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Qib,d, Gunda I. Georga
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College of Pharmacy, University of Minnesota, Minneapolis, MN, USA

b.Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA

c.Moffitt Cancer Center, Drug Discovery Department, Tampa, FL, USA

d.Department of Medicine, Harvard Medical School, Boston, MA, USA

Abstract

Based on a previously reported 1,4-dihydropyridinebutyrolactone virtual screening hit, nine 

lactone ring-opened ester and seven amide analogs were prepared. The analogs were designed 

to provide interactions with residues at the entrance of the ZA channel to enhance the affinity 

and selectivity for BET bromodomains. Compound testing by AlphaScreen showed that neither 

the affinity nor the selectivity of the ester and lactam analogs was improved for BRD4-1 and 

BRDT-1. The esters retained affinity comparable to the parent compound, whereas the affinity for 

the amide analogs was reduced 10-fold. A representative benzyl ester analog was found to retain 

high selectivity for BET bromodomains as shown by a BROMOscan. X-ray analysis of the allyl 

ester analog in complex with BRD4-1 and BRDT-1 revealed that the ester side chain is located 

next to the ZA loop and solvent exposed.

Keywords

AlphaScreen; bromodomain and extra-terminal (BET) proteins; BET selectivity; BROMOscan; 
X-ray

1 INTRODUCTION

Bromodomain-containing proteins are a family of “reader” proteins that specifically 

recognize the acetylated lysine (Kac) residues in histone tails during post-translational 

processes.[1] To date, 46 proteins have been identified to have 61 bromodomains that are 

classified into 8 subfamilies.[2] The bromodomain and extra-terminal (BET) have been most 

extensively investigated. The BET subfamily comprises BRD2, BRD3, and BRD4 as well 
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as testis restricted BRDT.[2, 3] The BET proteins have two tandem bromodomains (BD1 

and BD2), both of which recognize Kac moieties with varying affinities, depending on 

the locations as well as acetylation levels of lysine residues.[2] The four BET proteins 

also have an extra-terminal (ET) domain near the C-terminus, responsible for interaction 

with chromatin and transcription proteins.[4–6] The eight bromodomains share moderate 

to high sequence and protein folding similarity within the BET family. There are four 

alpha helices (αA, αZ, αB, and αC) that are connected via two flexible loop regions 

(ZA and BC loops). Surrounded by two loops is a cavity in the middle of four helical 

bundles, inside of which are several structurally conserved water molecules stabilizing 

the protein fold via a hydrogen bond network. Upon interaction with acetylated histones, 

BET proteins recruit various components (i.e., positive transcriptional elongation factor 

b,[7] lysine methyltransferase,[8] and Jumonji domain-containing protein 6[9]) to assemble 

the transcriptional machinery and initiate gene expression.[10] Because of their pivotal role 

in epigenetic processes, inhibition of BET proteins can be exploited for the discovery 

of novel therapeutics. For instance, BRD4 inhibition downregulates the expression of 

c-Myc,[11] an oncogene frequently amplified or overexpressed in leukemia, myeloma and 

lymphoma.[12–14] As such, various BRD4 inhibitors are being explored as potential cancer 

therapeutics. Meanwhile, BRDT is crucial for spermatogenesis based on knockout studies 

and mouse mating studies performed with pan-BET inhibitor JQ1 (Figure 1).[15, 16] As 

such, selective BRDT inhibitors hold promise as novel male contraceptives.[3, 15, 17, 18] 

BET inhibitors (Figure 1) achieve their pharmacological activity by outcompeting the 

endogenous Kac moieties of acetylated lysine recognition sites.[19–21] Most small molecule 

inhibitors occupy the highly conserved Kac recognition pockets with minimal preference 

within the BET subfamily.[22] However, several selective inhibitors have been discovered.
[23–27] Examples are BD1 inhibitor GSK778 and BD2 inhibitor GSK046,[28] BD2 inhibitor 

ABBV-744[29] and BRDT-2-selective inhibitor CD1102[18] Because BET proteins have two 

tandem bromodomains, simultaneous occupancy of both BD1 and BD2 was achieved with 

bivalent small molecule inhibitors such as MT1 (Figure 1).[30, 31] Besides occupancy-driven 

inhibition, targeted protein degradation of BET proteins via hijacking the proteasome system 

has also been reported, in which pan-BET inhibitor JQ1 was connected to an E3 ligase 

recruiting motif via either a PEG or a hydrocarbon linker (ARV-825, Figure 1).[32, 33] 

Despite progress in the development of potent BET inhibitors, mixed clinical outcomes such 

as dose-dependent toxicities (DLTs)[34–37] and drug resistance[38–40] are concerns for BET 

inhibitors for cancer therapy. Although the cause of drug resistance remains elusive, DLTs 

are believed to arise from pan-BET inhibition.

