Optimizing nonzero-based sparse matrix partitioning models via reducing latency χ

Seher Acer^a, Oguz Selvitopi^a, Cevdet Aykanat^{a,∗}

^aBilkent University, Computer Engineering Department, 06800, Ankara, TURKEY

Abstract

Nonzero-based fine-grain and medium-grain sparse matrix partitioning models attain the lowest communication volume and computational imbalance among all partitioning models due to their larger solution space. This usually comes, however, at the expense of a high message count, i.e., high latency overhead. This work addresses this shortcoming by proposing new fine-grain and medium-grain models that are able to minimize communication volume and message count in a single partitioning phase. The new models utilize message nets in order to encapsulate the minimization of total message count. We further fine-tune these models by proposing delayed addition and thresholding for message nets in order to establish a trade-off between the conflicting objectives of minimizing communication volume and message count. The experiments on an extensive dataset of nearly one thousand matrices show that the proposed models improve the total message count of the original nonzero-based models by up to 27% on the average, which is reflected on the parallel runtime of sparse matrix-vector multiplication as an average reduction of 15% on 512 processors.

Keywords: sparse matrix, sparse matrix-vector multiplication, row-column-parallel SpMV, load balancing, communication overhead, hypergraph, fine-grain partitioning, medium-grain partitioning, recursive bipartitioning.

1. Introduction

² Sparse matrix partitioning plays a pivotal role in scaling ap-³ plications that involve irregularly sparse matrices on distributed memory systems. Several decades of research on this subject ⁵ led to elegant combinatorial partitioning models that are able to address the needs of these applications.

A key operation in sparse applications is the sparse matrixvector multiplication (SpMV). The irregular sparsity pattern of the coefficient matrix in SpMV necessitates a non-trivial parallelization, usually achieved through combinatorial models based on graph and hypergraph partitioning. Graph and hyper- graph models prove to be powerful tools in their immense abil- ity to represent applications with the aim of optimizing desired parallel performance metrics. The literature is rich in terms of 15 such models for parallelizing SpMV $[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,$ $[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,$ $[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,$ $[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,$ $[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,$ $[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,$ $[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,$ $[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,$ $[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,$ $[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,$ [11,](#page-14-2) [12,](#page-14-3) [13\]](#page-14-4). We focus on the hypergraph models as they cor-17 rectly encapsulate the total communication volume in SpMV⁴² and the proposed models in this work rely on hypergraphs. The hypergraph models for SpMV are grouped into two depending on how they distribute the nonzeros of individual rows/columns of the matrix among processors: if all nonzeros that belong to a row/column are assigned to a single processor, then they are 47 called one-dimensional (1D) models [\[1\]](#page-12-0), otherwise, they are called two-dimensional (2D) models. The 2D models are gener- 49 ally superior to the 1D models in terms of parallel performance 50

[∗]Corresponding author *Email addresses:* acer@cs.bilkent.edu.tr (Seher Acer), reha@cs.bilkent.edu.tr (Oguz Selvitopi),

aykanat@cs.bilkent.edu.tr (Cevdet Aykanat)

²⁶ due to their higher flexibility in distributing the matrix nonze-ros. Examples of 2D models include checkerboard [\[8,](#page-12-7) [14\]](#page-14-5), jagged [\[14\]](#page-14-5), fine-grain [\[14,](#page-14-5) [15\]](#page-14-6), and medium-grain [\[10\]](#page-14-1) models. Among these, the fine-grain and medium-grain models are referred to as nonzero-based models as they obtain nonzero-based matrix partitions, which are the most general possible [\[7\]](#page-12-6).

Among all models, the fine-grain model adopts the finest partitioning granularity by treating the nonzeros of the matrix as individual units, which leads it to have the largest solution space. ³⁵ For this reason, it achieves the lowest communication volume and the lowest imbalance on computational loads of the pro-cessors [\[14\]](#page-14-5). Since the nonzeros of the matrix are treated individually in the fine-grain model, the nonzeros that belong to the same row/column are more likely to be scattered to multi-⁴⁰ ple processors compared to the other models. This may result in a high message count and hinder scalability. The fine-grain hypergraphs have the largest size for the same reason, causing this model to have the highest partitioning overhead. The re-cently proposed medium-grain model [\[10\]](#page-14-1) alleviates this issue by operating on groups of nonzeros instead of individual nonzeros. The medium-grain model's partitioning overhead is comparable to those of the 1D models, (i.e., quite low), while its communication volume is comparable to that of the fine-grain model.

The nonzero-based models attain the lowest communication volume among all 1D and 2D models, however, the overall communication cost is not determined by the volume only, but better formulated as a function of multiple communication cost metrics. Another important cost metric is the total message count, which is not only overlooked by both the fine-grain and medium-grain models, but also exacerbated due to the having nonzero-based partitions. Among the two basic components of

 $*$ This work was supported by The Scientific and Technological Research 52 Council of Turkey (TUBITAK) under Grant EEEAG-114E545. This article is also based upon work from COST Action CA 15109 (COSTNET).

Preprint submitted to Journal of Parallel and Distributed Computing Wednesday 29th November, 2017

the communication cost, the total communication volume de-⁵⁹ termines the bandwidth component, whereas the total message ⁶⁰ count determines the latency component.

 In this work, we propose a novel fine-grain model and a novel ⁶² medium-grain model to simultaneously reduce the bandwidth and latency costs of parallel SpMV. The original fine-grain [\[15\]](#page-14-6) ⁶⁴ and medium-grain [\[10\]](#page-14-1) models already encapsulate the band-⁶⁵ width cost. We use message nets to incorporate the minimiza- tion of the latency cost into the partitioning objective of these models. Message nets aim to group the matrix nonzeros and/or the vector entries in the SpMV that necessitate a message to- gether. The formation of message nets relies on the recursive bipartitioning paradigm, which is shown to be a powerful ap- proach to optimize multiple communication cost metrics in re- cent studies [\[16,](#page-14-7) [17\]](#page-14-8). Message nets are recently proposed for certain types of iterative applications that involve a computa- tional phase either preceded or followed by a communication phase with a restriction of conformal partitions on input and output data [\[17\]](#page-14-8). 1D row-parallel and column-parallel SpMV operations constitute examples for these applications. This¹¹⁶ work differs from [\[17\]](#page-14-8) in the sense that the nonzero-based par- 117 titions necessitate a parallel SpMV that involves *two* commu-80 nication phases with *no* restriction of conformal partitions. We₁₁₉ 81 also propose two enhancements concerning the message nets to₁₂₀

82 better exploit the trade-off between the bandwidth and latency¹²¹

83 costs for the proposed models. ⁸⁴ The existing partitioning models that address the bandwidth¹²³ 85 and latency costs in the literature can be grouped into two ac-124 86 cording to whether they explicitly address the latency cost (the₁₂₅ 87 bandwidth cost is usually addressed explicitly). The models126 88 that do not explicitly address the latency cost provide an up-127 89 per bound on the message counts [\[8,](#page-12-7) [14,](#page-14-5) [18\]](#page-14-9). We focus on₁₂₈ $_{90}$ the works that explicitly address the latency cost [\[17,](#page-14-8) [19,](#page-14-10) [20\]](#page-14-11), $_{129}$ 91 which is also the case in this work. Among these works, the 130 92 one proposed in [\[19\]](#page-14-10) is a two-phase approach which addresses¹³¹ 93 the bandwidth cost in the first phase with the 1D models and the 132 94 latency cost in the second phase with the communication hyper-133 95 graph model. In the two-phase approaches, since different cost134 96 metrics are addressed in separate phases, a metric minimized in135 97 a particular phase may get out of control in the other phase. Our 136 98 models fall into the category of single-phase approaches. The¹³⁷ 99 other two works also adopt a single-phase approach to address₁₃₈ 100 multiple communication cost metrics, where UMPa [\[20\]](#page-14-11) uses a139 101 direct *K*-way partitioning approach, while [\[17\]](#page-14-8) exploits the re-140 ¹⁰² cursive bipartitioning paradigm. UMPa is rather expensive as ¹⁰³ it introduces an additional cost involving a quadratic factor in ¹⁰⁴ terms of the number of processors to each refinement pass. Our ¹⁰⁵ approach introduces an additional cost involving a mere loga-¹⁰⁶ rithmic factor in terms of the number of processors to the entire ¹⁰⁷ partitioning.

¹⁰⁸ The rest of the paper is organized as follows. Section [2](#page-1-0) gives 109 background on parallel SpMV, the fine-grain model, recursive₁₄₈ 110 bipartitioning, and the medium-grain model. Sections [3](#page-3-0) and [4](#page-7-0)149 111 present the proposed fine-grain and medium-grain models, re-150 112 spectively. Section [5](#page-8-0) describes practical enhancements to these₁₅₁ 113 models. Section [6](#page-8-1) gives the experimental results and Section [7](#page-12-8)¹⁵² ¹¹⁴ concludes.

Algorithm 1 Row-column-parallel SpMV as performed by processor *P^k*

Require: \mathcal{A}_k , \mathcal{X}_k

B *Pre-communication phase — expands on x-vector entries* Receive the needed *x*-vector entries that are not in X_k Send the *x*-vector entries in X_k needed by other processors

B *Computation phase* $y_i^{(k)} \leftarrow \hat{y}_i^{(k)} + a_{i,j}x_j$ for each $a_{i,j} \in \mathcal{A}_k$

B *Post-communication phase — folds on y-vector entries* Receive the partial results for *y*-vector entries in \mathcal{Y}_k and

compute $y_i \leftarrow \sum y_i^{(\ell)}$ for each partial result $y_i^{(\ell)}$ Send the partial results for *y*-vector entries not in \mathcal{Y}_k

return Y*^k*

2. Preliminaries

2.1. Row-column-parallel SpMV

We consider the parallelization of SpMV of the form $y = Ax$ with a nonzero-based partitioned matrix *A*, where $A = (a_i)$ is an $n_r \times n_c$ sparse matrix with n_{nz} nonzero entries, and *x* and *y* are dense vectors. The *i*th row and the *j*th column of *A* are respectively denoted by r_i and c_j . The *j*th entry of *x* and the *i*th entry of *y* are respectively denoted by x_j and y_i . Let A denote the set of nonzero entries in *A*, that is, $\mathcal{A} = \{a_{i,j} : a_{i,j} \neq 0\}$. Let \mathcal{X} and \mathcal{Y} recreatively denote the sets of entries in u and u, that X and Y respectively denote the sets of entries in x and y , that is, $X = \{x_1, \ldots, x_{n_c}\}$ and $\mathcal{Y} = \{y_1, \ldots, y_{n_r}\}$. Assume that there are *K* processors in the parallel system denoted by P_1, \ldots, P_K . Let $\Pi_K(\mathcal{A}) = {\mathcal{A}_1, \ldots, \mathcal{A}_K}$, $\Pi_K(\mathcal{X}) = {\mathcal{X}_1, \ldots, \mathcal{X}_K}$, and $\Pi_K(\mathcal{Y}) = {\{\mathcal{Y}_1,\ldots,\mathcal{Y}_K\}}$ denote *K*-way partitions of \mathcal{A}, \mathcal{X} , and \mathcal{Y} , respectively.

Given partitions $\Pi_K(\mathcal{A})$, $\Pi_K(\mathcal{X})$, and $\Pi_K(\mathcal{Y})$, without loss of generality, the nonzeros in \mathcal{A}_k and the vector entries in \mathcal{X}_k and \mathcal{Y}_k are assigned to processor P_k . For each $a_{i,j} \in \mathcal{A}_k$, P_k ¹³³ is held responsible for performing the respective multiply-andand operation $y_i^{(k)} \leftarrow y_i^{(k)} + a_{i,j}x_j$, where $y_i^{(k)}$ denotes the partial argued for *y* by *P*_{*i*} Algorithm 1 displays the basis result computed for y_i by P_k . Algorithm [1](#page-1-1) displays the basic steps performed by P_k in parallel SpMV for a nonzero-based ¹³⁷ partitioned matrix *A*. This algorithm is called the *row-columnparallel SpMV* [\[19\]](#page-14-10). In this algorithm, P_k first receives the needed *x*-vector entries that are not in X_k from their owners and sends its *x*-vector entries to the processors that need them 141 in a *pre-communication* phase. Sending x_j to possibly multiple processors is referred to as the *expand* operation on x_j . When P_k has all needed *x*-vector entries, it performs the local $y_i^{(k)} \leftarrow y_i^{(k)} + a_{i,j}x_j$ for each $a_{i,j} \in \mathcal{R}_k$.
 P than receives the neutral results for the wrector entries in P_k then receives the partial results for the *y*-vector entries in \mathcal{Y}_k from other processors and sends its partial results to the processors that own the respective *y*-vector entries in a *postcommunication* phase. Receiving partial result(s) for y_i from possibly multiple processors is referred to as the *fold* operation 150 on y_i . Note overlapping of computation and communication is not considered in this algorithm for the sake of clarity.

For an efficient row-column-parallel SpMV, the goal is to find 153 $\Pi_K(\mathcal{A})$, $\Pi_K(\mathcal{X})$, and $\Pi_K(\mathcal{Y})$ with low communication overhead

Figure 1: A sample $y = Ax$ and the corresponding fine-grain hypergraph.

 and good balance on computational loads of processors. Sec- tions [2.2](#page-2-0) and [2.4](#page-3-1) respectively describe the fine-grain [\[8\]](#page-12-7) and medium-grain [\[10\]](#page-14-1) hypergraph partitioning models, in which the goal of reducing communication overhead is met partially by only minimizing the bandwidth cost, i.e., the total commu- nication volume. Vector partitions Π _K(X) and Π _K(V) can also 160 be found after finding $\Pi_K(\mathcal{A})$ [\[19,](#page-14-10) [21\]](#page-14-12). This work, on the other hand, finds all partitions at once in a single partitioning phase.

