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Key Points: 16 

• Assimilating leaf area index and aboveground biomass observations into CLM reduced 17 

model bias in estimating them  18 

• Data assimilation significantly improved CLM’s performance in carbon and hydrologic 19 

cycles, as well as the functional relationships 20 

• Implementation of a new parameterization of photosynthesis in CLM further reduced 21 

model bias in estimating the gross primary productivity 22 

Abstract 23 

Model representation of carbon uptake and storage is essential for accurate projection of the 24 

response of the arctic-boreal zone to a rapidly changing climate. Land model estimates of LAI 25 

and aboveground biomass that can have a marked influence on model projections of carbon 26 

uptake and storage vary substantially in the arctic and boreal zone, making it challenging to 27 

correctly evaluate model estimates of Gross Primary Productivity (GPP). To understand and 28 

correct bias of LAI and aboveground biomass in the Community Land Model (CLM), we 29 
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assimilated the 8-day Moderate Resolution Imaging Spectroradiometer (MODIS) LAI 30 

observation and a machine learning product of annual aboveground biomass into CLM using an 31 

Ensemble Adjustment Kalman Filter (EAKF) in an experimental region including Alaska and 32 

Western Canada. Assimilating LAI and aboveground biomass reduced these model estimates by 33 

58% and 72%, respectively. The change of aboveground biomass was consistent with 34 

independent estimates of canopy top height at both regional and site levels. The International 35 

Land Model Benchmarking system assesement showed that data assimilation significantly 36 

improved CLM’s performance in simulating the carbon and hydrological cycles, as well as in 37 

representing the functional relationships between LAI and other variables. To further reduce the 38 

remaining bias in GPP after LAI bias correction, we re-parameterized CLM to account for low 39 

temperature suppression of photosynthesis. The LAI bias corrected model that included the new 40 

parameterization showed the best agreement with model benchmarks. Combining data 41 

assimilation with model parameterization provides a useful framework to assess photosynthetic 42 

processes in LSMs.  43 

Plain Language Summary 44 

The arctic-boreal zone is warming rapidly, impacting regional and global carbon cycles. The 45 

Community Land Model (CLM) can be used to project future carbon uptake and storage in this 46 

region. However, CLM is biased in estimating leave area index (LAI) and aboveground biomass 47 

that can significantly affect model projections of carbon uptake and storage. We forced the 48 

model estimates of LAI and the aboveground biomass to be consistent with satellite-derived LAI 49 

observations and a high-quality machine learning product of aboveground biomass in Alaska and 50 

Western Canada using data assimilation. The change of aboveground biomass resulted in model 51 

estimates of vegetation height consistent with independent estimates at regional and site levels. 52 

The assessment using the International Land Model Benchmarking System showed that CLM’s 53 

performance in simulating carbon and hydrologic cycles was improved. Fixing the model bias in 54 

LAI only removed partial bias in carbon uptake, and a new parameterization allowing two key 55 

parameters in photosynthesis to vary with leaf temperature was introduced into CLM, to further 56 

remove the remaining bias in carbon uptake. Combining data assimilation with this new 57 

parameterization yielded more accurate model estimates of carbon uptake.  58 

 59 

1 Introduction 60 

The arctic-boreal zone is warming rapidly and the impact of this warming on the carbon cycle 61 

will have substantial and globally significant effects, with the region projected to become a 62 

source for carbon to the atmosphere in the coming century (Braghiere et al., 2023). Land surface 63 

models (LSMs) do not provide consistent estimates of carbon uptake in the arctic-boreal zone 64 

(Song et al., 2021; Birch et al., 2021; Fox et al., 2022; Braghiere et al., 2023). The Community 65 

Land Model (CLM 5.0; a component of the Community Earth System Model) tends to 66 

overestimate GPP in the arctic-boreal zone (Wieder et al., 2019). A recent benchmarking and 67 

model development study identified several potential problems with CLM5.0 in the arctic, 68 

including errors in where the vegetation is distributed, problems with leaf phenology and the 69 

seasonality of GPP and differential bias in GPP of different plant functional types (PFTs, Birch 70 
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et al., 2021). Moreover, compared to satellite benchmarks, the peak season of leaf area in the 71 

arctic-boreal zone was delayed on average by one to two months across 27 LSMs participating in 72 

the 6th Coupled Model Intercomparison Project (CMIP6) (Song et al., 2021)  73 

Allocation schemes in CLM 5.0 are empirical and relatively simple (Oleson et al., 2013). The 74 

model allocates carbon between leaf, stem (live and dead stem), coarse root (live and dead coarse 75 

root), and fine root based on four allometric parameters: 1) ratio of new fine root to new leaf 76 

carbon allocation, 2) ratio of new coarse root to new stem carbon allocation, 3) ratio of new stem 77 

to new leaf carbon allocation, and 4) ratio of new live wood to new total wood allocation. It is 78 

challenging to observe allocation to different pools at large scales, so we infer allocation from 79 

studies of biomass. Data to parameterize dynamic allocation schemes are rare and typically 80 

include only estimates of the average biomass within the leaf, wood and root pool (Caspersen et 81 

al., 2000; Gower et al., 2001; Brown, 2002; Houghton, 2005; Litton et al., 2007; Luyssaert et al., 82 

2007; Keith et al., 2009; Franklin et al., 2012; Oleson et al., 2013; Montané et al., 2017). Decadal 83 

and centennial carbon storage depends on how the product of photosynthesis is allocated. 84 

Different plant pools (leaf, stem, and root) have different functions and residence times (Delbart 85 

et al., 2010) and modeling studies that investigate the influence of allocation on biomass 86 

accumulation show that this poorly constrained process exerts huge control over long term 87 

carbon storage (Friend et al., 2014; Montané et al., 2017).  88 

In contrast, LSMs, represent short term biophysical processes using well-tested and more 89 

mechanistic equations and represent long term ecological or biogeographic processes using less 90 

tested and more empirical equations (Bonan, 2019). Our study focuses on the Community Land 91 

Model (CLM5.0). In CLM5.0, photosynthesis is represented by the mostly mechanistic Farquhar 92 

et al. (1980) model where the response to irradiance is represented by an empirical, non-93 

rectangular hyperbola where key parameterization is associated with the initial slope (quantum 94 

yield) and curvature of that relationship. In CLM5.0 the quantum yield approaches the 95 

theoretical maximum which has been commonly observed in unstressed dark-adapted plants 96 