2 RESULTS AND DISCUSSION

From a virtual screen of over 6 million compounds, we previously identified a tricyclic, 

dihydropyridine scaffold (1, Figure 2B), which displayed promising activity against the 

BET family.[41] Preliminary structural modifications on the uracil moiety and the aryl group 

did not provide analogs with improved affinity. Crystallographic data and computational 

studies indicated that opening the lactone ring might direct the ester/amide side chain to 

the entrance of the ZA channel and thus interact with surrounding residues, which might 

be advantageous for BET affinity (Figure 2A). Furthermore, we previously proposed an 
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arginine hypothesis, whereby leveraging the unique arginine 54 (R54, Figure 2C) in the ZA 

channel of BRDT-1, BRDT specificity might be achieved.[42] Herein, we embarked on the 

evaluation of lactone ring-open modifications of original hit compound 1, hypothesizing that 

interaction with the unique R54 could achieve BRDT-1 selectivity.

2.1 Chemistry

As depicted in Scheme 1, the targeted ester analogs were generated via a multi-

component reaction between p-tolualdehyde, 6-amino-1-ethyluracil, and various substituted 

3-oxobutanoate esters. The amide analogs were synthesized in two steps by hydrolyzing 

methyl ester analog 2a to generate the carboxylic acid intermediate, which was subjected to 

reactions with amines to yield the desired amide analogs.

2.2 Biology

We designed and synthesized nine ester (2a-i) and seven amide analogs (3a-g) with varying 

side chains and tested them for BRDT-1 and BRD4-1 inhibition in an AlphaScreen assay to 

characterize their affinity and selectivity profiles.

In the ester subset, the affinity profile (Table 1) revealed that linear aliphatic side chains 

(analogs 2a, 2b, and 2c) were tolerated, but the branched tert-butyl moiety (2d) caused 

a 2-fold decrease in BRDT-1 affinity, compared to lactone 1. A more than 5-fold affinity 

improvement for both BRDT-1 and BRD4-1 was achieved once a benzyl moiety (analog 

2e) was introduced. Introduction of electron-donating methoxy or an electron-withdrawing 

chlorine on the aryl ring led to affinity loss, as exemplified for analogs 2f and 2g. 

In addition, comparison between 2g, 2h, and 2i revealed that di-substitution and linker 

extension had marginal effects on affinity. Based on the observed BRDT-1 and BRD4-1 

affinities across the series, we concluded that the introduction of an ester side chain did not 

provide high BRDT-1 or BRD4-1 affinity and selectivity.

To ascertain whether these analogs retained BET bromodomain selectivity, compound 2e, 

the most potent ester analog was selected for BROMOscan (Eurofins) testing at 20 μM. As 

shown in Figure 3, compound 2e was highly selective for the BET bromodomain family, 

similar to the original hit compound 1.

For the amide series, we noticed greater affinity losses (Table 2) compared to lactone 1 
and esters 2. The flexible and hydrophobic n-propyl moiety (analog 3a) led to the most 

significant affinity decrease, which was rescued by introducing an allyl group (analog 3b). 

Additionally, the benzyl moiety (analog 3c), which had improved affinity in the ester series, 

or the surrogate phenylhydrazine moiety (analog 3d) did not yield significant improvements. 

Comparison between analogs 3c, 3e, and 3g indicated that extension of the amide linker was 

tolerated. As observed in the ester series, methoxy decoration on the aryl ring (analog 3f), 
albeit tolerated, had minimal impact on the affinity. Regarding BET selectivity, we surmised 

that there was no significant BET selectivity among the amide analogs.

To rationalize the structure-activity relationships, we co-crystalized analog 2c with BRD4-1 

and BRDT-1. As shown in Figures 4 A and B, the allyl motif was located next to the ZA 

loop and was solvent exposed, thus not likely to form additional contacts with surrounding 
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residues. As shown in Figure 4B, the distance between the allyl group and R54 is more than 

10 Å. The side chain of R54 is solvent exposed and highly flexible, and it adopts different 

conformations in known BRDT-1 cocrystal structures. In the cocrystal structure with 2c, 

R54 extends away from the KAc site and towards solvent. The electron density of R54 is 

well defined and not influenced by crystal packing, suggesting an energy-low conformation 

of R54 in this inhibitor complex. Due to this conformation, it would be difficult for any ester 

analog to interact with the unique R54 in BRDT-1, explaining why no BRDT-1 specificity 

was achieved.

3 CONCLUSION

In summary, we conducted a structure-activity exploration using a ring-opening strategy 

based on previously identified lactone scaffold 1, aiming to explore interactions with 

dissimilar residues at the entrance of the otherwise highly conserved Kac site of BET 

bromodomains. Nine ester and seven amide analogs were designed and synthesized, 

among which benzyl ester analog 2e displayed the highest affinity for BRD4-1 and 

BRDT-1. Profiling across bromodomains demonstrated high selectivity of 2e for the BET 

bromodomain family. Cocrystal structures of analog 2c with BRD4-1 and BRDT-1 explain 

the lack of intra-BET selectivity of this inhibitor series.