¹⁶² *2.2. Fine-grain hypergraph model*

¹⁶³ In the fine-grain hypergraph $H = (\mathcal{V}, \mathcal{N})$, each entry in \mathcal{A}_{202}
¹⁶⁴ X, and Y is represented by a different vertex. Vertex set \mathcal{V}_{202} X , and Y is represented by a different vertex. Vertex set V_{203} ¹⁶⁵ contains a vertex $v_{i,j}^a$ for each $a_{i,j} \in \mathcal{A}$, a vertex v_j^x for each $x \in \mathcal{X}$ and a vertex v_j^y for each $y \in \mathcal{X}$. That is $x_j \in \mathcal{X}$, and a vertex v_i^y ¹⁶⁶ x_j ∈ X, and a vertex v_i^y for each y_i ∈ \mathcal{Y} . That is,

$$
\mathcal{V} = \{v_{i,j}^a : a_{i,j} \neq 0\} \cup \{v_1^x, \ldots, v_{n_c}^x\} \cup \{v_1^y, \ldots, v_{n_r}^y\}.
$$

¹⁶⁷ $v_{i,j}^a$ represents both the data element $a_{i,j}$ and the computational $v_{i,j}$ is the sense of the data element $a_{i,j}$ and the computation x_i and v_i^y and v_i^y and v_j^y and ¹⁶⁸ task $y_i \leftarrow y_i + a_{i,j} x_j$ associated with $a_{i,j}$, whereas v_j^x and v_i^y only r_{169} represent the input and output data elements x_j and y_i , respec-170 tively.

 171 The net set N contains two different types of nets to represent₂₁₀ ¹⁷² the dependencies of the computational tasks on *x*- and *y*-vector ¹⁷³ entries. For each *x_j* ∈ X and *y_i* ∈ *Y*, N respectively contains₂₁₁</sup> the nets n_j^x and n_i^y ¹⁷⁴ the nets n_j^x and n_i^y . That is,

$$
\mathcal{N} = \{n_1^x, \dots, n_{n_c}^x\} \cup \{n_1^y, \dots, n_{n_r}^y\}.
$$

¹⁷⁵ Net n_j^x represents the input dependency of the computational tasks on x_j , hence, it connects the vertices that represent these tasks and v_j^x . Net n_i^y ¹⁷⁷ tasks and v_j^x . Net n_i^y represents the output dependency of the 178 computational tasks on y_i , hence, it connects the vertices that represent these tasks and v_i^y ¹⁷⁹ represent these tasks and v_i^y . The sets of vertices connected by n_j^x and n_j^y ¹⁸⁰ n_j^x and n_i^y are respectively formulated as

*Pin*s(
$$
n_j^x
$$
) = { v_j^x } ∪ { $v_{i,j}^a$: $a_{i,j} \neq 0$ } and
\n*Pin*s(n_i^y) = { v_i^y } ∪ { $v_{i,t}^a$: $a_{i,t} \neq 0$ }.

H contains $n_{nz} + n_c + n_r$ vertices, $n_c + n_r$ nets and $2n_{nz} + n_c + n_{r_{225}}$ 181 182 pins. Figure [1](#page-2-1) displays a sample SpMV instance and its corre- $_{226}$ 183 sponding fine-grain hypergraph. In H , the vertices are assigned₂₂₇ 184 the weights that signify their computational loads. Hence, ^{*w*}_{*i*}, $\psi(v_i^a) = 1$ for each $v_{i,j}^a \in V$ as $v_{i,j}$ represents a single multiply-

and add approximation whereas $w(x^x) = w(x^y) = 0$ for each $w^x \in \Omega$ and-add operation, whereas $w(v_j^x) = w(v_j^y)$ ¹⁸⁶ and-add operation, whereas $w(v_j^x) = w(v_i^y) = 0$ for each $v_j^x \in V$ and v_i^y ¹⁸⁷ and $v_i^y \in V$ as they do not represent any computation. The nets

are assigned unit costs, i.e., $c(n_j^x) = c(n_i^y)$ ¹⁸⁸ are assigned unit costs, i.e., $c(n_j^x) = c(n_i^y) = 1$ for each $n_j^x \in \mathcal{N}$ and n_i^y ¹⁸⁹ and $n_i^y \in \mathcal{N}$.

190 A *K*-way vertex partition $\Pi_K(\mathcal{H}) = \{V_1, \dots, V_K\}$ can be decoded to obtain $\Pi_K(\mathcal{A})$, $\Pi_K(\mathcal{X})$, and $\Pi_K(\mathcal{Y})$ by assigning the 192 entries represented by the vertices in part V_k to processor P_k . ¹⁹³ That is,

$$
\mathcal{A}_k = \{a_{i,j} : v_{i,j}^a \in \mathcal{V}_k\},
$$

\n
$$
X_k = \{x_j : v_j^x \in \mathcal{V}_k\},
$$
 and
\n
$$
\mathcal{Y}_k = \{y_i : v_i^y \in \mathcal{V}_k\}.
$$

194 Let $\lambda(n)$ denote the number of parts connected by net *n* in $\Pi_K(\mathcal{H})$, where a net is said to connect a part if it connects at least one vertex in that part. A net n is called cut if it connects at least two parts, i.e., $\lambda(n) > 1$, and uncut, otherwise. The cutsize of $\Pi_K(\mathcal{H})$ is defined as

$$
cutsize(\Pi_K(\mathcal{H})) = \sum_{n \in \mathbb{N}} c(n)(\lambda(n) - 1).
$$
 (1)

For a given $\Pi_K(\mathcal{H})$, a cut net n_j^x (n_i^y) ¹⁹⁹ For a given $\Pi_K(\mathcal{H})$, a cut net $n_j^x(n_i^y)$ incurs an expand (fold) operation on x_j (y_i) with a volume of $\lambda(n_j^x) - 1$ ($\lambda(n_j^x)$)
cutsize($\Pi_{\alpha}(H)$) is equal to the total communication *i* eration on $x_j(y_i)$ with a volume of $\lambda(n_j^x) - 1$ ($\lambda(n_i^y) - 1$). Hence, 201 *cutsize*($\Pi_K(\mathcal{H})$) is equal to the total communication volume in **parallel SpMV.** Therefore, minimizing *cutsize*(Π_K(H)) corresponds to minimizing the total communication volume.

In $\Pi_K(\mathcal{H})$, the weight $W(\mathcal{V}_k)$ of part \mathcal{V}_k is defined as the sum $\sum_{\nu \in V_k} w(\nu)$, $\sum_{\nu \in V_k} w(\nu)$, $\sum_{\nu \in V_k} w(\nu)$, 206 which is equal to the total computational load of processor P_k . ²⁰⁷ Then, maintaining the balance constraint

$$
W(\mathcal{V}_k) \leq W_{avg}(1+\epsilon), \text{ for } k=1,\ldots,K,
$$

corresponds to maintaining balance on the computational loads 209 of the processors. Here, W_{avg} and ϵ denote the average part weight and a maximum imbalance ratio, respectively.

2.3. Recursive bipartitioning *(RB)* paradigm

²¹² In RB, a given domain is first bipartitioned and then this bi-³ partition is used to form two new subdomains. In our case, a $_{214}$ domain refers to a hypergraph (H) or a set of matrix and vector entries (A, X, Y) . The newly-formed subdomains are recursively bipartitioned until K subdomains are obtained. This procedure forms a hypothetical full binary tree, which contains $\lceil \log K \rceil + 1$ levels. The root node of the tree represents the given domain, whereas each of the remaining nodes represents a sub-²²⁰ domain formed during the RB process. At any stage of the RB ²²¹ process, the subdomains represented by the leaf nodes of the ²²² RB tree collectively induce a partition of the original domain.

²²³ The RB paradigm is successfully used for hypergraph parti-²²⁴ tioning. Figure [2](#page-3-2) illustrates an RB tree currently in the process of partitioning a hypergraph. The current leaf nodes induce a four-way partition $\Pi_4(\mathcal{H}) = \{V_1, V_2, V_3, V_4\}$ and each node in the RB tree represents both a hypergraph and its vertex set. While forming two new subhypergraphs after each RB step, the 2 cut-net splitting technique is used [\[1\]](#page-12-0) to encapsulate the cutsize in (1) . The sum of the cutsizes incurred in all RB steps is equal to the cutsize of the resulting *K*-way partition.

Figure 2: The RB tree during partitioning $H = (\mathcal{V}, \mathcal{N})$. The current RB tree contains four leaf hypergraphs with the hypergraph to be bipartitioned next being $H_1 = (\mathcal{V}_1, \mathcal{N}_1)$.

²³² *2.4. Medium-grain hypergraph model*

233 In the medium-grain hypergraph model, the sets \mathcal{A}, \mathcal{X} and \mathcal{Y} 234 are partitioned into *K* parts using RB. The medium-grain model₂₈₇ 235 uses a mapping for a subset of the nonzeros at each RB step. 236 Because this mapping is central to the model, we focus on a_{289} 237 single bipartitioning step to explain the medium-grain model. ²³⁸ Before each RB step, the nonzeros to be bipartitioned are first ²³⁹ mapped to their rows or columns by a heuristic and a new hy-²⁴⁰ pergraph is formed according to this mapping.

Consider an RB tree for the medium-grain model with *K* 0 241 242 leaf nodes, where $K' < K$, and assume that the *k*th node from
242 the left is to be binaritioned next. This node represents \mathcal{A}_t . ²⁴³ the left is to be bipartitioned next. This node represents \mathcal{A}_k , ²⁷³ \mathcal{X}_k , and \mathcal{Y}_k in the respective *K*'-way partitions $\{\mathcal{A}_1, \dots, \mathcal{A}_{K'}\}$,
or \mathcal{X}_k , \mathcal{X}_{k-1} and \mathcal{Y}_k , \mathcal{Y}_{k-1} , First, each $g_k \in \mathcal{A}_k$ is 245 { $X_1, \ldots, X_{K'}$ }, and { $\mathcal{Y}_1, \ldots, \mathcal{Y}_{K'}$ }. First, each $a_{i,j} \in \mathcal{A}_k$ is²⁷⁵
246 manned to either *r*, or *c*, where this manning is denoted by²⁷⁶ $_{246}$ mapped to either r_i or c_j , where this mapping is denoted by *map*($a_{i,j}$). With a heuristic, $a_{i,j} \in \mathcal{A}_k$ is mapped to r_i if r_i has four a paparal to a *if a* has four paparal fewer nonzeros than c_j in \mathcal{A}_k , and to c_j if c_j has fewer nonzeros than r_i in \mathcal{A}_k . After determining $map(a_{i,j})$ for each nonzero
in \mathcal{A}_k the modium grain hunorscraph $\mathcal{A}_k = (\mathcal{A}_k, \mathcal{A}_k)$ is formed ²⁵⁰ in \mathcal{A}_k , the medium-grain hypergraph $\mathcal{H}_k = (\mathcal{V}_k, \mathcal{N}_k)$ is formed²⁸⁰
²⁵¹ as follows. Vertex set \mathcal{V}_k contains a vertex v^x if x_i is in \mathcal{X}_k or²⁸¹ as follows. Vertex set V_k contains a vertex v_j^x if x_j is in X_k or there exists at least one nonzero in \mathcal{A}_k mapped to c_j . Similarly, V_k contains a vertex v_i^y ²⁵³ *V_k* contains a vertex v_i^y if y_i is in \mathcal{Y}_k or there exists at least one 254 nonzero in \mathcal{A}_k mapped to r_i . Hence, v_j^x represents x_j and/or the nonzero(s) assigned to c_j , whereas $v_j^{\dot{y}}$ $_{255}$ nonzero(s) assigned to c_j , whereas v_i^y represents y_i and/or the $_{256}$ nonzero(s) assigned to r_i . That is,

$$
\mathcal{V}_k = \{v_j^x : x_j \in \mathcal{X}_k \text{ or } \exists a_{t,j} \in \mathcal{A}_k \text{ s.t. } \text{map}(a_{t,j}) = c_j\} \cup \{v_i^y : y_i \in \mathcal{Y}_k \text{ or } \exists a_{i,t} \in \mathcal{A}_k \text{ s.t. } \text{map}(a_{i,t}) = r_i\}.
$$

Besides the data elements, vertex v_j^x/v_i^y 257 Besides the data elements, vertex v_j^x/v_i^y represents the group of ²⁵⁸ computational tasks associated with the nonzeros mapped to ²⁵⁹ them, if any.

The net set \mathcal{N}_k contains a net n_j^x if \mathcal{A}_k contains at least one nonzero in c_j , and a net n_i^y ²⁶¹ nonzero in c_j , and a net n_i^y if \mathcal{A}_k contains at least one nonzero 262 in r_i . That is,

$$
\mathcal{N}_k = \{n_j^x : \exists a_{t,j} \in \mathcal{A}_k\} \cup \{n_i^y : \exists a_{i,t} \in \mathcal{A}_k\}.
$$

 n_j^x represents the input dependency of the groups of computational tasks on x_j , whereas n_i^y $_{264}$ tional tasks on x_j , whereas n_i^y represents the output dependency $_{265}$ of the groups of computational tasks on y_i . Hence, the sets of

Figure 3: The nonzero assignments of the sample $y = Ax$ and the corresponding medium-grain hypergraph.

vertices connected by n_j^x and n_j^y ²⁶⁶ vertices connected by n_j^x and n_i^y are respectively formulated by

*Pin*s(
$$
n_j^x
$$
) = { v_j^x } ∪ { v_t^y : $map(a_{t,j}) = r_t$ } and
*Pin*s(n_i^y) = { v_i^y } ∪ { v_t^x : $map(a_{i,t}) = c_t$ }.

