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ABSTRACT
We present an algorithm enabling computation of the anisotropic redshift-space galaxy three-
point correlation function (3PCF) scaling as N2, with N the number of galaxies. Our previous
work showed how to compute the isotropic 3PCF with this scaling by expanding the radially
binned density field around each galaxy in the survey into spherical harmonics and combining
these coefficients to form multipole moments. The N2 scaling occurred because this approach
never explicitly required the relative angle between a galaxy pair about the primary galaxy.
Here, we generalize this work, demonstrating that in the presence of azimuthally symmetric
anisotropy produced by redshift-space distortions (RSD), the 3PCF can be described by two
triangle side lengths, two independent total angular momenta, and a spin. This basis for the
anisotropic 3PCF allows its computation with negligible additional work over the isotropic
3PCF. We also present the covariance matrix of the anisotropic 3PCF measured in this basis.
Our algorithm tracks the full 5D redshift-space 3PCF, uses an accurate line of sight to each
triplet, is exact in angle, and easily handles edge correction. It will enable use of the anisotropic
large-scale 3PCF as a probe of RSD in current and upcoming large-scale redshift surveys.

Key words: cosmology: observations – distance scale – large-scale structure of Universe.

1 IN T RO D U C T I O N

Measuring the clustering of galaxies is a standard cosmological
probe, revealing the Universe’s contents and laws while simultane-
ously illuminating the process of galaxy formation. This clustering
is often quantified via correlation functions, which measure the ex-
cess above random of e.g. pairs (two-point correlation function,
2PCF) or triplets (three-point correlation function, 3PCF) of galax-
ies (Peebles 1980). The Universe is homogeneous and isotropic
on large scales, so in principle the correlation functions should
be direction independent (isotropic). However, in practice spec-
troscopic surveys differ in their method for measuring objects’
line-of-sight positions as opposed to the two transverse coordi-
nates, so the correlation functions become direction dependent
(anisotropic).

In particular, an object’s angular position is directly observable.
In contrast, an object’s line-of-sight position is inferred from its
redshift by presuming that the redshift is due solely to the ob-
ject’s recession as it comoves with the background expansion of
the Universe. But large-scale structure grows by convergence of

� E-mail: zslepian@gmail.com, zslepian@lbl.gov (ZS); deisenstein@
cfa.harvard.edu (DJE)
†Einstein Fellow

matter on to overdense regions, generating peculiar velocities rel-
ative to the background expansion and rendering this assumption
inaccurate. Furthermore, on smaller scales, virial motions of galax-
ies inside clusters generate additional peculiar velocities. The re-
sulting patterns in the observed clustering, which on small scales
(�20 Mpc) are parallel to the line of sight (‘fingers of God’;
Jackson 1972) and on larger scales are transverse (‘Kaiser pan-
cakes’; Kaiser 1987), are termed redshift-space distortions (RSD;
Hamilton 1998, for a review).

Despite rendering cosmological parameter inference from galaxy
clustering more difficult, RSD contain additional information on the
laws of physics and the Universe’s contents. In particular, they scale
as f = d ln D/d ln a ≈ �γ

m, with D the linear growth rate, a the
scale factor, �m the matter density observed at a particular redshift,
and γ = 0.56 in General Relativity (GR), but with other values for
alternative theories of gravity (Linder 2005). If GR is assumed, then
RSD probe the matter density, and if the matter density is assumed,
RSD test GR (e.g. Raccanelli et al. 2013).

RSD generate dependence of the observed clustering on angle
with respect to the line of sight or lines of sight to a given N-tuplet
of galaxies. In the simplest treatment of RSD, which uses linear
perturbation theory and assumes a single line of sight to the entire
survey (‘flat sky’), RSD produce a quadrupole and hexadecapole
(� = 2 and 4) in this angle’s cosine in the 2PCF or its Fourier
analogue the power spectrum (Kaiser 1987; Hamilton 1993).

C© 2018 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/478/2/1468/4989932 by U
niversity of C

alifornia, Berkeley/LBL user on 02 N
ovem

ber 2018

mailto:zslepian@gmail.com
mailto:zslepian@lbl.gov
mailto:deisenstein\begingroup \count@ "0040\relax \relax \uccode `~\count@ \uppercase {\gdef 0{~}}\endgroup \setbox \thr@@ \hbox {0}\dimen \z@ \wd \thr@@ 0\catcode `\ =10 \catcode `\ =10 \catcode `\ =10 \begingroup \let \let \let \def ##2{##1#2}\def 2##3{##1#2#3}\def ##3##4{##1#2#3#4}\catcode `\ \active \catcode `\ \active \catcode `\ \active \def ?{\endcsname ?}\let  \ignorespaces \endcsname \let  \endcsname \let  \ignorespaces \endcsname \endgroup \catcode `\ \active \catcode `\ \active \catcode `\ \active \ignorespaces \penalty -\@M ?\protect $\relax >$cfa.harvard.edu


Practical computation of the anisotropic 3PCF 1469

The 2PCF and power spectrum multipoles have been used
with considerable success to additionally constrain the parameters
already probed by the isotropic (� = 0) 2PCF as well as to measure
f (e.g. Ross et al. 2017; Beutler et al. 2017). Further, the multipoles
can be integrated over and summed to produce clustering wedges
in angle to the line of sight, offering an alternative route to pa-
rameter constraints (Kazin, Sánchez & Blanton 2012; Grieb et al.
2017; Hand et al. 2017). Models for RSD that go beyond linear per-
turbation theory have also been developed (Taruya, Nishimichi &
Saito 2010; Wang, Reid & White 2014; Jeong et al. 2015; Bianchi,
Percival & Bel 2016; Vlah, Castorina & White 2016; see White
et al. 2015 for comparison of recent models). Considerable work
has also been done on wide-angle effects (e.g. Raccanelli et al. 2016;
Samushia, Branchini & Percival 2015; Slepian & Eisenstein 2015a;
Pápai & Szapudi 2008; Reimberg, Bernardeau & Pitrou 2016).

The situation for the 3PCF, measuring excess triplets of galaxies
above random, is more complicated. The RSD now depend on the
angles of two triangle sides to the line of sight (the angle of the third
will be fixed by these two). Including the three parameters required
to describe the triangle itself, there are now five free parameters even
in the simplest flat-sky case (Scoccimarro, Couchman & Frieman
1999). In principle, the anisotropic 3PCF contains rich additional
information on galaxy biasing and the growth rate, but in practice,
it is difficult to measure. Further, it is challenging to report and
visualize, as it depends on five parameters.

The isotropic 3PCF already is computationally expensive, scaling
as N3 in the simplest approach, with N the number of galaxies. To
reduce this computational cost, different acceleration schemes have
been proposed based on kd-trees and introducing approximations in
how the clustering is measured (Zhang & Pen 2005; Gardner et al.
2007; March 2013).

Our own recent work presented a 3PCF algorithm exploiting
properties of the multipole basis that we believe is transformatively
fast for large-scale 3PCF work, scaling as N2 rather than N3 (Slepian
& Eisenstein 2015c). The algorithm further accelerates to become
order Nglog Ng, with Ng the number of grid points if Fourier trans-
forms (FTs) are used (Slepian & Eisenstein 2016b). We showed that
the multipole framework also allows accurate modelling of the co-
variance on large scales. We applied this framework to the Baryon
Oscillation Spectroscopic Survey (BOSS) Data Release (DR) 12
Constant Mass (CMASS) sample of ∼800 000 luminous red galax-
ies to detect the baryon acoustic oscillations (BAO, Slepian et al.
2017; Slepian et al. 2016a; for pedagogical presentation of the BAO
physics, see Slepian & Eisenstein 2016c; Eisenstein, Seo & White
2007) as well as to constrain novel forms of biasing (Slepian et al.
2016a,b). Additional work explored the theoretical predictions for
the isotropically averaged 3PCF in the multipole basis (Slepian &
Eisenstein 2016a) and provided the models fit in these observational
works.

In this paper, we extend our 3PCF algorithm to track the line-of-
sight dependence of the 3PCF. We show that a simple promotion of
the Legendre coefficients relevant for the isotropic 3PCF to mixed
spherical harmonic coefficients depending on two total angular mo-
menta l and l

′
and one spin m fully captures anisotropic clustering.

These coefficients can be easily obtained using the same proce-
dure previously developed for the isotropic 3PCF, which centred
on obtaining spherical harmonic expansions of the density field on
spherical shells around every galaxy in the survey. Further, adding
a simple rotation of coordinates so that the position vector of the
central galaxy serves as the line of sight to the triplet allows use
of a varying line of sight, which tracks the anisotropic clustering
more accurately than assuming a single line of sight to the entire

survey. Additionally, as shown in Slepian & Eisenstein (2016b), the
spherical harmonic coefficients can be obtained in Nglog Ng time
using FTs, and so if the density field is gridded, the anisotropic
3PCF algorithm of this paper can be accelerated even further.

In addition to the speed of measurement it enables, the basis
advanced in this paper has two other important advantages. First, the
parametrization of the 3PCF it involves, as coefficients depending
on angular momenta l, l

′
, spin m and triangle side lengths r1, r2,

can be easily sliced for analysis and visualization. One might fix
the angular momenta and spin and show a colour plot versus r1 and
r2, generalizing what was done in Slepian & Eisenstein (2015c),
Slepian & Eisenstein (2015b), and Slepian & Eisenstein (2016a)
to look at the scale-dependent structure. Alternatively, one could
examine the angular structure by fixing r1, r2, and l and showing
the dependence on l

′
and m.

Second, our parametrization permits straightforward handling of
the covariance matrix of the anisotropic 3PCF. We extend the work
of Slepian & Eisenstein (2015c) to compute the anisotropic covari-
ance matrix assuming a boundary-free survey whose density pertur-
bations follow a Gaussian random field (GRF) with an anisotropic
power spectrum given by the Kaiser formula for RSD. We leave the
survey volume and the number density as free parameters to be fit
from mock catalogues. This calculation supplies an important ad-
vance: having a smooth covariance matrix means it can be inverted,
a known difficulty for covariance matrices estimated from large
numbers of mock catalogues (Percival et al. 2014). In particular,
the inverse of the covariance depends on the smallest eigenvalue
and to accurately obtain this one requires many mock catalogues
per dimension of the covariance matrix. Since the dimension can be
large, one often requires the 3PCF for thousands of mocks, adding
significant time to any analysis.

In contrast, given our template with only two free parameters, one
does not require many mocks to fit for them and obtain a smoothly
invertible covariance. The basis we propose permits straightforward
computation of this template covariance. In particular, expanding in
angular momentum eigenstates (which the spherical harmonics are)
means that the angular integrals to bring the covariance from Fourier
space (where the GRF calculation is easiest) to configuration space
(where the measurement is done) simplify greatly. These integrals,
formally 12D, can be reduced to 1D and 2D integrals of the power
spectrum, enabling fast evaluation on a grid rather than using more
complicated higher dimensional integration techniques.

The paper is laid out as follows. Section 2 presents the basis we
will use for our algorithm and shows how it emerges from imposing
symmetry about the line of sight (taken to be the z axis) on the
most general representation for the two vectors defining a given
triangle. Section 3 outlines the algorithm, showing that only a slight
generalization of Slepian & Eisenstein (2015c) is needed to obtain
the anisotropic 3PCF and that the speed remains O(N2). Section 4
describes how a varying line of sight that follows each galaxy triplet
can be incorporated. Section 5 discusses edge correction in the
algorithm’s basis. In Section 6, we compute the covariance of the
anisotropic 3PCF in the limited but useful approximation described
above. Section 7 concludes and is followed by two brief appendices,
one with identities used in the work’s main body (Appendix A) and
a second showing the impossibility of using a triple Legendre series
for the anisotropic 3PCF (Appendix B).