4 EXPERIMENTAL

4.1 Chemistry

4.1.1 General—All chemicals and solvents were purchased from commercial suppliers 

and directly used without further purification unless otherwise specified. Reactions were 

monitored by TLC on 0.2 mm silica gel plates (Merck Kieselgel GF254) and visualized 

under UV light (254 nm). Flash column chromatography was conducted using medium-

pressure liquid chromatography (MPLC) on a CombiFlash Companion (Teledyne ISCO) 

with pre-packed silica columns (20–40 microns) and UV detection at 254 nm. 1H and 13C 

NMR spectra (see the Supporting Information) were performed on a Brucker 400/100 MHz 

Avance spectrometer. Chemical shifts are reported in ppm and referenced to residual solvent 

peaks (7.26 in CDCl3, 2.50 in DMSO-d6). Splitting patterns are designed as singlet (s), 

doublet (d), triplet (t), quartet (q), multiplet (m), and broad singlet (br). Purities of tested 

compounds were determined by qNMR, using DMSO2 as the internal standard and the 

qNMR protocol published in the Journal of Medicinal Chemistry.[44, 45]

The InChI codes of the investigated compounds, together with some biological activity data, 

are provided as Supporting Information.

4.1.2 General procedure A for the ring-open ester analogs—Appropriately 

substituted 3-oxobutanoate ester (1 equiv), p-tolualdehyde (1 equiv), and 6-amino-1-

ethyluracil (1 equiv) were added to a dry microwave vial (5 mL). After adding AcOH (1 

mL), the vial was flushed with nitrogen gas for 1 min and sealed. The mixture was heated at 

110 °C for 6 h, which generated a clear yellow solution. Upon the completion monitored by 

TLC, the AcOH was evaporated under a nitrogen flow and the resulting solid was purified 
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by flash column chromatography (40 gram RediSep Gold silica gel column, DCM + 5% 

methanol) to give the target ring-open ester analogs.

Methyl 1-ethyl-7-methyl-2,4-dioxo-5-(p-tolyl)-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine-6-carboxylate (2a): The title compound was prepared via general procedure 

A as a colorless solid (28 mg, 32%); mp 288–289 °C dec; with a purity 96% determined 

by qNMR. 1H NMR (400 MHz, DMSO-d6) δ 10.94 (s, 1H), 8.60 (s, 1H), 7.05 (d, J = 8.0 

Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 4.84 (s, 1H), 4.07–3.91 (m, 2H), 3.55 (s, 3H), 2.41 (s, 

3H), 2.20 (s, 3H), 1.11 (t, J = 8.0 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 166.9, 161.4, 

149.9, 145.4, 143.9, 143.6, 135.1, 128.6, 126.9, 104.1, 90.1, 50.9, 36.2, 35.5, 20.5, 18.1, 

13.7.

Propyl 1-ethyl-7-methyl-2,4-dioxo-5-p-tolyl-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine-6-carboxylate (2b): The title compound was prepared via general procedure 

A as a colorless solid (52 mg, 54%); mp 178–180 °C dec; 96% purity determined by qNMR. 
1H NMR (400 MHz, DMSO-d6) δ 10.95 (s, 1H), 8.58 (s, 1H), 7.06 (d, J = 8.0 Hz, 2H), 7.00 

(d, J = 8.0 Hz, 2H), 4.84 (s, 1H), 4.02 (ddt, J = 27.7, 14.6, 7.2 Hz, 2H), 3.91 (t, J = 6.0 Hz, 

2H), 2.42 (s, 3H), 2.20 (s, 3H), 1.53 (h, J = 7.1 Hz, 2H), 1.12 (t, J = 8.0 Hz, 3H), 0.80 (t, J 
= 8.0 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 166.4, 161.4, 149.9, 145.3, 143.9, 143.7, 

135.0, 128.5, 127.0, 104.3, 90.1, 65.0, 36.2, 35.6, 21.5, 20.6, 18.1, 13.7, 10.4.