In H_k , each net is assigned a unit cost, i.e., $c(n_j^x) = c(n_j^y)$ $\lim \mathcal{H}_k$, each net is assigned a unit cost, i.e., $c(n_j^x) = c(n_i^y) = 1$ for each $n_j^x \in \mathcal{N}$ and n_j^y ²⁶⁸ for each $n_j^x \in \mathcal{N}$ and $n_i^y \in \mathcal{N}$. Each vertex is assigned a weight equal to the number of nonzeros represented by that vertex. That is,

$$
w(v_j^x) = |\{a_{t,j} : map(a_{t,j}) = c_j\}|
$$
 and

$$
w(v_i^y) = |\{a_{i,t} : map(a_{i,t}) = r_i\}|.
$$

 \mathcal{H}_k is bipartitioned with the objective of minimizing the cutsize and the constraint of maintaining balance on the part weights. The resulting bipartition is further improved by an iterative refinement algorithm. In every RB step, minimizing the cutsize corresponds to minimizing the total volume of communication, whereas maintaining balance on the weights of the parts corresponds to maintaining balance on the computational loads of the processors.

Figure [3](#page-3-3) displays a sample SpMV instance with nonzero mapping information and the corresponding medium-grain hypergraph. This example illustrates the first RB step, hence, 282 $\mathcal{A}_1 = \mathcal{A}, X_1 = X, Y_1 = Y$, and $K' = k = 1$. Each nonzero in *A* is denoted by an arrow, where the direction of the arrow shows the mapping for that nonzero. For example, n_3^x connects v_3^x , v_1^y $\frac{y}{1}, \frac{y}{2}$ $\frac{y}{2}$, and v_3^y v_3^x , v_1^y , v_2^y , and v_3^y since $map(a_{1,3}) = r_1$, $map(a_{2,3}) = r_2$, and $map(a_{3,3}) = r_3.$

²⁸⁷ 3. Optimizing fine-grain partitioning model

²⁸⁸ In this section, we propose a fine-grain hypergraph partitioning model that simultaneously reduces the bandwidth and latency costs of the row-column-parallel SpMV. Our model is built upon the original fine-grain model (Section [2.2\)](#page-2-0) via utilizing the RB paradigm. The proposed model contains two different types of nets to address the bandwidth and latency costs. ²⁹⁴ The nets of the original fine-grain model already address the ²⁹⁵ bandwidth cost and they are called "volume nets" as they en-²⁹⁶ capsulate the minimization of the total communication volume. ²⁹⁷ At each RB step, our model forms and adds new nets to the hypergraph to be bipartitioned. These new nets address the latency cost and they are called "message nets" as they encapsulate the minimization of the total message count.

301 Message nets aim to group the matrix nonzeros and vector entries that altogether necessitate a message. The formation and addition of message nets rely on the RB paradigm. To de- termine the existence and the content of a message, a partition information is needed first. At each RB step, prior to biparti- tioning the current hypergraph that already contains the volume 307 nets, the message nets are formed using the *K*'-way partition information and added to this hypergraph, where K' is the num- ber of leaf nodes in the current RB tree. Then this hypergraph $_{310}$ is bipartitioned, which results in a $(K' + 1)$ -way partition as the $_{311}$ number of leaves becomes $K' + 1$ after bipartitioning. Adding message nets just before each bipartitioning allows us to utilize 313 the most recent global partition information at hand. In contrast to the formation of the message nets, the formation of the vol- ume nets via cut-net splitting requires only the local bipartition 316 information.

³¹⁷ *3.1. Message nets in a single RB step*

 318 Consider an SpMV instance $y = Ax$ and its corresponding 319 fine-grain hypergraph $H = (V, N)$ with the aim of partition-
320 ing H into K parts to parallelize $v = Ax$. The RB process ing H into *K* parts to parallelize $y = Ax$. The RB process 321 starts with bipartitioning H, which is represented by the root ³²² node of the corresponding RB tree. Assume that the RB pro- \cos cess is at the state where there are K' leaf nodes in the RB tree, for $1 \lt K' \lt K$, and the hypergraphs corresponding
 \mathcal{H}_{tot} from left to right ³²⁵ to these nodes are denoted by $\mathcal{H}_1, \ldots, \mathcal{H}_{K'}$ from left to right.
³²⁶ Let $\Pi_{K'}(\mathcal{H}) = {\mathcal{H}}_{1}, \ldots, {\mathcal{H}}_{K'}$ denote the K'-way partition in-Let $\Pi_{K'}(\mathcal{H}) = \{V_1, \ldots, V_{K'}\}$ denote the *K'*-way partition in-
325 duced by the leaf nodes of the RB tree. $\Pi_{K'}(\mathcal{H})$ also induces 327 duced by the leaf nodes of the RB tree. $\Pi_{K'}(\mathcal{H})$ also induces ³²⁸ *K*'-way partitions $\Pi_{K}(\mathcal{A})$, $\Pi_{K}(\mathcal{X})$, and $\Pi_{K}(\mathcal{Y})$ of sets \mathcal{A} , \mathcal{X} , 329 and \mathcal{Y} , respectively. Without loss of generality, the entries in 330 \mathcal{A}_k , \mathcal{X}_k , and \mathcal{Y}_k are assigned to processor group \mathcal{P}_k . Assume 331 that $H_k = (V_k, N_k)$ is next to be bipartitioned among these hy-
332 pergraphs. H_k initially contains only the volume nets. In our pergraphs. H_k initially contains only the volume nets. In our 333 model, we add message nets to H_k to obtain the augmented hy-³³⁴ pergraph $\mathcal{H}_k^M = (\mathcal{V}_k, \mathcal{N}_k^M)$. Let $\Pi(\mathcal{H}_k^M) = {\mathcal{V}_{k,L}, \mathcal{V}_{k,R}}$ denote a

set binartition of \mathcal{H}^M where *L* and *R* in the subscripts refer to left 335 bipartition of \mathcal{H}_k^M , where *L* and *R* in the subscripts refer to left as and right, respectively. $\Pi(\mathcal{H}_k^M)$ induces bipartitions $\Pi(\mathcal{A}_k)$ = 337 { $\mathcal{A}_{k,L}$, $\mathcal{A}_{k,R}$ }, $\Pi(\mathcal{X}_k) = \{X_{k,L}, X_{k,R}\}$, and $\Pi(\mathcal{Y}_k) = \{Y_{k,L}, Y_{k,R}\}$ ₃₅₇ on \mathcal{A}_k , X_k , and \mathcal{Y}_k , respectively. Let \mathcal{P}_k *r* and \mathcal{P}_k *R* denote the 338 on \mathcal{A}_k , X_k , and \mathcal{Y}_k , respectively. Let $\mathcal{P}_{k,L}$ and $\mathcal{P}_{k,R}$ denote the processor groups to which the entries in $\{\mathcal{A}_{k,l}, \mathcal{X}_{k,l}, \mathcal{Y}_{k,l}\}$ and 339 processor groups to which the entries in $\{\mathcal{A}_{k,L}, \mathcal{X}_{k,L}, \mathcal{Y}_{k,L}\}$ and $\{\mathcal{A}_{k,R}, \mathcal{X}_{k,R}, \mathcal{Y}_{k,R}\}$ are assigned. $\{\mathcal{A}_{k,R}, \mathcal{X}_{k,R}, \mathcal{Y}_{k,R}\}$ are assigned.

Algorithm [2](#page-4-0) displays the basic steps of forming message nets³⁵⁸ and adding them to \mathcal{H}_k . For each processor group \mathcal{P}_ℓ that \mathcal{P}_k
communicates with four different message note may be added 343 communicates with, four different message nets may be added 360 344 to H_k : expand-send net, expand-receive net, fold-send net and 361 345 fold-receive net, respectively denoted by s^e , r^e , s^f and r^f . Here, 346 *s* and *r* respectively denote the messages sent and received, the 347 subscript ℓ denotes the id of the processor group communicated 364
348 with and the superscripts ℓ and f respectively denote the ex-365 with, and the superscripts e and f respectively denote the ex-365 349 pand and fold operations. These nets are next explained in de-366 ³⁵⁰ tail.

• expand-send net s^e_i : Net s^e_j represents the message sent $\lim_{z \to z_0} \mathcal{P}_k$ to \mathcal{P}_ℓ during the expand operations on *x*-vector₃₇₀ ³⁵³ entries in the pre-communication phase. This message 354 consists of the *x*-vector entries owned by P_k and needed 371 ³⁵⁵ by P_{ℓ} . Hence, s_{ℓ}^{e} connects the vertices that represent the

Algorithm 2 ADD-MESSAGE-NETS

Require: $\mathcal{H}_k = (\mathcal{V}_k, \mathcal{N}_k), \Pi_{K'}(\mathcal{A}) = {\mathcal{A}_1, \dots, \mathcal{A}_{K'}}, \Pi_{K'}(\mathcal{X}) =$ $\{X_1, \ldots, X_{K'}\}, \Pi_{K'}(\mathcal{Y}) = \{\mathcal{Y}_1, \ldots, \mathcal{Y}_{K'}\}.$

1: $N_k^M \leftarrow N_k$ B *Expand-send nets* 2: for each $x_j \in \mathcal{X}_k$ do 3: **for** each $a_{t,j} \in \mathcal{A}_{\ell \neq k}$ do
4: **if** $s_{\ell}^e \notin \mathcal{N}_{\ell}^M$ then 4: **if** s^e $\overline{5}$ $\notin \widetilde{\mathcal{N}}_k^M$ then 5: \overrightarrow{P} *ins*($\overrightarrow{s^e}$ $\begin{aligned} \n\ddot{\mathbf{e}}_t & \rightarrow \{v_j^x\}, \, \mathcal{N}_k^M \leftarrow \mathcal{N}_k^M \cup \{s_\ell^e\} \n\end{aligned}$ } 6: 7: $\qquad \qquad \text{Pins}(s_\ell^e) \leftarrow \text{Pins}(s_\ell^e) \cup \{v_j^x\}$ ` B *Expand-receive nets* 8: **for** each $a_{t,j} \in \mathcal{A}_k$ **do**
9: **for** each $x_i \in \mathcal{X}_{\ell+k}$ 9: **for** each $x_j \in \mathcal{X}_{\ell \neq k}$ do
10: **if** $r^e \notin \mathcal{N}^M$ then 10: **if** r^e ` $\notin \mathcal{N}_k^M$ then 11: \overrightarrow{P} *ins*($\overrightarrow{r}_{\ell}^e$ $(v_{t,j}^a) \leftarrow \{v_{t,j}^a\}, N_k^M \leftarrow N_k^M \cup \{r_{\ell}^a\}$ } $12:$ 13: $\qquad \qquad \text{Pins}(r_{\ell}^e) \leftarrow \text{Pins}(r_{\ell}^e) \cup \{v_{t,j}^a\}$ ` B *Fold-send nets* 14: **for** each $a_{i,t} \in \mathcal{A}_k$ **do**
15: **for** each $v_i \in \mathcal{N}_{e+k}$ 15: **for** each $y_i \in \mathcal{Y}_{\ell \neq k}$ do
16: **if** $s^f \notin \mathcal{N}^M$, then 16: **if** $s_\ell^f \notin \mathcal{N}_k^M$ then 17: $\qquad Pins(s)$ \mathcal{N}_{k}^{f} \rightarrow $\{v_{i,t}^{a}\}, \mathcal{N}_{k}^{M}$ \leftarrow \mathcal{N}_{k}^{M} \cup $\{s_{i}^{b}\}$ } 18: else 19: $\qquad \qquad \text{Pins}(s_\ell^f) \leftarrow \text{Pins}(s_\ell^f) \cup \{v_{i,t}^a\}$ ` B *Fold-receive nets* 20: for each $y_i \in \mathcal{Y}_k$ do 21: **for** each $a_{i,t} \in \mathcal{A}_{\ell \neq k}$ do
22: **if** $r^f \notin \mathcal{N}^M$ then 22: **if** r'_e .
n $\notin \mathcal{N}_{k}^{M}$ then 23: $\qquad \qquad \text{Pins}(r_{\ell}^f) \leftarrow \{v_i^y\}$ $\mathcal{N}_k^M \leftarrow \mathcal{N}_k^M \cup \{r_\ell^f\}$ 24: else 25: $\qquad Pins(r)$ \mathcal{L}^{f}_{ℓ} ← *Pins*(r^{f}_{ℓ}
 $\mathcal{L}^{f}(N_{\ell})$ $\begin{aligned} \binom{f}{\ell} \cup \{v_i^y\} \end{aligned}$ *i* } 26: **return** $\mathcal{H}_k^M = (\mathcal{V}_k, \mathcal{N}_k^M)$

³⁵⁶ *x*-vector entries required by the computational tasks in P_ℓ . That is,

$$
Pins(s_{\ell}^{e}) = \{v_{j}^{x} : x_{j} \in X_{k} \text{ and } \exists a_{t,j} \in \mathcal{A}_{\ell}\}.
$$

The formation and addition of expand-send nets are per-formed in lines 2–7 of Algorithm [2.](#page-4-0) After bipartitioning 360 \mathcal{H}_{k}^{M} , if s_{ℓ}^{e} becomes cut in $\Pi(\mathcal{H}_{k}^{M})$, both $\mathcal{P}_{k,L}$ and $\mathcal{P}_{k,R}$ send
2. processes to \mathcal{P}_{k} , where the contents of the messesses contents ³⁶¹ a message to P_t , where the contents of the messages sent from $\mathcal{P}_{k,L}$ and $\mathcal{P}_{k,R}$ to \mathcal{P}_{ℓ} are $\{x_j : v_j^x \in \mathcal{V}_{k,L}$ and $a_{i,j} \in \mathcal{P}_{\ell}\}$ ass and $\{x_j : v_j^x \in V_{k,R} \text{ and } a_{t,j} \in \mathcal{A}_{\ell}\}\$, respectively. The overall number of messages in the pre-communication phase increases by one in this case since P_k was sending a single message to P_ℓ and it is split into two messages after $\frac{1}{367}$ bipartitioning. If s_ℓ^e becomes uncut, the overall number of 368 messages does not change since only one of $P_{k,L}$ and $P_{k,R}$ $s₃₆₉$ sends a message to P_{ℓ} .