(Long et al., 1993; Singsaas et al., 2001; Kromdijk et al., 2016) but which is rarely observed in 97 

nature, particularly in plants experiencing stress such as drought or low temperature (Rogers et 98 

al. 2019, Bolharnordenkampf et al., 1991; Groom & Baker, 1992; Ogren & Evans, 1992; Long et 99 

al., 1994). In contrast, quantum yield and convexity measured in arctic plants were reduced 100 

significantly at low leaf temperatures (Rogers et al. 2019). This suggests the potential to 101 

overestimate GPP in the arctic-boreal zone. 102 

Modelling carbon uptake and storage remains a challenge, especially for the arctic-boreal zone. 103 

A CMIP6 analysis showed that tree height was, on average, overestimated in the arctic-boreal 104 

zone (Song et al., 2021); an error consistent with poor parameterization of carbon allocation. 105 

Biases in GPP, as reported by Bonan et al. (2011), arise from model parameter uncertainties and 106 

from model structural/parameterization errors entailing radiative transfer, leaf photosynthesis and 107 

stomatal conductance, and canopy scaling of leaf processes. While the sophistication of 108 

physiological processes in LSMs has increased steadily over the last few decades (Blyth et al., 109 

2021), there is evidence that GPP is not always represented using accepted photosynthetic 110 

parameterizations (Rogers et al., 2017, 2019). If models are parameterized to match benchmarks 111 

of GPP without first ensuring that biomass and LAI are correctly modeled, there is a risk of 112 

introducing compensating errors in allocation and photosynthetic processes. 113 
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Data assimilation can be applied to improve performance of LSMs and circumvent the lack of 114 

understanding in processes controlling GPP and allocation. Data assimilation of leaf area index 115 

(LAI) is an increasingly common method to reduce errors in allocation of leaf carbon in LSMs; 116 

e.g.  CLM (Stöckli et al., 2008; Fox et al., 2018; Ling et al., 2019; Raczka et al., 2021), ISBA 117 

(Albergel et al., 2010, 2017), ORCHIDEE (Demarty et al., 2007; Bacour et al., 2015; MacBean 118 

et al., 2015), CHTESSEL (Boussetta et al., 2015) and Noah-MP (Kumar et al., 2019). For 119 

example, an ensemble Kalman filter was used to update the prognostic estimate of LAI from 120 

CLM5.0 to more faithfully match the LAI3g (Zhu et al., 2013) satellite data product (Fox et al., 121 

2022). Model estimates of GPP are dependent on LAI magnitude and duration and processes 122 

controlling photosynthetic rates, but LSM errors in prognostic LAI are significant (Montané et 123 

al., 2017). In Fox et al. (2022), assimilating LAI into CLM5.0 resulted in a globally averaged 124 

decline in modelled GPP of 18%, and in the arctic-boreal zone, the decrease was up to 50%.  125 

In this study we use an ensemble data assimilation approach to constrain leaf area and biomass, 126 

aiming at reducing biases in GPP and allocation processes in CLM in a subset of the arctic-127 

boreal zone, the Arctic-Boreal Vulnerability Experiment (ABoVE) region which includes Alaska 128 

and Western Canada. We verify the change of biomass by comparing modeled and measured tree 129 

height at the regional and site levels. To further reduce bias in GPP when the error in phenology 130 

is fixed through data assimilation, we implement a new parameterization allowing the variation 131 

of maximum quantum yield and curvature of the response of photosynthesis to irradiance with 132 

leaf temperature which was developed based on the findings in Rogers et al. (2019). Then, we 133 

compare CLM runs with and without data assimilation and with and without the modified 134 

photosynthetic process to see the effect of data assimilation and the new parameterization on 135 

reducing biases in GPP.  136 

2 Materials and Methodology  137 

We constrained LAI and aboveground biomass state variables estimated by CLM5.0 to satellite 138 

and derived data estimates (hereafter observations) by implementing the Ensemble Adjustment 139 

Kalman Filter (EAKF) (Anderson, 2001). LAI data assimilation aims to improve GPP by 140 

correcting bias in LAI, and biomass data assimilation focuses on correcting wood (stem and root) 141 

carbon pools and decomposition (litter and soil) carbon pools with the aim to improve respiration 142 

fluxes and vegetation structure such as tree height. We then compared the model output to a suite 143 

of independent datasets to verify the adjustment of states was successful. Removal of bias in 144 

model states allowed us to develop and implement a new parameterization of photosynthesis in 145 

CLM5.0 based on in situ data collections (Rogers et al., 2019) to improve model fluxes. We 146 

evaluated all the model runs against established land surface benchmarks.    147 

2.1 CLM-DART  148 

The Community Land Model (CLM) is capable of simulating complex biophysical and 149 

biogeochemical processes on land (Lawrence et al., 2019). It was run in the biogeochemistry and 150 

crop (BGC-Crop) mode in which the carbon and nitrogen in the natural vegetation, litter and soil 151 

are prognostic at each time step, and the prognostic crop model is turned on. The land cover and 152 

land use are constant in the model run. 153 
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The Data Assimilation Research Testbed (DART) is open-source community software for 154 

ensemble data assimilation (Anderson et al., 2009a). We used CLM-DART, a coupled system of 155 

DART and CLM to carry out the model experiments described in this study. We configured 156 

CLM-DART similarly to previous studies (Fox et al., 2018, 2022; Raczka et al., 2021) using the 157 

