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ABSTRACT

MRI connectomics is an emerging approach to study the brain as a network of interconnected brain regions.

Understanding and mapping the development of the MRI connectome may offer new insights into the development of

brain connectivity and plasticity, ultimately leading to improved understanding of normal development and to more

effective diagnosis and treatment of developmental disorders. In this review, we describe the attempts made to date to

map the whole-brain structural MRI connectome in the developing brain and pay a special attention to the challenges

associated with the rapid changes that the brain is undergoing during maturation. The two main steps in constructing

a structural brain network are (i) choosing connectivity measures that will serve as the network “edges” and (ii) finding an

appropriate way to divide the brain into regions that will serve as the network “nodes”. We will discuss how these two

steps are usually performed in developmental studies and the rationale behind different strategies. Changes in local and

global network properties that have been described during maturation in neonates and children will be reviewed, along

with differences in network topology between typically and atypically developing subjects, for example, owing to pre-

mature birth or hypoxic ischaemic encephalopathy. Finally, future directions of connectomics will be discussed,

addressing important steps necessary to advance the study of the structural MRI connectome in development.

It is becoming increasingly common to model the brain as
a network, an idealized mathematical construction that refers
to a set of interconnected components that together serve
a specific function.1 At the cellular level, these components
might be neurons and their synaptic connections. At a higher
level, the brain can be viewed as a network of interconnected
brain regions that together integrate vast amounts of in-
formation and perform highly complicated cognitive and
regulatory functions. These distributed neural networks are
not invariant throughout life and their continuing de-
velopment requires the co-ordination of an extraordinarily
complex set of neurodevelopmental events. Understanding
the evolving structure of the brain network through infancy
and childhood promises to provide new insights into normal
and abnormal brain maturation and plasticity. As a clinical
motivation, we consider the question: why do two children
with apparently similar injuries have very different out-
comes? Ultimately, such knowledge may lead to better di-
agnosis and treatment of developmental disorders.

An important scientific goal of neuroimaging is to improve our
basic understanding of brain function; a strategic way to

approach this goal is to characterize the physical connections
that mediate information transfer between cortical regions.2 In
the past several years, the changes of the macroscopic whole-
brainMRI-based structural network—theMRI connectome—
during the course of human development have been explored
by a number of different research groups. Three reviews to date
have examined the development of the connectome, each with
a somewhat different focus.Hagmann et al3 discussed concepts
in imaging of developing structural connectivity, functional
connectivity and structure–function coupling. Dennis and
Thompson4 gave a detailed overview of the development of
structural and functional connectivity in healthy subjects and
in subjects with a range of developmental disorders; they also
discussed issues such as hemispheric asymmetry, sex differ-
ences and imaging genetics. Collin and van den Heuvel5

reviewed current insights into functional and structural con-
nectome organization throughout development, maturation
and ageing, in order to explore the existence of consistent
underlying patterns.

This review focuses on methods for constructing and
comparing structural MRI connectomes, both across
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developing subjects and longitudinally, with an emphasis on the
challenges that arise in brains that are rapidly changing during
development. We limit our review to structural whole-brain
connectivity (to which the tools of graph theory can be applied)
in neonates and children and will discuss the ways in which this
task differs from similar approaches aimed at studying the adult
brain.

Biological substrate and trajectory of normal
brain development
Brain maturation follows an organized, pre-determined pattern
that correlates with the functions that a newborn performs at
various stages of development.6 While the brain undergoes the
most rapid and substantial physical and chemical changes in
utero, a number of processes affecting brain structure, in-
cluding myelination, refinement of white matter pathways,
synaptogenesis and dendritic pruning persist into adulthood7

(Figure 1).

Neurogenesis and apoptosis, synaptogenesis
and pruning
After an initial period of patterning, the majority of cortical
neurons develop and proliferate within the germinal matrix
and subventicular zone between 12 and 20 gestational weeks
and migrate to their final destination within the cortex, fol-
lowing a scaffold of glial cells.8 A period of rapid programmed
cell death, apoptosis, occurs after this migration, reducing the
neuronal number by half from 24 weeks of gestation to 4 weeks
after birth.9 Another major developmental process is the pro-
liferation and organization of synapses, which begins slightly
later, around the 20th week of gestation.9 Synaptic density
increases rapidly after birth; at 1–2 years of age, the number of
synapses is approximately 50% greater than that typically seen
in adults.10 This is followed by a regionally specific loss of
synaptic connections called pruning (Figure 1).

Sulcation
On a macroscopic level, sulcation is commonly cited as an
indicator of developmental stage. The first sulci are seen at
approximately 15 weeks after conception11 and slowly develop
in an orderly sequence, starting from the areas of the auditory,
sensorimotor and visual pathways. Most large- and moderate-
sized sulci and gyri are present by birth; however, smaller sulci
continue to develop after birth, resulting in an increase in
sulcal complexity. For reasons that are not yet clear, sulcal
development is delayed in pre-term neonates in comparison
with a foetus of the same post-conceptual age.6

Myelination
The second important indicator of the developmental stage,
from the imaging perspective, is the change in signal intensity of
the white matter secondary to the process of myelination.
Myelination of the brain begins before term and continues at
a much slower rate throughout life (Figure 1). Regionally, it
grossly proceeds from caudal to cephalad and from central to
peripheral.12–14 Another generalization is that myelination (and
brain development in general, including sulcation) progresses
from more primitive functions utilized in early life such as
sensory and, later, motor, to those that are not utilized until the
child is older, such as heteromodal association fibres. Although
most major tracts are significantly myelinated by early child-
hood, axons within the cortex and in some pathways that me-
diate higher order functions, such as the arcuate fasciculus,
continue to myelinate into the second and third decades of life.15

Imaging of brain development before connectomics
MRI is the most commonly used imaging modality for the
evaluation of brain maturation.6 MRI is well suited for studies of
the developing brain because it uses no ionizing radiation,
making it the modality of choice for not only clinical indications
but also for research and repeated scans of the same individual.
Such longitudinal studies are critical for accurately characteriz-
ing normal developmental curves, which are often non-linear.
However, the inherently long acquisition times of MRI often
result in subject motion and sometimes necessitate sedation.
Routine clinical scans include anatomic MRI (standard T1 and
T2 weighted images), often along with diffusion tensor imaging
(DTI) and proton spectroscopy. Resting-state functional MRI
(fMRI), perfusion MRI, susceptibility-weighted imaging and
magnetization transfer imaging have been advocated for specific
indications6 (Table 1). As already mentioned, sulcation and
myelination are the main indicators currently used in deciding
whether the brain is developing normally. Table 1 lists other
markers and MRI sequences used to assess them.