• **expand-receive net** r^e . Net r^e represents the message re-³⁷² ceived by P_k from P_ℓ during the expand operations on ³⁷³ *x*-vector entries in the pre-communication phase. This 374 message consists of the *x*-vector entries owned by P_ℓ and
375 needed by P_ℓ . Hence, r_ℓ^e connects the vertices that repneeded by P_k . Hence, r_ℓ^e connects the vertices that rep-376 resent the computational tasks requiring *x*-vector entries ³⁷⁷ from P_ℓ . That is,

$$
Pins(r_{\ell}^{e}) = \{v_{t,j}^{a} : a_{t,j} \in \mathcal{A}_{k} \text{ and } x_{j} \in \mathcal{X}_{\ell}\}.
$$

³⁷⁸ The formation and addition of expand-receive nets ³⁷⁹ are performed in lines 8–13 of Algorithm [2.](#page-4-0) After bipartitioning \mathcal{H}_k^M , if r_ℓ^e becomes cut in $\Pi(\mathcal{H}_k^M)$, both $P_{k,L}$ and $P_{k,R}$ receive a message from P_{ℓ} , where 382 the contents of the messages received by $P_{k,L}$ and
383 $P_{k,R}$ from P_{ℓ} are $\{x_i : \nu^a \in V_{k,I} \text{ and } x_i \in X_{\ell}\}\$ and ³⁸³

³⁸⁴ $P_{k,R}$ from P_{ℓ} are $\{x_j : v_{t,j}^a \in V_{k,L} \text{ and } x_j \in X_{\ell}\}\$ and
 $\{x_j : v_{t,j}^a \in V_{k,R} \text{ and } x_j \in X_{\ell}\}\)$, respectively. The overall ³⁸⁵ number of messages in the pre-communication phase increases by one in this case and does not change if r_e^e ³⁸⁷ becomes uncut.

386

388

404

406

• **fold-send net** s_f^f : Net s_f^f represents the message sent from ³⁹⁰ P_k to P_ℓ during the fold operations on *y*-vector entries in the next communication phase. This message consists of 391 the post-communication phase. This message consists of $_{424}$ ³⁹² the partial results computed by P_k for the *y*-vector entries₄₂₅ owned by P_t . Hence, s_t^f connects the vertices that repre-
393 contribute commutational teals whose portial results are no 394 sent the computational tasks whose partial results are re-³⁹⁵ quired by P_ℓ . That is,

$$
Pins(s_{\ell}^f) = \{v_{i,t}^a : a_{i,t} \in \mathcal{A}_k \text{ and } y_i \in \mathcal{Y}_{\ell}\}.
$$

³⁹⁶ The formation and addition of fold-send nets are⁴³¹
performed in lines 14–19 of Algorithm 2. After⁴³² ³⁹⁷ performed in lines 14–19 of Algorithm [2.](#page-4-0) After bipartitioning \mathcal{H}_k^M , if s_ℓ^f becomes cut in $\Pi(\mathcal{H}_k^M)$, both $P_{k,L}$ and $P_{k,R}$ send a message to P_{ℓ} , where 400 the contents of the messages sent from $P_{k,L}$ and
 $P_{k,L}$ and $P_{k,L}$ and $P_{k,L}$ and $P_{k,L}$ and $P_{k,L}$ and $P_{k,L}$ 401 $P_{k,R}$ to P_{ℓ} are $\{y_i^{(k,L)} : v_{i,t}^a \in V_{k,L} \text{ and } y_i \in Y_{\ell}\}\)$ and *i*, $\{y_i^{(k,R)} : y_{i,t}^a \in V_{k,R} \text{ and } y_i \in V_{\ell}\}\)$, respectively. The overall $\{y_i^{(k,R)} : y_{i,t}^a \in V_{k,R} \text{ and } y_i \in V_{\ell}\}\)$, respectively. The overall ⁴⁰² *i*,^{*t*}</sup>,*t i*, *i*_{*t,t*} *c <i>r***_{***k,R***}
and**<sub>*j_{<i>t*} *c s***_{***t***}_{***f***}
f f_{***k,R***}
and*<sub>*j_{<i>t*} *c s f_{***f***}
***f f f f f f f f f f*</sub></sub> increases by one in this case and does not change if s_f^f ⁴⁰⁵ becomes uncut.

-
- **fold-receive net** r_f^f : Net r_f^f represents the message re-⁴⁰⁸ ceived by P_k from P_ℓ during the fold operations on *y*-
vector ortices in the post communication phase. This mas ⁴⁰⁹ vector entries in the post-communication phase. This mes-410 sage consists of the partial results computed by P_ℓ for the⁴⁴⁶ v-vector entries owned by P_ℓ . Hence, r_ℓ^f connects the ver-⁴⁴⁷ ⁴¹¹ y-vector entries owned by P_k . Hence, r^f_ℓ connects the vertices that represent the *y*-vector entries for which P_ℓ pro-
diagon partial results. That is ⁴¹³ duces partial results. That is,

$$
Pins(r_{\ell}^{f}) = \{v_{i}^{y} : y_{i} \in \mathcal{Y}_{k} \text{ and } \exists a_{i,t} \in \mathcal{A}_{\ell}\}.
$$

⁴¹⁴ The formation and addition of fold-receive nets are per-453 415 formed in lines $20-25$ of Algorithm [2.](#page-4-0) After bipartition-₄₅₄ $\lim_{k \to \infty} H_n^M$, if r_ℓ^f becomes cut in $\Pi(\mathcal{H}_k^M)$, both $\mathcal{P}_{k,L}$ and $\mathcal{P}_{k,R}$
measure a measure from \mathcal{P}_k , where the sentents of the measure receive a message from P_ℓ , where the contents of the mes-

content and P_ℓ and P_ℓ from P_ℓ and $\left(\frac{f(\ell)}{f(\ell)}, \frac{f(\ell)}{f(\ell)}\right)$ sages received by $P_{k,L}$ and $P_{k,R}$ from P_{ℓ} are ${y_i^{(\ell)}}: v_i^{\gamma}$ ⁴¹⁸ sages received by $P_{k,L}$ and $P_{k,R}$ from P_{ℓ} are $\{y_i^{(\ell)} : v_i^y \in$ $\mathcal{V}_{k,L}$ and $a_{i,t} \in \mathcal{A}_{\ell}$ and $\{y_i^{(\ell)} : v_i^y \}$ 419 $\mathcal{V}_{k,L}$ and $a_{i,t} \in \mathcal{A}_{\ell}$ and $\{y_i^{(\ell)} : v_i^y \in \mathcal{V}_{k,R}$ and $a_{i,t} \in \mathcal{A}_{\ell}\},$

Figure 4: A 5-way nonzero-based partition of an SpMV instance $y = Ax$.

⁴²⁰ respectively. The overall number of messages in the post-⁴²¹ communication phase increases by one in this case and $\frac{1}{422}$ does not change if r_f^f becomes uncut.

Note that at most four message nets are required to encapsulate the messages between processor groups P_k and P_ℓ . The messages note in \mathcal{H}_k^M encounted all the messages that \mathcal{P}_k com-⁴²⁵ message nets in \mathcal{H}_k^M encapsulate all the messages that \mathcal{P}_k communicates with other processor groups. Since the number of leaf hypergraphs is K' , \mathcal{P}_k may communicate with at most $K'-1$ ⁴²⁸ processor groups, hence the maximum number of message nets that can be added to \mathcal{H}_k is $4(K'-1)$.

⁴³⁰ Figure [4](#page-5-0) displays an SpMV instance with a 6 × 8 matrix *A*, which is being partitioned by the proposed model. The RB process is at the state where there are five leaf hypergraphs $\mathcal{H}_1, \ldots, \mathcal{H}_5$, and the hypergraph to be bipartitioned next is H_3 . The figure displays the assignments of the matrix nonzeros and vector entries to the corresponding processor groups $\mathcal{P}_1, \ldots, \mathcal{P}_5$. Each symbol in the figure represents a distinct processor group and a symbol inside a cell signifies the assignment of the corresponding matrix nonzero or vector entry to the processor group represented by that symbol. For example, 440 the nonzeros in $\mathcal{A}_3 = \{a_{1,3}, a_{1,7}, a_{2,3}, a_{2,4}, a_{4,5}, a_{4,7}\}\$, *x*-vector entries in $\mathcal{X}_3 = \{x_3, x_7\}$, and *y*-vector entries in $\mathcal{Y}_3 = \{y_1, y_4\}$ are 441 tries in $X_3 = \{x_3, x_7\}$, and *y*-vector entries in $\mathcal{Y}_3 = \{y_1, y_4\}$ are assigned to \mathcal{P}_3 . The left of Figure 5 displays the augmented assigned to \mathcal{P}_3 . The left of Figure [5](#page-6-0) displays the augmented ⁴⁴³ hypergraph \mathcal{H}_{3}^{M} that contains volume and message nets. In the figure, the volume nets are illustrated by small black circles with thin lines, whereas the message nets are illustrated by the respective processor's symbol with thick lines.

The messages communicated by \mathcal{P}_3 under the assignments given in Figure [4](#page-5-0) are displayed at the top half of Table [1.](#page-6-1) In 449 the pre-communication phase, P_3 sends a message to P_4 and 450 receives a message from P_1 , and in the post-communication 451 phase, it sends a message to \mathcal{P}_2 and receives a message from 452 \mathcal{P}_4 . Hence, we add four message nets to \mathcal{H}_3 : expand-send net s_4^e , expand-receive net r_1^e , fold-send net s_2^f ⁴⁵³ s_4^e , expand-receive net r_1^e , fold-send net s_2^f , and fold-receive net *r f* ⁴⁵⁴ r_4^f . In Figure [5,](#page-6-0) for example, r_1^e connects the vertices $v_{2,4}^a$ and ⁴⁵⁴ V_4 . In 1 gare 5, for example, V_1 connects the vertices $V_{2,4}^2$ and $V_{4,5}^4$ since it represents the message received by \mathcal{P}_3 from \mathcal{P}_1 con $v_{4,5}$ since it represents the message received by 7 3 non 7 1 con-
taining { x_4 , x_5 } due to nonzeros $a_{2,4}$ and $a_{4,5}$. The right of Fig-
 $v_{4,5}$ ure 5 displays a bipartition $\Pi(\mathcal{H}^M)$ and the messages th ⁴⁵⁷ ure [5](#page-6-0) displays a bipartition $\Pi(\mathcal{H}_3^M)$ and the messages that $\mathcal{P}_{3,L}$
and \mathcal{P}_{3} communicate with the other processor groups due to and $P_{3,R}$ communicate with the other processor groups due to

Figure 5: Left: Augmented hypergraph \mathcal{H}_3^M with 5 volume and 4 message nets. Right: A bipartition $\Pi(\mathcal{H}_3^M)$ with two cut message nets (s_2^f, r_4^f) and two cut volume nets (n_7^x, n_2^y) .

Table 1: The messages communicated by \mathcal{P}_3 in pre- and post-communication phases before and after bipartitioning \mathcal{H}_{3}^{M} . The number of messages communicated by \mathcal{P}_3 increases from 4 to 6 due to two cut message nets in $\Pi(\mathcal{H}_3^M)$.

RB state	phase	message	due to
before $\Pi({\cal H}_3^M)$	pre	\mathcal{P}_3 sends { x_3, x_7 } to \mathcal{P}_4 \mathcal{P}_3 receives { x_4, x_5 } from \mathcal{P}_1	$a_{5,3}, a_{5,7}$ $a_{2,4}, a_{4,5}$
	post	\mathcal{P}_3 sends $\{y_2^{(3)}\}$ to \mathcal{P}_2 \mathcal{P}_3 receives $\{y_1^{(4)}, y_4^{(4)}\}$ from \mathcal{P}_4	$a_{2,3}, a_{2,4}$ $a_{1,1}, a_{4,1}$
after $\Pi(\mathcal{H}_3^M)$	pre	$\mathcal{P}_{3,L}$ sends { x_3, x_7 } to \mathcal{P}_4 $\mathcal{P}_{3,R}$ receives { x_4, x_5 } from \mathcal{P}_1	$a_{5,3}, a_{5,7}$ $a_{2,4}, a_{4,5}$
	post	$\mathcal{P}_{3,L}$ sends $\{y_2^{(3,L)}\}\$ to \mathcal{P}_2 $\mathcal{P}_{3,R}$ sends $\{y_2^{(3,R)}\}$ to \mathcal{P}_2 $\mathcal{P}_{3,L}$ receives $\{y_1^{(4)}\}$ from \mathcal{P}_4 $\mathcal{P}_{3,R}$ receives $\{y_4^{(4)}\}$ from \mathcal{P}_4	$a_{2,3}$ $a_{2,4}$ $a_{1,1}$ $a_{4,1}$

 $\Pi(\mathcal{H}_{3}^{M})$ are given in the bottom half of Table [1.](#page-6-1) Since *s*^{*e*}₄ and *r*^{*e*}₁ are uncut, only one of *P*₃*L* and *P*_{3*R*} participates in sending or 459 receiving the corresponding message. Since *s f* ⁴⁶¹ receiving the corresponding message. Since s_2^f is cut, both $\mathcal{P}_{3,L}$ and $\mathcal{P}_{3,R}$ send a message to \mathcal{P}_2 , and since r_4^f ⁴⁶² and $P_{3,R}$ send a message to P_2 , and since r_4^f is cut, both $P_{3,L}$ 463 and $\mathcal{P}_{3,R}$ receive a message from \mathcal{P}_4 .
464 In \mathcal{H}^M , each volume net is assigned $\lim_{k \to \infty} H_k^M$, each volume net is assigned the cost of the per-word 465 transfer time, t_w , whereas each message net is assigned the cost⁴⁹⁶ 466 of the start-up latency, t_{5H} . Let *v* and *m* respectively denote the⁴⁹⁷ μ_{467} number of volume and message nets that are cut in $\Pi(\mathcal{H}_k^M)$. ⁴⁶⁸ Then,

$$
cutsize(\Pi(\mathcal{H}_k^M)) = vt_w + mt_{su}.
$$

⁴⁶⁹ Here, *v* is equal to the increase in the total communication vol-⁴⁷⁰ ume incurred by $\Pi(\mathcal{H}_k^M)$ [\[1\]](#page-12-0). Recall that each cut message net 471 increases the number of messages that P_k communicates with 504 472 the respective processor group by one. Hence, *m* is equal to₅₀₅ 473 the increase in the number of messages that P_k communicates₅₀₆

with other processor groups. The overall increase in the total a₇₅ message count due to $\Pi(\mathcal{H}_k^M)$ is $m + \delta$, where δ denotes the number of messages between $\mathcal{P}_{k,k}$ and $\mathcal{P}_{k,k}$ and is bounded by 476 number of messages between $P_{k,L}$ and $P_{k,R}$, and is bounded by two (empirically found to be almost always two). Hence, min- \lim imizing the cutsize of $\Pi(\mathcal{H}_k^M)$ corresponds to simultaneously reducing the increase in the total communication volume and the total message count in the respective RB step. Therefore, minimizing the cutsize in all RB steps corresponds to reducing the total communication volume and the total message count simultaneously.