Ensemble Kalman Adjustment Kalman Filter (EAKF), a fully deterministic and computationally 158 

efficient algorithm (Anderson, 2001). The CLM-DART settings used in this study are provided 159 

in Table 1.  160 

The assimilation time step is set to every 8 days to match the frequency that the leaf area index 161 

observations are available. The annual biomass observations do not have an assigned observation 162 

date; thus, we prescribed the biomass observation during the month of September to align with 163 

the leaf area index observations (e.g. Sep 5th, 2012, Sep 6th, 2011, 2013, 2014). We 164 

implemented minimal additional quality control given the highly processed nature of the 165 

observations but did use the outlier rejection to reject observations that have accurate values but 166 

are so far away from the model ensemble mean. If the difference between the observation and 167 

the prior ensemble mean is more than N standard deviations from the square root of the sum of 168 

the prior ensemble and observation error variance, the observation will be rejected. The number 169 

of standard deviations is called the outlier threshold, and the value of the outlier threshold can be 170 

found in Table 1. Note that outlier rejection was applied only to LAI observations and turned off 171 

for biomass observations due to the scarcity of biomass observations. Otherwise, almost all of 172 

the biomass observations would be rejected, resulting in biomass DA having no impact. After 173 

assimilation, the ensemble spread decreases consistently. It is crucial to increase and maintain it 174 

to prevent insufficient forecast error variance (i.e., ensemble spread), which can lead to excessive 175 

rejection of observations. Inflation can achieve this by increasing the ensemble spread without 176 

changing the ensemble mean. We used the time- and space-adaptive state-space inflation (El 177 

Gharamti et al., 2019) that is spatially distributed and evolve with time as observation changes. 178 

The damping parameter is used to reduce the inflation when the frequency or density of 179 

observations declines. For more details of damping and inflation, see DART tutorial 180 

(https://docs.dart.ucar.edu/en/latest/guide/inflation.html). 181 

We found the inflation generated with the default parameter settings within this approach overly 182 

inflated the ensemble spread at grid cells where the observation density was low, leading to 183 

unrealistic spatial heterogeneity. We kept the default settings of the inflation standard deviation 184 

and its lower bound (both set to be 0.6) which control how quickly the inflation responds to new 185 

observations since these settings have been demonstrated to yield good results for large 186 

geophysical models (El Gharamti et al., 2019). Based on this, we tuned the damping parameter to 187 

reduce the inflation. The inflation applied to the prior state is 1+damping × (current inflation - 188 

1.0), i.e., the sum of 1.0 and the difference between the current inflation value and 1.0 multiplied 189 

by the damping value (Anderson, 2007; Anderson, 2009b).  Two different damping values, 0.9 190 

and 0.4, were used to account for the varying seasonal spatial coverage of the leaf area index 191 

observation. A large damping value, 0.9, was used to damp inflation slowly to increase prior 192 

ensemble spread when the availability of data is greater and a small damping value, 0.4, was 193 

used to damp the inflation quickly to minimize prior ensemble spread where data availability is 194 

lower.  195 

To limit the influence of the observations to specific regions of the DART state and reduce the 196 

likelihood of applying spurious updates during the assimilation update step, we used localization. 197 

First, we impose a horizontal spatial localization function (Gaspari & Cohn, 1999) with a 198 

https://docs.dart.ucar.edu/en/latest/guide/inflation.html
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halfwidth value of 0.015 radians to limit the influence of an observation for prognostic variables 199 

to near the observation location. Second, we limit the influence of the observations to specific 200 

CLM prognostic variables.  When biomass observations are assimilated, six vegetation carbon 201 

pools (leaf, live stem, dead stem, fine root, live coarse root and dead coarse root) and 202 

decomposition pools (coarse woody debris, litter and soil) are updated, however, when leaf area 203 

index observations are assimilated, only the leaf carbon pool is updated. When both biomass and 204 

leaf area index observations are available, only biomass observations are assimilated.  205 

Table 1 Summary of CLM-DART settings for the data assimilation (DA) run 206 
Experiment Observation Simulation 

period 

Damping value Outlier threshold Prognostic variables to update 

in restart files 

Assimilation leaf area index 

and 

aboveground 

biomass 

2011-2019 0.9 in summer 

(from June 9th to 

September 5th in 

2012 and 2016, 

and from June 

10th to September 

6th in other 

years), 

0.4 in other 

seasons 

3 when leaf area 

index observation 

is assimilated; 

-1 when biomass 

observation is 

assimilated 

(outlier rejection 

turned off) 

Six displayed vegetation 

carbon pools and all 

decomposition carbon pools 

when biomass observation is 

assimilated; 

Leaf carbon pool only when 

leaf area index observation is 

assimilated.  

Note when both leaf area index 

and biomass observations are 

available, only biomass 

observations are assimilated. 

 207 

Briefly, the way how CLM-DART works is: CLM provides a forecast simulation until the time 208 

when an observation is available (every 8 days in this case). At this time inflation is applied to 209 

increase the ensemble spread. An observation operator is then applied to the CLM output that 210 

calculates the model estimate of the observation, which we call the observed variable (Text S1 in 211 

Supporting Information S1). The observed variable is then adjusted with increments which are 212 

calculated using the information of the observation likelihood and the prior distribution (Text S2 213 

in Supporting Information S1). Increments to unobserved variables are calculated based on the 214 

covariance between the observed variable and unobserved variables. Increments are applied to 215 

the prognostic variables of CLM stored in the restart file. The updated restart file serves as the 216 

initial condition for the next forecast. All these steps are repeated in the subsequent assimilation 217 

cycles. 218 

2.2 Observations used in data assimilation 219 

2.2.1 Leaf Area Index (LAI) 220 

The MCD15A2H version 6 Moderate Resolution Imaging Spectroradiometer (MODIS) LAI 221 

product is an 8-day, 500-meter, global satellite data product available from 2011 to 2019 and was 222 

obtained using NASA Application for Extracting and Exploring Analysis Ready Samples 223 

(AρρEEARS; https://appeears.earthdatacloud.nasa.gov/). AρρEEARS categorized MODIS LAI 224 

flags into several categories, and only MODIS LAI pixels within the very good or better category 225 

are used in the assimilation. The 500 m LAI and the associated uncertainty denoted by its 226 

standard deviation were re-gridded to the model resolution (~25km) using spatial averaging. 227 

MODIS LAI covers most of the ABoVE region (64.6%~77.6%) from mid-June to mid-228 

https://appeears.earthdatacloud.nasa.gov/
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September and decreases with time from mid-September to mid-November as snow covers LAI 229 

first in higher and then lower altitudes. From late November to early January, no LAI 230 

observations are available in the region, and from mid-January to early June, the coverage of 231 

LAI expands from south to north with time.  232 

2.2.2 Aboveground biomass  233 

The annual, regional 30-m, aboveground biomass is a machine learning product specifically 234 

developed for the boreal forest biome portion in the ABoVE domain (Wang et al., 2021). It 235 

upscales spaceborne lidar-based estimates of aboveground biomass with satellite surface 236 

reflectance, climate and topographic data based on a machine learning model, and it overlaps the 237 

model simulation period from 2011 to 2014. The original data in standard “B” grid tiles (106 238 

aboveground biomass and 106 standard error) were re-projected from Albers equal area conic to 239 