Because DTI is the principal technique used to calculate con-
nections of a structural connectome, we will briefly discuss how
it has been used in paediatric neuroimaging. DTI assesses water
molecule displacement at a microstructural level (in the order of
microns) and allows for calculating the average rate of water
diffusion [apparent diffusion coefficient (ADC)] and its orien-
tational coherence [fractional anisotropy (FA)]. FA is typically
high in white matter, as hydrophobic cell membranes and my-
elin sheaths hinder water diffusion. Therefore, the main di-
rection of the diffusion tensor reflects the underlying orientation

Figure 1. Trajectory of key neurodevelopmental processes in the human brain.
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of white matter tracts. We extract this information by performing
computational fibre tractography. Fibre tracking is able to de-
lineate specific white matter tracts by following local vector ori-
entation from the three-dimensional (3D) vector field. Different
tractography algorithms have been developed; the most widely
used remains streamline deterministic fibre tracking.16 The 3D
fibre track is allowed to continue unless it enters a region of FA
less than a pre-defined value, turns at an angle greater than a pre-
defined angle between consecutive voxels or exceeds outside pre-
determined spatial boundaries. Fibre crossing reduces intravoxel
FA and thereby causes one of the major downfalls of fibre
tracking. Several approaches, such as the diffusion spectrum
imaging (DSI),17 have been proposed to solve this issue.

DTI has been used extensively to explore the structural basis of
white matter development (for a review, see Lodygensky et al18).
In normally developing white matter, the ADC decreases as it
matures, while anisotropy steadily increases.19–21 FA increases
with age, partially owing to increasing myelin, but also exists in
the “pre-myelinating state” owing to axonal growth and elon-
gation and changes in the axonal membrane.22 DTI tractography
has been also performed even in pre-term neonate brains for
almost a decade now,23–25 despite the small brain volume and
low anisotropy.

MRI connectomics and network analysis
The connectome is a relatively new term, introduced in analogy to
the genome, and is used to describe the network of connections of
an organism’s neural system.26 Depending on the scale at which
connections are defined, one can speak about the microscopic or
macroscopic connectome. The complete microscopic con-
nectome at the level of the synapse is known only for the worm
Caenorhabditis elegans’ nervous system, which has as few as 302
neurons, and is unlikely to be mapped in the human nervous
system, comprising an estimated 1011 neurons, with 1015 con-
nections between them. On the macroscopic scale, a brain can be
viewed as a network of anatomically segregated local brain regions
communicating with other local regions via longer inter-regional
white matter pathways.

It recently became possible to study the macroscopic con-
nectome non-invasively using MRI.26,27 MRI connectomics treat

the brain as a network of connections between brain regions and
can provide new information about the topological arrangement
of brain connections, how these connections develop and re-
model, the efficiency of these connections and, in pathological
cases, the mechanisms and impact of disrupted connections. In
this approach, the surface of the brain is partitioned, and the
partitions serve as nodes of the network, while the white matter
fibres, usually reconstructed using diffusion tractography, serve as
connections or edges of the network. Alternatively, connections
can be derived from the fMRI signal; however, the highly variable
and dynamic patterns of functional connectivity are distinct from
connectome maps28 and will not be the focus of this review. The
suffix “ome” generally describes a permanent set of constituents
of a system considered collectively and is assumed to be invariant
and context independent, like the base pairs in the genome.

A network can be mathematically represented as a graph or
connectivity matrix (Figure 2). A graph is defined as a set of nodes
(in our case, brain regions), connected by a set of edges (e.g., white
matter tracts). In our system, the edges are often “binarized”,
meaning that they are only recognized if there is sufficient evi-
dence of a connection based on MR diffusion tractography.
Streamline counts, where each streamline is defined by following
the preferred direction of the water diffusion in the brain, are one
method for defining connections, for example. Graph theory-
based analysis is applied to the connectivity matrices for the ex-
traction of important network characteristics, such as node degree
(the number of connections of a node), characteristic path length
(the average number of steps between nodes), average clustering
coefficient (a measure of regional connectivity) and other quan-
tifiable measures of network connectivity (Figure 2) (for a review,
see Rubinov and Sporns29). Studying the human connectome
using graph theory offers a unique opportunity to better un-
derstand interindividual differences in neural connectivity. In
adults, this approach has been applied to studying network dis-
ruption in Alzheimer’s disease, schizophrenia, multiple sclerosis
and other neurological and psychiatric disorders (for a recent
review, see Griffa et al30).

Whereas the majority of connectome studies examine the adult
brain, this review focuses on the developing brain. In general,
the major caveat of connectomics is that graph analysis of

Table 1. Most commonly used MRI sequences in studying brain development

Imaging sequence Information obtained

T1 weighted Gross morphologic changes, development of sulci, myelination

T2 weighted Gross morphologic changes, development of sulci, myelination

Diffusion tensor imaging Changes in free water diffusion, microstructure, myelination, tracks

MR spectroscopy Biochemical metabolites

BOLD functional MRI Changes in location of specific brain activities

Perfusion MRI Cerebral perfusion (blood delivery to brain tissue per unit time)

Susceptibility-weighted imaging Intracerebral haemorrhages, myelination

Magnetization transfer Myelination

BOLD, blood oxygenation level dependent.
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neuroimaging data is not a straightforward automatic step but
a model building exercise, entailing arbitrary assumptions and
decisions, which can have influential effects on the results of the
analysis.31 This is especially true for the assumptions and deci-
sions made when analysing the developing brain networks,
which will be the focus of the following sections.

MAPPING THE STRUCTURAL CONNECTOME IN A
DEVELOPING BRAIN
Understanding of how the structural MRI connectome develops
in normal children can help to understand the development of
brain function, its maturation and plasticity (Figure 3). This may
lead to better diagnosis and, ultimately, to the development of
targeted therapeutic interventions for paediatric neurological
and psychiatric disorders, particularly in the many children with
developmental disorders but “normal” anatomic MRIs. A series
of studies have recently explored the changes in the human brain
network architecture occurring during the course of typical
(Table 2) and atypical development (Table 3). Although many
studies have investigated microstructural or local connectivity
changes in neonates and infants (see review by Dennis and
Thompson4), we consider here only structural connectome
studies employing the construction and analysis of whole-brain
networks and the use of graph theoretic tools. Our specific focus
is the challenge of characterizing networks in the changing
brain, which is most arduous during early brain development.

Network construction
Asmentioned above, any network can be represented as a graph or
connectivitymatrix, also called adjacencymatrix, which consists of
nodes and edges. All of the reviewed studies performed similar
basic steps to construct connectivity matrices and to assess
structural networks in development. A typical path fromdiffusion-
weighted images to a connectivity matrix included the following
steps (Figure 4):
1. Acquisition of diffusion MRI data. High-resolution diffusion

images are acquired of the entire brain. Ideally, these should be
acquired at high field strengthwithmultiple diffusion directions
(30 or more) and with multiple b-values. Additional b-values

employed in multitensor modelling approaches enable a better
differentiation of complex white matter anatomy.