After obtaining a bipartition $\Pi(\mathcal{H}_k^M) = \{V_{k,L}, V_{k,R}\}\$ of the summerted by pergraphs \mathcal{H}_k , the new by pergraphs $\mathcal{H}_{k,k}$. ass augmented hypergraph \mathcal{H}_k^M , the new hypergraphs $\mathcal{H}_{k,L}$ = $(V_{k,L}, N_{k,L})$ and $H_{k,R} = (V_{k,R}, N_{k,R})$ are immediately formed with only volume nets. Recall that the formation of the volume nets of $\mathcal{H}_{k,L}$ and $\mathcal{H}_{k,R}$ is performed with the cut-net splitting technique and it can be performed using the local bipartition ⁴⁹⁰ information $\Pi(\mathcal{H}_k^M)$.

⁴⁹¹ *3.2. The overall RB*

After completing an RB step and obtaining $\mathcal{H}_{k,L}$ and $\mathcal{H}_{k,R}$, the labels of the hypergraphs represented by the leaf nodes of the RB tree are updated as follows. For $1 \le i \le k$, the label 495 of $\mathcal{H}_i = (\mathcal{V}_i, \mathcal{N}_i)$ does not change. For $k < i < K'$, $\mathcal{H}_i =$
495 (\mathcal{V}_i , \mathcal{N}_i) becomes $\mathcal{H}_{i+1} = (\mathcal{V}_{i+1}, \mathcal{N}_{i+1})$. Hypergraphs $\mathcal{H}_{i+1} =$ ⁴⁹⁶ (V_i, N_i) becomes $\mathcal{H}_{i+1} = (V_{i+1}, N_{i+1})$. Hypergraphs $\mathcal{H}_{k,L} =$
 (V_i, N_i) and $\mathcal{H}_{i+1} = (V_{i+1}, N_{i+1})$. become $\mathcal{H}_{i+1} = (V_i, N_i)$ and $(V_{k,L}, N_{k,L})$ and $H_{k,R} = (V_{k,R}, N_{k,R})$ become $H_k = (V_k, N_k)$ and ⁴⁹⁸ $H_{k+1} = (V_{k+1}, N_{k+1})$, respectively. As a result, the vertex sets
⁴⁹⁹ corresponding to the undated leaf nodes induce a $(K' + 1)$ -way ⁴⁹⁹ corresponding to the updated leaf nodes induce a $(K' + 1)$ -way 500 partition $\Pi_{K'+1}(\mathcal{H}) = {\mathcal{V}_1, \ldots, \mathcal{V}_{K'+1}}$. The RB process then continues with the next hypergraph \mathcal{H}_{k+2} to be bipartitioned. continues with the next hypergraph H_{k+2} to be bipartitioned, which was labeled with H_{k+1} in the previous RB state.

We next provide the cost of adding message nets through Al-gorithm [2](#page-4-0) in the entire RB process. For the addition of expandsend nets, all nonzeros $a_{t,j} \in \mathcal{A}_{\ell \neq k}$ with $x_j \in \mathcal{X}_k$ are visited 506 once (lines 2–7). Since $\chi_k \cap \chi_\ell = \emptyset$ for $1 \le k \ne \ell \le K'$ and

⁵⁰⁷ $X = \bigcup_{k=1}^{K'} X_k$, each nonzero of *A* is visited once. For the addi- 508 tion of expand-receive nets, all nonzeros in \mathcal{A}_k are visited oncess¹ ⁵⁰⁹ (lines 8–13). Hence, each nonzero of *A* is visited once during 510 the bipartitionings in a level of the RB tree since $\mathcal{A}_k \cap \mathcal{A}_\ell = 0$ ₅₆₃ for $1 \le k \neq \ell \le K'$ and $\mathcal{A} = \bigcup_{k=1}^{K'} \mathcal{A}_k$. Therefore, the cost of 564 511 for $1 \le k \neq \ell \le K'$ and $\mathcal{A} = \bigcup_{k=1}^{K'} \mathcal{A}_k$. Therefore, the cost of 512 adding expand-send and expand-receive nets is $O(n_{nz})$ in a sin-ses ⁵¹³ gle level of the RB tree. A dual discussion holds for the addition ⁵¹⁴ of fold-send and fold-receive nets. Since the RB tree contains 515 [log K] levels in which bipartitionings take place, the overall \cos cost of adding message nets is $O(n_{nz} \log K)$.

⁵¹⁷ *3.3. Adaptation for conformal partitioning*

518 Partitions on input and output vectors x and y are said to be⁵⁷¹ 519 conformal if x_i and y_i are assigned to the same processor, for 572 $520 \quad 1 \le i \le n_r = n_c$. Note that conformal vector partitions are valid 521 for $y = Ax$ with a square matrix. The motivation for a conformal $_{522}$ partition arises in iterative solvers in which the y_i in an iteration 523 is used to compute the x_i of the next iteration via linear vector s_{24} operations. Assigning x_i and y_i to the same processor prevents s_{25} the redundant communication of y_i to the processor that owns 526 x_i .

⁵²⁷ Our model does not impose conformal partitions on vectors α *x* and *y*, i.e., x_i and y_i can be assigned to different processors. ⁵²⁹ However, it is possible to adapt our model to obtain confor- 530 mal partitions on *x* and *y* using the vertex amalgamation tech- $\frac{25}{575}$ $\frac{1}{531}$ nique proposed in [\[9\]](#page-14-0). To assign x_i and y_i to the same processor, the vertices v_i^x and v_j^y the vertices v_i^x and v_i^y are amalgamated into a new vertex $v_i^{x/y}$, sss which represents both x_i and y_i . The weight of $v_i^{x/y}$ is set to be zero since the weights of v_i^x and v_i^y ⁵³⁴ be zero since the weights of v_i^x and v_i^y are zero. In \mathcal{H}_k^M , each volume/message net that connects v_i^x or v_j^y ⁵³⁵ volume/message net that connects v_i^x or v_i^y now connects the $\sum_{i=1}^{536}$ amalgamated vertex $v_i^{x/y}$. At each RB step, x_i and y_i are both 537 assigned to the processor group corresponding to the leaf hy-538 pergraph that contains $v_i^{x/y}$.

⁵³⁹ 4. Optimizing medium-grain partitioning model

 In this section, we propose a medium-grain hypergraph par- titioning model that simultaneously reduces the bandwidth and latency costs of the row-column-parallel SpMV. Our model is built upon the original medium-grain partitioning model (Sec- tion [2.4\)](#page-3-1). The medium-grain hypergraphs in RB are augmented with the message nets before they are bipartitioned as in the fine-grain model proposed in Section [3.](#page-3-0) Since the fine-grain and medium-grain models both obtain nonzero-based partitions, the types and meanings of the message nets used in the medium- grain model are the same as those used in the fine-grain model. However, forming message nets for a medium-grain hypergraph is more involved due to the mappings used in this model.

 552 Consider an SpMV instance $y = Ax$ and the corresponding 553 sets $\mathcal{A}, \mathcal{X},$ and \mathcal{Y} . Assume that the RB process is at the state $_{554}$ before bipartitioning the *k*th leaf node where there are K' leaf 555 nodes in the current RB tree. Recall from Section [2.4](#page-3-1) that the 591 **S56** leaf nodes induce *K'*-way partitions $\Pi_{K'}(\mathcal{A}) = \{\mathcal{A}_1, \dots, \mathcal{A}_{K'}\}$, $\Pi_{K'}(\mathcal{X}) = \{X, \dots, X_{K'}\}$ and $\Pi_{K'}(\mathcal{Y}) = \{Y, \dots, Y_{K'}\}$ and the 557 $\Pi_{K'}(X) = \{X_1, \ldots, X_{K'}\}$ and $\Pi_{K'}(Y) = \{Y_1, \ldots, Y_{K'}\}$, and the 593
558 kth leaf node represents \mathcal{A}_k , X_k , and Y_k . To obtain bipartitions₅₉₄ *k*th leaf node represents \mathcal{A}_k , \mathcal{X}_k , and \mathcal{Y}_k . To obtain bipartitions₅₉₄ 559 of \mathcal{A}_k , \mathcal{X}_k , and \mathcal{Y}_k , we perform the following four steps.

1) Form the medium-grain hypergraph $H_k = (V_k, N_k)$ using \mathcal{A}_k *,* \mathcal{X}_k *, and* \mathcal{Y}_k *.* This process is the same with that in the orig-inal medium-grain model (Section [2.4\)](#page-3-1). Recall that the nets in the medium-grain hypergraph encapsulate the total communication volume. Hence, these nets are assigned a cost of t_w .

⁵⁶⁵ *2) Add message nets to* H*^k to obtain augmented hypergraph* ⁵⁶⁶ \mathcal{H}_{k}^{M} . For each processor group \mathcal{P}_{ℓ} other than \mathcal{P}_{k} , there are four possible message nets that can be added to \mathcal{H}_k :

- **expand-send net** s^e_i : The set of vertices connected by s^e_j is 569 the same with that of the expand-send net in the fine-grain ⁵⁷⁰ model.
- **expand-receive net** r^e . The set of vertices connected by ⁵⁷² *r*^e is given by

$$
Pins(r_{\ell}^{e}) = \{v_{j}^{x} : \exists a_{t,j} \in \mathcal{A}_{k} \text{ s.t. } map(a_{t,j}) = c_{j} \text{ and } x_{j} \in \mathcal{X}_{\ell}\} \cup \{v_{t}^{y} : \exists a_{t,j} \in \mathcal{A}_{k} \text{ s.t. } map(a_{t,j}) = r_{t} \text{ and } x_{j} \in \mathcal{X}_{\ell}\}.
$$

• **fold-send net** s^f : The set of vertices connected by s^f is given by

$$
Pins(s_{\ell}^f) = \{v_t^x : \exists a_{i,t} \in \mathcal{A}_k \text{ s.t. } map(a_{i,t}) = c_t \text{ and } y_i \in \mathcal{Y}_{\ell}\} \cup \{v_i^y : \exists a_{i,t} \in \mathcal{A}_k \text{ s.t. } map(a_{i,t}) = r_i \text{ and } y_i \in \mathcal{Y}_{\ell}\}.
$$

• **fold-receive net** r_f^f : The set of vertices connected by r_f^f is 576 the same with that of the fold-receive net in the fine-grain model.

The message nets are assigned a cost of $t_{\rm su}$ as they encapsulate the latency cost.