2 BA SIS

Consider a triplet of galaxies at positions x, x + r1, and x + r2. An
estimate of the full 3PCF about x including any possible dependence
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1470 Z. Slepian and D. J. Eisenstein

Figure 1. Here, we schematically show the approach of this paper. The
3PCF is parametrized by two vectors r1 and r2, which encode the triangle’s
side lengths and its orientation with respect to the line of sight, shown in
dashed black. The azimuthal symmetry about the line of sight is the reason
only a single spin m enters the basis. The basis is shown in the red-boxed
equation: we expand the anisotropic 3PCF in radial coefficients ζm

ll′ times
spherical harmonics in r̂1 and r̂2. We seek to measure the radial coefficients
and can then plot them at fixed l, l

′
, and m versus r1 and r2 to reveal the

spatial structure. Alternatively, we might also plot the coefficients at fixed
r1, r2, and l versus l

′
and m to show the angular structure. The features are

BAO, and the plot is adopted from Slepian & Eisenstein (2016a) just to
suggest how these plots might look.

on the triangle configuration as well as on its orientation is

ζ̂ (r1, r2; x) = 4π√
(2l + 1)(2l′ + 1)

×
∑
lm

∑
l′m′

ζ̂ mm′
ll′ (r1, r2; x)Ylm(r̂1)Y ∗

l′m′ (r̂2). (1)

The Ylm are spherical harmonics and the pre-factor is a normalization
to recover the 3PCF’s expansion into Legendre polynomials in the
isotropic limit as in Slepian & Eisenstein (2015c).

Since RSD are due to the difference between how the line of sight
and transverse positions are computed from a survey, they must be
symmetric under rotations about the line of sight n̂. Here, we take
n̂ = x̂, i.e. that there is a single line of sight to the entire triangle,
given by the line of sight to the galaxy at the vertex where the trian-
gle’s opening angle is defined. This geometry is shown in Fig. 1, and
we further discuss this choice for the line of sight in Section 4. We
work in a coordinate system where the z-axis is along x̂. Averaging
over rotations around n̂ = x̂ = ẑ, the azimuthally averaged 3PCF,
denoted with subscript ‘azi’, is

ζ̂azi(r1, r2; x) =
∫ 2π

0
dφ ζ̂ (r1, r2; x)

= 4π√
(2l + 1)(2l′ + 1)

∑
lm

∑
l′m′

ζ̂ mm′
ll′ (r1, r2; x)

×
∫ 2π

0
dφ Ylm(Rz(φ)r̂1)Y ∗

l′m′ (Rz(φ)r̂2), (2)

where Rz(φ) represents a rotation by an angle φ about ẑ. The spher-
ical harmonics are defined

Ylm(θ, φ) =
√

2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos θ )eimφ, (3)

so the only φ dependence is in the exponential.
We can set the initial azimuthal angle φ1 of r̂1 to zero, and the

initial angle of r̂2 we denote φ2. Applying the rotation Rz(φ) then

simply adds an angle φ to each azimuthal angle, so the azimuthal
average of the spherical harmonics in equation (2) scales as∫ 2π

0
dφ Ylm(Rz(φ)r̂1)Y ∗

l′m′ (Rz(φ)r̂2)

∝
∫ 2π

0
dφ eimφe−im′(φ2+φ)

∝
∫ 2π

0
dφ ei(m−m′)φ = δK

mm′ , (4)

where in the second line, we took the exponential in φ2 outside the
integral and then dropped it. δK

mm′ is a Kronecker delta, unity if the
subscripted arguments are equal and zero otherwise.

Inserting this result in equation (1), we see that only spherical
harmonic combinations where m = m

′
can enter the azimuthally

averaged 3PCF. We note that l need not equal l
′
, in contrast to the

isotropic case where averaging the spherical harmonics over full
3Drotations forces l = l

′
as well (Slepian & Eisenstein 2015c).

Thus, the azimuthally averaged 3PCF estimate is fully described as

ζ̂azi(r1, r2; x) = 4π√
(2l + 1)(2l′ + 1)

×
∑
ll′

∑
m

ζ̂m
ll′ (r1, r2; x)Ylm(r̂1)Y ∗

l′m(r̂2); (5)

moving forward, we discuss only the azimuthally averaged 3PCF
and so we suppress the subscript ‘azi.’ Integrating over d3x yields
the full 3PCF ζ as the translation average of the estimate about a
particular galaxy at x given by equation (5).

We now discuss an additional symmetry relevant for this basis.
We need only compute the coefficients ζm

ll′ for m ≥ 0 as those for
m < 0 are the complex conjugate of the m > 0 coefficients. There
are several ways to understand this point.

First, mathematically, we have

ζm
ll′ (r1, r2; x) =

∫
d�1d�2 ζ̂ (r1, r2)Y ∗

lm(r̂1)Yl′m(r̂2) (6)

and

ζ−m

ll′ (r1, r2; x) =
∫

d�1d�2 ζ̂ (r1, r2)Y ∗
l−m(r̂1)Yl′−m(r̂2) (7)

Using the identity that Y ∗
lm(r̂) = (−1)mYl−m(r̂), equation (7) be-

comes

ζ−m

ll′ (r1, r2; x) = (−1)2m

∫
d�1d�2 ζ̂ (r1, r2)Ylm(r̂1)Y ∗

l′m(r̂2)

= (
ζm
ll′ (r1, r2; x)

)∗
(8)

where the second equality follows by noting that (−1)2m = 1, con-
jugating equation (6), and recalling that ζ (r1, r2; x) is real.

Physically, the redundancy of the −m coefficients occurs because
flipping m → −m is equivalent to flipping the azimuthal angle
φ → −φ, modulo a factor of (−1)m.1 Considering φ to be defined as
the angle swept out as one moves from the x-axis towards the y-axis
in the xy-plane, this transformation is equivalent to flipping y → −y,
while keeping the x- and z-axes fixed.2 This flip corresponds to

1Flipping m also affects the associated Legendre polynomial in equation (3)
because P −m

l (cos θ ) = (−1)m [(l − m)!/(l + m)!] P m
l (cos θ ), but the facto-

rial piece here cancels the factorials in the spherical harmonic’s definition
after m → −m is taken there. Consequently, flipping m in the associated
Legendre polynomial only contributes an overall factor of (−1)m to the
flipped-m spherical harmonic.
2This interpretation is easily manifested by writing the spherical harmonics
in the Cartesian basis, where they are proportional to powers of (x + iy)/r
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Practical computation of the anisotropic 3PCF 1471

reversing the handedness of the coordinate system, as it now satisfies
a left-hand rule (x̂ × ŷ = −ẑ) rather than a right-hand rule. We
see then that the redundancy of the −m coefficients reflects the
physical symmetry that the galaxy distribution about any point x is
insensitive to the handedness of the coordinate system one chooses
around that point.

As a result of this symmetry, in the sum over m of equation (5),
the negative and positive m can always be paired to give a real
result that is 2 Reζm

ll′ . Consequently, in what follows, we will have
this in mind that the final results reported from our approach to the
anisotropic 3PCF will be real and symmetrized (denoted by a bar)
over positive and negative spins as

ζ̄ m
ll′ ≡ ζm

ll′ + ζ−m

ll′ (1 − δK
m0) = (2 − δK

m0) Re ζm
ll′ (9)

where we take m ≥ 0 above. However, throughout the paper, we will
often find it convenient to perform analytic calculations in terms of
the unsymmetrized ζm

ll′ and symmetrize at the final step.
We now discuss the behaviour of ζll′ under parity. ζm

ll′ behaves
as (−1)l+l′ under this transformation. For indistinguishable points,
such as galaxies from a single population or survey, the anisotropic
3PCF must be symmetric under parity, meaning l + l

′
must be even.

l + l
′

need not be even for e.g. a 3PCF formed from taking two
points from one galaxy population and a third from a different pop-
ulation at higher redshift, as this choice would introduce a preferred
orientation.

Finally, in the isotropic limit, l
′ = l and the coefficient ζm

ll′ be-
comes m-independent, i.e. ζm

ll′ → ζl . We can then sum the spherical
harmonics in equation (5) over spins using the spherical harmonic
addition theorem (Arfken, Weber & Harris 2013, equation 16.57)
to recover that ζ (r1, r2; r̂1 · r̂2; x) = ∑

l ζl(r1, r2; x)Ll(r̂1 · r̂2) as in
Slepian & Eisenstein (2015c), with Ll a Legendre polynomial of
order l.

3 A L G O R I T H M

We now show how the anisotropic 3PCF coefficients in the spherical
harmonic basis may be obtained in O(N2) time with N the number
of galaxies. Here, we focus on the 3PCF of an arbitrary density field
given by δ; in Section 5, we will discuss applying this approach to
the anisotropic analogue of the Szapudi & Szalay (1998) estimator
for the isotropic 3PCF.

We again begin with a ‘primary’ galaxy at x and denote the
positions of two ‘secondary’ galaxies as x + r1 and x + r2. This
configuration forms a triangle; we bin its side lengths into radial
bins denoted r1 and r2. We denote the radially binned density field

δ̄(ri; r̂i; x) =
∫

r2dr 
(r; ri)δ(x + r), (10)

where 
 is a binning function that ensures r is in the bin denoted
by ri.

We now desire an estimate of the anisotropic binned 3PCF coef-
ficients about x. We have

ζ̂ m
ll′ (r1, r2; x) = δ(x)

∫
d�1d�2 δ̄(r1; r̂1; x)

× δ̄(r2; r̂2; x)Ylm(r̂1)Y ∗
l′m(r̂2) (11)

for m > 0 and (x − iy)/r for m < 0; this of course just comes from applying
Euler’s formula to exp [imφ] and identifying cos φ = x/r and sin φ = y/r.

It is immediate that this double integral factorizes; defining spherical
harmonic coefficients of the binned density as

alm(ri; x) =
∫

d�Y ∗
lm(r̂)δ̄(ri; r̂i; x) (12)

we may write

ζ̂ m
ll′ (r1, r2; x) = δ(x)alm(r1; x)a∗

l′m(r2; x). (13)

Symmetrizing and using that ζ̂−m

ll′ = (ζ̂ m
ll′ )

∗, we find that

ˆ̄ζm
ll′ (r1, r2; x) = δ(x)

[
alm(r1; x)a∗

l′m(r2; x)

+ a∗
lm(r1; x)al′m(r2; x)

]
, (14)

which is manifestly symmetric under flipping the conjugate signs,
and so our choice to place the conjugate on alm(r1) in equation (13)
for the ζ̂ m

ll′ used to construct ˆ̄ζm
ll′ did not matter.

Importantly, computing the alm about a given primary galaxy at
x on a given radial bin scales as the number of galaxies in that bin.
In total if we compute correlations out to a radius Rmax, obtaining
the alm on all bins scales as nVmax with n the survey number density
and Vmax the volume of a sphere with radius Rmax. The alm must be
obtained around every galaxy, so the total work scales as N(nVmax).

In detail, around each primary, at each l we have l + 1 distinct
alm, as we require only the m ≥ 0 spherical harmonic coefficients
due to the symmery that ζ̂−m

ll′ = (ζ̂ m
ll′ )

∗ as discussed in Section 2. The
total number of coefficients up to lmax is then (lmax + 2)(lmax + 1)/2.
Each of these must be computed on each bin, so the total number of
coefficients to store is Nbins(lmax + 2)(lmax + 1)/2. We note that the
total work of obtaining these scales as (nVmax)(lmax + 2)(lmax + 1)/2,
as the first factor accounts for all of the bins out to Rmax.

