count of FG-LM with L = 1867

in Table 2 against total message count of 1D-LM in Table 5), we868

favor a decrease in volume-related cost metrics at the expense869

of a small deterioration in latency-related cost metrics in these870

two models. 1D-LM has the lowest partitioning overhead due to871

having the smallest hypergraph among the five models. A simi-872

lar discussion follows for the maximum volume and maximum873

message count metrics as for the total volume and total message874

count metrics.875

In the rest of the paper, we use MG and MG-LM among the876

nonzero-based models for evaluation due to their lower parti-877

tioning overhead and slightly better performance compared to878

FG and FG-LM, respectively, in the remaining metrics.879

6.2.2. Parallel SpMV performance880

We compare 1D-LM, MG, and MG-LM in terms of paral-881

lel SpMV runtime. Parallel SpMV is run with the parti-882

tions obtained through these three models. There are 12883

matrices tested, listed with their types as follows: eu-2005884

(web graph), ford2 (mesh), Freescale1 (circuit simula-885

tion), invextr1 new (computational fluid dynamics), k1 san886

(2D/3D), LeGresley 87936 (power network), mouse gene887

(gene network), olesnik0 (2D/3D), tuma1 (2D/3D), turon m888

(2D/3D), usroads (road network), web-Google (web graph).889

Number of nonzeros in these matrices varies between 87,760890

and 28,967,291. These 12 matrices are the subset of 978 ma-891

trices for which the partitioning models are compared in terms892

of partitioning cost metrics in the preceding sections. Four dif-893

ferent number of processors (i.e., K) are tested: 64, 128, 256,894

and 512. We did not test for 1024 processors as in most of the895

tested matrices SpMV could not scale beyond 512 processors.896

We only consider the strong-scaling case. The parallel SpMV897

is run for 100 times and the average runtime (in milliseconds)898

is reported. The obtained results are presented in Figure 8.899

The plots in Figure 8 show that both MG and MG-LM scale900

usually better than 1D-LM. It is known the nonzero-based par-901

titioning models scale better than the 1D models due to their902

lower communication overheads and computational imbalance.903

In difficult instances such as invextr1 new or mouse gene at904

which 1D-LM does not scale, using a nonzero-based model such905

as MG or MG-LM successfully scales the parallel SpMV. MG-LM906

improves the scalability of MG in most of the test instances.907

Apart from the instances Freescale1, invextr1 new, and908

turon m, MG-LM performs significantly better than MG. MG-LM’s909

performance especially gets more prominent with increasing910

number of processors, which is due to the fact that the latency911

overheads are more critical in the overall communication costs912

in high processor counts since the message size usually de-913

creases with increasing number of processors. These plots show914

that using a nonzero-based partitioning model coupled with the915

addressing of multiple communication cost metrics yields the916

best parallel SpMV performance.917

7. Conclusion918

We proposed two novel nonzero-based matrix partitioning919

models, a fine-grain and a medium-grain model, that simul-920

taneously address the bandwidth and latency costs of paral-921

lel SpMV. These models encapsulate two communication cost922

metrics at once as opposed to their existing counterparts which923

only address a single cost metric regarding the bandwidth cost.924

Our approach exploits the recursive bipartitioning paradigm to925

incorporate the latency minimization into the partitioning ob-926

jective via message nets. In addition, we proposed two practi-927

cal enhancements to find a good balance between reducing the928

bandwidth and the latency costs. The experimental results ob-929

tained on an extensive dataset show that the proposed models930

attain up to 27% improvement in latency-related cost metrics931

over their existing counterparts on average and the scalability932

of parallel SpMV can substantially be improved with the pro-933

posed models.934
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Figure 8: Comparison of partitioning models in terms of parallel SpMV runtime.
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