Allyl 1-ethyl-7-methyl-2,4-dioxo-5-(p-tolyl)-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine-6-carboxylate (2c): The title compound was prepared via general procedure 

A as a colorless solid (25.7 mg, 27%); mp 226–227 °C dec; 92% purity determined by 

qNMR. 1H NMR (400 MHz, DMSO-d6) δ 10.98 (s, 1H), 8.64 (s, 1H), 7.07 (d, J = 8.0 Hz, 

2H), 7.01 (d, J = 8.0 Hz, 2H), 5.87 (ddt, J = 17.2, 10.5, 5.3 Hz, 1H, 1H), 5.19–5.12 (m, 2H), 

4.87 (s, 1H), 4.50 (d, J = 5.3 Hz, 2H), 4.00 (dh, J = 28.8, 7.1 Hz, 2H), 2.43 (s, 3H), 2.20 

(s, 3H), 1.11 (t, J = 8.0 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 166.0, 161.4, 150.0, 

145.8, 143.9, 143.6, 135.1, 132.9, 128.6, 127.0, 117.2, 103.9, 90.1, 63.9, 36.2, 35.5, 20.6, 

18.2, 13.7.

tert-Butyl 1-ethyl-7-methyl-2,4-dioxo-5-p-tolyl-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine-6-carboxylate (2d): The title compound was prepared via general procedure 

A as a colorless solid (31 mg, 31%); mp 286–288 °C dec; 90% purity determined by qNMR. 
1H NMR (400 MHz, DMSO-d6) δ 10.90 (s, 1H), 8.45 (s, 1H), 7.06 (d, J = 8.0 Hz, 2H), 

7.01 (d, J = 8.0 Hz, 2H), 4.77 (s, 1H), 4.00 (dp, J = 28.6, 7.2 Hz, 2H), 2.37 (s, 3H), 2.21 (s, 

3H), 1.33 (s, 9H), 1.12 (t, J = 6.0 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 165.8, 161.4, 

150.0, 144.0, 143.8, 134.9, 128.4, 127.1, 105.9, 90.0, 79.2, 40.1, 36.2, 36.1, 20.6, 27.8, 18.1, 

13.6.

Benzyl 1-ethyl-7-methyl-2,4-dioxo-5-(p-tolyl)-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine-6-carboxylate (2e): The title compound was prepared via general procedure 

A as a colorless solid (50 mg, 46%); mp 306–307 °C dec, 95% purity determined by qNMR. 
1H NMR (400 MHz, DMSO-d6) δ 10.98 (s, 1H), 8.66 (s, 1H), 7.31–7.27 (m, 3H), 7.18 (dd, 

J = 6.9, 2.8 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 5.05 (q, J = 12.8 Hz, 

2H), 4.87 (s, 1H), 4.08–3.91 (m, 2H), 2.43 (s, 3H), 2.20 (s, 3H), 1.12 (t, J = 6.0 Hz, 3H). 13C 
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NMR (100 MHz, DMSO-d6) δ 166.1, 161.4, 149.8, 145.9, 143.8, 143.6, 136.4, 135.1, 128.5, 

128.2, 127.7, 127.6, 127.1, 103.9, 90.1, 65.0, 36.2, 35.6, 20.6, 18.2, 13.7.

4-Chlorobenzyl 1-ethyl-7-methyl-2,4-dioxo-5-p-tolyl-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine-6-carboxylate (2f): The title compound was prepared via general procedure 

A as a colorless solid (38 mg, 33%); mp 275–276 °C dec; 98% purity determined by qNMR. 
1H NMR (400 MHz, DMSO-d6) δ 10.96 (s, 1H), 8.64 (s, 1H), 7.36 (d, J = 7.8 Hz, 2H), 7.20 

(d, J = 8.0 Hz, 2H), 7.04 (d, J = 7.8 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 5.04 (q, J = 12.8 Hz, 

2H), 4.86 (s, 1H), 4.00 (dh, J = 28.7, 7.1 Hz, 2H), 2.44 (s, 3H), 2.22 (s, 3H), 1.12 (t, J = 8.0 

Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 166.0, 161.4, 149.8, 146.1, 143.8, 143.6, 135.6, 

135.1, 132.3, 129.6, 128.5, 128.2, 127.1, 103.8, 90.2, 64.2, 36.2, 35.6, 20.6, 18.2, 13.7.

4-Methoxybenzyl 1-ethyl-7-methyl-2,4-dioxo-5-p-tolyl-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine-6-carboxylate (2g): The title compound was prepared via general procedure 

A as a light-yellow solid (45 mg, 39%); mp 241–242 °C dec; 94% purity determined by 

qNMR. 1H NMR (400 MHz, DMSO-d6) δ 10.94 (s, 1H), 8.61 (s, 1H), 7.18 (d, J = 8.6 Hz, 

2H), 7.02 (d, J = 8.1 Hz, 2H), 6.98 (d, J = 8.1 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 4.97 (s, 

2H), 4.83 (s, 1H), 3.99 (ddt, J = 28.8, 14.2, 7.1 Hz, 2H), 3.75 (s, 3H), 2.42 (s, 3H), 2.21 (s, 

3H), 1.12 (t, J = 8.0 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 166.2, 161.4, 159.0, 145.0, 

145.6, 143.9, 143.6, 135.1, 129.7, 128.5, 128.2, 127.1, 113.7, 104.1, 90.0, 64.9, 55.0, 36.2, 

35.6, 20.6, 18.1, 13.6.