We now briefly compute the number of combinations of these
coefficients that must be formed around each primary. While form-
ing these combinations is a negligible fraction of the total work (we
find ∼2 per cent for the implementation discussed in Section 7),
for completeness we discuss the combinatoric computation as it
involves several steps. We consider l ≥ l

′
without loss of generality

and focus on l > l
′

first. At each l, we have l allowed values of l
′
,

and at each l
′
, we have l

′ + 1 values of m. We must now sum this
over l

′
up to l and then l from 0 to lmax. We find

Ncombs, l>l′ = N2
bins

lmax∑
l=0

l−1∑
l′=0

(l′ + 1)

= N2
bins

2
lmax(lmax + 1)2, (15)

noting that we include N2
bins rather than (Nbins + 1)Nbins/2 because

there is no switch symmetry of the bins as l �= l
′
.

For the l = l
′
piece, we have just one allowed l

′
at each l, but still

l + 1 allowed spins m, but there is now a switch symmetry between
the bins, so we compute

Ncombs,l=l′ = (Nbins + 1)Nbins

2

lmax∑
l=0

(l + 1)

= (Nbins + 1)Nbins

4
(lmax + 1)2. (16)

The full number of harmonic coefficient combinations required is
then the sum of equations (15) and (16).
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1472 Z. Slepian and D. J. Eisenstein

4 D E T E R M I NAT I O N O F TH E L I N E O F SI G H T

4.1 A generalized Yamamoto estimator

In this work, we take the line of sight to a given triangle of galaxies to
be the position vector x of the galaxy at which the triangle’s opening
angle is defined. This galaxy is the ‘primary,’ and serves both to
define the origin of coordinates and the z-axis for computing the
spherical harmonic expansion of the radially binnned ‘secondary’
galaxies around it.

Defining the line of sight as the position vector of one triplet
member is the natural generalization of the Yamamoto et al. (2006)
estimator for the anisotropic 2PCF or power spectrum (further dis-
cussed in this latter context in Bianchi et al. 2015; Scoccimarro
2015; Slepian & Eisenstein 2016b). As shown in Slepian & Eisen-
stein (2015a) for the anisotropic 2PCF, wide-angle effects enter this
estimator only at O(θ2), where θ is the opening angle of the triangle
formed by the observer and the galaxy pair.

Further, the Yamamoto estimator differs from using the angle
bisector of this triangle or the mid-point of the pair separation only
at O(θ2). The cancellation of the O(θ ) effect occurs because it has
odd parity. Thus, when the effect is summed over the two options
for the line of the sight to a galaxy pair (the position vectors of the
first and the second pair members), it cancels (Slepian & Eisenstein
2015a).

These arguments rely on expanding the anisotropic 2PCF in Leg-
endre polynomials tracking the cosine of the angle between the pair
separation and the line of sight. We suspect that in the current work
cancellation of the O(θ ) error will also occur. In any case, using a
rotating line of sight for the anisotropic 3PCF is undoubtedly more
accurate than the flat-sky approximation. Finally, for completeness,
we note that there has been one other work using a rotating line of
sight for three-point clustering: Scoccimarro (2015) presents a rotat-
ing line-of-sight estimator for multipole moments of the bispectrum
averaged over rotations about one of the wave vectors.

4.2 Computing using the rotating line of sight

There are two options for computing the 3PCF using the moving
line of sight outlined above. Which option is preferable is likely
use-case dependent, so we present both.

The simpler approach is to rotate the coordinates of all the secon-
daries about a given primary into the frame where the primary lies
on the z-axis. We term this ‘pre-rotation.’ The computational cost
here about a given primary is the number of secondaries, nVmax,
and the rotation must be performed around each of the N primaries,
so the total cost is N (nVmax) = O(N2), the same scaling for this
approach as for the overall 3PCF algorithm. The algorithm flow
here is shown in Fig. 2. We note that while the scaling is formally
O(N2), the rotations are still a small amount of work relative to the
multipole computation, as we further detail below.

We now outline how the pre-rotation computation proceeds. We
rotate the primary and all secondaries to a system where the pri-
mary is along the z-axis, which is the line of sight. We define a triad
of unit vectors, with one being the line of sight and the other two
orthogonal to it, and then dot them into the separation vectors be-
tween the secondaries and the primary. This yields the secondaries’
new coordinates in our desired system. This procedure requires just
one matrix by vector multiply (nine multiply adds), as compared to
the 286 multiply adds required to then obtain the multipole contri-
butions for a given secondary (with �max= 10). Thus, pre-rotation

Figure 2. Here, we show the algorithm flow around a given primary at a
point x for the pre-rotation approach. First, we gather all galaxies within
Rmax and bin them into spherical shells (also called radial bins). Then we
rotate so that the primary lies along the z-axis. Finally, on each spherical shell
we expand the angular dependence of the density into spherical harmonics
with coefficients alm(ri ; x), with ri designating the radial bin.

only adds 3 per cent more work for a given secondary. Further, it is
independent of the number of multipoles and number of radial bins.

We now discuss a second approach to rotation. We observe that
rotations will not mix radial bins; a secondary in a given radial
bin will be in the same bin post-rotation. Further, lmax sets the
fineness with which the angular structure of the secondaries on a
given spherical shell is probed; much as in the cosmic microwave
background an angular momentum l probes angular separations
as �θ ∼ 180◦/l. Rotations do not change the underlying angular
structure of the secondaries on a shell, meaning that they should not
mix information from different l, and in particular that measuring a
given lmax in any basis offers the same lmax after rotation. However,
the information in the spins m will mix. Rotating about the z-axis
means a given frequency m (recall Ylm ∝ exp [imφ]) in the original
system will map to a new frequency m

′
in the new, primed system.

This mapping occurs because the new plane in which φ
′
is measured

will be at some angle to the original plane in which φ was measured,
and therefore a sinusoid with frequency m in the original plane will
have a new frequency when it is measured in projection. Indeed, in
the limiting case of a rotation by 90◦, a displacement by �φ in the
old system would map to a displacement by �φ

′ = 0 in the new
system, entirely changing the spin structure of the expansion.

These points suggest that we can reconstruct the spherical har-
monic coefficients in our rotated basis from a sum over spins of
those measured in any other basis, in particular whatever ‘global’
basis in which all x, y, and z galaxy positions in a survey might
be specified. In this section only, we adopt the notation superscript
‘G’ to denote the spherical harmonic coefficients measured in this
‘global’ basis, and superscript ‘L’ to denote those in the local basis
rotated about a primary at x so that x is along the z-axis.

To derive the relation between the ‘global’ and ‘local’ coeffi-
cients, consider the density field δ on a shell denoted by r about a
primary at x:

δ(r; r̂; x) =
∑
LM

aG
LM (r; x)YLM (r̂). (17)

Under the desired rotation R, the density becomes

δ(r; Rr̂; x) =
∑
LM

aG
LM (r; x)YLM (Rr̂)

=
∑
LM

aG
LM (r; x)

∑
M ′

DL
MM ′ (x)YLM ′ (r̂) (18)
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Practical computation of the anisotropic 3PCF 1473

Figure 3. Here, we show the algorithm flow when rotation about a given
primary is done after the spherical harmonic expansion rather than prior
to it, and hence in the space of spherical harmonic coefficients alm rather
than spatial coordinates. We term this ‘post-rotation.’ The ‘Gather and bin’
step is unchanged from Fig. 2, but we now expand the density’s angular
dependence into spherical harmonics on each bin in the second step rather
than the third. We then take the alm coefficients on a given bin (three are
schematically indicated here in the different colours, with colour denoting
the coefficient’s amplitude), reweight them as in equation (20, new colours
mean new amplitudes), and sum to obtain the new, rotated alm.

where in the second line, we expanded the rotated spherical har-
monic as a sum over unrotated spherical harmonics; DL

MM ′ is a
Wigner D-matrix [e.g. Arfken et al. 2013, equation (16.52) or Var-
shalov, Moskalev & Kersonskii 2013, chapter 4].

Noting that the expansion of the rotated density field in the ‘local’
basis where we desire the coefficients is

δ(r; Rr̂; x) =
∑
lm

aL
lm(r; x)Ylm(r̂), (19)

setting the expansions (18) and (19) equal, and invoking orthogo-
nality, we find

aL
lm(r; x) =

∑
M

aG
lM (r; x)Dl

Mm(x). (20)

With the relation (20), we can measure the spherical harmonic co-
efficients in any desired global basis and after finding them around
all primaries, recombine locally on each bin about each primary
weighted by the Wigner D-matrices. Since the rotations occur af-
ter the spherical harmonic coefficients are computed, we term this
approach ‘post-rotation.’

The scaling of this post-rotation approach differs from that of
the pre-rotation approach outlined earlier, as we now show. We
need only obtain m ≥ 0 spherical harmonic coefficients as noted in
Section 3, and for the same reason on the right-hand side we need
only alM with M ≥ 0. Further, the D-matrices for M < 0 can be
related to those for M> 0, and using symmetry properties of the
D-matrix, we can also ensure that m ≤ M. Thus the entire right-
hand side of equation (20) can be cast in terms of M ≥ 0 spherical
harmonic coefficients and D-matrices and using only D-matrices
with m ≤ M. At each l, we then have (l + 1)(l + 2)/2 D-matrix
elements to compute, leading to 286 matrix elements for lmax = 10.
The algorithm flow for this ‘post-rotation’ approach is shown in
Fig. 3.

A cross-check on this result is that all of the spherical harmonics
up to lmax = 10 can be computed using 286 combinations of powers
of x/r, y/r, and z/r where x, y, and z are the relative coordinates
of a secondary galaxy in the frame where the primary is at the
origin (see Slepian & Eisenstein 2015c). The behaviour of these 286
fundamental power combinations under rotation must completely

determine the rotated spherical harmonic expansion, confirming
that we should need 286 matrix elements to perform the rotation.

The computational cost of evaluating the Wigner D-matrices is
small for the modest l we require. Direct evaluation is one option;
for instance Varshalov et al. (2013) give easily implemented ex-
pressions in terms of Gauss’s hypergeometric function 2F1. There
also exist more efficient methods for their computation, such as
the use of recursion relations or pseudo-spectral projection (primar-
ily important going to high l, Varshalov et al. 2013; Gimbutas &
Greengard 2009; Gumerov & Duraiswami 2014; Feng et al. 2015).

We have written Dl
Mm(x) as a function of the primary location x.

In detail, following the conventions of Varshalov et al. (2013), the
D-matrix as a function of the Euler angles α = 0, β = −θ (x), and
γ = −φ(x) is

DJ
MM ′ (α, β, γ ) = e−iMαdJ

MM ′ (β)e−iM ′γ , (21)

where dJ
MM ′ is a little-d matrix (see Varshalov et al. 2013).

In contrast to pre-rotation, for post-rotation, the total computa-
tional cost is independent of the number of secondaries about a given
primary, but depends on the number of multipoles and number of
radial bins, scaling as l3

maxNbins.

4.3 Using Fourier transforms for the harmonic coefficients

As shown in Slepian & Eisenstein (2016b), the spherical harmonic
coefficients about a given primary galaxy are simply a convolution
integral, and so fast Fourier transforms (FFTs) can be used to obtain
the coefficients about all primaries in the survey at once scaling as
Nglog Ng, with Ng the number of grid points, if the galaxy density
field is gridded. While the fineness of grid required will be somewhat
application-dependent, there are likely contexts (such as analysis of
a large number of mocks for verifying the pipeline or covariance
matrix) where a possible loss in precision will be offset by the
increase in speed FFTs afford.