WGS84 projection and aggregated to the approximate model grid resolution (~25km) from 30m 240 

using spatial averaging. Finally, tiles were mosaiced annually and adjusted to the precise model 241 

grid using nearest neighbor pixel matching. Aboveground biomass in CLM was calculated as the 242 

sum of leaf carbon, live and dead stem carbon. Biomass in Wang et al. (2021) was assumed to be 243 

50% carbon. All of the biomass observations are considered to be of satisfactory quality and are 244 

assimilated into CLM.  245 

2.3 A new parameterization of GPP in arctic plants 246 

To investigate whether cold temperature inhibition of photosynthetic capacity could account for 247 

overestimates of GPP, we implemented a new parameterization of the photosynthesis module in 248 

CLM based on in situ observations collected at a site (71.28°N, 156.65°W) near Barrow (now 249 

Utqiagvik) in Alaska (Rogers et al., 2019). We mapped the field estimated maximum quantum 250 

yield and convexity (Rogers et al., 2019) to the CLM parameters for maximum quantum yield 251 

and curvature, respectively (Text S3 in Supporting Information S1). We updated CLM maximum 252 

quantum yield and curvature values to match the in-situ measurements (Table 2) and applied 253 

linear and nonlinear regression to estimate temperature responses for the parameters (Text S4 254 

and Figure S1 in Supporting Information S1). Values were not extrapolated above 25 oC or 255 

below 5 oC. 256 

Table 2 Default and updated values of maximum quantum yield and curvature at three different 257 

leaf temperatures 258 
Leaf temperature 

(oC) 

   Maximum quantum yield 

denoted by 0.5𝚽𝑷𝑺𝑰𝑰   

(mol CO2 mol-1absorbed quanta) 

Curvature denoted by 

𝚯𝑷𝑺𝑰𝑰  

(unitless) 

 Default  Updated Default Updated 

5 0.425 0.132 0.7 0.44 

15 0.217 0.5 

25 0.316 0.65 
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 259 

2.4 Model Simulations 260 

We carried out two 40-member ensemble CLM runs: free run (no assimilation) and data 261 

assimilation (DA) run. In the DA run, both LAI and aboveground biomass observations 262 

assimilated serially. LAI observations are assimilated every 8 days and biomass observations are 263 

assimilated once a year on the specific date we assigned due to the fact that the frequency of LAI 264 

observations is 8 days and biomass observations are annual. These runs were used as the starting 265 

point for single-member CLM model runs that included (or did not include) the reparametrized 266 

photosynthesis module. 267 

All simulations were run at a spatial resolution of 0.25 × 0.25 degrees (~25 × 25 kms) in the 268 

ABoVE region. The surface and domain data of this resolution were generated using the CLM 269 

mkmap tool from the default input datasets. In both free and DA runs, CLM was driven by 40 270 

ensemble members of the CAM6 reanalysis forcing data (Raeder et al., 2021; Ds345.0, 2020) 271 

which is an atmospheric ensemble generated by assimilating atmosphere observations into 272 

version 6 of the Community Atmosphere Model (CAM6) from 2011 to 2019 with a spatial 273 

resolution of 0.9 × 1.25 degrees. Atmospheric data were interpolated onto the 0.25 × 0.25 274 

degrees land grid automatically by the default bilinear interpolation within CLM.  275 

Initial conditions to perform the free and DA runs from 2011 to 2019 were estimated using a 276 

single-member model spin-up, initialized from CLM default present-day condition using 277 

atmospheric data from the first member of the CAM6 ensemble from 2011 to 2019 cycled 120 278 

times (1080 years total) to equilibrium. Initializing each ensemble member in this way was too 279 

computationally costly, so the initial ensemble spread was created by running CLM with 40 280 

CAM6 forcing ensemble members (2011-2019) four times (36 years total) from the initial 281 

condition generated by the single-member spin-up.   282 

To evaluate the impacts of either the new parameterization or data assimilation or both of these 283 

approaches on reducing biases in GPP, three additional model experiments are performed: 284 

parameterization, initialization, and parameterization + initialization runs. Running all three 285 

model experiments with 40 ensemble members for the entire simulation period (2011-2019) 286 

would be computationally expensive and unaffordable. Due to limited computational resources, 287 

in all three model runs, CLM was driven by the first member of the CAM6 ensemble and ran for 288 

one year (2015). These additional model runs are like the free run in that no observations were 289 

assimilated, so they are model forecasts. First, the parameterization simulation includes the new 290 

parameterization but is initialized with the free run model state on 1 January 2015, Second, the 291 

initialization simulation doesn’t have the new parameterization but is initialized from the 292 

updated DA run model state on 1 January 2015. Third, the parameterization + initialization 293 

simulation includes both the new parameterization and is initialized from the DA run model state 294 

on 1 January 2015.  295 
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2.5 Model evaluation data sets 296 

2.5.1 Canopy top height  297 

Improved aboveground biomass in CLM should result in a more realistic estimate of canopy 298 

height assuming the tree allometry is broadly correct. We evaluated canopy height using a global 299 

canopy top height dataset and local airborne light detection and ranging (lidar).    300 

We extracted canopy height data for the ABoVE region from the Geoscience Laser Altimeter 301 

System (GLAS) aboard ICESat (Ice, Cloud, and land Elevation Satellite) 1km × 1km global 302 

dataset (Simard et al., 2011). These data were re-gridded to the model resolution (~25km × 303 

~25km) for regional comparisons across grid cells that were dominated by NEBT (needleleaf 304 

evergreen boreal tree, as shown in Figure 3a). To evaluate height of other PFTs, we used the 305 

National Ecological Observatory Network (NEON) airborne observation platform (AOP) 306 

estimates of canopy top height (NEON, 2023) derived from the airborne lidar data. These 307 

estimates have a 1m × 1m spatial resolution and are distributed in 1km × 1km tiles. The NEON 308 

AOP canopy top height estimates agree well with ground measurements at two NEON sites in 309 