2. Data quality assurance. MRI data quality suffers from bulk
motion, particularly in unsedated infants. In order to address
this issue, different measures may be taken; these include
rejection of volumes affected by motion in diffusion MRI,
which may distort the matrix, correction for susceptibility
distortions, intensity inhomogeneity correction, correction for
head movement and eddy current distortions, among others
(see review by Pannek et al52).

Figure 2. Fundamental graph metrics. Brain networks can be described as a graph consisting of elements (nodes) and their

connections (edges). In macroscopic brain networks, the nodes correspond to brain regions and edges to the fibre bundles

connecting them. The clustering coefficient of a node is given by the fraction of triangles around an individual node. The average

clustering coefficient of the entire graph is used as a measure of segregation, representing the degree to which the network is

organized into functionally distinct groups. The characteristic path length of a graph is defined as the average number of steps

required to travel between two nodes of the graph; it is commonly used as a measure of integration, describing the ability of

a network for distribution of information. The degree of a node is the number of edges attached to that node. The betweenness

centrality of a node reflects the (relative) number of shortest paths between all node pairs that pass through it. The modularity of

a graph describes the extent to which the graph can be subdivided into weakly linked clusters of densely interconnected nodes.

Figure 3. A schematic image of structural connectivity in a

6-month old infant. A whole-brain tractogram obtained

from diffusion tensor imaging is used to construct a network

of corticocortical connections.
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3. Structural connectivity measures. In this step, whole‐brain
diffusion tractography is performed (as in the majority of
studies) to characterize connectivity between different brain
regions. Alternatively, measurements of cortical thickness
derived from a high-resolution anatomical image can be used,
as will be discussed in the following section.

4. A high-resolution anatomical MRI is acquired and registered to
a standardized brain/atlas. This step is performed in the majority
of studies, with the exception of template-free approaches.40,43,51

5. Brain parcellation. To define distinct brain regions used as
network nodes, atlases and templates are most commonly
used. These are created using sulcal landmarks as the limits of
hand-drawn regions of interest (ROIs) on the outer surface of
the brain.34 This step will also be discussed in more detail later.

6. Connectivity matrix construction. Whatever measure was
derived in Step 3 is combined with Step 5 in order to construct
anN3N connectivity matrix, defining all connections among
the nodes, where N is the number of nodes.

Network analysis
The connectivity matrix, formed using the steps described
above, is used to perform network analyses, for example, using
standard toolboxes, such as the brain connectivity toolbox de-
veloped for MATLAB® (http://www.brain-connectivity-toolbox.
net).29 These analyses yield information concerning the con-
nectivity of the brains studied.

Two of the steps, choosing structural connectivity measures that
will serve as the network edges and finding an appropriate way to
divide the brain into nodes have a decisive influence on the
resulting network measures. There is an ongoing debate regarding
the proper definition of network edges and nodes, even for the
study of the adult brain. Available choices for the construction of
the developing connectome will be discussed next.

Structural connectivity measures
To characterize the structural brain network, an appropriate mea-
sure of connectivity is required. This measure can be defined in
different ways based on different kinds of MRI data (see review by
Bullmore and Bassett31). In diffusion MRI, streamlines from trac-
tographic analysis can serve as a connectivity measure between any
pair of grey matter regions. Using anatomical (for example, T1
weighted) MRI data, connectivity can be inferred from inter-
regional covariation in cortical thickness or volumes, a process
that results in connectivity estimates that resemble those de-
rived from diffusion tensor maps.53 As an example, this ap-
proach was used by Fan et al,33 Khundrakpam et al39 and Shi
et al49 in their developmental connectome studies.

Because it probes inter-regional connections in a more direct way,
diffusion MRI has emerged as the method of preference for in-
ferring structural connectivity in the adult and the developing
structural connectome (Tables 2 and 3). The problem of motion
in paediatric population and difficulty of performing longer scans
make the simpler and faster DTI model the technique of choice.
However, it needs to be emphasized that DTI-based connectivity
inevitably misrepresents anatomical connectivity to some extent,
as it is unable to resolvefibre bundles, or even tracts, with complex
configurations. High angular resolution diffusion (HARDI)
models provide a more accurate white matter tractography result
than the simple tensor model by resolving crossing fibre bundles,
for example as used in the study by Dennis et al.36 DSI is probably
the most accurate method for probing structural connectivity, but
long experimental times preclude its routine use.

Whether DTI, HARDI or DSI is used to acquire and represent
intravoxel diffusion, tractography is a fundamental step in trans-
forming these measurements into actual network connections.
Different brain regions will be connected by different number of

Table 2. MRI studies of structural brain networks in typical development

Study Subjects
Connectivity
measure

Parcellation
Network changes with

age

Hagmann
et al32

30 subjects: 18 months to
18 years

DTI and q-ball
66 or 241 nodes,
landmark-based

Global efficiency ↑, clustering ↓,
small-worldness ↓

Fan et al33
28 subjects: 1 month, 1 year,
2 years longit. 1 27 adults

Grey matter
volume correlation

90 nodes, AAL34
Global efficiency ↑, modularity
↑ from 1 to 2 years

Yap et al35
39 subjects: 2 weeks, 1 year,
2 years longit.

DTI 78 nodes, AAL34
Global efficiency constant, local
efficiency ↑

Dennis et al36
102 subjects: 12 years,
16 years 1 337 adults

HARDI 70 nodes, gyral-based
Global efficiency ↑, clustering ↓,
small-worldness ↓, modularity ↓

Huang et al37
25 neonates, 13 toddlers, 25
pre-adolescents 1 18 adults

DTI, probabilistic
tracking

80 nodes, AAL,34 adult
ICBM-152 template38

Global efficiency ↑, clustering ↓,
small-worldness ↓

Khundrakpam
et al39

203 subjects: 5–8, 8–11, 11–15
and 15–18 years

Cortical thickness
covariance

78 nodes, AAL34
Local efficiency ↓, modularity ↓,
global efficiency ↑ in late
childhood

Tymofiyeva
et al40

26 subjects: pre-term, term
1–14 days, 6 months 1 7 adults

DTI
100 nodes, template-free
equal-area sphere partitioning

Global efficiency ↑, clustering ↓,
modularity ↓, small-worldness ↓
(except pre-term)

AAL, anatomical automatic labelling atlas; DTI, diffusion tensor imaging; ICBM, International Consortium for Brain Mapping; HARDI, high angular
resolution diffusion imaging; longit., longitudinal.
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streamlines, mathematical constructs that define a single re-
alization of a potential 3D trajectory linking any two brain areas.
These streamlines, or tracks, are approximations and do not rep-
resent actual fibres or even an average fibre within a tract, which
raises the question as to how to quantify connection strength.