Importantly, the post-rotation approach outlined in Section 4.2 is
essential for enabling use of FTs to obtain the spherical harmon-
ics. The pre-rotation approach relies on sitting on a given primary
galaxy and rotating using its coordinates, which is not possible in an
FFT-based approach. However, once the spherical harmonic coef-
ficients are known about each primary galaxy for any given choice
of coordinates, as shown in Section 4.2, they can be rotated on a
primary-by-primary basis with little additional computation. Thus,
the coefficients can be obtained in some arbitrary global frame by
FTs and then post-processed to give the desired identification of the
local z-axis with the line of sight to each primary galaxy.

5 ED G E C O R R E C T I O N

We now discuss edge correction in the spherical harmonic basis.
The estimator for the full 3PCF is (Szapudi & Szalay 1998)

ζ̂ = NNN

RRR
, (22)

where N ≡ D − R is the data minus random count with D indicating
data and R indicating random. The interpretation of this estimator
as an optimal weighting in the shot-noise limit and how it should be
used to obtain the 3PCF is further discussed in Slepian & Eisenstein
(2015c).
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1474 Z. Slepian and D. J. Eisenstein

5.1 Edge correction in the spherical harmonic basis

Here, we show how to implement edge correction using our algo-
rithm. We will begin with all spins, including negative ones, and
then show how to cast the edge correction in terms of solely positive
semi-definite spins so that we may work with the symmetrized 3PCF
coefficients ˆ̄ζm

ll′ . We multiply each side of the estimator (22) by RRR
and then expand the result into spherical harmonics, obtaining∑
jj ′s

N s
jj ′Yjs(r̂1)Y ∗

j ′s(r̂2) =
∑
ll′m

∑
kk′p

ζ̂ m
ll′R

p

kk′Ylm(r̂1)

×Ykp(r̂1)Y ∗
l′m(r̂2)Y ∗

k′p(r̂2), (23)

where the N s
jj ′ are the double spherical harmonic coefficients of N,

Rp

kk′ those for R, and ζ̂ m
ll′ those for ζ̂ . Integrating both sides against

Y ∗
js(r̂1)Yj ′s(r̂2) and invoking orthogonality, we find

N s
jj ′ =

∑
ll′m

∑
kk′p

ζ̂ m
ll′R

p

kk′Gmp−s

lkj G−m−ps

l′k′j ′ (24)

where G is the Gaunt integral, i.e. the integral of three spherical
harmonics with the indicated total angular momenta (subscripts)
and spins (superscripts); we write it in terms of 3j-symbols in Ap-
pendix A. We note that if k = 0 = k

′
, then l = j and l

′ = j
′
: if

the randoms have no angular structure, then the coefficients N s
jj ′

are the desired coefficients ζ̂ of the 3PCF up to normalization. In
this case, the edge correction was simply a division by the average
background count to convert the galaxy density field into an over-
density field. We further observe that k + k

′
and j + j

′
must have

the same parity, because the Gaunt integrals enforce that l + k + j
and l

′ + k
′ + j

′
are even, and l + l

′
is even, so k + k

′ + j + j
′

is
even as well. This rule somewhat reduces the number of random
coefficients R required to obtain a given 3PCF coefficient from
the measured difference field N = N − R. Unlike the 3PCF coeffi-
cients, the random coefficients need not be symmetric under parity
because the survey geometry may not be. Hence, the difference field
coefficients need not be either.

We now show how equation (24) can be recast in terms of the
symmetrized quantities our algorithm tracks. We first rewrite each
coefficient separated into its real and imaginary parts, giving

N s,R
jj ′ + iN s,I

jj ′ =
∑
ll′m

∑
kk′p

[
ζ̂

m,R
ll′ + iζ̂

m,I
ll′

] [
Rp,R

kk′ + iRp,I
kk′
]

×Gmp−s

lkj G−m−ps

l′k′j ′ (25)

where superscript R denotes the real part and superscript I the
imaginary part. Inverting equation (9), we may replace the real part
of each coefficient in equation (25) in terms of the symmetrized
coefficient, yielding

1

2 − δK
s0

N̄ |s|
jj ′ + iN s,I

jj ′ =
∑
ll′m

∑
kk′p

[
1

2 − δK
m0

ˆ̄ζ |m|
ll′ + iζ̂

m,I
ll′

]

×
[

1

2 − δK
p0

R̄|p|
kk′ + iRp,I

kk′

]
Gmp−s

lkj G−m−ps

l′k′j ′ ;

(26)

the absolute value signs on the spins are necessary because their
range includes negative values here but the symmetrized coefficients
are defined only for positive or zero spins.

We seek ˆ̄ζ |m|
ll′ and would like to estimate it solely in terms of N̄ |s|

jj ′

and R̄|p|
kk′ . We see that if we set the imaginary part of the randoms’

unsymmetrized coefficient to zero (indeed, we do not wish to track
it in our algorithm), this ensures the real part of the right-hand

side of equation (26) involves only our desired ˆ̄ζ |m|
ll′ . In contrast,

the imaginary part remaining on the right-hand side will involve
ζ̂

m,I
ll′ R̄|p|

kk′ and thus has no information about ˆ̄ζ |m|
ll′ . We may now take

the real part of the whole equation, yielding

1

2 − δK
s0

N̄ |s|
jj ′ =

∑
ll′m

∑
kk′p

1

2 − δK
m0

ˆ̄ζ |m|
ll′

× 1

2 − δK
p0

R̄|p|
kk′Gmp−s

lkj G−m−ps

l′k′j ′ ; (27)

Following Slepian & Eisenstein (2015c), we now divide both
sides of equation (27) through by R̄0

00 and separate off the kk
′
p

= 000 term on the right-hand side, finding

N̄ |s|
jj ′

(2 − δK
s0)R̄0

00

= 1

2 − δK
s0

ˆ̄ζ |s|
jj ′ +

∑
ll′m

1

2 − δK
m0

ˆ̄ζ |m|
ll′

×
∑

kk′p �=000

1

2 − δK
p0

f̄
|p|
kk′ Gmp−s

lkj G−m−ps

l′k′j ′ (28)

where f̄
|p|
kk′ ≡ R̄|p|

kk′/R̄0
00.

In the isotropic case, l
′ = l and ζ̄

|s|
jj ′ and ζ̄

|m|
ll′ become spin-

independent. Thus, in this limit, we can sum over all spins to
estimate the isotropic 3PCF ζ l of Slepian & Eisenstein (2015c).
The only factors inside the sums over m and s on the right-hand side
then are 3j-symbols, and invoking the orthogonality identity (Olver
et al. 2010, 34.3.16), we find that k = k

′
. We then sum the resultant

f
p

kk over p weighted by the Gaunt integrals. This sum can be iden-
tified with the edge-correction factors f ′

l of Slepian & Eisenstein
(2015c), showing that only isotropic edge-correction factors enter
an estimate of the isotropic 3PCF.

We now define an edge correction matrix M with elements

M
jj ′s
ll′m =

∑
kk′ �=00

f̄
|p|
kk′ Gmp−s

lkj G−m−ps

l′k′j ′ , p = s − m, (29)

using that the Gaunt symbol forces m + p − s = 0 to set p. In terms
of this matrix, the edge-correction equation (28) becomes

N̄
R̄0

00

= (I + M) ˆ̄ζ (30)

where N̄ is a vector of N̄ |s|
jj ′ , the double spherical harmonic mo-

ments of the counts, ˆ̄ζ is a vector of the double spherical harmonic
moments ˆ̄ζ |m|

ll′ , and I is the identity matrix. Given the coefficients

f̄
|p|
kk′ , which encode the impact of the survey geometry on the ran-

doms, and R̄0
00, the overall normalization of the random triple count,

this equation can be solved by matrix inversion for the desired ˆ̄ζ .
We note that there are two approximations involved in solving

the edge correction equation here. First, to obtain a given matrix
element, one formally requires all values of the random coefficients
R to perform the sum in equation (29). However, in practice, as
the next subsection will illustrate, these values fall so quickly with
rising k and k

′
that we expect the full matrix element is very well

approximated by truncating at some k and k
′

of order the maximal
l and l

′
to which an anisotropic 3PCF measurement is desired.

Second, the edge correction matrix is formally infinite in dimen-
sion, as at fixed l and l,

′
all j and j

′
can enter the correction. Thus, one

should also measure an infinite set of coefficients N̄ |s|
jj ′ of the D − R

field. However, again, in practice, truncating this set at roughly the
maximal l or l

′
desired for the 3PCF measurement should be suf-

ficiently accurate to correct for the survey geometry. This point is
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Practical computation of the anisotropic 3PCF 1475

detailed further in Slepian & Eisenstein (2015c) for the isotropic
3PCF, and the same outcome is expected for the anisotropic 3PCF.

Summarizing, the rapid fall-off of the edge correction factors
means that truncating the sums required for each matrix element
is a good approximation, and the expected near-diagonality of the
matrix means that the truncation of the matrix itself will not greatly
affect the inverse.

5.2 A toy model for the edge correction factors

Here, we investigate a toy model of the survey geometry to gain
intuition for the values of the edge correction factors. We consider
a planar survey boundary perpendicular to the line of sight (i.e. the
z-axis). For a given primary galaxy, the sphere around the primary
over which we compute the 3PCF will impinge upon the survey
boundary if the primary is less than Rmax away from it. These
galaxies will be only a small fraction of the total for realistic survey
geometries, so the edge-correction factors we estimate from this
model will be diluted by the bulk of the survey where a primary’s
sphere is fully contained, and we quantify this dilution at the end of
the section.

For now we focus on primaries whose surrounding sphere does
impinge on the survey boundary. We take it that a given primary
is a distance z away from the survey boundary. This model was
explored in Slepian & Eisenstein (2015c), but only the isotropic edge
correction factors fl = 4π/(2l + 1)

∑
m f m

ll were computed there,
as they were the only factors relevant for correcting the isotropic
3PCF. Here, we seek the more general

f 0
kk′ ≡ R0

kk′

R0
00

=
〈
ak0a

∗
k′0
〉

a2
00

(31)

and angle brackets represent azimuthal averaging. We note that the
azimuthal symmetry of our toy model means the only non-zero edge
correction factors are those with zero spin.

For a secondary galaxy Rmax distant from the primary, there will
be a critical angle μc = z/Rmax for which it is outside the survey for
larger μ. As shown in Slepian & Eisenstein (2015c, equation 35),
the spherical harmonic coefficients are then

al0 =
√

π

2l + 1
[Ll+1(μc) − Ll−1(μc)] (32)

for l ≥ 1. We note that there is no dependence on the triangle side
length because these coefficients represent a random density field.
We also note that since the only relevant coefficients for this toy
model are at spin zero, the symmetrization discussed in Section 2
does not affect our results here.

To obtain f 0
kk′ , we now form the product of the spherical harmonic

coefficients, equation (31) demands and average over μc, as

〈
ak0a

∗
k′0
〉 = π√

(2k + 1)(2k′ + 1)

×
∫ 1

0
dμc [Lk+1(μc)Lk′+1(μc) − Lk−1(μc)Lk′+1(μc)

−Lk+1(μc)Lk′−1(μc) + Lk−1(μc)Lk′−1(μc)] . (33)

We may perform this integral by using the linearization formula for
Legendre polynomials given in Appendix A to convert the products
of Legendres into sums over a single Legendre and then integrating

using the recursion relation also given in Appendix A. We find

〈
ak0a

∗
k′0
〉 = π√

(2k + 1)(2k′ + 1)

∑
J

[(
k + 1 k′ + 1 J

0 0 0

)2

−
(

k − 1 k′ + 1 J

0 0 0

)2

−
(

k + 1 k′ − 1 J

0 0 0

)2

+
(

k − 1 k′ − 1 J

0 0 0

)2 ]
[LJ−1(0) − LJ+1(0)] .