Alaska: Healy and Delta Junction (Figure S2 in Supporting Information S1) and were used as the 310 

benchmark for comparison at the two sites. For each site, we collected all tiles of NEON AOP 311 

data within the model gridcell, covering 25% and 40% of area for Healy and Delta Junction, 312 

respectively. We compare the model height to the distribution of canopy top height from NEON 313 

AOP considering the abundance of each PFT.  314 

2.5.2 ILAMB (International Land Model Benchmarking) 315 

The International Land Model Benchmarking system (ILAMB, Collier et al., 2018) is an open-316 

source land model evaluation tool that compares model simulations to benchmark datasets 317 

including global-, regional-, and site-level data and calculates scores to represent model 318 

performance. ILAMBv2.6 was used to assess whether assimilating LAI and aboveground 319 

biomass observations into CLM improves model performance for the terrestrial carbon and water 320 

cycles in the ABoVE region. The assessment integrated analysis for 12 variables in the carbon 321 

and water cycles utilizing 22 benchmark datasets which were downloaded from the ILAMB data 322 

archive (https://www.ilamb.org/ILAMB-Data/DATA/). Note that data from the global 323 

benchmark datasets in regions other than the ABoVE region were masked out during the 324 

evaluation. For each variable, ILAMB produces maps, time series, statistics, assessment of 325 

variable-to-variable relationship, scores for bias, RMSE, seasonal cycle, interannual variability, 326 

spatial distribution and an overall score (Soverall) representing the overall performance of the 327 

model (Collier et al., 2018). 328 

Note the default CLM5.0 simulations driven by the Global Soil Wetness Project (GSWP3v1) 329 

forcing which scores the best compared to other forcing data sets (Lawrence et al., 2019) is also 330 

included in the ILAMB assessment to evaluate the impact of the alternative CAM reanalysis 331 

forcing as well as data assimilation on the performance of CLM.  332 

2.5.3 FLUXCOM gross primary productivity  333 

The FLUXCOM GPP product used as the benchmark in comparing the seasonal cycle of GPP 334 

from different model runs is identical to the GPP benchmark in ILAMB, and it was downloaded 335 

https://www.ilamb.org/ILAMB-Data/DATA/
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from the ILAMB data archive. This product overlaps the simulation period from 2011 to 2013 336 

and is one of the 0.5 × 0.5 degrees, monthly, global gridded FLUXCOM GPP ensemble 337 

products. It was generated using an artificial neural networks machine learning approach with 338 

CRUNCEPv6 meteorological data and mean seasonal cycles of several MODIS based variables 339 

(Tramontana et al., 2016; Jung et al., 2019). The seasonal values of the GPP product were 340 

calculated within ILAMB and stored in its output files. Only data in the ABoVE region and 341 

during the overlapped time period were used in the assessment.  342 

3 Results 343 

3.1 State data assimilation reduced LAI and aboveground 344 

biomass to match remote sensing data products 345 

Assimilating leaf area index and aboveground biomass observations into CLM5.0 significantly 346 

improves the model’s estimates of LAI and aboveground biomass both temporally and spatially 347 

in the ABoVE region. The free run in which CLM was run without assimilation significantly 348 

overestimates LAI and aboveground biomass (Table 3, Figure 1). The DA run corrects a 349 

significant amount of the LAI bias in the free run, with modeled LAI reduced by 58% and 350 

phenology aligning with the observations (Figure 1a). The aboveground biomass is reduced by 351 

72% through data assimilation. The DA run represents the spatial variability of LAI and 352 

aboveground biomass more closely to the observations compared to the free run (Figure 1c, 1d). 353 

The impact of DA varies across the ABoVE domain in proportion to the bias in the free run 354 

(Figure 2a, 2b). LAI is overestimated in the free run across 83% of the area. Although the 355 

average bias is 1.27 m2/m2, in large portions of the domain the bias is as high as 4 to over 6 356 

m2/m2 (Figure 2a). In the DA run, LAI bias relative to the satellite estimate is reduced to 0.019 357 

m2/m2. The model over- and under- estimates the satellite data but the extent of extreme errors is 358 

significantly reduced (Figure 2b, e). Similarly, aboveground biomass is overestimated in the free 359 

run across 95% of the area; the average model bias is 4222 gC/m2 but in some southern portions 360 

of the domain the bias is much higher than 15,000 gC/m2 (Figure 2c, f). In the DA run, 361 

aboveground biomass bias is reduced significantly, resulting in relatively small positive and 362 

negative differences with the aboveground biomass data product (Figure 2d, f). The magnitude 363 

of initial bias and consequently the size of the adjustment required was surprisingly high, 364 

indicating a significant misrepresentation of either cumulative carbon uptake, allocation or 365 

turnover. 366 

Table 3 Statistics of LAI (from 2012 to 2019) and aboveground biomass (in 2014). Mean 367 

+ standard deviation (RMSE, bias).  368 

 Obs Free Assim Mean Change 
𝐴𝑠𝑠𝑖𝑚−𝐹𝑟𝑒𝑒

𝐹𝑟𝑒𝑒
 (%) 

Reduction in error 
𝐴𝑠𝑠𝑖𝑚 𝑅𝑀𝑆𝐷−𝐹𝑟𝑒𝑒 𝑅𝑀𝑆𝐷

𝐹𝑟𝑒𝑒 𝑅𝑀𝑆𝐷
 (%) 

𝐴𝑠𝑠𝑖𝑚 𝑏𝑖𝑎𝑠−𝐹𝑟𝑒𝑒 𝑏𝑖𝑎𝑠

𝐹𝑟𝑒𝑒 𝑏𝑖𝑎𝑠
 (%) 
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LAI 

(m2/m2) 

0.87 2.14+0.006 

(1.27, 1.27) 

0.89+0.001 

(0.019, 0.019) 

-58.4 -98.5 

-98.5 

Abovegro

und 

Biomass(

gC//m2) 

1692 5914+16 

(4222.2, 4222.1) 

 

 

1670+1 

(22.5, -22.5) 

-71.8 -99.5 

-100.5 
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 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 
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 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