In the language of graph theory, one speaks of weighted vs bi-
nary networks. Accordingly, there are two main approaches to
defining connectivity:
1. Thresholding connectivity to reduce the complexity of the

data set and focus on the pattern of connectivity. Using
binarized networks, in which connections consisting of more
than a threshold number of streamlines are considered as
present and those with a number of streamlines below that
threshold are not present, simplifies the calculation and
interpretation of many network measures, but also results in
a loss of information about the network edges. Information
transfer in vivo is not only governed by the connectivity
pattern but also by the density of axons in a bundle, axonal
diameter, axonal length and, importantly, myelination.3 Since
at later stages of development, the strongest changes are most
likely to be related to myelin modulation rather than the
change of the macroscopic binary pattern, using weighted
networks might be more appropriate.

2. While many different approaches to weighting network
connection have been proposed (streamline count being the
most straightforward), no tractography-derived index pro-
posed so far can quantify “connection strength” in a physio-
logical or anatomical context.54 Changes associated with brain
development add an additional difficulty. Owing to method-
ological biases related to brain volume and diffusion
anisotropy changes, tractography studies do not register the
higher number of axonal branches present in early de-
velopment; on the contrary, tractography shows more tracts
with increasing age.3 This should not be wrongly interpreted as
infants having fewer connections, as would result from simply
counting the streamlines. In other words, an equal number of
streamlines have different meaning at different maturation
stages; therefore, streamline count is not an appropriate
weighting factor, especially for longitudinal developmental
studies. In probabilistic tractography, the regional connec-
tivity probability can be used to weight cortical regions. For
example, Pandit et al44 adapted a probabilistic tracking
algorithm to delineate tracts between all ROI pairs, as
described by Robinson et al.55 However, it remains unclear
whether any of the suggested measures provide a quantitative
estimate of “connection strength”. More comprehensive
analysis methods such as tractometry, in which different

Table 3. MRI studies of structural brain networks in atypical development

Study Condition/subjects
Connectivity
measure

Parcellation
Network changes with
condition/outcome

Batalle et al41
IUGR/42 subjects1 41 controls,
scanned at 126 2 months

DTI
93 nodes, AAL adapted to
1 year-old population42

Decreased global and local
weighted efficiency; a pattern of
altered regional graph theory
features; correlation of
connectivity measures with
BSID-III at 2 years

Tymofiyeva
et al43

HIE/17 subjects, scanned at
6 months

DTI

40 nodes, template-free (1)
equal-area sphere partitioning;
(2) “gridded” parcellation into
regions of equal spatial extent

A trend of declining brain
network integration and
segregation with increasing
neuromotor deficit scores

Pandit et al44
Pre-mature birth/49 subjects,
scanned at 11–31 months

DTI, probabilistic
tracking

83 nodes, manual segmentation
of adult brains45

Lower connection strength in
tracts involving all cortical lobes
and several subcortical
structures with increasing
pre-maturity at birth

Pannek
et al46

Pre-mature birth/9 term
neonates, 18 pre-term-born
infants

DTI, probabilistic
tracking

48 nodes, John Hopkins
University neonate space47

Affected components of the
network identified using NBS48

mainly involved left frontal and
temporal cortical areas

Shi et al49
Autism/49 subjects1 51
controls, scanned at 6–15 years

Cortical thickness
correlations

68 nodes, Freesurfer,
Desikan–Killiany cortical atlas50

Reduced network modularity;
a larger number of intermodule
connections; increased intra-
and inter-module connectivity
in middle frontal gyrus, inferior
parietal gyrus and cingulate

Ziv et al51
HIE/24 subjects, scanned at
6 months

DTI
100 nodes, template-free
equal-area sphere partitioning

Separating normal and
abnormal outcome using
a machine learning approach

AAL, anatomical automatic labelling atlas; BSID-III, Bayley scale for infancy and toddler development, 3rd ed.; DTI, diffusion tensor imaging;
HIE, hypoxic ischaemic encephalopathy; IUGR, intrauterine growth restriction; NBS, network-based statistics.
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metrics of white matter microstructure are sampled (myeli-
nation, axon density, axon diameter), might provide a more
meaningful biological quantification of connectivity and
a more meaningful weighting scheme.56

Binary and weighted approaches make different assumptions
about the analysed networks. In their (weighted) study of late
development, Hagmann et al32 assumed no change in axonal
number and, therefore, in the pattern of connectivity, and used
the inverse of the average ADC (1/ADC) as a measure of
“connection efficacy” (a rough estimate of maturation). The
number of non-zero entries in the connectivity matrices was
fixed and the weights varied, representing maturational changes.
This approach has its roots in MRI studies of white matter57,58

showing that all the major white matter tracks are present at
birth, but in an immature state. The opposite (binary) approach
is to analyse the connectivity pattern after fixing the weight of
connections by applying a threshold (or a range of different
thresholds), as in the study by Tymofiyeva et al.43 A condition
such as hypoxic ischaemic injury of the neonate, for example,
would be expected to impact the connectivity pattern and not
just the weights. Hagmann et al3 emphasized that it must be
clearly hypothesized at the beginning whether, for example,
a developmental disease impacts the connectivity pattern or only
the physiological weights of the connections, since it is difficult
to differentiate these two phenomena.

The choice of the connectivity measure, even the specific vari-
ation of the method, can have a strong effect on the resulting
network properties. For example, Li et al59 applied three con-
nection reconstruction methods, based on probabilistic trac-
tography, to compile inter-regional connectivity maps of brain
networks using the same set of diffusion MRI data, and then
compared the resultant connectivity matrices. Although the
three methods showed moderate-to-high correlations among the
different graph-theoretic measures, significant between-method
variability in terms of small-world properties, brain-hub iden-
tification and hemispheric asymmetry were demonstrated, sug-
gesting that reconstruction method has a significant impact on
derived brain networks.