(34)

To simplify, we observed that LJ (1) = 1 for all J and so the terms
from the upper bound of the integral (33) vanish.3 We note that
J must be odd or the difference of Legendres in the last line of
equation (34) vanishes, as Ln(0) = 0 for n odd by parity.

We pause to observe that in the limit where k
′ � k and k → ∞, J

is constrained to be small (J ≤ |k − k
′ |). We can then use the square

of the 3j-symbol’s asymptotic, which is � d2/(2k + 1), where d is
a Wigner matrix and |d2| ≤ 1. Combining this with the pre-factor
∝ 1/(2k + 1), we see that the limit of the isotropic edge correction
factors scales as 1/(2k + 1)2, going to zero as k grows. This roughly
recovers the limiting behaviour of equation (38) for the isotropic
edge correction factor in Slepian & Eisenstein (2015c).

From explicit computation in Slepian & Eisenstein (2015c),
we have that R0

00 = (a00)2 = (7π)/3, so we may form the ratio
f 0

kk′ of equation (31).4 We compute a number of values to
show that the edge correction factors are indeed small: f 0

10 =
−9.28 per cent, f 0

11 = 17.14 per cent, f 0
20 = −6.39 per cent, f 0

12 =
6.92 per cent, f 0

30 = −2.36 per cent, f 0
31 = −1.87 per cent, f 0

22 =
4.08 per cent, f 0

41 = −2.90 per cent, f 0
32 = 0.66 per cent, f 0

50 =
0.37 per cent, f 0

42 = −0.91 per cent, andf 0
33 = 1.90 per cent. The

factors where k = k
′

correspond to the fk of Slepian & Eisenstein
(2015c), and we recover the same values here as in that work. We
point out that the edge correction factors in this toy model do not
satisfy the constraint that k + k

′
is even; our survey boundary is a

plane perpendicular to the z-axis and so the random clustering is
not invariant under parity.

In a Sloan Digital Sky Survey (SDSS) Baryon Oscillation Spec-
troscopic Survey (BOSS)-like geometry, only 20 per cent of galaxies
lie within Rmax = 200 Mpc of a survey boundary, so these factors
should be further scaled down by roughly a factor of 5. On the
other hand, the true survey geometry is more complicated than our
simple planar toy model, so the edge correction factors estimated
above should be taken only as a rough guide.

Finally, we note that the calculation of this section could also be
applied to estimate the edge-correction factors’ values for an angu-
lar survey boundary. For this situation, the boundary has rotated 90◦

from the planar redshift boundary explored above, or equivalently,
we can consider that the z-axis of coordinates has rotated by this
amount. Thus, we can compute the harmonic coefficients of this an-
gular boundary by rotating all of the redshift-boundary coefficients
prior to squaring and taking their expectation value over μc. This
rotation can be accomplished using Wigner D-matrices. Since the
D-matrices are rotations, and thus unitary, we expect that an angular
boundary would not lead to significantly different amplitudes of the

3This sum of four 3j-symbols can be further simplified using recursions
8.6.4.21 and 8.6.4.23 in Varshalov et al. (2013) to a pre-factor times a single
3j-symbol if desired.
4We use the first line of equation (35) of Slepian & Eisenstein (2015c) with
l = 0 and then average over μc.
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1476 Z. Slepian and D. J. Eisenstein

edge correction factors from those in the redshift-boundary case;
thus our overall claim that these factors should be small still holds.

6 C OVA R I A N C E O F T H E A N I S OT RO P I C 3 P C F

6.1 Adapting the real-space calculation to redshift space

Here, we adapt the isotropic 3PCF covariance calculation of Slepian
& Eisenstein (2015c) for the anisotropic case. We use a tilde to de-
note a Fourier-space quantity, use a negative exponential for inverse
FTs, and always use d3k/(2π)3 when going from Fourier space to
configuration space. Adapting Slepian & Eisenstein (2015c, equa-
tion 45) by replacing the real-space density perturbation δ by its
redshift-space analogue δs, we see that in equation (47) of that
work, the Fourier-space density perturbations δ̃ can be replaced by
their redshift-space analogues δ̃s(k).

Following Slepian & Eisenstein (2015c), we use Wick’s Theorem
to contract the six Fourier-space density fields implied by the 3PCF
covariance. We then adapt equation (49) of that work by replacing
the isotropic power spectra with their multipole analogues,

P (k; μ) =
∑

lk

Plk (k)Llk (μ) (35)

We emphasize that this expansion for the anisotropic power spec-
trum is fully general, though in the flat-sky (‘Kaiser’) approximation
and under linear theory, the series reduces further to have terms only
at l = 0, 2, and 4, as we will discuss further in Section 6.5. Following
through to the analogues of Slepian & Eisenstein (2015c, equations
50 and 51), we find

Cov ≡ 〈
ζ̂ (r1, r2)ζ̂ (r ′

1, r ′
2)
〉 = 1

V

∫
d3q d3 p d3k

(2π)9

×
∑
lqlplk

Plq (q)Plp (p)Plk (k)Llq (μq )Llp (μp)Llk (μk)

× (2π)3δ
[3]
D (q + p + k)e−i[q·r1+ p·r2]

×
{

e−i[q·r ′
1+ p·r ′

2] + e−i[ p·r ′
1+q·r ′

2] + e−i[k·r ′
1+ p·r ′

2]

+ e−i[ p·r ′
1+k·r ′

2] + e−i[k·r ′
1+q·r ′

2] + e−i[q·r ′
1+k·r ′

2]
}

. (36)

6.2 Projection on to our basis

We now show how to obtain the covariance of our symmetrized
harmonic coefficients for the 3PCF from the full covariance. We will
begin by projecting the covariance on to the full spherical harmonic
basis including negative spins and at the end of the calculation show
how to obtain the covariance of the symmetrized coefficients from
these results.

The covariance projected on to our full spherical harmonic basis
is

Covl1l2m,l′1l′2m′ (r1, r2; r ′
1, r

′
2)

=
√

(2l1 + 1)(2l2 + 1)(2l′1 + 1)(2l′2 + 1)

(4π)2

×
∫

d�r1 d�r2 d�r′1 d�r′2Y
∗
l1m(r̂1)Yl2m(r̂2)

× Y ∗
l′1m′ (r̂ ′

1)Yl′2m′ (r̂ ′
2)Cov(r1, r2; r ′

1, r ′
2). (37)

The pre-factor comes from two copies of the inverse of the pre-
factor in equation (1), as we wish to extract the covariance of the
coefficients ζm

ll′ . Noticing that the only dependence on real-space

variables in the full covariance is in the exponentials, we require
the projection integrals∫

d�r e−ik·rY ∗
lm(r̂) = (4π)(−i)ljl(kr)Y ∗

lm(k̂) (38)

and∫
d�r e−ik·rYlm(r̂) = (4π)(−i)ljl(kr)Ylm(k̂) (39)

where we used the plane wave expansion (Arfken et al. 2013 equa-
tion 16.61) to expand the exponential into spherical Bessel functions
and spherical harmonics and then invoked orthogonality.

The projection of all of the exponentials in equation (36) is then

El1l2m,l′1l′2m′ ≡
√

(2l1 + 1)(2l2 + 1)(2l′1 + 1)(2l′2 + 1)

× (−i)l1+l2+l′1+l′2Jl1l2 (qr1; pr2)Y ∗
l1m(q̂)Yl2m(p̂)

×{Jl′1l′2 (qr ′
1; pr ′

2)Y ∗
l′1m′ (q̂)Yl′2m′ (p̂)

+Jl′1l′2 (pr ′
1; qr ′

2)Y ∗
l′1m′ (p̂)Yl′2m′ (q̂)

+Jl′1l′2 (kr ′
1; pr ′

2)Y ∗
l′1m′ (k̂)Yl′2m′ (p̂)

+Jl′1l′2 (pr ′
1; kr ′

2)Y ∗
l′1m′ (p̂)Yl′2m′ (k̂)

+Jl′1l′2 (kr ′
1; qr ′

2)Y ∗
l′1m′ (k̂)Yl′2m′ (q̂)

+Jl′1l′2 (qr ′
1; kr ′

2)Y ∗
l′1m′ (q̂)Yl′2m′ (k̂)}, (40)

where we have used equation (38) and simplified. We have defined

Jl1l2 (qr1; pr2) ≡ jl1 (qr1)jl2 (pr2). (41)

The symmetry structure of these terms can be easily checked: within
the curly brackets, the first and second terms are equal under q↔p,
the third and fourth under k↔p, and the fifth and sixth under k↔q.

Returning to equation (36) and using Slepian & Eisenstein
(2015c, equation 58) to expand the Dirac delta function into an
integral over plane waves and thence into spherical harmonics and
spherical Bessel functions, and the spherical harmonic addition
theorem to expand the Legendre polynomials (Arfken et al. 2013
equation 16.57), the projected covariance is

Covl1l2m,l′1l′2m′ (r1, r2; r ′
1, r

′
2)

= 1

V

∫
d3q d3 p d3k

(2π)9

∑
lq lp lk

Plq (q)Plp (p)Plk (k)

× (4π)3

(2lq + 1)(2lp + 1)(2lk + 1)

×
√

(2lq + 1)(2lp + 1)(2lk + 1)

(4π)3

×Ylq 0(q̂)Ylp0(p̂)Ylk0(k̂)

× (4π)3
∑

J1J2J3

∑
S1S2S3

DJ1J2J3CJ1J2J3RJ1J2J3 (q, p, k)

×
(

J1 J2 J3

S1 S2 S3

)
Y ∗

J1S1
(q̂)Y ∗

J2S2
(p̂)Y ∗

J3S3
(k̂)

× El1l2m,l′1l′2m′ . (42)
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The first factor in the third line stems from the spherical harmonic
addition theorem applied to the three Legendre polynomials enter-
ing the power spectrum multipoles. The second factor comes from
the spin-zero values of the spherical harmonics of the line of sight
(taken to be the z-axis); these are the only spherical harmonics
entering the power spectrum multipole decomposition. The fourth
line comes from the spherical harmonic expansion of the power
spectrum’s multipole moments, and the fifth and sixth lines come
from the Dirac delta function’s expansion into spherical harmonics,
with

DJ1J2J3 ≡ iJ1+J2+J3

CJ1J2J3 ≡
√

(2J1 + 1)(2J2 + 1)(2J3 + 1)

4π

RJ1J2J3 (q, p, k) ≡
∫

r2drjJ1 (qr)jJ2 (pr)jJ3 (kr). (43)

For each Fourier-space unit vector in equation (42), there is
one spherical harmonic contributed by the expansion of the Leg-
endre polynomial from the power spectrum multipoles, another
from the Dirac delta function, and either zero, one, or two from
Eproj,l1l2m,l′1l′2m′ . Thus, when we perform the integrations over angles
d�qd�pd�k, we will have integrals of two, three, or four spherical
harmonics.