Figure 1. Time series of (a) monthly LAI and (b) aboveground biomass from the free run (orange line), 389 
data assimilation (DA) run (blue line) and the observation (green line). LAI is averaged over the ABoVE 390 
region and aboveground biomass is averaged over the ABoVE Boreal Forest domain to be consistent with 391 
the spatial coverage of aboveground biomass observations. The 8-day MODIS LAI observation is averaged 392 
to the monthly time scale, and the aboveground biomass observation is annual. The boxplot shows the 393 
spatial variability of (c) LAI averaged from 2012 to 2019 and (d) aboveground biomass in 2014 when LAI 394 
and biomass in the DA run are stable.  395 
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 397 
 398 

 399 
 400 

Figure 2. Spatial maps of the difference between modeled LAI (ensemble mean) and MODIS LAI 401 
observations averaged over July and August from 2012 to 2019: (a) free run; (b) data assimilation (DA) 402 
run. Spatial maps of the difference between modeled aboveground biomass (ensemble mean) and 403 
aboveground biomass observation in 2014 using annual values: (c) free run; (d) DA run. Histograms of 404 
spatial bias of LAI (e) and of aboveground biomass (f). To avoid bias, comparisons are restricted to the 405 
period when observations cover the most of ABoVE region and DA run achieves stability. LAI comparisons 406 
are averaged over July and August because MODIS observes most of the region in that time. We also limit 407 
LAI comparisons to the time between 2012 to 2019 because LAI in the DA run is stable during that time. 408 
Differences in aboveground biomass are restricted to 2014 because that is the last year when observations 409 
are available and the modeled biomass in the DA run is stable from then on.  410 

3.2 Independent estimates of vegetation height support the 411 

aboveground biomass corrected by the DA system. 412 

Comparing the model’s estimates of canopy top height with independent canopy top height 413 

estimates provides support for the changes in aboveground biomass. Canopy height correlates 414 

well with aboveground biomass (Lefsky et al., 2002; Drake et al., 2002; Lefsky et al., 2005; 415 

Takagi et al., 2015). CLM calculates canopy top height from dead stem carbon, the major 416 

component of aboveground biomass, using a linear equation. Assuming this relationship is 417 

reasonable, independent height data is a proxy of aboveground biomass and can be used to 418 

validate the changes in the aboveground carbon stock altered by the DA system. For areas where 419 

needleleaf evergreen boreal trees (NEBT) was greater than 95% (dark blue shade in Figure 3a), 420 

we found that DA significantly improved model estimates of height compared with satellite 421 
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lidar-derived canopy height (Figure 3b). NEBT was chosen because it is widespread, often 422 

dominates large areas in the ABoVE region, and it is typically above the minimum detection 423 

limit of ICESat (5m). The distribution of the height of NEBT (Figure 3b) shows that canopy 424 

height is overestimated in the free run compared with the ICESat data, and the canopy height 425 

from the DA run is closer to the validation data. One caveat is that some of the mismatch 426 

between the distribution of canopy height in the model runs and the validation data might be 427 

caused by the mismatch between the spatial distribution of NEBT in CLM and the true spatial 428 

distribution of NEBT.  429 

  430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

Figure 3. Comparison of canopy top height estimated by CLM5.0 with independent canopy height 439 
estimates from ICESat lidar observations at regional and site levels. (a) Locations of the grid cells 440 
dominated by NEBT (needleleaf evergreen boreal tree, in dark blue) and two NEON sites (Healy in red, 441 
Delta Junction in cyan). (b) The distribution of canopy top height of the widespread NEBT estimated by 442 
CLM5.0 free run (in blue), DA run (in red) and derived from ICESat lidar measurements (in green). (c) The 443 
distribution of canopy top height at Delta Junction from CLM free run (vertical blue lines), DA run (vertical 444 
red lines) and NEON airborne observation platform (AOP, in green). PFTs in CLM within the gridcell 445 
where Delta Junction is located are NEBT (needleleaf evergreen boreal tree), BDBT (broadleaf deciduous 446 
boreal tree), BDBS (broadleaf deciduous boreal shrub), C3AG (C3 Arctic grass).  447 

Assimilating LAI and biomass observations leads to improved model estimates of canopy height 448 

for other PFTs as well. We compared model estimates of canopy height to those from the 449 

National Ecological Observatory Network (NEON) airborne observation platform (AOP) at two 450 

NEON sites: Healy and Delta Junction. Figure 3c displays the distribution of canopy top height 451 

from the NEON AOP, free run and DA run at Delta Junction. Similar results are found at Healy 452 

as well. The arctic grass (C3AG) has no change, and the shrub (BDBS) is slightly shorter in the 453 

DA run compared to the free run. Notably, both boreal trees, needleleaf evergreen (NEBT) and 454 

broadleaf deciduous (BDBT), are much shorter in the DA run. The heights of boreal trees in the 455 

free run are near or over 20 meters, whereas in the DA run, the maximum height of the boreal 456 

trees is around 15 meters. NEON AOP data suggests that the possibility of a tree taller than 20 457 

meters is extremely low, supporting the realism of canopy top height estimates from the DA run.  458 

3.3 DA results match with most large-scale land model 459 

benchmarks better 460 

The DA run showed substantial improvement over both the free run and the default run of CLM 461 

when compared to a wide range of independent land model benchmarks (Figure 4). Compared to 462 

ILAMB carbon and hydrological benchmarks, the DA run outperformed both the free run and 463 

the default CLM5.0 run with GSWP3v1 forcing (Lawrence et al., 2019). Nine of the twelve 464 

benchmarks showed improvement with respect to the default model: LAI, aboveground biomass, 465 
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total biomass, GPP, ecosystem respiration, evapotranspiration, latent heat, sensible heat, and 466 

terrestrial water storage. All four functional relationships between LAI and other variables 467 

(aboveground biomass, total biomass, GPP, and evapotranspiration) were improved. The snow 468 

water equivalent in the data assimilation run was worse compared to the default CLM5.0 run 469 

with GSWP3v1 forcing but better than the free run forced with CAM6 forcing, probably due to 470 

the degradation in the snowfall or snowmelt rate in the CAM6 forcing which needs further 471 

investigation, rather than errors introduced by data assimilation. DA alters other vegetation 472 

carbon pools in addition to the aboveground carbon pools (Figure S5 in Supporting Information 473 

S1). Consequently, the ratio of each vegetation carbon pool to the total vegetation carbon content 474 

changes (Figure S6 in Supporting Information S1). However, the lack of such benchmark data 475 

hinders us from verifying the plausibility of the change.  476 

 477 
 478 

Figure 4. ILAMB summary diagram for the default CLM5 run driven by GSWP3v1 forcing (gswp3v1run), 479 
free run and data assimilation run. The color represents the overall score described in the Methodology. 480 