3,4-Dimethoxybenzyl 1-ethyl-7-methyl-2,4-dioxo-5-p-tolyl-1,2,3,4,5,8-
hexahydropyrido[2,3-d]pyrimidine-6-carboxylate (2h): The title compound was prepared 

via general procedure A as a colorless solid (50 mg, 41%); mp 219–220 °C dec; 97% purity 

determined by qNMR. 1H NMR (400 MHz, DMSO-d6) δ 10.95 (s, 1H), 8.62 (s, 1H), 7.02 

(d, J = 8.1 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.2 Hz, 1H), 6.83 (s, 1H), 6.80 (d, J 
= 8.1 Hz, 1H), 4.97 (d, J = 4.0 Hz, 2H), 4.86 (s, 1H), 4.01 (dh, J = 28.1, 7.0 Hz, 2H), 3.74 (s, 

3H), 3.69 (s, 3H), 2.43 (s, 3H), 2.21 (s, 3H), 1.12 (t, J = 6.0 Hz, 3H). 13C NMR (100 MHz, 

DMSO-d6) δ 166.2, 161.4, 149.9, 148.5, 145.7, 143.9, 143.6, 135.1, 128.6, 128.5, 127.0, 

120.6, 111.9, 111.5, 104.0, 90.1, 65.2, 55.4, 55.3, 36.2, 35.5, 21.0, 20.5, 18.2, 13.7.

4-Methoxyphenethyl 1-ethyl-7-methyl-2,4-dioxo-5-p-tolyl-1,2,3,4,5,8-
hexahydropyrido[2,3-d]pyrimidine-6-carboxylate (2i): The title compound was prepared 

via general procedure A as a colorless solid (61 mg, 51%); mp 140–142 °C dec; 99%purity 

determined by qNMR. 1H NMR (400 MHz, DMSO-d6) δ 10.94 (s, 1H), 8.57 (s, 1H), 7.08 

(d, J = 8.5 Hz, 2H), 7.02 (d, J = 8.2 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.81 (d, J = 8.5 Hz, 

2H), 4.84 (s, 1H), 4.14 (tt, J = 6.8, 3.4 Hz, 2H), 4.00 (dp, J = 28.3, 7.4 Hz, 2H), 3.96 (s, 

3H), 2.78 (td, J = 6.9, 2.9 Hz, 2H), 2.36 (s, 3H), 2.21 (s, 3H), 1.11 (t, J = 6.0 Hz, 3H). 13C 

NMR (100 MHz, DMSO-d6) δ 166.4, 161.4, 157.7, 149.9, 145.4, 143.9, 143.6, 135.0, 129.9, 

129.7, 128.5, 127.0, 126.9, 113.6, 104.2, 90.2, 64.5, 36.2, 35.5, 33.5, 20.5, 18.1, 13.6.

4.1.3 General procedure B for the synthesis of ring-open amide analogs—
Synthesis of the amide analogs starts with the hydrolysis of methyl ester analog 2a. NaOH 

(4 equiv) was added to an aqueous solution of 2a. After stirring for 18 h at rt, the resulting 

solution was acidified with AcOH and extracted with DCM three times. The combined 
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organic layer was washed with brine, dried over anhydrous MgSO4, and concentrated under 

reduced pressure to yield the crude acid intermediate, which was dissolved in DMF and 

cooled to 0 °C. DIPEA (1 equiv), EDCI (1 equiv), HOBt (1 equiv), and the amine (1 

equiv) were added successively and then the reaction mixture was stirred for 3 h at rt. 

Upon completion of the reaction, monitored by TLC, the mixture was poured into water and 

extracted with diethyl ether. The separated organic layer was washed with water and brine, 

dried over anhydrous MgSO4, and concentrated under reduced pressure to obtain the crude 

solid product, which was purified by flash column chromatography eluting with a mixture of 

MeOH and DCM to give the target amide analogs.

1-Ethyl-7-methyl-2,4-dioxo-N-propyl-5-(p-tolyl)-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine-6-carboxamide (3a): The title compound was prepared 

via general procedure B and obtained as a colorless solid (20.1 

mg, 21%); mp 121–122 °C dec; 96% purity determined by qNMR. 
1H NMR (400 MHz, DMSO-d6) δ 10.78 (s, 1H), 8.11 (s, 1H), 7.65 (t, J = 6.0 Hz, 1H), 

7.04 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 4.78 (s, 1H), 4.02–3.93 (m, 2H), 2.97 (dh, 

J = 25.9, 6.4 Hz, 2H), 2.21 (s, 3H), 2.09 (s, 3H), 1.33 (h, J = 7.2 Hz, 2H), 1.12 (t, J = 8.0 Hz, 

3H), 0.74 (t, J = 8.0 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 167.6, 161.4, 150.0, 144.9, 

143.1, 134.8, 132.9, 128.4, 127.1, 111.4, 88.0, 40.4, 37.6, 36.0, 22.2, 20.5, 17.2, 13.6, 11.3.