Brain parcellations
Whether tractography results or cortical thickness correlations
are used to define brain network connections, the properties of
the resulting connectome depend strongly on the cortical par-
cellation, the method by which the brain’s grey mater is divided
into nodes. No single parcellation scheme is universally used.
The majority of adult brain studies have employed anatomical
parcellation, in which common gyral and sulcal anatomy is used
as landmarks to define boundaries of grey matter zones, such as
the anatomical automatic labelling (AAL) atlas.34 The main
advantage of using an anatomically defined template for nodal
parcellation is that it enables a direct comparison of results

Figure 4. A typical pipeline for assembling a structural connectome in the developing brain. After a set of diffusion-weighted images

is acquired (1), a quality assurance step is performed in which data affected by motion are rejected and the remaining images are

corrected for eddy current distortions and affine head motion (2). Although this step may not be necessary in co-operative adults, it

is essential for high-quality tractography in infants. The diffusion tensor is calculated for the resulting data and whole-brain

streamline fibre tractography is undertaken (3). Commonly, a high-resolution anatomical MRI is acquired (4), which is registered to

a standardized brain/atlas that enables automatic brain parcellation into nodes (5). Steps (3) and (5) are combined and the

connectivity matrix is constructed (6).
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across studies. One of the limitations of this approach, however,
is that the size of different template regions varies considerably,
affecting network properties. A more serious limitation stems
from the significant intersubject variability in the location and
size of these common brain areas, as well as in the non-trivial
relationship between macrostructure (sulci and gyri) and mi-
crostructure (cytoarchitectonics and cytochemistry). For exam-
ple, variability of the sulcal anatomy on the cerebral hemispheres
has been measured to reach 17–19mm after an affine stereotaxic
normalization.60 The situation becomes even more challenging
in the rapidly changing and relatively undeveloped newborn
brain, when cortical surface anatomy is dynamic and the signal
intensity of the brain changes with age. Even the anatomical
co-registration step preceding the parcellation cannot be easily
performed by directly applying pipelines developed for the adult
brain. For example, widely used methods such as Freesurfer
(Laboratory for Computational Neuroimaging, Boston, MA) do
not work with incompletely myelinated brain.3

Despite these limitations, most prior work on the developing
brain (Tables 2 and 3) has employed adult brain templates in
the calculation of network nodes. For example, Fan et al33

noted that anatomical brain regions defined in the AAL atlas
might not match very well with function and anatomy during
early brain development. Recently, a neonatal brain atlas,
referred to as John Hopkins University neonate space, with
detailed anatomic information derived from DTI and cor-
egistered anatomical MRI, was developed,47 following a sim-
ilar concept to the adult group-averaged atlas International
Consortium for Brain Mapping (ICBM)-152.38 It has been
used by Pannek et al46 to perform network analysis of
structural connectivity in the pre-term brain at term equiv-
alent age.

An alternative approach is to use template-free parcellation.
Tymofiyeva et al43 suggested a method for anatomically un-
constrained parcellation that utilizes equal area partitioning on
the sphere. This technique makes intersubject comparison more
challenging but enables calculation of single subject network
parameters without imposing anatomical bias. An empirical
method for finding the optimal number of nodes for equal-area
parcellation schemes—for given study group, acquisition and
tractography parameters—has also been proposed,51,61 defined
as the finest parcellation that covers the entire cortical surface
and does not have isolated (lacking connections) components.
Although brain networks obtained in this way are not auto-
matically co-registered, it can be done using matrix alignment
algorithms.61

Comparing connectomes
The comparison of connectomes can be undertaken either on
a global or a local (at the node or edge) level, two comple-
mentary ways of analysis.62 At the global level, a set of summary
metrics for the entire network is calculated for each subject, and
statistical tests are performed to assess the differences between
groups while controlling for nuisance covariates. Although
several tests are usually performed on the same dataset using
different global network metrics, multiplicity correction is, un-
fortunately, rarely applied.

When global network measures such as characteristic path
length or the average clustering coefficient are used, insights
regarding plasticity effects, maturational or pathological
processes are difficult to infer, as local phenomena are diluted
in the global mean.62 Therefore, the analyses of both global
and node-wise or edge-wise comparisons are important in
order to identify connections associated with a particular effect or
outcome, such as a group difference in a case–control comparison
or a correlationwith clinical measures. A statistical test contrasting
two ormore groups is computed for each individual connection of
the connectivity matrix. This approach is statistically intractable,
as the number of comparisons that must be performed grows
rapidly with the number of network nodes, virtually ensuring that
statistical significance is observed by random chance.

To address this problem, two approaches are suggested: (i) mass-
univariate testing of the hypothesis followed by controlling the
family-wise error rate (FWE) with a generic procedure such as
the false discovery rate;63 or (ii) the network-based statistics
(NBS) for group comparison.48 The NBS can provide greater
statistical power if the set of connections at which the null hy-
pothesis is rejected constitutes a large component. It should be
noted that the NBS is of no use if the contrast does not form an
interconnected component without isolated nodes. However,
when it does, the NBS has a greater utility than the FWE, as
demonstrated in resting-state fMRI networks in patients with
schizophrenia.48 An additional advantage of NBS is that it
operates directly on raw measures of structural or functional
connectivity, rather than on binary connectivity matrices. This
approach was used in the study of the pre-mature connectome
by Pannek et al.46

Alternatively, comparison can be performed by means of more
sophisticated nonparametric statistical testing or classification
approaches.62 For example, Ziv et al51 used a machine learning
approach to predict neonatal encephalopathy based on struc-
tural networks derived from DTI data and demonstrated low
testing error (216 4%).

WHATWE HAVE LEARNT SO FAR: HOWDOES THE
CONNECTOME DEVELOP?
Typical connectome development
The essence of brain function is reciprocal communication
among many locations, based on two main organizational
principles: segregation and integration. High segregation indi-
cates presence of specialized, locally efficient neighbourhoods in
the network and is reflected, for example, in a high average
clustering coefficient.64 High integration, on the other hand,
indicates efficient communication among nodes of the network
and is reflected in a short characteristic path length. The in-
terplay of these two organizational principles enables the main
brain function: information processing that is simultaneously
specialized and distributed across cognitive domains. It has been
previously demonstrated that higher integration of brain net-
works is associated with higher intelligence.65

Reported studies (Table 2) have shown changes in measures of
integration and segregation (the network’s global and local ef-
ficiency, respectively) with maturation. Examination of two
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parcellations with differing numbers of nodes revealed in-
creasing global efficiency and decreasing clustering coefficients
(and, hence, local efficiency) in the developing brain throughout
childhood and adolescence (2–18 years).32 In a study in 439
adolescents and adults, Dennis et al36 also observed increasing
global brain network efficiency and decreasing local connectivity
with age: path length, mean clustering coefficient and normal-
ized clustering all decreased with age, suggesting that this period
of development is marked by increasing network integration. Our
group examined the maturational changes of the cortical con-
nectome across pre-mature neonates, term-born neonates scan-
ned in the first days of life, 6-month-old infants and adults using

a template-free analysis.40 Figure 5 illustrates the developmental
trajectory of the template-free structural brain network. In line
with the observations by Hagmann et al,32 Dennis et al36 and
Huang et al,37 this approach also showed that scaled characteristic
path length and clustering coefficient both decrease with higher
age in term-born subjects.