⁵⁸⁰ 3) Obtain a bipartition $\Pi(\mathcal{H}_k^M)$. \mathcal{H}_k^M is bipartitioned to ob- $\begin{aligned} \n\text{ts}_{1} \quad \text{tain } \Pi(\mathcal{H}_k^M) = \{V_{k,L}, V_{k,R}\}. \n\text{For } \quad A \text{ Derive bipartitions.} \n\end{aligned}$

582 *4)* Derive bipartitions $\Pi(\mathcal{A}_k) = {\mathcal{A}_{k,L}}, \mathcal{A}_{k,R}$ *,* $\Pi(\mathcal{X}_k) =$
583 ${\mathcal{X}_{k,L}}, \mathcal{X}_{k,R}$ *l* and $\Pi(\mathcal{Y}_k) = {\mathcal{Y}_{k,L}}, \mathcal{Y}_{k,R}$ *l from* $\Pi(\mathcal{H}_k^M)$. For each ${X_{k,L}, X_{k,R}}$ *and* ${\Pi(\mathcal{Y}_k) = {\{\mathcal{Y}_{k,L}, \mathcal{Y}_{k,R}\}}$ *from* ${\Pi(\mathcal{H}_k^M)}$. For each popmary $a_{k,k} \in \mathcal{A}_k$, $a_{k,k}$ is assigned to \mathcal{A}_k , if the vertex that repnonzero $a_{i,j} \in \mathcal{A}_k$, $a_{i,j}$ is assigned to $\mathcal{A}_{k,L}$ if the vertex that rep-
researce $a_{i,j}$ is in Ω' , and to $\mathcal{A}_{k,j}$ otherwise. That is resents $a_{i,j}$ is in $V_{k,L}$, and to $\mathcal{A}_{k,R}$, otherwise. That is,

$$
\mathcal{A}_{k,L} = \{a_{i,j} : map(a_{i,j}) = c_j \text{ with } v_j^x \in \mathcal{V}_{k,L} \text{ or } \nmap(a_{i,j}) = r_i \text{ with } v_i^y \in \mathcal{V}_{k,L} \text{ and } \nmathcal{A}_{k,R} = \{a_{i,j} : map(a_{i,j}) = c_j \text{ with } v_j^x \in \mathcal{V}_{k,R} \text{ or } \nmap(a_{i,j}) = r_i \text{ with } v_i^y \in \mathcal{V}_{k,R} \}.
$$

For each *x*-vector entry $x_j \in X_k$, x_j is assigned to $X_{k,L}$ if $v_j^x \in \Omega$ $\mathcal{V}_{k,L}$, and to $\mathcal{X}_{k,R}$, otherwise. That is,

$$
X_{k,L} = \{x_j : v_j^x \in V_{k,L}\}\
$$
 and $X_{k,R} = \{x_j : v_j^x \in V_{k,R}\}.$

Similarly, for each *y*-vector entry $y_i \in \mathcal{Y}_k$, y_i is assigned to $\mathcal{Y}_{k,L}$
if $y_i^y \in \mathcal{Y}_k$ and to \mathcal{Y}_k otherwise. That is if v_i^y $i \in V_i^y \in V_{k,L}$, and to $\mathcal{Y}_{k,R}$, otherwise. That is,

$$
\mathbf{\mathcal{Y}}_{k,L} = \{y_i : v_i^y \in \mathbf{\mathcal{V}}_{k,L}\} \text{ and } \mathbf{\mathcal{Y}}_{k,R} = \{y_i : v_i^y \in \mathbf{\mathcal{V}}_{k,R}\}.
$$

Figure [6](#page-8-2) displays the medium-grain hypergraph \mathcal{H}_{3}^{M} = ⁵⁹¹ (V_3 , N_4^M) augmented with message nets, which is formed during bipartitioning \mathcal{A}_3 , \mathcal{X}_3 and \mathcal{Y}_3 given in Figure [4.](#page-5-0) The table in the figure displays $map(a_{i,j})$ value for each nonzero in \mathcal{A}_3 computed by the heuristic described in Section [2.4.](#page-3-1) Aug- 595 mented medium-grain hypergraph H_3 has four message nets.

Figure 6: The augmented medium-grain hypergraph \mathcal{H}_{3}^{M} formed during the RB process for the SpMV instance given in Figure [4.](#page-5-0)

⁵⁹⁶ Observe that the sets of vertices connected by expand-send net s_4^e and fold-receive net r_4^f 597 s_4^e and fold-receive net r_4^f are the same for the fine-grain and ⁵⁹⁸ medium-grain hypergraphs, which are respectively illustrated in Figures [5](#page-6-0) and [6.](#page-8-2) Expand-receive net r_1^e connects v_4^x and v_5^x 599 600 since P_3 receives $\{x_4, x_5\}$ due to nonzeros in $\{a_{2,4}, a_{4,5}\}$ with $a_{5,60}$
601 map($a_{3,4}$) = c_4 and map($a_{4,5}$) = c_5 . Fold-send net s_5^f connects 648 $map(a_{2,4}) = c_4$ and $map(a_{4,5}) = c_5$. Fold-send net s_2^f ⁶⁰¹ $map(a_{2,4}) = c_4$ and $map(a_{4,5}) = c_5$. Fold-send net s'_2 connects v_4^x and v_2^y y_2^y since P_3 sends partial result $y_2^{(3)}$ ⁶⁰² v_4^x and v_2^y since \mathcal{P}_3 sends partial result $y_2^{(3)}$ due to nonzeros in ${a_{2,3}, a_{2,4}}$ with $map(a_{2,3}) = r_2$ and $map(a_{2,4}) = c_4$.
Similar to Section 3, after obtaining binartition Similar to Section [3,](#page-3-0) after obtaining bipartitions $\Pi(\mathcal{A}_k) = 661$

605 { $\mathcal{A}_{k,L}$, $\mathcal{A}_{k,R}$ }, $\Pi(\mathcal{X}_k) = \{X_{k,L}, X_{k,R}\}$, and $\Pi(\mathcal{Y}_k) = \{Y_{k,L}, Y_{k,R}\}$, 652 { $\theta_{k,R}$ }, 6 the labels of the parts represented by the leaf nodes are up- 65 607 dated in such a way that the resulting $(K' + 1)$ -way parti-608 tions are denoted by $\Pi_{K'+1}(\mathcal{A}) = \{\mathcal{A}_1, \dots, \mathcal{A}_{K'+1}\}, \Pi_{K'+1}(\mathcal{X}) = 655$
609 $\{\mathcal{X}_1, \dots, \mathcal{X}_{K'+1}\},$ and $\Pi_{K'}(\mathcal{Y}) = \{\mathcal{Y}_1, \dots, \mathcal{Y}_{K'+1}\}.$ $\{X_1, \ldots, X_{K'+1}\}\$, and $\Pi_{K'}(\mathcal{Y}) = \{\mathcal{Y}_1, \ldots, \mathcal{Y}_{K'+1}\}.$

⁶¹⁰ *4.1. Adaptation for conformal partitioning*

611 Adapting the medium-grain model for a conformal partition⁶⁵⁹ 612 on vectors *x* and *y* slightly differs from adapting the fine-grain $\sum_{k=1}^{\infty}$ model. Vertex set V_k contains an amalgamated vertex $v_i^{x/y}$ if at ⁶¹⁴ least one of the following conditions holds:

 \bullet *x_i* ∈ *X_k*, or equivalently, y_i ∈ \mathcal{Y}_k .

 $\mathbf{a}_{i,i} \in \mathcal{A}_k \text{ s.t. } \mathit{map}(a_{t,i}) = c_i.$

 $\mathbf{a}_{i,t} \in \mathcal{A}_k \text{ s.t. } map(a_{i,t}) = r_i.$

 618 The weight of v_i is assigned as

$$
w(v_i) = |\{a_{t,i} : a_{t,i} \in \mathcal{A}_k \text{ and } \text{map}(a_{t,i}) = c_i\}| +
$$

$$
|\{a_{i,t} : a_{i,t} \in \mathcal{A}_k \text{ and } \text{map}(a_{i,t}) = r_i\}|.
$$

Each volume/message net that connects v_i^x or v_j^y ϵ_{19} Each volume/message net that connects v_i^x or v_i^y in \mathcal{H}_k^M now $\sum_{i=1}^{\infty}$ connects the amalgamated vertex $v_i^{x/y}$.

621 5. Delayed addition and thresholding for message nets

⁶²² Utilization of the message nets decreases the importance at-623 tributed to the volume nets in the partitioning process and this 678 624 may lead to a relatively high bandwidth cost compared to the 625 case where no message nets are utilized. The more the number₆₈₀

 of RB steps in which the message nets are utilized, the higher the total communication volume. A high bandwidth cost can especially be attributed to the bipartitionings in the early levels of the RB tree. There are only a few nodes in the early levels of the RB tree compared to the late levels and each of these nodes represents a large processor group. The messages among these large processor groups are difficult to refrain from. In terms of hypergraph partitioning, since the message nets in the hyper- graphs at the early levels of the RB tree connect more vertices and the cost of the message nets is much higher than the cost of the volume nets $(t_{\text{su}} \gg t_w)$, it is very unlikely for these message nets to be uncut. While the partitioner tries to save these nets from the cut in the early bipartitionings, it may cause high num- ber of volume nets to be cut, which in turn are likely to intro- duce new messages in the late levels of the RB tree. Therefore, adding message nets in the early levels of the RB tree adversely ⁶⁴² affects the overall partition quality in multiple ways.

The RB approach provides the ability to adjust the partitioning parameters in the individual RB steps for the sake of the overall partition quality. In our model, we use this flexibility to exploit the trade-off between the bandwidth and latency costs by selectively deciding whether to add message nets in each bipartitioning. To make this decision, we use the level information of the RB steps in the RB tree. For a given $L < \log K$, the ⁶⁵⁰ addition of the message nets is delayed until the *L*th level of the RB tree, i.e., the bipartitionings in level ℓ are performed only with the volume nets for $0 \le \ell \le L$. Thus, the message nets are included in the bipartitionings in which they are expected to connect relatively fewer vertices.

Using a delay parameter *L* aims to avoid large message nets by not utilizing them in the early levels of the RB tree. How-⁶⁵⁷ ever, there may still exist such nets in the late levels depending ⁶⁵⁸ on the structure of the matrix being partitioned. Another idea is to eliminate the message nets whose size is larger than a given threshold. That is, for a given threshold $T > 0$, a message net *n* $\frac{1}{661}$ with $|Pins(n)| > T$ is excluded from the corresponding bipartition. This approach also enables a selective approach for send tion. This approach also enables a selective approach for send ⁶⁶³ and receive message nets. In our implementation of the row-⁶⁶⁴ column-parallel SpMV, the receive operations are performed 665 by non-blocking MPI functions (i.e., MPI_Irecv), whereas the ⁶⁶⁶ send operations are performed by blocking MPI functions (i.e., ⁶⁶⁷ MPI Send). When the maximum message count or the maxi-⁶⁶⁸ mum communication volume is considered to be a serious bot-⁶⁶⁹ tleneck, blocking send operations may be more limiting com-⁶⁷⁰ pared to non-blocking receive operations. Note that saving mes- 671 sage nets from the cut tends to assign the respective commu-⁶⁷² nication operations to fewer processors, hence the maximum ⁶⁷³ message count and maximum communication volume may in- ϵ_{674} crease. Hence, a smaller threshold is preferable for the send ₆₇₅ message nets while a higher threshold is preferable for the re-676 ceive nets.

6. Experiments

We consider a total of five partitioning models for evaluation. Four of them are nonzero-based partitioning models: the fine-grain model (FG), the medium-grain model (MG), and the

proposed models which simultaneously reduce the bandwidth and latency costs, as described in Section [3](#page-3-0) (FG-LM) and Sec- tion [4](#page-7-0) (MG-LM). The last partitioning model tested is the one- dimensional model (1D-LM) that simultaneously reduces the bandwidth and latency costs [\[17\]](#page-14-8). Two of these five models (FG and MG) encapsulate a single communication cost metric, i.e., total volume, while three of them (FG-LM, MG-LM, and 1D-LM) encapsulate two communication cost metrics, i.e., total volume and total message count. The partitioning constraint of balanc- ing part weights in all these models corresponds to balancing of the computational loads of processors. In the models that address latency cost with the message nets, the cost of the vol- ume nets is set to 1 while the cost of the message nets is set to 50, i.e., it is assumed $t_{\rm su} = 50t_{\rm w}$, which is also the setting 695 recommended in [\[17\]](#page-14-8).

 The performance of the compared models are evaluated in terms of the partitioning cost metrics and the parallel SpMV runtime. The partitioning cost metrics include total volume, to- tal message count, load imbalance, etc. (these are explained in detail in following sections) and they are helpful to test the validity of the proposed models. The hypergraphs in all models are partitioned using PaToH [\[1\]](#page-12-0) in the default set- tings. An imbalance ratio of 10% is used in all models, i.e., $\epsilon = 0.10$. We test for five different number of parts/processors,
 $\epsilon \in \{64, 128, 256, 512, 1024\}$. The parallel SpMV is imple- *K* ∈ {64, 128, 256, 512, 1024}. The parallel SpMV is imple-⁷³⁶ mented using the PETSc toolkit [22] and run on a Blue Gene/O⁷³⁷ mented using the PETSc toolkit [\[22\]](#page-14-13) and run on a Blue Gene/O⁷³⁷ 707 system using the partitions provided by these five models. A⁷³⁸ node on Blue Gene/Q system consists of 16 PowerPC A2 pro- 708
 $\frac{20800 \text{ m}}{740}$ cessors with 1.6 GHz clock frequency and 16 GB memory. 710 The experiments are performed on an extensive dataset con-⁷⁴¹

 taining matrices from the SuiteSparse Matrix Collection [\[23\]](#page-14-14).⁷⁴² We consider the case of conformal vector partitioning as it is⁷⁴³ more common for the applications in which SpMV is use as⁷⁴⁴ a kernel operation. Hence, only the square matrices are con- sidered. We use the following criteria for the selection of test⁷⁴⁶ matrices: (i) the minimum and maximum number of nonzeros⁷⁴⁷ per processor are respectively set to 100 and 100,000, (ii) the⁷⁴⁸ matrices that have more than 50 million nonzeros are excluded,⁷⁴⁹ and (iii) the minimum number of rows/columns per processor is⁷⁵⁰ 720 set to 50. The resulting number of matrices are 833, 730, 616,⁷⁵¹ 721 475, and 316 for $K = 64$, 128, 256, 512, and 1024 processors.⁷⁵² respectively. The union of these sets of matrices makes up to a^{753} total of 978 matrices.

⁷²⁴ *6.1. Tuning parameters for nonzero-based partitioning models*

⁷²⁵ There are two important issues described in Section [5](#page-8-0) regard-⁷²⁶ ing the addition of the message nets for the nonzero-based par-⁷²⁷ titioning models. We next discuss setting these parameters.