N-Allyl-1-ethyl-7-methyl-2,4-dioxo-5-p-tolyl-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine-6-carboxamide (3b): The title compound was 

prepared via general procedure B and obtained as a colorless 

solid (30 mg, 32%); mp 115–116 °C dec; 97% purity determined by qNMR. 1H NMR (400 

MHz, DMSO-d6) δ 10.80 (s, 1H), 8.15 (s, 1H), 7.85 (t, J = 6.0 Hz, 1H), 7.07 (d, J = 8.0 Hz, 

2H), 7.01 (d, J = 8.0 Hz, 2H), 5.71 (ddt, J = 17.3, 10.4, 5.2 Hz, 1H), 4.95–4.86 (m, 2H), 4.82 

(s, 1H), 4.00 (dh, J = 28.9, 7.1 Hz, 2H), 3.70–3.57 (m, 2H), 2.20 (s, 3H), 2.10 (s, 3H), 1.11 

(t, J = 8.0 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 167.6, 161.4, 150.0, 144.9, 143.0, 

135.4, 134.9, 133.6, 128.5, 127.2, 114.7, 110.9, 88.2, 41.0, 37.6, 36.0, 20.6, 17.3, 13.6.

N-Benzyl-1-ethyl-7-methyl-2,4-dioxo-5-p-tolyl-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine-6-carboxamide (3c): The title compound was prepared 

via general procedure B and obtained as a colorless 

solid (40 mg, 37%); mp 239–240 °C dec; 90% purity determined 

by qNMR. 1H NMR (400 MHz, DMSO-d6) δ 10.79 (s, 1H), 8.21 (t, J = 6.0 Hz, 1H), 8.13 

(s, 1H), 7.21–7.17 (m, 2H), 7.06 (d, J = 8.1 Hz, 2H), 7.03–6.97 (m, 4H), 4.84 (s, 1H), 4.24 

(t, J = 6.0 Hz, 2H), 3.98 (dh, J = 28.6, 7.1 Hz, 2H), 2.24 (s, 3H), 2.12 (s, 3H), 1.13 (t, J = 6.0 

Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 167.7, 161.4, 150.0, 144.8, 143.0, 139.6, 134.9, 

133.6, 128.4, 127.9, 127.4, 126.9, 126.4, 110.9, 88.1, 42.0, 37.7, 36.0, 20.6, 17.3, 13.6.

1-Ethyl-7-methyl-2,4-dioxo-N’-phenyl-5-p-tolyl-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine-6-carbohydrazide (3d): The title compound was prepared 

via general procedure B and obtained as a colorless solid (17 mg, 

16%), mp 164–165 °C dec, 94% purity determined by qNMR. 1H NMR (400 MHz, DMSO-

d6) δ 10.80 (s, 1H), 9.49 (d, J = 4.0 Hz, 1H), 8.19 (s, 1H), 7.61 (d, J = 4.0 Hz, 1H), 7.13 (d, 

Jiang et al. Page 7

Arch Pharm (Weinheim). Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.99–6.95 (m, 2H), 6.62 (t, J = 8.0 Hz, 1H), 6.36 

(d, J = 8.0 Hz, 2H), 4.83 (s, 1H), 4.05–3.95 (m, 2H), 2.26 (s, 3H), 2.17 (s, 3H), 1.14 (t, J 
= 6.0 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 167.9, 161.3, 149.9, 149.3, 144.6, 142.9, 

135.0, 133.8, 128.4, 128.3, 127.7, 118.1, 112.1, 109.4, 88.2, 37.9, 36.1, 20.6, 17.4, 13.6.

1-Ethyl-7-methyl-2,4-dioxo-N-phenethyl-5-p-tolyl-1,2,3,4,5,8-hexahydropyrido[2,3-
d]pyrimidine −6-carboxamide (3e): The title compound was prepared 

via general procedure B and obtained as a colorless solid (62 mg, 

56%); mp 194–195 °C dec; 97% purity determined by qNMR. 1H 

NMR (400 MHz, DMSO-d6) δ 10.78 (s, 1H), 8.12 (s, 1H), 7.71 (t, J = 6.0 Hz, 

1H), 7.24 (t, J = 7.4 Hz, 2H), 7.17 (t, J = 7.2 Hz, 1H), 7.10 (d, J = 8.2 Hz, 2H), 7.02 (d, J = 

8.1 Hz, 2H), 6.99 (d, J = 8.1 Hz, 2H), 4.76 (s, 1H), 3.97 (dh, J = 29.2, 7.1 Hz, 2H), 3.26 (dq, 

J = 13.9, 6.9 Hz, 2H), 2.65 (hept, J = 6.7 Hz, 2H), 2.21 (s, 3H), 2.03 (s, 3H), 1.12 (t, J = 6.0 

Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 167.7, 161.4, 150.0, 144.8, 142.9, 139.4, 134.8, 

133.6, 128.5, 128.4, 128.2, 127.1, 125.9, 111.0, 88.1, 40.3, 37.5, 36.0, 34.9, 20.6, 17.2, 13.6.