Somewhat different results have been reported by other groups.
Constant global efficiency and increased local efficiency were
measured in a longitudinal DTI-based study of subjects at the
ages of 2 weeks, 1 year and 2 years.35 A separate longitudinal
study of subjects at 1 month, 1 year and 2 years, in which the

Figure 5. Maturation of the structural connectome: examples of brain networks at four different ages. (a) Anatomic T2 weighted MRI

images. (b) Tractograms reconstructed based on diffusion tensor imaging data. (c) Brain networks represented as graphs. The size

of the nodes is proportional to the node degree. (d) Binary connectivity matrices, reordered in a way that maximizes the number of

connections close to the main diagonal. Note: the 6 days and 6 months networks were mapped in the same infant longitudinally.

Image modified from Tymofiyeva et al40 with permission from Public Library of Science.
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brain networks were derived from correlations between regional
grey matter volumes, reported increasing global efficiency, and,
from 1 to 2 years, increasing local efficiency.33 Khundrakpam
et al39 reported the presence of a critical time window in late
childhood (8.5–11.3 years) with increased global efficiency and
decreased local efficiency, indicating that structural brain net-
works may transiently take on a more random configuration
during this developmental period.

Increases in global efficiency that were observed in most studies
to date can be explained by the strengthening of axonal pro-
jections, particularly longer range association projections, dur-
ing the first years of life. This increasingly integrated topology
during development seems to be followed by a plateau lasting
through the majority of adulthood before reverting to an in-
creasingly localized topology in late life.5

All studies to date (Table 2) have confirmed that developing
structural brain networks exhibit small-worldness.66 This prop-
erty reflects the fact that the minimum number of steps necessary
to travel between any two individual brain regions remains small
throughout the brain, even though a direct connection may not
always exist between two areas. The small-world index has been
observed to decrease with age in a number of studies,32,36,37,40

mediated by a stronger decrease of the clustering coefficient than
characteristic path length.

In network science, nodes that are most highly interconnected
with other nodes are referred to as network hubs. One can use the
node degree or other measures of centrality to identify these
nodes. The high centrality of hubs also renders them points of
vulnerability, susceptible to disconnection in brain disorders. In
the adult brain, network analyses have shown that the praecuneus,
anterior and posterior cingulate cortex, insular cortex, superior
frontal cortex, temporal cortex and lateral parietal cortex are hubs
in the brain network.67 Hagmann et al32 reported that hub
regions remain consistent between the ages of 2 and 18 years: the
praecuneus, posterior cingulate cortex, superior frontal cortex
and superior parietal cortex. In the study of structural brain
networks at three landmark cross-sectional ages (neonates, tod-
dlers and pre-adolescents), Huang et al37 found that three regions
were the common hubs for all the three groups: the praecuneus,
posterior cingulate gyrus and right cuneus.

Recent observations have suggested that structural brain hubs
are not only highly connected with the rest of the brain, but are
also more highly interconnected among each other than pre-
dicted on the basis of their degree alone, hence giving rise to the
concept of a “structural core” or “rich club”.67,68 Rich-club or-
ganization of neural hubs tends to further boost the robustness
of interhub communication, promoting efficient communica-
tion across many large regions of the brain. Dennis et al69

charted the developmental trajectory of the rich club in brain
networks from 438 subjects aged 12–30 years. The adult and
younger cohorts had rich clubs that included different nodes; the
rich club effect intensified with age.

Another important way of analysing the organization of brain
networks is to detect network communities, or modules—sets of

network nodes that are more densely linked among each other than
with other nodes in the network. Hagmann et al32 identified
modules by optimizing the modularity score and found that no
major reorganization of structural modules was observed after 2
years of age. They also observed that, regardless of age, the lengths
of fibre pathways linking regions within the same module were
significantly shorter than pathways linking regions in different
modules. This pattern of connection length distribution reflects the
tendency, conserved between 2 and 18 years, of spatially adjacent
regions to belong to the same module. The same tendency was
observed by Tymofiyeva et al40 who used the maximized modu-
larity to group equal-area nodes into modules. They reported
a relatively consistent optimal number of modules in all studied age
groups: 5–6 modules (average, 5.38) in the pre-term-born neo-
nates, 5–7 modules (average, 5.75) in the term-born neonates, 5–8
modules (average, 6.6) in the 6-month-old infants and 5–7 mod-
ules (average, 5.71) in the adults. Although no prior anatomical
information was used to define nodes and modules, the result
matched anatomy reasonably well. Similar numbers of modules
were detected by Huang et al37 in an atlas-based network analysis of
brain connectivity in neonates, toddlers and pre-adolescents. There
was also some convergence among studies regarding the decrease of
the modularity measure with age (which quantifies de-
composability of the network into smaller subnetworks).

Disrupted connectome
According to the World Health Organization (2012),70 more
than one in ten babies are born pre-term, which puts them at
risk of a lifetime of disability. This population, as well as those
infants who sustained perinatal injury, depends on effective
therapies and our ability to detect and monitor individual
deviations from the normal developmental trajectory. Al-
though visual and motor disabilities often have imaging
correlates, it is very difficult to predict other developmental
abnormalities in these babies using anatomic imaging. We
expect that understanding of the structure, performance and
plasticity of the human brain network and its evolution across
the lifespan will help in identifying patients who are at risk of
developing behavioural or cognitive abnormalities.

Some recent studies have utilized whole-brain structural con-
nectivity analysis in different clinical paediatric populations
(Table 3), for example, correlating global network properties with
the outcome after hypoxic ischaemic encephalopathy.43,51 In-
trauterine growth restriction alters brain network topology at 1
year.41 Pandit et al44 used an optimized processing pipeline,
combining anatomical and tissue segmentations with probabilistic
diffusion tractography to map mean tract anisotropy in pre-
maturely born infants. The “diffusive exchange” between voxels (a
measure of anisotropy) integrated across the whole tract was used
as a marker of the connection strength. White matter tracts, where
diffusive exchange was related to age of delivery or imaging, were
identified. Older children had stronger connected tracts pre-
dominantly in frontal lobe structures. Increasing pre-maturity at
birth was related to widespread reductions in connectivity in all
cortical lobes and several subcortical structures.

Unexpected results in pre-mature vs term-born neonates were
found by Tymofiyeva et al.40 Pre-mature neonates deviated from
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the general trends in global network properties. This finding
might be due to non-linearity of the developmental curve, dif-
ferences between developmental curves of pre-maturely and
term-born subjects or owing to technical difficulties that ac-
company MRI scanning of this challenging population.

Shi et al49 studied organizational changes in 49 children with
autism and 51 typically developing controls scanned at the ages of
6–15 years, by analysing their brain networks mapped based on
inter-regional cortical thickness correlations. In comparison with
controls, autistic children showed a significant reduction in net-
work modularity. At the same time, the autistic brain network
demonstrated an increase in intra- and intermodule connectivity
in brain regions, including middle frontal gyrus, inferior parietal
gyrus and cingulate. Since these regions are associated with self-
reference and episodic memory, the observed differences might be
indicative of an underlying compensatory mechanism in children
with autism.