To estimate the overall carbon balance, land surface models calculate net ecosystem exchange as 481 

the small remainder between large photosynthetic and respiration fluxes. The ILAMB 482 

benchmarking suggests our DA approach improves estimates of GPP and ecosystem respiration 483 

but has poorer performance with respect to net ecosystem exchange (Figure 4). While 484 

aboveground respiration decreased as the DA reduced aboveground biomass, below ground 485 

respiration did not respond similarly. Belowground respiration in the DA run increases in 486 

August, September, and October (Figure S4 in Supporting Information S1) because of a slight 487 

increase in soil carbon pool updated by data assimilation.  488 
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3.4 GPP bias in CLM stems from estimating model LAI states and 489 

photosynthetic rates 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

Figure 5. (a) Seasonal cycle of LAI from CLM5.0 free run (light orange), DA run (blue), and MODIS 501 
(green) using data in 2015. (b) Seasonal cycle of GPP from different CLM runs in 2015 and FLUXCOM 502 
averaged from 2011 to 2013 (green). Parameterization (cyan) implements the new parameterization and 503 
starts from the initialization condition identical to the free run. Initialization (red) starts from the 504 
initialization condition identical to the DA run. Parameterization + Initialization (pink) implements the new 505 
parameterization and starts from the initialization condition identical to the DA run. Note that the free run 506 
and DA run shown here are results of the first ensemble member for a fair comparison to the other three 507 
CLM runs all of which are driven by the first member of the CAM6 ensemble.  508 

The error in modeled LAI in CLM was corrected through DA as evidenced by the significant 509 

reduction in LAI (Figure 5a). However, the bias in carbon uptake was not fully removed. GPP in 510 

the DA run (Figure 5b) was still highly biased compared to the FLUXCOM GPP estimate (Jung 511 

et al., 2019; Tramontana et al., 2016). This indicates that other model parameterizations 512 

associated with GPP could be incorrect. Building on the work of Rogers et al. (2019), we 513 

developed and implemented a new parameterization that considered the effect of temperature on 514 

the light response curve and implemented it in CLM, with the aim to further reduce bias in the 515 

model estimate of GPP in the ABoVE region.  516 

The implementation of the new parameterization (cyan) in CLM reduces model error in GPP 517 

compared to the free run (orange) which does not include the parameterization, and it has a 518 

similar effect in forecasting GPP as the provision of a better initialization (red) achieved by data 519 

assimilation (Figure 5b). This indicates that fixing the bias in the photosynthetic parameters in 520 

light response of photosynthesis which is a fast process has a similar effect to improving GPP by 521 

fixing the bias in the phenology which is a relatively slow process. When we improved both the 522 

initial conditions (through DA) and photosynthesis related parameterization, the forecasted GPP 523 

(pink) was the closest to the FLUXCOM benchmark dataset with the greatest model error 524 

reduction. It would be interesting to evaluate the relative effect of DA and new parameterization 525 

on deciduous versus evergreen forest. However, the data for deciduous forests are too limited 526 

(only two grid cells are dominated by deciduous trees and affected by DA) to provide a credible 527 

comparison. 528 
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4 Discussion 529 

Failure to accurately model LAI and aboveground carbon pools leads to significant errors in 530 

projections of regional GPP. Removing biases of 58% and 72% in LAI and aboveground 531 

biomass through DA (Table 3) resulted in a 40.6% reduction in GPP (gC/m2/year) (Table S2). 532 

Overall, DA of LAI and biomass significantly improved CLM simulations of the carbon and 533 

hydrologic cycles, as well as in representing the functional relationships between LAI and other 534 

variables (aboveground biomass, total biomass, GPP, and evapotranspiration; Figure 4). 535 

DA likely resulted in realistic allocation of carbon to above ground biomass as it improved 536 

vegetation height estimates when compared to independent airborne and spaceborne lidar (Figure 537 

3).  538 

Data assimilation is an effective tool to adjust model states to initial conditions that match 539 

observations. Initialization of LSM carbon pools is a challenging but essential step in projecting 540 

the future state of the land carbon sink. The practice of model spin-up to equilibrium is time and 541 

resource consuming and the assumption of equilibrium is not realistic for most ecological 542 

systems (Luo et al., 2015). Running models for millennia, analytical solvers, model vectorization 543 

and state data assimilation can be used to more effectively initialize LSMs (Hoffman et al., 2005, 544 

Jeong et al., 2008; Luo et al., 2011; Ajami et al., 2014; Liao et al., 2023).  545 

Removing biases caused by processes that influence LAI is a necessary first step to improving 546 

estimates of GPP and forecasting carbon storage in LSMs. A detailed modelling study in the artic 547 

boreal zone identifies CLM specific issues with LAI phenology, mistimed peak GPP and high 548 

GPP for some plant functional types (Birch et al., 2022). Our DA approach adjusted both the 549 

timing and magnitude of LAI (Figure 5a) and resulted in significant improvement in GPP 550 

relative to FLUXCOM estimates (Figure 5b). Failure to predict LAI is a persistent problem 551 

across many ESMs and there has been limited improvement in model projections of LAI from 552 

CMIP5 to CMIP6 (Mahowald et al., 2016; Song et al., 2021). A comparison of high latitude LAI 553 

in seven Earth System models with the LAI3gv.1 product (Zhu et al., 2013) either overestimated 554 

or underestimated LAI (Winkler et al., 2019). Nearly all (24 of 27) CMIP6 models overestimate 555 

satellite estimates of global mean LAI (aggregated from three satellite products) and 9 of these 556 

models show bias of more than 50% (Song et al., 2021).  A study of biophysical processes 557 

mediated by leaves in four land surface models attributed biases in interannual variability of LAI 558 

to parameterization of the carbon allocation and phenology schemes in these models (Forzieri et 559 

al., 2018). Alteration of the phenology model in the CARDAMOM model changes the sensitivity 560 

of carbon storage to climate (Norton et al., 2023). We have previously shown that DA can be 561 

used globally to remove bias in CLM from poorly parameterized controls of carbon allocation, 562 

phenology; adjusting LAI by 23% to align with satellite observations results in an 18% reduction 563 

in global GPP and a 6% reduction in global latent heat estimated by CLM (Fox et al., 2022). 564 