⁷²⁸ *6.1.1. Delay parameter (L)*

729 We investigate the effect of the delay parameter *L* on four⁷⁶³ different communication cost metrics for the fine-grain and medium-grain models with the message nets. These cost met- rics are maximum volume, total volume, maximum message count, and total message count. The volume metrics are in terms of number of words communicated. We compare FG-LM

Table 2: The communication cost metrics obtained by the nonzero-based partitioning models with varying delay values (*L*).

			volume	message		
model	L	max	total	max	total	
FG		567	52357	60	5560	
$FG-I.M$	1	2700	96802	56	2120	
$FG-LM$	4	2213	94983	49	2186	
$FG-LM$	5	1818	90802	46	2317	
$FG-I.M$	6	1346	82651	46	2694	
$FG-LM$	7	926	69572	49	3574	
МG		558	49867	57	5103	
MG-LM	1	1368	77479	50	2674	
MG-LM	4	1264	77227	48	2735	
MG-LM	5	1148	74341	47	2809	
$MG-LM$	6	969	69159	47	3066	
MG-LM	7	776	61070	50	3695	

with delay against FG, as well as MG-LM with delay against MG. We only present the results for $K = 256$ since the observations made for the results of different K values are similar. Note that there are $log 256 = 8$ bipartitioning levels in the corresponding RB tree. The tested values of the delay parameter *L* are 1, 4, 5, 6, and 7. Note that the message nets are added in a total of ⁷⁴¹ 4, 3, 2, and 1 levels for the *L* values of 4, 5, 6, and 7, respectively. When $L = 1$, it is equivalent to adding message nets throughout the whole partitioning without any delay. Note that it is not possible to add message nets at the root level (i.e., by setting $L = 0$) since there is no partition available yet to form ⁷⁴⁶ the message nets. The results for the remaining values of *L* are not presented as the tested values contain all the necessary insight for picking a value for *L*. Table [2](#page-9-0) presents the results obtained. The value obtained by a partitioning model for a spe-⁷⁵⁰ cific cost metric is the geometric mean of the values obtained for the matrices by that partitioning model (i.e., the mean of the results for 616 matrices). We also present two plots in Fig-ure [7](#page-10-0) to provide a visual comparison of the values presented in Table [2.](#page-9-0) The plot at the top belongs to the fine-grain mod-⁷⁵⁵ els and each different cost metric is represented by a separate ⁷⁵⁶ line in which the values are normalized with respect to those of the standard fine-grain model FG. Hence, a point on a line below $y = 1$ indicates the variants of FG-LM attaining a better performance in the respective metric compared to FG, whereas ⁷⁶⁰ a point in a line above indicates a worse performance. For ex- 761 ample, FG-LM with $L = 7$ attains 0.72 times the total message ⁷⁶² count of FG, which corresponds to the second point of the line marked with a filled circle. The plot at the bottom compares the medium-grain models in a similar fashion.

It can be seen from Figure [7](#page-10-0) that, compared to FG, FG-LM attains better performance in maximum and total message count, and a worse performance in maximum and total volume. A similar observation is also valid for comparing MG with MG-LM.

Figure 7: The effect of the delay parameter on nonzero-based partitioning mod-801 els in four different communication metrics.

 As the number of RB tree levels in which the message nets are 770 added increases, FG-LM and MG-LM obtain lower latency and⁸⁰⁵ higher bandwidth overheads compared to FG and MG, respec- 806 tively. The improvement rates in latency cost obtained by the partitioning models utilizing the message nets saturate around_{ana} *L* = 6 or *L* = 5, whereas the deterioration rates in bandwidth₈₀₉ cost continue to increase. In other words, adding message nets₈₁₀ in the bipartitionings other than those in the last two or three. levels of the RB tree has small benefits in terms of improving $_{812}$ the latency cost but it has a substantial negative effect on the_{332} bandwidth cost, especially on maximum volume. For this rea- $_{814}$ 780 son, we choose FG-LM and MG-LM with $L = 6$, i.e., add message₈₁₅ nets in the last two levels of the RB tree.

782 **6.1.2.** Message net threshold parameters (T_S, T_R)

 The message net threshold parameters for the send and re- ceive message nets are respectively denoted with T_S and T_R .820 The tested values are set based upon the average degree of the message nets throughout the partitioning, which is found to be close to 30. We evaluate threshold values smaller than, 788 roughly equal to, and greater than this average degree: T_S , $T_R \in \mathbb{R}^2$
789 {15, 30, 50}. We follow a similar experimental setting as for the ses {15, 30, 50}. We follow a similar experimental setting as for the 3825 delay parameter and only present the results for $K = 256$. Insee delay parameter and only present the results for $K = 256$. Insee addition, we omit the discussions for the medium-grain models

Table 3: The communication cost metrics of FG-LM with varying message net thresholds (T_S, T_R) .

			volume	message		
T_S	$T_{\it R}$	max	total	max	total	
		1346	82651	46	2694	
15	15	706	56218	58	4539	
15	30	773	58452	56	4258	
15	50	835	60864	54	4043	
30	15	793	58418	59	4251	
30	30	827	60086	57	4087	
30	50	900	62393	55	3879	
50	15	879	61099	59	4037	
50	30	908	62516	58	3877	
50	50	952	64041	56	3729	

 as the observations made for the fine-grain and medium-grain models are alike. Table [3](#page-10-1) presents the values for four different cost metrics obtained by FG-LM and FG-LM with nine different threshold settings. Note that the delay value of $L = 6$ is utilized in all these experiments.

 The partitionings without large message nets lead to lower bandwidth and higher latency costs as seen in Table [3](#page-10-1) com- pared to the case without any threshold, i.e., FG-LM. The more the number of eliminated message nets, the higher the latency cost and the lower the bandwidth cost. Among the nine combi-802 nations for T_S and T_R in the table, we pick $T_S = 15$ and $T_R = 50$ 803 due to its reasonable maximum volume and maximum message count values for the reasons described in Section [5.](#page-8-0)

⁸⁰⁵ *6.2. Comparison of all partitioning models*

⁸⁰⁶ *6.2.1. Partitioning cost metrics*

We present the values obtained by the four nonzero-based partitioning models in six different partitioning cost metrics in Table [4.](#page-11-0) These cost metrics are computational imbalance (indicated in the column titled "imb $(\%)$ "), maximum and total ⁸¹¹ volume, maximum and total message count, and partitioning time in seconds. Each entry in the table is the geometric mean of the values for the matrices that belong to the respective value of K . The columns three to eight in the table display the actual values, whereas the columns nine to fourteen display the 816 normalized values, where the results obtained by FG-LM and 817 MG-LM at each *K* value are normalized with respect to those ob- 818 tained by FG and MG at that *K* value, respectively. The top half of the table displays the results obtained by the fine-grain models, whereas the bottom half displays the results obtained by the medium-grain models.

Among the four nonzero-based partitioning models com-pared in Table [4,](#page-11-0) the models that consider both the bandwidth and latency overheads achieve better total and maximum message counts compared to the models that solely consider the bandwidth overhead. For example at $K = 256$, FG-LM attains 27% improvement in total message count compared to FG,

		actual values						normalized values w.r.t. FG/MG					
			volume message		part.		volume		message		part.		
K	model	imb $(\%)$	max	total	max	total	time	imb	max	total	max	total	time
64	FG FG-LM	0.91 0.88	413 542	11811 13267	32 29	968 753	7.7 7.4	0.97	1.31	1.12	0.91	0.78	0.97
128	FG FG-LM	1.11 1.01	484 669	24670 28159	45 40	2332 1751	16.4 16.3	0.91	1.38	1.14	0.89	0.75	1.00
256	FG FG-LM	1.36 1.21	567 835	52357 60864	60 54	5560 4043	40.9 40.8	0.89	1.47	1.16	0.90	0.73	1.00
512	FG FG-LM	1.67 1.61	584 863	92141 108497	72 66	11186 8218	77.9 77.2	0.96	1.48	1.18	0.92	0.73	0.99
1024	FG FG-LM	1.87 1.81	530 811	165923 196236	69 66	20209 15415	156.2 159.6	0.97	1.53	1.18	0.96	0.76	1.02
64	MG $MG-LM$	0.90 0.87	412 521	11655 13205	31 28	928 732	3.9 4.1	0.97	1.26	1.13	0.90	0.79	1.06
128	MG MG-LM	1.13 1.08	482 634	24256 27799	44 39	2217 1690	8.1 8.4	0.96	1.32	1.15	0.89	0.76	1.04
256	MG MG-LM	1.48 1.39	558 766	49867 58981	57 52	5103 3876	19.1 20.6	0.94	1.37	1.18	0.91	0.76	1.08
512	MG $MG-LM$	1.91 1.80	588 785	91856 108128	67 62	10265 7878	39.7 43.7	0.94	1.34	1.18	0.93	0.77	1.10
1024	MG $MG-LM$	2.05 2.00	530 724	165722 196443	65 61	18692 14827	82.2 87.5	0.98	1.37	1.19	0.94	0.79	1.06

Table 4: Comparison of nonzero-based partitioning models in six cost metrics.

828 while MG-LM attains 24% improvement in total message count 829 compared to MG. On the other hand, the two models that solely 830 consider the bandwidth overhead achieve better total and maxi-831 mum volume compared to the two models that also consider the 832 latency overhead. This is because FG and MG optimize a single 833 cost metric, while FG-LM and MG-LM aim to optimize two cost 834 metrics at once. At $K = 256$, FG-LM causes 16% deterioration 835 in total volume compared to FG, while MG-LM causes 18% dete-836 rioration in total volume compared to MG. Note that the models 837 behave accordingly in maximum volume and maximum mes-838 sage count metrics as although these metrics are not directly 839 addressed by any of the models, the former one is largely de-840 pendent on the total volume while the latter one is largely de- $\frac{1}{841}$ pendent on the total message count. FG-LM and MG-LM have 842 slightly lower imbalance compared to FG and MG, respectively. 843 Addition of the message nets does not seem to change the par- 844 titioning overhead, a result likely to be a consequence of the 854 845 choice of the delay and net threshold parameters.

846 Another observation worth discussion is the performance of 857 ⁸⁴⁷ the medium-grain models against the performance of the fine-858 848 grain models. When MG is compared to FG or MG-LM is com-859 849 pared to FG-LM, the medium-grain models achieve slightly bet-860 850 ter results in volume and message cost metrics, and slightly 861 851 worse results in imbalance. However, the partitioning overheadsez

Table 5: Comparison of partitioning models in six cost metrics at $K = 256$.

		volume		message	part.	
model	$\text{imb}(\%)$	max	total	max	total	time
$1D-LM$	2.50	968	101565	33	2448	13.2
FG	1.36	567	52357	60	5560	40.9
$FG-LM$	1.21	835	60864	54	4043	40.8
MG	1.48	558	49867	57	5103	19.1
$MG-LM$	1.39	766	58981	52	3876	20.6

of the medium-grain models is much lower than the partitioning overhead of the fine-grain models: the medium grain models are $1.8-2.2x$ faster. This is also one of the main findings of [\[10\]](#page-14-1), which makes the medium-grain model a better alterna-856 tive for obtaining nonzero-based partitions.

⁸⁵⁷ 1D-LM and nonzero-based partitioning models are compared in Table [5](#page-11-1) at $K = 256$. 1D-LM has higher total volume and imbalance, and lower total message count compared to the nonzero-based partitioning models. The nonzero-based models have broader search space due to their representation of the SpMV via smaller units, which allows them to attain better vol-

863 ume and imbalance. The latency overheads of FG and MG are₉₁₈ ⁸⁶⁴ higher than the latency overhead of 1D-LM simply because la-865 tency is not addressed in the former two. Although FG-LM and 919 866 MG-LM may as well obtain comparable latency overheads with 920 867 1D-LM (e.g., compare total message count of FG-LM with $L = 1$ ⁹²¹ 868 in Table [2](#page-9-0) against total message count of 1D-LM in Table [5\)](#page-11-1), we⁹²² ⁸⁶⁹ favor a decrease in volume-related cost metrics at the expense 870 of a small deterioration in latency-related cost metrics in these⁹²⁴ 871 two models. 1D-LM has the lowest partitioning overhead due to 925 872 having the smallest hypergraph among the five models. A simi-926 873 lar discussion follows for the maximum volume and maximum⁹²⁷ 874 message count metrics as for the total volume and total message⁹²⁸ 875 count metrics.

876 In the rest of the paper, we use MG and MG-LM among the⁹³⁰ 877 nonzero-based models for evaluation due to their lower parti-931 878 tioning overhead and slightly better performance compared to⁹³² 879 FG and FG-LM, respectively, in the remaining metrics.

⁸⁸⁰ *6.2.2. Parallel SpMV performance*

881 We compare 1D-LM, MG, and MG-LM in terms of paral-935 ⁸⁸² lel SpMV runtime. Parallel SpMV is run with the parti-
⁸⁸³ tions obtained through these three models. There are 12_{sq7}^{936} 883 tions obtained through these three models. 884 matrices tested, listed with their types as follows: eu-2005³³¹₉₃₈ ⁸⁸⁵ (web graph), ford2 (mesh), Freescale1 (circuit simulation), invextr1_new (computational fluid dynamics), k1_san 887 (2D/3D), LeGresley₋₈₇₉₃₆ (power network), mouse_{-genesss} 888 (gene network), olesnik0 (2D/3D), tuma1 (2D/3D), turon_m 889 (2D/3D), usroads (road network), web-Google (web graph). 890 Number of nonzeros in these matrices varies between $87,760$ 891 and $28,967,291$. These 12 matrices are the subset of 978 ma-943 892 trices for which the partitioning models are compared in terms⁹⁴⁴ 893 of partitioning cost metrics in the preceding sections. Four dif- $\frac{945}{616}$ 894 ferent number of processors (i.e., *K*) are tested: 64, 128, 256, $\frac{1}{947}$ 895 and 512. We did not test for 1024 processors as in most of the 948 896 tested matrices SpMV could not scale beyond 512 processors.⁹⁴⁹ 897 We only consider the strong-scaling case. The parallel $SpMV^{950}_{951}$ 898 is run for 100 times and the average runtime (in milliseconds) $_{952}$ ⁸⁹⁹ is reported. The obtained results are presented in Figure [8.](#page-13-0)

900 The plots in Figure [8](#page-13-0) show that both MG and MG-LM scale⁹⁵⁴ 901 usually better than 1D-LM. It is known the nonzero-based par- $\frac{1}{256}$ 902 titioning models scale better than the 1D models due to their⁹⁵⁷ 903 lower communication overheads and computational imbalance.⁹⁵⁸ 904 In difficult instances such as invextr1 new or mouse gene at $\frac{959}{960}$ 905 which 1D-LM does not scale, using a nonzero-based model such₉₆₁ 906 as MG or MG-LM successfully scales the parallel SpMV. MG-LM962 907 improves the scalability of MG in most of the test instances.⁹⁶³ 908 Apart from the instances Freescale1, invextr1_new, and $_{\text{osc}}^{964}$ 909 turon_m, MG-LM performs significantly better than MG. MG-LM'S₉₆₆ 910 performance especially gets more prominent with increasing 967 911 number of processors, which is due to the fact that the latency $_{0.08}^{968}$ 912 overheads are more critical in the overall communication costs $\frac{300}{970}$ 913 in high processor counts since the message size usually de- 971 914 creases with increasing number of processors. These plots show⁹⁷² 915 that using a nonzero-based partitioning model coupled with the 973 916 addressing of multiple communication cost metrics yields the 975 917 best parallel SpMV performance.