MRI connectomics has potential to become an imaging bio-
marker of poor neurodevelopmental outcome in infants with
pre-natal or perinatal diseases. Additionally, monitoring the
brain plasticity changes could provide a basis for developing and
optimizing therapies to improve outcomes after acquired brain
injuries. A review by Dennis and Thompson4 provides greater
detail on changes of structural and functional connectivity in
atypical brain development.

FUTURE DIRECTIONS
Although MRI connectomics is still in an early phase of de-
velopment, it is clear that its application to the study of the
developing brain will significantly benefit our understanding of
this complex but very important topic. In particular, the field
could benefit by addressing the following issues:
1. Longitudinal studies. The majority of paediatric imaging

studies to date have made longitudinal or developmental
inferences from cross-sectional data, a practice that can be
problematic at best for reasons that include biases associated
with differences in sampling across age groups, time
displacement and unequal error variances.71 To address these
difficulties, longitudinal connectome studies are required.
Such studies will allow direct examination of the trajectories
of post-natal human brain development and, presumably,
more valid inferences about their functional correlates.

2. Improved tractography algorithms and biologically meaning-
ful quantification of connectivity (weights). Foreseeable
improvements in diffusion data acquisition and analysis tools
can be expected to improve the accuracy of structural networks
in both paediatric and adult subjects. As highlighted in this
review, there is a demand for quantitative estimates of the
connection strength that will accurately reflect the complex
microstructure of white matter and serve as weights of the

edges in the connectome. A number of techniques using
diffusion imaging are being developed to provide more accurate
estimates of axonal density and diameter and the degree to
which individual tracts are myelinated.72–74 Acquisition of
multiple b-values is required for complex model fitting.

3. Direct comparison of parcellation schemes. Another advance
would be to find robust alternative means of brain parcellation,
which are not based on sulcal and gyral landmarks. Direct
comparison and standardization of parcellation schemes
would benefit the developing field of connectomics.

4. Inclusion of subcortical areas. Despite persistent controversy
regarding how subcortical areas should be included and
weighted, together with cortical regions, these structures are
important for an unbiased brain network study.75 Li et al59

showed a prominent structural role of the subcortical regions:
among the top 20% nodes with the highest betweenness
centrality values, the subcortical regions constitute 37.5–43.8%,
much higher than their representation as a proportion of the
total number of brain regions included (17.1%). Therefore,
connectomemapping studies that exclude subcortical areas may
be missing important connections involving subcortical–-
cortical coupling and/or corticocortical circuits that loop
through subcortical structures. Ball et al76 studied the influence
of pre-term birth on the developing thalamocortical connectiv-
ity (called by the authors “thalamocortical connectome”),
demonstrating that connections between the thalamus and the
frontal cortex, supplementary motor areas, occipital lobe and
temporal gyri were significantly diminished in the pre-term
infants. Indeed, thalamocortical connectivity is known to be
a critical component of cerebral cortex development and of
cerebrocerebellar communications. Therefore, future models
should be constructed to include the deep cerebral nuclei.

5. Understanding the relationship between structural and
functional connectivity. Although functional connectivity,
strictly speaking, does not provide a “connectome” de-
scription,28 it offers a complementary approach, and the
full description of both structural and functional connec-
tivity is crucial in understanding normal and abnormal
maturation of the brain as a whole. Several reviews have
summarized explorations of the functional organization of
the developing brain.77–79 The combined use of structural
and functional imaging in the same subject would ultimately
allow for degenerate (many-to-one, depending on the task)
function–structure mapping, which is crucial for understand-
ing the nature of brain networks.

6. Validating models against clinical data. Models of perturbed
formation of the connectome need to be further tested and
verified in larger clinical samples.
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54. Jones DK, Knösche TR, Turner R. White

matter integrity, fiber count, and other

fallacies: the do’s and don’ts of diffusion MRI.

Neuroimage 2013; 73: 239–54.

55. Robinson EC, Hammers A, Ericsson A,

Edwards AD, Rueckert D. Identifying pop-

ulation differences in whole-brain structural

networks: a machine learning approach.

Neuroimage 2010; 50: 910–9. doi: 10.1016/j.

neuroimage.2010.01.019

56. Bells S, Cercignani M, Deoni S, Assaf Y,

Pasternak O, Evans CJ, et al. Tractometry–

comprehensive multi-modal quantitative as-

sessment of white matter along specific tracts.

Proc Intl Soc Mag Reson Med 2011; 19.

57. Dubois J, Hertz-Pannier L, Dehaene-

Lambertz G, Cointepas Y, Le Bihan D.

Assessment of the early organization and

maturation of infants’ cerebral white matter

fiber bundles: a feasibility study using

quantitative diffusion tensor imaging and

tractography. Neuroimage 2006; 30: 1121–32.

58. Hermoye L, Saint-Martin C, Cosnard G, Lee

SK, Kim J, Nassogne MC, et al. Pediatric

diffusion tensor imaging: normal database

and observation of the white matter matu-

ration in early childhood. Neuroimage 2006;

29: 493–504. doi: 10.1016/j.neuroimage.2005.

08.017

59. Li L, Rilling JK, Preuss TM, Glasser MF, Hu

X. The effects of connection reconstruction

method on the interregional connectivity of

brain networks via diffusion tractography.

Hum Brain Mapp 2012; 33: 1894–913. doi:

10.1002/hbm.21332

60. Thompson PM, Schwartz C, Lin RT, Khan

AA, Toga AW. Three-dimensional statistical

analysis of sulcal variability in the human

brain. J Neurosci 1996; 16: 4261–74.

61. Tymofiyeva O, Ziv E, Barkovich AJ, Hess CP,

Xu D. Brain without anatomy: construction

and comparison of fully network-driven

structural MRI connectomes. PLoS One 2014;

9: e96196. doi: 10.1371/journal.pone.

0096196

62. Meskaldji DE, Fischi-Gomez E, Griffa A,

Hagmann P, Morgenthaler S, Thiran JP.

Comparing connectomes across subjects and

populations at different scales. Neuroimage

2013; 80: 416–25. doi: 10.1016/j.

neuroimage.2013.04.084

63. Genovese CR, Lazar NA, Nichols T. Thresh-

olding of statistical maps in functional

neuroimaging using the false discovery rate.

Neuroimage 2002; 15: 870–8. doi: 10.1006/

nimg.2001.1037

64. Kaiser M. A tutorial in connectome analysis:

topological and spatial features of brain

networks. Neuroimage 2011; 57: 892–907.

doi: 10.1016/j.neuroimage.2011.05.025

65. Li Y, Liu Y, Li J, Qin W, Li K, Yu C, et al.

Brain anatomical network and intelligence.