1-Ethyl-N-(4-methoxyphenethyl)-7-methyl-2,4-dioxo-5-p-tolyl-1,2,3,4,5,8-
hexahydropyrido[2,3-d]pyrimidine-6-carboxamide (3f): The title 

compound was prepared via general procedure B and obtained as a colorless solid (78 mg, 

66%); mp 152–153 °C dec; 95% purity determined by qNMR. 1H NMR (400 MHz, DMSO-

d6) δ 10.81 (s, 1H), 8.13 (s, 1H), 7.70 (t, J = 6.0 Hz, 1H), 7.04–6.99 (m, 6H), 6.80 (d, J = 8.5 

Hz, 2H), 4.77 (s, 1H), 3.98 (ddt, J = 35.3, 13.0, 6.6 Hz, 2H), 3.71 (s, 3H), 3.21 (tt, J = 13.8, 

7.0 Hz, 2H), 2.59 (h, J = 6.6 Hz, 2H), 2.22 (s, 3H), 2.05 (s, 3H), 1.12 (t, J = 6.0 Hz, 3H). 
13C NMR (100 MHz, DMSO-d6) δ 167.6, 161.4, 157.5, 150.0, 144.9, 143.0, 134.8, 133.6, 

131.3, 129.5, 128.5, 127.1, 113.6, 111.0, 88.1, 54.9, 40.5, 37.4, 36.0, 34.1, 20.6, 17.2, 13.6.

1-Ethyl-7-methyl-2,4-dioxo-N-(3-phenylpropyl)-5-p-tolyl-1,2,3,4,5,8-
hexahydropyrido[2,3-d]pyrimidine-6-carboxamide (3g): The 

title compound was prepared via general procedure B and obtained as a 

light-yellow solid (32 mg, 28%); mp 113–114 °C dec; 98% purity determined by qNMR. 1H 

NMR (400 MHz, DMSO-d6) δ 10.79 (s, 1H), 8.12 (s, 1H), 7.71 (t, J = 4.0 Hz, 1H), 7.25 (t, 

J = 7.4 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 7.11–7.06 (m, 4H), 6.99 (d, J = 7.9 Hz, 2H), 4.82 

(s, 1H), 4.00 (dh, J = 28.2, 7.1 Hz, 2H), 3.04 (ddq, J = 19.6, 12.8, 6.5 Hz, 2H), 2.41 (t, J = 

7.8 Hz, 2H), 2.19 (s, 3H), 2.11 (s, 3H), 1.61 (p, J = 7.8 Hz, 2H), 1.13 (t, J = 6.0 Hz, 3H). 13C 

NMR (100 MHz, DMSO-d6) δ 167.7, 161.4, 150.0, 144.9, 143.0, 141.8, 134.9, 133.1, 128.4, 

128.19, 128.15, 127.2, 125.6, 111.2, 88.0, 38.2, 37.7, 36.0, 32.5, 30.9, 20.5, 17.2, 13.6.

4.2 AlphaScreen

All analogs were tested in duplicate. BRD4-1 and BRDT-1 AlphaScreen[46] assays were 

performed with minimal modifications from the manufacturer’s protocol (PerkinElmer, 

USA). All reagents were diluted in 50 mM HEPES, 150 mM NaCl, 0.1% w/v BSA, 0.01% 

w/v Tween 20, pH 7.5 and allowed to equilibrate to rt prior to addition to plates. After 

the addition of Alpha beads to the master solutions, all subsequent steps were performed 

under low light conditions. A 2x solution of components with final concentrations of 

His-BRD4 or His-BRDT at 40 nM, Ni-coated Acceptor Bead at 25 μg/mL, and 20 nM 
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biotinylated-JQ1(S) was added in 10 μL to 384-well plates (AlphaPlate-384, PerkinElmer, 

USA). Plates were spun down at 150×g, after which 100 nL of compound in DMSO from 

stock plates were added by pin transfer using a Janus Workstation (PerkinElmer, USA). 

The streptavidin-coated donor beads (25 μg/mL final) were added in the same manner as 

the previous solution, in a 2x solution of 10 μL volume. Following this addition, plates 

were sealed with foil to prevent light exposure and evaporation. The plates were spun down 

again at 150×g. Plates were incubated at rt for 1 h and then read on an Envision 2104 

(PerkinElmer, USA) plate reader using the manufacturer’s protocol.