In particular, the first two terms in the curly brackets in equation
(40) will lead to four spherical harmonics in p̂ and q̂ and two in
k̂; the final four terms in the curly brackets will give four in p̂

and three in q̂ or vice versa and always three in k̂. We thus work
in terms of the Gaunt integral G of three spherical harmonics (all
unconjugated) and a generalized Gaunt integral H of four spherical
harmonics (again all unconjugated). Explicit expressions for G and
H are given in Appendix A. Performing the angular integrals, the
covariance becomes

Covl1l2m,l′1l′2m′ (r1, r2; r ′
1, r

′
2) = (−i)l1+l2+l′1+l′2

× 1

V

∫
k2dk p2dp q2dq

(2π2)3

∑
lq lp lk

Plq (q)Plp (p)Plk (k)

× (4π)3/2

√
(2l1 + 1)(2l2 + 1)(2l′1 + 1)(2l′2 + 1)

(2lq + 1)(2lp + 1)(2lk + 1)

×
∑

J1J2J3

∑
S1S2S3

DJ1J2J3CJ1J2J3RJ1J2J3 (q, p, k)

×
(

J1 J2 J3

0 0 0

)(
J1 J2 J3

S1 S2 S3

)
Jl1l2 (qr1, pr2)

× (−1)m+m′
{

δK
J3lk

δK
S30

[
Jl′1l′2 (q, p)H0−S1−m−m′

lq J1l1l′1
H0S1mm′

lpJ2l2l′2

+Jl′1l′2 (p, q)H0−S1−mm′
lq J1l1l′2

H0S1m−m′
lpJ2l2l′1

]

+Jl′1l′2 (k, p)G0−S1−m
lqJ1l1

H0−S2mm′
lpJ2l2l′1

G0−S3−m′
lkJ3l′1

+Jl′1l′2 (p, k)G0−S1−m
lqJ1l1

H0−S2m−m′
lpJ2l2l′1

G0−S3m′
lkJ3l′2

+Jl′1l′2 (k, q)H0−S1−mm′
lq J1l1l′2

G0−S2m
lpJ2l2

G0−S3−m′
lkJ3l′1

+Jl′1l′2 (q, k)H0−S1−m−m′
lq J1l1l′1

G0−S2m
lpJ2l2

G0−S3m′
lkJ3l′2

}
(44)

We emphasize that we never do arithmetic in the indices of G or
H, so a minus sign on an index should always be interpreted to
mean the negative of the indicated variable. Relative to equations
(40) and (42), we used the identity that Y ∗

lm = (−1)mYl−m to ensure
all spherical harmonics were unconjugated prior to integration, and
we then used that S1 + S2 + S3 = 0 to simplify (required by
the 3j-symbol). In the first and second terms, this condition means
that S1 + S2 = 0 because the Kronecker delta sets S3 = 0. For
Gaunt integrals, the spins must sum to zero, and for H, the first two
spins must have sum equal and opposite to the sum of the last two
spins.5 These rules set S1, S2, and S3 in equation (44). In fact, they
overconstrain it, and so ensuring both rules can be satisfied for each
term acts as a consistency check.

We now show that this expression requires only finite sums over
angular momenta. The Gaunt integrals G require that the total mo-
menta form a closed triangle (‘closure condition’), and the spins
in turn are bounded by the total momenta. Similarly, the gener-
alized Gaunt integrals H require that the total momenta form a
closed quadrilateral, and the spins are again bounded by the total
momenta. Of the momenta, only the Ji are free, and these appear at
most once in each G or H; thus the other, constrained sides along
with the closure condition will bound the Ji, so that all the sums
over momenta are finite. In particular, in the Kaiser limit for the
anisotropic power spectrum, lq, lp, and lk take on values 0, 2, and
4. The other momenta, l1, l2, l

′
1, and l′2, are fixed by the covariance

matrix element desired.

6.3 Reduction to integrals of the power spectrum’s multipole
moments

While equation (44) appears involved, it is actually a considerable
simplification of the covariance as regards calculation. Recalling
that the J are simply products of spherical Bessel functions with
arguments given by the Fourier-space magnitude noted (p, q, or k)
times a configuration space side length, we will show that equa-
tion (44) enables computation of the covariance with 1D and 2D
integral transforms. In particular, all of the wave-vector magnitude
dependence in the projected covariance can be written in terms of
f-tensors

f l
nm(r; ri) =

∫
k2dk

2π2
Pl(k)jn(kr)jm(kri)

f l
nmj (r; ri , r

′
j ) =

∫
k2dk

2π2
Pl(k)jn(kr)jm(kri)jj (kr ′

j ). (45)

Given that the subscripted variables will be binned into of order
Nbins= 10 bins and the spherical Bessel functions of these arguments
replaced with their bin-averaged analogues, these tensors need be
computed only on a fine grid in r, not in the ri or the r ′

i . Recall that r
is a dummy variable to be integrated over to enforce the Dirac delta
function constraint.

We now show how these f-tensors emerge. Focusing solely on
the dependence on the Fourier-space wave-vectors’ magnitudes,

5This will always be true for two pairs of spins but the fact that here the
pairing is first two and last two is specific to how we chose to couple spherical
harmonics when evaluating H.
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the first term in equation (44) scales as∫
k2dk

2π2
Plk (k)jlk (kr)

∫
q2dq

2π2
Plq (q)jJ1 (qr)jl1 (qr1)jl′1 (qr ′

1)

×
∫

p2dp

2π2
Plp (p)jJ2 (pr)jl2 (pr2)jl′2 (pr ′

2), (46)

and the first factor further simplifies to∫
k2dk

2π2
Plk (k)jlk (kr) = ξlk (r), (47)

where ξlk (r) is the lthk multipole moment of the anisotropic 2PCF.
The second term in equation (44) has the same form as the first term
but with r ′

1 ↔ r ′
2.

Again focusing solely on the dependence on wave-vector magni-
tudes, the third term in equation (44) scales as∫

q2dq

2π2
Plq (q)jJ1 (qr)jl1 (qr1)

×
∫

k2dk

2π2
Plk (k)jJ3 (kr)jl′1 (kr ′

1)

×
∫

p2dp

2π2
Plp (p)jJ2 (pr)jL2 (pr1)jl′2 (pr ′

2). (48)

The fourth term is given by equation (48) with r ′
1 ↔ r ′

2.
Finally, the wave-vector magnitude dependence of the fifth term

in equation (44) scales as∫
p2dp

2π2
Plp (p)jJ2 (pr)jl2 (pr2)

∫
k2dk

2π2
Plk (k)jJ3 (kr)jl′1 (kr ′

1)

×
∫

q2dq

2π2
Plq (q)jJ1 (qr)jl1 (qr1)jl′2 (qr ′

2), (49)

with the sixth term given by switching r ′
1 ↔ r ′

2 above.

6.4 Elimination of the delta function’s spins

We observe that the f-tensors depend only on the total angular
momenta, not the spins. Moreover, as noted earlier, the integrals
G and H determine S1, S2, and S3 in equation (44), so we may
eliminate the sum over S1, S2, and S3. We would expect one can
resum without these spins because they enter only the Dirac delta
function and it is in total spin-independent. Thus, new weights wi,
i = 1–6 for each term can be defined that depend only on the total
angular momenta and the free spins m and m

′
. All weights have the

same argument: wi = wi(lq lplk; l1l2; l′1l
′
2; mm′); below we suppress

it for brevity. The weights are

w1 = H0−S1−m−m′
lq J1l1l′1

H0S1mm′
lpJ2l2l′2

, S1 = −m − m′

w2 = H0−S1−mm′
lq J1l1l′2

H0S1m−m′
lpJ2l2l′1

, S1 = m′ − m

w3 = G0m−m
lqJ1l1

H0−S2mm′
lpJ2l2l′1

G0m′−m′
lkJ3l′1

, S2 = m + m′

w4 = G0m−m
lqJ1l1

H0−S2m−m′
lpJ2l2l′1

G0−m′m′
lkJ3l′2

, S2 = m − m′

w5 = H0−S1−mm′
lq J1l1l′2

G0−mm
lpJ2l2

G0m′−m′
lkJ3l′1

, S1 = m′ − m

w6 = H0−S1−m−m′
lq J1l1l′1

G0−mm
lpJ2l2

G0−m′m′
lkJ3l′2

, S1 = −m − m′. (50)

We have explicitly replaced the spins Si that can be written simply as
±m or ±m

′
, but indicated above at right, the values of spins written

as sums or differences of m and m
′
to avoid ambiguous superscripts.

Written using these weights (with arguments suppressed), the
covariance becomes

Covl1l2m,l′1l′2m′ (r1, r2; r ′
1, r

′
2) = (4π)3/2

V
(−1)m+m′

(−i)l1+l2+l′1+l′2

×
∫

r2dr
∑
lq lp lk

1√
(2lq + 1)(2lp + 1)(2lk + 1)

×
∑

J1J2J3

DJ1J2J3CJ1J2J3

(
J1 J2 J3

0 0 0

)

×
{

ξlk (r)

[
w1f

lq

J1l1l′1
(r; r1, r

′
1)f

lp

J2l2l′2
(r; r2, r

′
2)

+w2f
lq

J1l1l′2
(r; r1, r

′
2)f

lp

J2l2l′1
(r; r2, r

′
1)

]
+

(
J1 J2 J3

S1 S2 S3

)

×
{

f
lq
J1l1

(r; r1)

[
w3f

lp

J2l2l′2
(r; r2, r

′
2)f lk

J3l′1
(r; r ′

1)δK
S1−m,S3−m′

+w4f
lp

J2l2l′1
(r; r2, r

′
1)f lk

J3l′2
(r; r ′

2)δK
S1−m,S3m′

]

+ f
lp
J2l2

(r; r2)

[
w5f

lq

J1l1l′2
(r; r1, r

′
2)f lk

J3l′1
(r; r ′

1)δK
S2m,S3−m′

+w6f
lq

J1l1l′1
(r; r1, r

′
1)f lk

J3l′2
(r; r ′

2)δK
S2m,S3m′

]}}
. (51)

In the terms proportional to w3 through w6, we fix two of the spins
using the Kronecker deltas, and the third is given in equation (50)
to avoid showing arithmetic in the index of a Kronecker delta. We
emphasize that equation (51) is fully general because the power
spectrum can always be expanded in a Legendre series.

We close by emphasizing that equation (51), though it appears
complicated, substantially reduces the computational burden of ob-
taining the covariance matrix. The weights are simply an enumer-
able set of constant coefficients, and the main work is computing the
f -tensors. However, these are simply 2D and 3D integral transforms
of the power spectrum, and once a set of them is computed, it can be
combined to form the full covariance as above. Furthermore, since
r1, r2, r ′

1, and r ′
2 are binned, one can replace the spherical Bessel

functions by their bin-averaged values, and the f -tensors need then
only be obtained at the ∼N2

bins combinations of bin centres rather
than on a full grid in any of the ri. A fine grid in r is required, since
r is subsequently integrated over. Thus, in essence the f-tensors are
not even truly 2 D or 3D transforms, but rather 1D cross a small set
of bin centre combinations. Equation (51) therefore represents the
reduction of the 12D integral naively required for the covariance to
a sum over a number of roughly 1D integrals.