However, state DA does not improve prognostic modelling of LAI and biomass so model 565 

development to better represent the controls of LAI remains a priority. 566 

Correcting bias in LAI revealed that the processes controlling photosynthesis in CLM5.0 also 567 

appear to be inaccurate. After LAI bias was removed, GPP was significantly (78.2%, Table S3) 568 

higher than the FLUXCOM data product (Figure 5b). Comparing field measurements to model 569 

assumptions of photosynthetic parameters have revealed significant over-estimates of apparent 570 

Vcmax, Jmax and 𝚽𝑷𝑺𝑰𝑰 in CLM4.5 (Rogers et al., 2017; Rogers et al., 2019). In CLM5.0, 571 
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Vcmax is now estimated by the Leaf Utilization of Nitrogen for Assimilation (LUNA) model 572 

(Ali et al., 2015). Photosynthetic nitrogen is allocated between Vcmax and Jmax depending on 573 

factors that influence the daily nitrogen use efficiency of each process (Ali et al., 2015, Lawrence 574 

et al., 2019). The performance of LUNA in this region was found to be questionable particularly 575 

with respect to temperature sensitivity and seasonal dynamics (Birch et al., 2021). In this study 576 

we used empirical estimates of low temperature inhibition of photosynthetic capacity (Rogers et 577 

al., 2019) in our reparameterization of photosynthesis in CLM. This approach reduced CLM’s 578 

estimates of GPP to more closely match the FLUXCOM product (Figure 5b). Birch et al (2021) 579 

did not explore temperature inhibition of 𝚽𝑷𝑺𝑰𝑰  as we have done here, but by adjusting Vcmax 580 

downwards at low temperature, their approach has a similar effect of reducing GPP.  Further 581 

work is needed to resolve how seasonal changes in nitrogen allocation and low temperatures 582 

influence photosynthetic capacity in the arctic. We suggest these investigations first ensure 583 

minimal bias in LAI.  584 

Assimilating biomass had a modest effect on GPP because total biomass is a weaker constraint 585 

on leaf carbon than LAI and biomass is assimilated less frequently than LAI. The correlation 586 

between biomass and leaf carbon is not as strong as that between LAI and leaf carbon, and so, at 587 

the assimilation step leaf carbon is altered less by the change of biomass than by the change of 588 

LAI Moreover, biomass is only assimilated once per year compared to 45 times a year for LAI. 589 

Because the leaf carbon pool is rapidly changing in CLM, the impact of biomass on leaf carbon 590 

at the assimilation step goes away quickly. Assimilating biomass did influence biomass pools 591 

that change more slowly and influences wood (stem and root) carbon pools and decomposition 592 

(litter and soil) carbon pools. The change of tree height (Figure 3) induced by the change of 593 

biomass will alter momentum roughness length and displacement height. These are two key 594 

parameters in calculating wind, temperature, and humidity profiles of the surface boundary layer, 595 

which control the sensible and latent heat fluxes representing land-atmosphere interactions (Zeng 596 

et al., 1998). Also, tree height impacts the under-canopy atmospheric stability (Sakaguchi and 597 

Zeng, 2009). The decrease of tree height (Figure 3) caused by the change of biomass will 598 

decrease the under-canopy stability and increase the turbulent transfer coefficient, causing the 599 

heat and water vapor transfer from the ground to the canopy air to increase.  600 

While both GPP and ecosystem respiration were reduced by data assimilation, ecosystem 601 

respiration was less improved due to the worse soil carbon pool and resulted in worse NEE 602 

(Figure 4). Assimilating biomass caused a decrease in aboveground respiration (improving 603 

ecosystem respiration Figure S3b in Supporting Information S1) but was less successful in 604 

constraining belowground carbon stocks (Figure S4 in Supporting Information S1). Greater 605 

improvements in ER and more realistic soil carbon may be achieved by assimilating soil carbon 606 

observations into CLM to constrain soil carbon directly, though data are limited, and high 607 

uncertainty remains a concern (Jackson et al., 2017). The slight increase in soil carbon 608 

introduced by DA, the subsequent increased soil respiration (Figure S4 in Supporting 609 

Information S1) was likely caused by disequilibrium in soil carbon. Limited by computational 610 

resources, we were unable to spin up each of the 40 members in the ensemble to equilibrium 611 

individually. We assumed the equilibrium states of each ensemble member were similar and 612 

spun up one ensemble member for over 1000 years to quasi-equilibrium, as the initial condition 613 

to spin up each of the 40 members. This caused soil carbon to be in disequilibrium across 614 

approximately one third of the study domain. Coupling the EAKF with faster approaches to 615 
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model spin-up (Liao et al., 2023) could allow defensible initialization while also allowing model 616 

states to be in disequilibrium (Luo et al., 2015). 617 

5 Conclusion 618 

Predicting ecosystem responses to environmental change relies on understanding many related 619 

processes simultaneously and, because many processes are imperfectly understood or difficult of 620 

parameterize, simplifications are necessary. In general, highly simplified model processes of leaf 621 

phenology, leaf carbon allocation, and turnover interact to predict LAI using some simple 622 

assumptions. The LSMs compared within the CMIP6 protocol show broad agreement in land 623 

carbon storage under historical conditions but projected annual carbon land-atmosphere flux in 624 

the ensemble ranged from approximately 0 to 15 PgC year-1 after 140 years (Spafford and 625 

MacDougal, 2021). GPP was the most common benchmark presented by the CMIP6 modeling 626 

teams, with LAI evaluated less frequently (Spafford and MacDougal, 2021). If different LSMs 627 

have altered photosynthetic controls to counterbalance persistent issues with LAI (Song et al., 628 

2021), this would explain the difference between historical and future performance. It is 629 

challenging to correctly evaluate the implementation of photosynthetic processes in models that 630 

incorrectly estimate LAI. Our work suggests that DA can facilitate model development by 631 

overcoming model bias in highly uncertain processes. It also underscores the need for progress in 632 

understanding phenology, leaf carbon allocation and turnover. Given the mechanistic connection 633 

between carbon stocks and processes controlling carbon, water, and energy fluxes, improving 634 

model predictions of carbon stocks remains a priority in biogeochemical research.  635 
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