4.3 Protein crystallization and crystallography

BRD4-BD1 and BRDT-BD1 were expressed and purified as described.[47] Crystals were 

grown in the presence of 1 mM 2c by vapor-diffusion in hanging drops using precipitant 

0.2 M ammonium sulfate, 0.1 M TRIS pH 8.5, 25% (w/v) polyethylene glycol 3,350 

for BRD4-1, and 0.2 M lithium sulfate monohydrate, 0.1 M BIS-TRIS pH 6.5, 25% 

(w/v) polyethylene glycol 3,350 for BRDT-1. Crystals were harvested in cryoprotectant 

(precipitant + 25% (v/v) ethylene glycol) and flash frozen in a stream of nitrogen gas. X-ray 

diffraction data were recorded at beamline 22-BM (SER-CAT) of the Advanced Photon 

Source. Data were reduced and scaled with XDS.[48] PHENIX[49] was employed for phasing 

and refinement, and model building was performed using Coot.[50] The structures were 

solved by molecular replacement using PDB entries 5VBP and 4KCX as search models 

for BRD4 and BRDT, respectively. An initial model of the inhibitor was generated with 

ligand restraints from eLBOW of the PHENIX suite. All structures were validated by 

MolProbity[51] and phenix.model_vs_data.[52] 2D interaction diagrams were computed with 

Poseview.[43] Data collection and refinement statistics are shown in Supplementary Table 

S1. Atomic coordinates and structure factors have been deposited in the Protein Data Bank 

(PDB) under accession codes 7UTY and 7UUU.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Reported BET inhibition strategies and representative molecules.

Jiang et al. Page 13

Arch Pharm (Weinheim). Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The binding mode and design rationale for analogs of compound 1. (A) The co-crystal 

complex of compound 1 with BRD4-1 (PDB ID: 5KDH). Key residues are denoted in cyan 

sticks with black text, key hydrogen bonds are highlighted in yellow dashes, and conserved 

water molecules are displayed in red spheres. (B) The 2D binding plot of compound 1. (C) 

Superimposition of the four BD1 bromodomains of the BET family. One major difference 

around the recognition site lies in the ZA channel, in which BRDT-1 (PDB ID: 4FLP) has 

a positively charged arginine (magenta), whereas BRD2-1, BRD3-1, and BRD4-1 (PDB ID: 

6DDI, 6QJU, and 5KDH) have neutral glutamines (highlighted in cyan, yellow, and purple, 

respectively). (D) The proposed ring-open strategy is expected to provide an additional side 

chain to interact with the residues at the entrance of the ZA channel.
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Figure 3. 
BROMOscan for compound 2e.

Jiang et al. Page 15

Arch Pharm (Weinheim). Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Binding analysis of ring-open scaffold 2c. (A). Cocrystal structure of BRD4-1 with 

compound 2c (1.55 Å). Key and surrounding residues are shown in pink. (B) Cocrystal 

structure of BRDT-1 with compound 2c (1.52 Å). Key and surrounding residues are shown 

in cyan. Hydrogen bonds are shown as black dashed lines and conserved water molecules 

are displayed in red spheres. 2D interaction diagrams were computed by Poseview.[43] The 

blue and red mesh show the electron density upon refinement with (2Fo-Fc at 1σ) and 

without (Fo-Fc at 3σ) inhibitor, respectively. Distances between the ester moiety and the 

ZA-channel entrance residues of BRD4 (Gln85) and BRDT (Arg54) are indicated in Å.
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Scheme 1. 
Synthesis of ester and amide analogs. Reagents and conditions: a) AcOH, reflux, 27–46%; 

b) NaOH (4.0 equiv), 25 °C; c) RNH2 (1.0 equiv), EDCI (1.0 equiv), HOBt (1.0 equiv), 

DIPEA (1.0 equiv), DCM, 25 °C, 32–66% over 2 steps.
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Table 1.

Structures and affinity profiles for the ester analogs

Compound R
IC50 
(μM)

BRDT-1

IC50 
(μM)

BRD4-1

2a Me 5.9 5.4

2b 7.9 5.5

2c 4.7 3.1

2d 10 5.5

2e 0.79 0.97

2f 14 9.4

2g 15 11
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Compound R
IC50 
(μM)

BRDT-1

IC50 
(μM)

BRD4-1

2h 7.0 4.5

2i 11 9.1

1 5.4 4.1

(+)-JQ1* 0.16 0.050

*
(+)-JQ1 was used as the positive control. All compounds were tested once in duplicate.
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Table 2.

Structures and affinity profiles for the amide analogs

Compound R
IC50 
(μM)

BRDT-1

IC50 
(μM)

BRD4-1

3a 318 112

3b 11 18

3c 34 53

3d 49 49

3e 51 50

3f 44 36

3g 51 33

1 5.4 4.1

JQ1 0.16 0.050

*
(+)-JQ1 was used as the positive control. All compounds were tested once in duplicate.
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