PLoS Comput Biol 2009; 5: e1000395. doi:

10.1371/journal.pcbi.1000395

66. Watts DJ, Strogatz SH. Collective dynamics of

“small-world” networks. Nature 1998; 393:

440–2.

67. van den Heuvel MP, Sporns O. Network hubs

in the human brain. Trends Cogn Sci 2013;

17: 683–96.

68. Colizza V, Flammini A, Serrano MA,

Vespignani A. Detecting rich-club ordering in

complex networks. Nat Phys 2006; 2: 110–15.

69. Dennis EL, Jahanshad N, Toga AW,

McMahon KL, de Zubicaray GI, Hickie I,

et al. Development of the “rich club” in brain

connectivity networks from 438 adolescents

and adults aged 12 to 30. 2013. IEEE 10th

International Symposium on Biomedical

Imaging (ISBI.); San Francisco, CA; 2013;

624–7.

70. WHO. Born too soon: the global action

report on preterm birth. [cited 24 May 2014].

Available from: http://www.who.int/mater-

nal_child_adolescent/documents/

born_too_soon/en/

71. Kraemer HC, Yesavage JA, Taylor JL,

Kupfer D. How can we learn about de-

velopmental processes from cross-sectional

studies, or can we? Am J Psychiatry 2000;

157: 163–71.

72. Assaf Y, Basser PJ. Composite hindered and

restricted model of diffusion (CHARMED)

MR imaging of the human brain. Neuroimage

2005; 27: 48–58. doi: 10.1016/j.neuroimage.

2005.03.042

73. Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser

PJ. AxCaliber: a method for measuring axon

diameter distribution from diffusion MRI.

Magn Reson Med 2008; 59: 1347–54. doi:

10.1002/mrm.21577

74. Zhang H, Schneider T, Wheeler-Kingshott

CA, Alexander DC. NODDI: practical in vivo

Review article: MRI connectome in development BJR

13 of 14 birpublications.org/bjr Br J Radiol;87:20140086

http://dx.doi.org/10.1093/cercor/bhs187
http://dx.doi.org/10.1371/journal.pone.0063310
http://dx.doi.org/10.1371/journal.pone.0018746
http://dx.doi.org/10.1093/cercor/bht086
http://dx.doi.org/10.1016/j.neuroimage.2007.11.034
http://dx.doi.org/10.1016/j.neuroimage.2007.11.034
http://dx.doi.org/10.1371/journal.pone.0068593
http://dx.doi.org/10.1016/j.neuroimage.2011.01.051
http://dx.doi.org/10.1016/j.neuroimage.2011.01.051
http://dx.doi.org/10.1016/j.neuroimage.2010.06.041
http://dx.doi.org/10.1371/journal.pone.0063131
http://dx.doi.org/10.1371/journal.pone.0063131
http://dx.doi.org/10.1371/journal.pone.0078824
http://dx.doi.org/10.1007/s00247-012-2427-x
http://dx.doi.org/10.1016/j.neuroimage.2006.01.042
http://dx.doi.org/10.1016/j.neuroimage.2010.01.019
http://dx.doi.org/10.1016/j.neuroimage.2010.01.019
http://dx.doi.org/10.1016/j.neuroimage.2005.08.017
http://dx.doi.org/10.1016/j.neuroimage.2005.08.017
http://dx.doi.org/10.1002/hbm.21332
http://dx.doi.org/10.1371/journal.pone.0096196
http://dx.doi.org/10.1371/journal.pone.0096196
http://dx.doi.org/10.1016/j.neuroimage.2013.04.084
http://dx.doi.org/10.1016/j.neuroimage.2013.04.084
http://dx.doi.org/10.1006/nimg.2001.1037
http://dx.doi.org/10.1006/nimg.2001.1037
http://dx.doi.org/10.1016/j.neuroimage.2011.05.025
http://dx.doi.org/10.1371/journal.pcbi.1000395
http://www.who.int/maternal_child_adolescent/documents/born_too_soon/en/
http://www.who.int/maternal_child_adolescent/documents/born_too_soon/en/
http://www.who.int/maternal_child_adolescent/documents/born_too_soon/en/
http://www.who.int/maternal_child_adolescent/documents/born_too_soon/en/
http://www.who.int/maternal_child_adolescent/documents/born_too_soon/en/
http://www.who.int/maternal_child_adolescent/documents/born_too_soon/en/
http://www.who.int/maternal_child_adolescent/documents/born_too_soon/en/
http://dx.doi.org/10.1016/j.neuroimage.2005.03.042
http://dx.doi.org/10.1016/j.neuroimage.2005.03.042
http://dx.doi.org/10.1002/mrm.21577
http://birpublications.org/bjr


neurite orientation dispersion and density

imaging of the human brain. Neuroimage

2012; 61: 1000–16. doi: 10.1016/j.

neuroimage.2012.03.072

75. Hagmann P, Cammoun L, Gigandet X, Meuli

R, Honey CJ, Wedeen VJ, et al. Mapping the

structural core of human cerebral cortex.

PLoS Biol 2008; 6: e159. doi: 10.1371/journal.

pbio.0060159

76. Ball G, Boardman JP, Aljabar P, Pandit A,

Arichi T, Merchant N, et al. The influence of

preterm birth on the developing thalamo-

cortical connectome. Cortex 2013; 49:

1711–21. doi: 10.1016/j.cortex.2012.07.006

77. Power JD, Fair DA, Schlaggar BL, Petersen

SE. The development of human functional

brain networks. Neuron 2010; 67: 735–48.

doi: 10.1016/j.neuron.2010.08.017

78. Smyser CD, Snyder AZ, Neil JJ. Functional

connectivity MRI in infants: exploration of

the functional organization of the developing

brain. Neuroimage 2011; 56: 1437–52. doi:

10.1016/j.neuroimage.2011.02.073

79. Hoff GE, Van den Heuvel MP, Kersbergen KJ.

On development of functional brain connec-

tivity in the young brain. Front Hum Neurosci

2013; 7: 650. doi: 10.3389/fnhum.2013.00650

BJR O Tymofiyeva et al

14 of 14 birpublications.org/bjr Br J Radiol;87:20140086

http://dx.doi.org/10.1016/j.neuroimage.2012.03.072
http://dx.doi.org/10.1016/j.neuroimage.2012.03.072
http://dx.doi.org/10.1371/journal.pbio.0060159
http://dx.doi.org/10.1371/journal.pbio.0060159
http://dx.doi.org/10.1016/j.cortex.2012.07.006
http://dx.doi.org/10.1016/j.neuron.2010.08.017
http://dx.doi.org/10.1016/j.neuroimage.2011.02.073
http://dx.doi.org/10.3389/fnhum.2013.00650
http://birpublications.org/bjr