6.5 Covariance with the Kaiser formula power spectrum

We now observe that in the Kaiser approximation, where there is
a single line of sight to the entire survey (Kaiser 1987), and using
linear perturbation theory, the redshift-space density rescales the
real-space density as

δ̃s(k) = (1 + βμ2)2δ̃(k), (52)

where β = f/b1, with f = d ln D/ d ln a, the logarithmic derivative
of the linear growth rate D with respect to scale factor a and b1 the
linear bias. μ = k̂ · n̂, where n̂ is the line of sight to the survey. In
this approximation, the k-dependence of all three moments of the
anisotropic 2PCF is the same: it is just the power spectrum. The

MNRAS 478, 1468–1483 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/478/2/1468/4989932 by U
niversity of C

alifornia, Berkeley/LBL user on 02 N
ovem

ber 2018



Practical computation of the anisotropic 3PCF 1479

multipole moments simply have different constant pre-factors, i.e.

c0 = 1 + 2β

3
+ β2

5

c2 = 4β

3
+ 4β2

7

c4 = 8β2

35
, (53)

where c0 is for the monopole, c2 for the quadrupole, and c4 for the
hexadecapole.

This approximation permits considerable simplification of the
covariance equation (51). The upper index may be eliminated from
all f-tensors, ξlk becomes a transform of the power spectrum against
jlk (kr) with a pre-factor of clk , and so a factor of clq clp clk is inserted
within the sum over lq, lp, and lk. This step substantially reduces the
number of f-tensors necessary to evaluate.

6.6 Incorporating shot noise

For any discrete sampling of the underlying continuous density
field, a shot-noise term inversely proportional to the survey number
density n will enter the covariance. As discussed in more detail in
Slepian & Eisenstein (2015c), this can be incorporated in the f-tensor
framework simply by mapping P(k) → P(k) + 1/n, where in this
case, the shot-noise term enters only the monopole moment of the
power spectrum with respect to the line of sight. The shot noise can
only enter the monopole because a discrete sampling effect should
have no direction dependence. When the combinations P + 1/n are
multiplied out, some of the terms will involve only 1/n. As also
detailed in Slepian & Eisenstein (2015c), the f-tensors proportional
to these terms can then be evaluated in closed form; this might be
used to accelerate covariance matrix evaluations if desired.

6.7 Reduction to the isotropic covariance

As a check, we reduce the result equation (51) to the isotropic 3PCF
covariance by setting l1 = l2 = l, l′1 = l′2 = l′, and lq = lp = lk = 0,
as well as summing over m and m

′
. In this limit, we find

H0S1mm′
0J1ll′ = 1

4π

√
(2J1 + 1)(2l + 1)(2l′ + 1)

×
(

J1 l l′

0 0 0

)(
J1 l l′

−S1 −m −m′

)
(54)

where we used Olver et al. (2010, 34.3.1) to evaluate two 3j-symbols
that had zeros in one column (the full form of H is in Appendix A).
Inserting this result (and its analogue of the same form for different
spins) into w1, employing 3j-symbol identities Olver et al. (2010,
34.3.10 and 34.3.18), and summing over m and m

′
, we find

w1 =
(

J1 l l′

0 0 0

)2

. (55)

Applying the same manipulations, we find w2 = w1.
The other weights are slightly more complicated. Thus, we first

present them prior to summing over m and m
′
. For w3, we find

w3 = (−1)−m′−m

(4π)2

√
(2J2 + 1)(2l + 1)(2l′ + 1)

×
(

J2 l l′

0 0 0

)(
J2 l l′

−S2 m m′

)
; (56)

w4 is the same save for switching m
′ → −m

′
in the above. For w5,

we find

w5 = (−1)m
′+m

(4π)2

√
(2J1 + 1)(2l + 1)(2l′ + 1)

×
(

J1 l l′

0 0 0

)(
J1 l l′

−S1 −m m′

)
; (57)

w6 is the same save for switching m
′ → −m

′
in the above.

Inserting w3 through w6 into equation (51), we note that the
pre-factors of (−1)±m±m′

in the weights cancel with the overall pre-
factor (−1)m+m′

. We now sum over m and m
′

with the appropriate
replacements for S1, S2, and S3 in the 3j-symbol that is a pre-factor
of these terms. We then invoke orthogonality of the 3j-symbols
summed over spins (Olver et al. 2010, 34.3.18) to find that the sums
of products of spin-dependent symbols yield unity. We identify
J1 or J2 as appropriate with l2 of Slepian & Eisenstein (2015c,
equation 65) for the isotropic covariance (they are simply dummy
momenta coupling l and l

′
). Finally, the pre-factor (−i)l1+l2+l′1+l′2 in

equation (51) becomes (−1)l+l′ , and we multiply our covariance by
(4π )2/[(2l + 1)(2l

′ + 1)], incorporating the pre-factor in equation
(1) for each of the two 3PCFs forming the covariance. Simplifying
what results reduces our anisotropic covariance to the isotropic
covariance of Slepian & Eisenstein (2015c).

6.8 Symmetrization

We now discuss how to cast the covariance matrix of the 3PCF’s
symmetrized harmonic coefficients in terms of the covariance of the
unsymmetrized coefficients.

We desire 〈ζ̄ m
l1l2

ζ̄ m′
l′1l′2

〉 where here we take it that m ≥ 0 and m
′ ≥

0. Rewriting the symmetrized coefficients in terms of the unsym-
metrized ones using equation (9) and multiplying out, we obtain〈

ζ̄ m
l1l2

ζ̄ m′
l′1l′2

〉
=

〈
ζm
l1l2

ζm′
l′1l′2

〉
+ (

1 − δK
m′0

) 〈
ζm
l1l2

ζ−m′
l′1l′2

〉
+ (

1 − δK
m0

) 〈
ζ−m
l1l2

ζm′
l′1l′2

〉
+ (

1 − δK
m0

) (
1 − δK

m′0
) 〈

ζ−m
l1l2

ζ−m′
l′1l′2

〉
. (58)

We notice that the last term is the complex conjugate of the first
term for m and m

′
> 0, and that for m and m

′= 0, it drops out (in
this case the first term is its own complex conjugate). Similarly, the
third term is the complex conjugate of the second term for non-
zero spins. This confirms our expectation that the covariance be
real given that the symmetrized 3PCF coefficients are real. These
observations mean that the complex conjugate pairs can be added
to reduce the symmetrized coefficients’ covariance to〈

ζ̄ m
l1l2

ζ̄ m′
l′1l′2

〉
= [

2 − δK
m′0 − δK

m0 + δK
m0δ

K
m′0

]
Re

〈
ζm
l1l2

ζm′
l′1l′2

〉
+ [

2 − δK
m′0 − δK

m0

]
Re

〈
ζm
l1l2

ζ−m′
l′1l′2

〉
, (59)

where to add the second and third terms of equation (58), we used
that

Re
〈
ζm
l1l2

ζ−m′
l′1l′2

〉
= Re

〈
ζ−m
l1l2

ζm′
l′1l′2

〉
(60)

because the product within the expectation value on the left-hand
side above is the complex conjugate of that on the right-hand side
above.
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7 C O N C L U S I O N S

We have presented an algorithm for tracking the full 5D anisotropic
3PCF. Assuming the RSD have azimuthal symmetry about the line
of sight, the 3PCF depends on the three ‘internal’ triangle param-
eters r1, r2, and r̂1 · r̂2, and the angles of two of the triangle sides
to the line of sight. Here, we have traded these parameters for an
equivalent 5D representation – two side lengths r1 and r2, two to-
tal angular momenta l and l

′
, and a spin m – and constructed the

mixed spherical harmonic coefficients of the anisotropic 3PCF to
capture its angle and orientation dependences. Our reformulation of
the problem renders the density field integrals for these coefficients
factorizable, fundamentally reducing the scaling of the problem
from an O(N3) triplet count to an O(N2) pair count, with N the
number of galaxies in the survey.

In addition to its speed, the algorithm presented here has three
other significant advantages. First, it allows use of a rotating line
of sight for the 3PCF, more accurate than assuming a single line of
sight to the entire survey. The line of sight to the galaxy triplet is
taken to be the vector to one of the three triplet members; this is the
analogue of the Yamamoto estimator for the anisotropic 2PCF or
power spectrum. Furthermore, we have shown how these rotations
can be done after computation of the spherical harmonic moments,
enabling use of FFTs to evaluate the anisotropic 3PCF. Second, the
spherical harmonic basis permits straightforward edge correction,
an essential step to remove spurious signal generated by the sur-
vey geometry rather than the underlying galaxy clustering. Third,
the basis enables computation of the covariance matrix under the
assumption of a GRF density described by a power spectrum with
multipole moments with respect to the line of sight. In the Kaiser ap-
proximation of a flat sky, single line of sight and linear perturbation
theory, the power spectrum’s multipole moments become particu-
larly simple, further accelerating evaluation of the covariance.

We note that the basis of spherical harmonic moments advocated
here is a compression of the full redshift-space anisotropic 3PCF,
as formally an infinite number of � and �

′
are required to model an

arbitrary function of two directions. However, as shown in Slepian
& Eisenstein (2015b, 2016a), in practice for the isotropic 3PCF, a
finite, small number of multipoles contains the bulk of the infor-
mation, at least on scales sufficiently large to be well modelled by
perturbation theory. Given the structure of the anisotropic bispec-
trum in perturbation theory (e.g. Rampf & Wong 2012), we expect
this conclusion will hold for the anisotropic 3PCF as well. Thus,
we believe that the spherical harmonic basis is a parsimonious yet
effective compression of the full anisotropic 3PCF.

There has been some work on modelling the anisotropic compo-
nent of the bispectrum: Scoccimarro et al. (1999) compute the tree-
level redshift-space bispectrum via Eulerian standard perturbation
theory. Notably, the tree-level Eulerian and Lagrangian predictions
for the redshift-space bispectrum (and hence 3PCF, since it is just the
inverse FT) agree (Rampf & Wong 2012). This latter work presents
the full, unaveraged tree-level bispectrum prediction. In contrast,
Scoccimarro et al. (1999) modelled an average of the 5Dredshift-
space bispectrum over rotations of one wave vector about the other,
reducing it to a 4D function. That work began with the basis of
spherical harmonics for the bispectrum’s orientation dependence
times coefficients depending on the three wave vector magnitudes.
The averaging then reduced this to a basis of Legendre polynomials
in the angle between the unaveraged side and the line of sight times
the same wavevector-magnitude-dependent coefficients.

More recently, Gagrani & Samushia (2017) compared the infor-
mation content of the full redshift-space bispectrum to that of its

4D reduction computed in this way, showing that at the level of the
Fisher matrix most of the information is retained after this aver-
aging. The basis we propose in this work could easily be used for
the bispectrum as well, but it is sufficiently different from the basis
used in Scoccimarro et al. (1999) and Gagrani & Samushia (2017)
that it is not clear how one would average over rotations about one
triangle side if so desired.

We note that two important papers in the development of spher-
ical harmonics and Legendre polynomials for the bispectrum and
3PCF are Verde, Heavens & Matarrese (2000) and Szapudi (2004).
The former proposed expansion of the projected galaxy density
field in spherical harmonics, showed that the isotropic projected
bispectrum can be written as a Legendre series, and noted that this
formalism also covers the full 3D case. However, it did not discuss
the anisotropic 3PCF or bispectrum. The latter proposed expanding
the full 3D 3PCF or bispectrum in Legendre polynomials, but again
did not discuss anisotropy.