7. Conclusion

We proposed two novel nonzero-based matrix partitioning models, a fine-grain and a medium-grain model, that simultaneously address the bandwidth and latency costs of parallel SpMV. These models encapsulate two communication cost metrics at once as opposed to their existing counterparts which only address a single cost metric regarding the bandwidth cost. Our approach exploits the recursive bipartitioning paradigm to incorporate the latency minimization into the partitioning objective via message nets. In addition, we proposed two practical enhancements to find a good balance between reducing the ⁹²⁹ bandwidth and the latency costs. The experimental results obtained on an extensive dataset show that the proposed models attain up to 27% improvement in latency-related cost metrics over their existing counterparts on average and the scalability 933 of parallel SpMV can substantially be improved with the pro-934 posed models.

Acknowledgment

We acknowledge PRACE for awarding us access to resources Juqueen (Blue Gene/Q) based in Germany at Jülich Supercomputing Centre.

References

- [1] U. V. Çatalyürek, C. Aykanat, Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication, Parallel and Distributed Systems, IEEE Transactions on 10 (7) (1999) 673–693. [doi:](http://dx.doi.org/10.1109/71.780863) ⁹⁴³ [10.1109/71.780863](http://dx.doi.org/10.1109/71.780863).
- [2] B. Hendrickson, [Graph partitioning and parallel solvers: Has the emperor](http://dl.acm.org/citation.cfm?id=646012.677019) [no clothes? \(extended abstract\),](http://dl.acm.org/citation.cfm?id=646012.677019) in: Proceedings of the 5th International Symposium on Solving Irregularly Structured Problems in Parallel, IR-⁹⁴⁷ REGULAR '98, Springer-Verlag, London, UK, UK, 1998, pp. 218–225. ⁹⁴⁸ URL <http://dl.acm.org/citation.cfm?id=646012.677019>
- [3] B. Hendrickson, T. G. Kolda, [Graph partitioning models for parallel com](http://dx.doi.org/10.1016/S0167-8191(00)00048-X)[puting,](http://dx.doi.org/10.1016/S0167-8191(00)00048-X) Parallel Comput. 26 (12) (2000) 1519-1534. [doi:10.1016/](http://dx.doi.org/10.1016/S0167-8191(00)00048-X) [S0167-8191\(00\)00048-X](http://dx.doi.org/10.1016/S0167-8191(00)00048-X).

URL [http://dx.doi.org/10.1016/S0167-8191\(00\)00048-X](http://dx.doi.org/10.1016/S0167-8191(00)00048-X)

- [4] B. Hendrickson, T. G. Kolda, [Partitioning rectangular and structurally un](http://dx.doi.org/10.1137/S1064827598341475)[symmetric sparse matrices for parallel processing,](http://dx.doi.org/10.1137/S1064827598341475) SIAM J. Sci. Comput. ⁹⁵⁵ 21 (6) (1999) 2048–2072. [doi:10.1137/S1064827598341475](http://dx.doi.org/10.1137/S1064827598341475). ⁹⁵⁶ URL <http://dx.doi.org/10.1137/S1064827598341475>
- [5] G. Karypis, V. Kumar, [A fast and high quality multilevel scheme for par](http://dx.doi.org/10.1137/S1064827595287997)[titioning irregular graphs,](http://dx.doi.org/10.1137/S1064827595287997) SIAM J. Sci. Comput. 20 (1) (1998) 359-392. ⁹⁵⁹ [doi:10.1137/S1064827595287997](http://dx.doi.org/10.1137/S1064827595287997).
	- ⁹⁶⁰ URL <http://dx.doi.org/10.1137/S1064827595287997>
- [6] K. Schloegel, G. Karypis, V. Kumar, [Parallel multilevel algorithms for](http://dx.doi.org/10.1007/3-540-44520-X_39) ⁹⁶² [multi-constraint graph partitioning,](http://dx.doi.org/10.1007/3-540-44520-X_39) in: A. Bode, T. Ludwig, W. Karl, R. Wismller (Eds.), Euro-Par 2000 Parallel Processing, Vol. 1900 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2000, pp. ⁹⁶⁵ 296–310. [doi:10.1007/3-540-44520-X_39](http://dx.doi.org/10.1007/3-540-44520-X_39). ⁹⁶⁶ URL http://dx.doi.org/10.1007/3-540-44520-X_39
- [7] B. Vastenhouw, R. H. Bisseling, [A two-dimensional data distribution](http://portal.acm.org/citation.cfm?id=1055334.1055397) [method for parallel sparse matrix-vector multiplication,](http://portal.acm.org/citation.cfm?id=1055334.1055397) SIAM Rev. 47 ⁹⁶⁹ (2005) 67–95. [doi:10.1137/S0036144502409019](http://dx.doi.org/10.1137/S0036144502409019). URL [http://portal.acm.org/citation.cfm?id=1055334.](http://portal.acm.org/citation.cfm?id=1055334.1055397) [1055397](http://portal.acm.org/citation.cfm?id=1055334.1055397)
- [8] U. Çatalyürek, C. Aykanat, [A hypergraph-partitioning approach for](http://doi.acm.org/10.1145/582034.582062) [coarse-grain decomposition,](http://doi.acm.org/10.1145/582034.582062) in: Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, SC '01, ACM, New York, NY, USA, ⁹⁷⁵ 2001, pp. 28–28. [doi:10.1145/582034.582062](http://dx.doi.org/10.1145/582034.582062). ⁹⁷⁶ URL <http://doi.acm.org/10.1145/582034.582062>

Figure 8: Comparison of partitioning models in terms of parallel SpMV runtime.

- 977 [9] B. Uçar, C. Aykanat, [Revisiting hypergraph models for sparse matrix par](http://portal.acm.org/citation.cfm?id=1330215.1330219)[titioning,](http://portal.acm.org/citation.cfm?id=1330215.1330219) SIAM Rev. 49 (2007) 595–603. [doi:10.1137/060662459](http://dx.doi.org/10.1137/060662459).
- URL [http://portal.acm.org/citation.cfm?id=1330215.](http://portal.acm.org/citation.cfm?id=1330215.1330219) [1330219](http://portal.acm.org/citation.cfm?id=1330215.1330219)
- [10] D. Pelt, R. Bisseling, A medium-grain method for fast 2d bipartition- ing of sparse matrices, in: Parallel and Distributed Processing Sympo- sium, 2014 IEEE 28th International, 2014, pp. 529–539. [doi:10.1109/](http://dx.doi.org/10.1109/IPDPS.2014.62) 984 IPDPS. 2014. 62.
- [11] E. Kayaaslan, B. Ucar, C. Aykanat, Semi-two-dimensional partitioning for parallel sparse matrix-vector multiplication, in: Parallel and Dis-tributed Processing Symposium Workshop (IPDPSW), 2015 IEEE Inter-
- 988 national, 2015, pp. 1125–1134. doi:10.1109/IPDPSW. 2015. 20.
989 [12] E. Kayaaslan, B. Uçar, C. Aykanat, 1.5D parallel sparse matrix-v E. Kayaaslan, B. Uçar, C. Aykanat, 1.5D parallel sparse matrix-vector multiply, SIAM J. Sci. Comput., *in press*.
- [\[](http://dx.doi.org/10.1137/080733243)13] A. N. Yzelman, R. H. Bisseling, [Cache-oblivious sparse matrix-vector](http://dx.doi.org/10.1137/080733243) [multiplication by using sparse matrix partitioning methods,](http://dx.doi.org/10.1137/080733243) SIAM J. Sci. 993 Comput. 31 (4) (2009) 3128-3154. [doi:10.1137/080733243](http://dx.doi.org/10.1137/080733243). URL <http://dx.doi.org/10.1137/080733243>
- [\[](http://dx.doi.org/10.1137/080737770)14] U. V. Catalyürek, C. Aykanat, B. Ucar, [On two-dimensional sparse matrix](http://dx.doi.org/10.1137/080737770) [partitioning: Models, methods, and a recipe,](http://dx.doi.org/10.1137/080737770) SIAM J. Sci. Comput. 32 (2) 997 (2010) 656-683. [doi:10.1137/080737770](http://dx.doi.org/10.1137/080737770).
- URL <http://dx.doi.org/10.1137/080737770>
- [\[](http://dl.acm.org/citation.cfm?id=645609.663255)15] U. Catalyürek, C. Aykanat, [A fine-grain hypergraph model for 2d de-](http://dl.acm.org/citation.cfm?id=645609.663255) [composition of sparse matrices,](http://dl.acm.org/citation.cfm?id=645609.663255) in: Proceedings of the 15th International Parallel and Distributed Processing Symposium, IPDPS '01, IEEE Com-puter Society, Washington, DC, USA, 2001, pp. 118–.
- URL <http://dl.acm.org/citation.cfm?id=645609.663255>
- [16] S. Acer, O. Selvitopi, C. Aykanat, Improving performance of sparse ma- trix dense matrix multiplication on large-scale parallel systems, Parallel Computing 59 (2016) 71 – 96, theory and Practice of Irregular Applica-tions.
- [17] O. Selvitopi, S. Acer, C. Aykanat, A recursive hypergraph bipartition- ing framework for reducing bandwidth and latency costs simultaneously, IEEE Transactions on Parallel and Distributed Systems 28 (2) (2017) 345–358. [doi:10.1109/TPDS.2016.2577024](http://dx.doi.org/10.1109/TPDS.2016.2577024).
- [\[](http://doi.acm.org/10.1145/2503210.2503293)18] E. G. Boman, K. D. Devine, S. Rajamanickam, [Scalable matrix computa-](http://doi.acm.org/10.1145/2503210.2503293) [tions on large scale-free graphs using 2D graph partitioning,](http://doi.acm.org/10.1145/2503210.2503293) in: Proceed- ings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC '13, ACM, New York, NY, USA, 2013, pp. 50:1–50:12. [doi:10.1145/2503210.2503293](http://dx.doi.org/10.1145/2503210.2503293).
- URL <http://doi.acm.org/10.1145/2503210.2503293>
- 1018 [19] B. Uçar, C. Aykanat, Encapsulating multiple communication-cost met- rics in partitioning sparse rectangular matrices for parallel matrix-vector multiplies, SIAM J. Sci. Comput. 25 (6) (2004) 1837–1859. [doi:http:](http://dx.doi.org/http://dx.doi.org/10.1137/S1064827502410463) [//dx.doi.org/10.1137/S1064827502410463](http://dx.doi.org/http://dx.doi.org/10.1137/S1064827502410463).
- [\[](http://www.sciencedirect.com/science/article/pii/S0743731514002275)20] M. Deveci, K. Kaya, B. Uçar, Ümit Catalyürek, [Hypergraph partition-](http://www.sciencedirect.com/science/article/pii/S0743731514002275) [ing for multiple communication cost metrics: Model and methods,](http://www.sciencedirect.com/science/article/pii/S0743731514002275) Journal of Parallel and Distributed Computing 77 (0) (2015) 69 – 83. [doi:http://dx.doi.org/10.1016/j.jpdc.2014.12.002](http://dx.doi.org/http://dx.doi.org/10.1016/j.jpdc.2014.12.002).
- URL [http://www.sciencedirect.com/science/article/pii/](http://www.sciencedirect.com/science/article/pii/S0743731514002275) [S0743731514002275](http://www.sciencedirect.com/science/article/pii/S0743731514002275)
- [21] R. H. Bisseling, W. Meesen, Communication balancing in parallel sparse matrix-vector multiply, Electronic Transactions on Numerical Analysis 21 (2005) 47–65.
- [22] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, H. Zhang, [PETSc users manual,](http://www.mcs.anl.gov/petsc) Tech. Rep. ANL- 95/11 - Revision 3.5, Argonne National Laboratory (2014). URL <http://www.mcs.anl.gov/petsc>
- [\[](http://doi.acm.org/10.1145/2049662.2049663)23] T. A. Davis, Y. Hu, [The University of Florida sparse matrix collec-](http://doi.acm.org/10.1145/2049662.2049663) [tion,](http://doi.acm.org/10.1145/2049662.2049663) ACM Trans. Math. Softw. 38 (1) (2011) 1:1–1:25. [doi:10.1145/](http://dx.doi.org/10.1145/2049662.2049663) [2049662.2049663](http://dx.doi.org/10.1145/2049662.2049663).
- URL <http://doi.acm.org/10.1145/2049662.2049663>