Here, we have presented the mathematical formalism for our
anisotropic 3PCF algorithm; in two companion papers, we dis-
cuss in detail an implementation suitable for massive-scale high-
performance computing (Friesen et al. 2017). In particular, we
modified a codebase originally developed in Slepian & Eisenstein
(2015c) to track the anisotropic clustering as discussed here. We op-
timized this code to run on the Cray XC40 system Cori at Lawrence
Berkeley National Laboratory’s National Energy Research Super-
computing Center, which comprises roughly 10k nodes, each with
68 compute cores. Running it on the largest available galaxy sim-
ulation, Outer Rim (Habib et al. 2016), with 2 billion haloes, we
computed the anisotropic 3PCF out to 200 Mpch−1 in 1070 s on
9636 nodes, achieving 5.06 PFLOPS sustained. At peak, the code
achieved 9.8 PFLOPS, roughly 39 per cent of peak performance, but
80 per cent given the instruction mix the algorithm requires.6 This
speed means that any anisotropic 3PCF computation for galaxy
surveys of sizes available in the next decade is practical even on
current computing resources. Indeed, the anisotropic 3PCF out to
Rmax = 200 Mpc for all galaxies in the observable Universe (∼100
billion) is computable in a few days with the algorithm on Cori. The
speed is further important because a full 3PCF analysis requires
computing many random catalogs’ 3PCF for edge correction, and
many mocks’ 3PCF for pipeline testing, model and covariance ma-
trix verification, and fitting the free parameters (volume and shot
noise) of the covariance matrix.

Regarding speed, we note that several works have presented ac-
celeration schemes for the neighbour-finding piece of the 3PCF
computation. Bernardeau, van Waerbeke & Mellier (2003) use De-
launay triangulation to accelerate neighbour finding in the context of
computing the weak shear 3PCF. March (2013) uses kd-trees for the
neighbour finding, but does not include any further acceleration in
computing the actual 3PCF, leading to an algorithm that still scales
as the number of secondaries squared around a given primary, for
an overall N3 scaling (see his fig. 21). Indeed, our high-performance
computing implementation of the algorithm, presented in the com-
panion paper Friesen et al. (2017), uses kd-trees for the neighbour
finding as well. However, as fig. 4 of Friesen et al. (2017) shows,

6For this implementation, we pre-rotated the galaxies, which while compu-
tationally less efficient is simpler to code than the post-rotation approach
also presented here. We expect incorporating this latter optimization will
only improve runtimes, though we do not expect significant gains because
the pre-rotation is a small part of the total work in the current code, as
discussed in Section 4.2.
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the neighbour finding is a subdominant part of the total time cost
as compared to the spherical harmonic computation (22 per cent
versus 55 per cent). Consequently, the neighbour finding is not the
primary driver of the algorithm’s fundamental scaling. If further ac-
celeration of the algorithm were the paramount consideration, the
FT-based approach that computes the harmonic coefficients scaling
as Nglog Ng, discussed in Section 4.3 would likely be the appropriate
choice.

Regarding the algorithm’s scaling, as (nVmax)N, with Vmax the
spherical volume within a radius of Rmax, n the survey number
density, and N the number of galaxies, we note that this applies in the
limit that one works on large enough scales that the density averaged
within Vmax has returned to nearly its overall average value. This
occurs because on sufficiently large-scale galaxies are essentially
unclustered. In particular, the number of neighbours within a given
sphere about a primary galaxy scales as the volume of the sphere
plus the integral of the 2PCF over the sphere, whereas the number of
neighbours about a randomly chosen point in the survey scales as the
volume of the sphere. The 2PCF integrates to zero over sufficiently
large scales (�150 Mpch−1). Thus, the number of neighbours about
a primary converges to the average number of galaxies within a
randomly placed sphere in the survey, rendering valid our estimate
of the number of neighbours as nVmax.

Future work will be translating the predictions of Rampf & Wong
(2012) into the spherical harmonic basis for direct comparison with
the output of the algorithm. Indeed, for this purpose, one could also
use the predictions of Hashimoto, Rasera & Taruya (2017), which
include additional terms representing further perturbative correc-
tions to the redshift-space bispectrum. What is clear by inspection
is that the isotropic part of the 3PCF can only generate l = l

′
cou-

plings, so any ‘off-diagonal’ couplings l �= l
′
isolate O(f ) contribu-

tions. Thus, in principle, these couplings provide a robust window
on the growth rate. However, in practice, anisotropies in the survey
mask can couple isotropic coefficients of the measured 3PCF to
anisotropic coefficients of the edge-corrected 3PCF, and vice versa.
More detailed analysis with mock catalogues and a realistic sur-
vey geometry will thus need to be conducted to fully quantify this
coupling.

None the less, we believe the algorithm presented here will enable
precise, robust measurement of the growth rate of structure with the
anisotropic 3PCF much as is already done with the anisotropic
2PCF and power spectrum. Thus far, the anisotropic 3PCF has
not been measured. Therefore, the next step for future work is
applying this algorithm to data. Numerous suitable samples exist
already, such as the SDSS DR12 BOSS CMASS sample used in
Slepian et al. (2016a) and Gil-Marı́n et al. (2017) or, if smaller
volume but higher number density were desired, the VIMOS Public
Extragalactic Redshift Survey (VIPERS) (Scodeggio et al. 2016).
Ongoing and future surveys such as eBOSS (Dawson et al. 2016)
and Dark Energy Spectroscopic Instrument (DESI) (Levi et al. 2013)
will provide even larger, richer data sets to which to apply this
algorithm.

Measuring the growth rate of structure via RSD is both an impor-
tant lever on the cosmological parameters and a key test of our theory
of gravity. While the anisotropic 2PCF and power spectrum already
will probe it to extremely high precision with next-generation sur-
veys, any additional sources of information can only strengthen our
understanding of these two fundamental areas.

Further, breaking the degeneracy between σ 8, f , and galaxy bias-
ing is a challenging problem that requires several different observ-
ables to fully address. In addition to its importance for cosmology,

extracting precise bias measurements will shed new light on galaxy
formation.

Importantly, measuring the anisotropic 3PCF requires no addi-
tional data over what is already used for the anisotropic 2PCF;
the challenge is purely computational, not observational. Thus, the
algorithm presented here should enhance the scientific value of
redshift survey data per dollar spent on telescope time.
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APPENDIX A

In this appendix, we collect some important definitions and proper-
ties of Legendre polynomials and spherical harmonics. A product of
two Legendre polynomials can be linearized into a sum as (Adams
1878)

Lk(μ)Lk′ (μ) =
∑

J

(2J + 1)

(
k k′ J

0 0 0

)2

LJ (μ), (A1)

where the sum’s range is set by |k − k
′ | ≤ J ≤ k + k

′
(the triangularity

condition on the 3j-symbol).
The integral of a Legendre polynomial can be obtained using the

recursion

Ln(μ) = 1

2n + 1

d

dμ
[Ln+1(μ) − Ln−1(μ)] (A2)

to rewrite Ln(μ) as an exact differential.
The Gaunt integral is defined

Gm1m2m3
l1l2l3

≡
∫

d�Yl1m1 (r̂)Yl2m2 (r̂)Yl3m3 (r̂)

= Cl1l2l3

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
(A3)

where Cl1l2l3 is defined in equation (43).
The integral of four spherical harmonics can be obtained by first

linearizing two spherical harmonics into a sum over single spherical
harmonics using the Gaunt integral. We begin with

Yl1m1 (r̂)Yl2m2 (r̂) =
∑
LM

cLM (l1, l2; m1, m2)YLM (r̂), (A4)

where the coefficients cLM(l1, l2; m1, m2) are given by integrating
both sides against Y ∗

LM (r̂) and invoking orthogonality, so that

cLM (l1, l2; m1, m2) = (−1)MGm1m2−M
l1l2L . (A5)

We then have

Hm1m2m3m4
l1l2l3l4

≡
∫

d�Yl1m1(r̂)Yl2m2 (r̂)Yl3m3 (r̂)Yl4m4 (r̂)

=
∑

L

(−1)MGm1m2−M
l1l2L GMm3m4

Ll3l4
(A6)

by inserting equations (A4) and (A5) into the first line above and
then integrating. We note that there is no sum over M because it is set
by the zero-sum rule on the spins enforced by the Gaunt integrals:
m1 + m2 = M. We further note that the sum over L has compact
support because of the triangle rules on total angular momenta:
|l1 − l2| ≤ L ≤ l1 + l2 and the same constraint holds replacing l1

→ l3 and l2 → l4.

APPENDI X B

Having focused this paper on the ζm
ll′ parametrization, we here ex-

plain why an alternative, seemingly attractive parametrization of
the anisotropic 3PCF does not work. Specifically, by analogy with
the anisotropic 2PCF, one might expect that a triple Legendre series
in the angle of each triangle side to the line of sight and the internal
angle enclosed by the triangle would be the correct basis for the
anisotropic 3PCF. However, this approach is not workable, as we
show below.

First, we write out the basis about a particular galaxy at x; the
full anisotropic 3PCF would then be the average over x of these
coefficients. We have

ζ̂ (r1, r2; r̂1 · r̂2; r̂1 · n̂, r̂2 · n̂; x)

=
∑
ll1l2

ζll1l2 (r1, r2; x)Ll(r̂1 · r̂2)Ll1 (r̂1 · n̂)Ll2 (r̂2 · n̂), (B1)

with n̂ the line of sight.
There are two ways to see the flaw in this basis. First, consider

a triangle with zero opening angle, so that r̂1 · r̂2 = 1 . Then, spec-
ifying the orientation of r̂1 with respect to the line of sight fully
specifies that of r̂2: the Legendre polynomials in l1 and l2 are no
longer independent. This lack of independence means that they do
not form a basis.

A more formal way to see this issue is by considering how we
would obtain the coefficients ζll1l2 (r1, r2; x). Placing a particular
galaxy at x and measuring the coefficients around it, we would
attempt to invoke orthogonality by integrating over d�r1 d�r2 . To
do so, we would need to separate the Legendre polynomials on the
right-hand side of equation (B1) as

Ll(r̂1 · r̂2)Ll1 (r̂1 · n̂)Ll2 (r̂2 · n̂)

= (4π)2

(2l + 1)
√

(2l1 + 1)(2l2 + 1)

×
∑
L1L2

G000
ll1L1

G000
ll2L2

YL10(r̂1)Y ∗
L20(r̂2). (B2)
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We used the spherical harmonic addition theorem to expand each
Legendre polynomial, and then that n̂ = ẑ to eliminate the sums
over m1 and m2, since only the m1 = m2 = 0 modes contribute for
a spherical harmonic evaluated along the z-axis. We then linearized
the resulting products of two spherical harmonics in r̂1 and r̂2 into a
sum over one spherical harmonic in each using equation (A4) from
Appendix A, and substituted the explicit form for the linearization
coefficients as it is particularly simple, since all spins are zero.

Inserting equation (B2) into equation (B1) and integrating both
sides against spherical harmonics over d�r1 d�r2 , we see that∫

d�r1 d�r2 ζ̂ (r1, r2; x) Y ∗
L1M1

(r̂1)YL2M2 (r̂2)

∝
∑
ll1l2m

G000
ll1L1

G000
ll2L2

ζll1l2 (r1, r2; x). (B3)

We see that we have failed to extract the desired coefficients ζll1l2 ,
but have only succeeded in measuring some weighted sum of them.

If the l, l1, and l2 support of the anisotropic 3PCF were finite, we
could measure a large number of integrals as on the left-hand side
above and solve for each term in the sum. However, it is known that
the multipole expansion of the isotropic 3PCF is formally infinite
(Slepian & Eisenstein 2015b,2016a), so l ranges from zero to infin-
ity and this approach is not possible. We note that this point is not at
odds with our claim in Section 7 that the multipoles are a parsimo-
nious basis for the 3PCF. While the multipole expansion is formally
infinite, as shown in Slepian & Eisenstein (2016a, fig. 8), the higher
multipoles do not have much new information over the lower (their
side-length dependence largely converges to look similar for l � 5),
so the information content remains compact.
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