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ARTICLE OPEN

Lymelight: forecasting Lyme disease risk using web search
data
Adam Sadilek 1,5*, Yulin Hswen2,3,5, Shailesh Bavadekar 1, Tomer Shekel1, John S. Brownstein3,4,6 and Evgeniy Gabrilovich 1,6

Lyme disease is the most common tick-borne disease in the Northern Hemisphere. Existing estimates of Lyme disease spread are
delayed a year or more. We introduce Lymelight—a new method for monitoring the incidence of Lyme disease in real-time. We
use a machine-learned classifier of web search sessions to estimate the number of individuals who search for possible Lyme disease
symptoms in a given geographical area for two years, 2014 and 2015. We evaluate Lymelight using the official case count data from
CDC and find a 92% correlation (p < 0.001) at county level. Importantly, using web search data allows us not only to assess the
incidence of the disease, but also to examine the appropriateness of treatments subsequently searched for by the users. Public
health implications of our work include monitoring the spread of vector-borne diseases in a timely and scalable manner,
complementing existing approaches through real-time detection, which can enable more timely interventions. Our analysis of
treatment searches may also help reduce misdiagnosis of the disease.

npj Digital Medicine            (2020) 3:16 ; https://doi.org/10.1038/s41746-020-0222-x

INTRODUCTION
Lyme disease (borreliosis) is a common tick-borne illness caused
by the bacterium Borrelia burgdorferi. It is transmitted to humans
through a bite of an infected tick, and until recently was believed
to affect approximately 30,000 Americans each year.1 A common
public health approach traditionally used to count Lyme disease
cases has been based on reports submitted by doctors.1,2

However, to gain a more comprehensive case count of Lyme
disease infections, a new research investigation was recently
conducted by the CDC, where researchers acquired new data from
health insurance claims, clinical laboratories, and surveyed the
public for self-reported Lyme disease incidents. This study led the
CDC to identify that close to 300,000 Americans are affected by
Lyme disease each year, making the true incidence of Lyme
disease in the United States ten times higher than previously
reported.1,3

These numbers showcase the need to develop more effective
methods for monitoring the spread of the disease, which affects
the health of millions of individuals in the US, since cases
accumulate over time. Experts have recently begun to recognize
the inaccuracy and lack of sensitivity in diagnosing Lyme disease,
as well as the need to develop new strategies to measure Lyme
disease.4

Historically, public health surveillance for Lyme disease has
been limited by insufficient fidelity and lack of timeliness in
reported observations. Most existing models are based on
manually collected statistics that are often significantly delayed,
inconsistently aggregated, and cover only a subset of jurisdic-
tions.1,5 Current methods of data collection include the diagnosis
of Lyme disease by physicians, confirmation of the disease by
laboratory testing, manual data collection by state and local health
departments, and systematic aggregation of these cases at CDC
through the National Notifiable Disease Surveillance System.6

Although this data has been collected since 1991, many
limitations in these surveillance methods make under-reporting

and misclassification common in Lyme disease monitoring.2,6 First,
health surveillance data are subject to each state’s ability to
capture and classify cases, while each state has different
surveillance practices and policies, which can also vary year to
year depending on budgetary and personnel constraints.2,6–8

Second, individual states collect their data independently and
asynchronously, and may close their annual surveillance dataset at
different times of the year.1 As a result, the final case counts
published by CDC do not necessarily match the annual cases
reported by each state. Furthermore, final numbers are typically
released two years after cases have occurred, once all the states
and territories have verified their data, which limits the ability to
mitigate Lyme disease in real time, especially in areas of high risk.1

Here we develop a complementary approach for Lyme disease
monitoring, which applies supervised machine learning to highly
aggregated and de-identified Google web search data. Web
search has become an indispensable tool for finding health-
related information. According to Pew Research, 72% of internet
users say they looked online for health information in the past
year, and of those 77% began their online research at a search
engine.9 Consequently, many studies used web search data as a
proxy for health concerns experienced by a population.10–14 Our
method, called Lymelight, counts the number of users searching
about the disease, and infers in which US county the disease is
likely to have occurred. Lymelight starts with the absolute number
of cases that it classifies as positive, and uses it to estimate the
relative incidence rate for a given geographical area by dividing
by the total number of users active on Google search in that area
in the same time frame (2014 and 2015). Our empirical evaluation
using CDC data confirms that Lymelight can accurately identify
epicenters of Lyme disease and rank them in the order of
significance.
In contrast to previous work,15 we model Lyme disease at the

de-identified user level rather than query level, which allows us to
estimate the number of affected individuals. Notably, our model
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also sheds light on the medical treatments researched by the
users who have previously searched the web about Lyme disease.
This data (properly aggregated and de-identified to maintain user
privacy) offers public health researchers unique insights at large
scale into the appropriateness of these treatments.
User-level modeling has been performed before in the context

of healthcare applications. Data sources used in these studies
included publicly available information such as tweets, surveys,
and web postings, web search data, as well as data obtained
through consented experiences (e.g., questionnaires). Copper-
smith et. al.16 studied self-reported statements of mental health
diagnosis on Twitter. Devinney et al.17 combined tweets and
individual surveys to detect outbreaks. Sadilek et al.14 used de-
identified web search and location data to identify foodborne
illness incidents in restaurants. Paparizzos et al.18 used web search
logs to assess individual searchers’ risk of pancreatic adenocarci-
noma. Yom-Tov and Gabrilovich19 used sequences of individuals’
searches to discover adverse drug reactions. Youngmann and
Yom-Tov20 combined web search and mouse tracking signals to
assess people’s anxiety levels. Ben-Sasson et al.21 used a
combination of web forum postings and screening questionnaire
answers by parents to predict their child’s risk for autism spectrum
disorder.
Our eventual goal is to advance the state of the art in

epidemiology to a point where issues of public health significance
can be quantified in a timely and actionable way using readily
available online data. We call this general approach “machine-
learned epidemiology”,14 and in this paper we report the results of
applying our methodology to Lyme disease. Evaluation of
Lymelight shows significant potential to improve Lyme disease
monitoring methods to mitigate the spread of Lyme disease
across the United States. In future research, this approach could be
generalized to other vector-borne diseases, such as malaria,
dengue fever, Zika fever, and Chikungunya. This becomes
particularly important as climate change has the potential to
affect the transmission of vector-borne diseases.22 We believe that
methods such as Lymelight, which assess the incidence of disease
in near real time, can help target and evaluate public health
interventions to alleviate the negative health effects of climate
change.23

RESULTS
We comprehensively evaluated the Lymelight method in several
ways. In what follows, we first compare Lymelight’s county-level
predictions with the official CDC statistics for the current and
following years. Then, we present a quantitative analysis of
relevant drug searches. In the Methods section, we also report the
performance of the underlying machine-learned model for
classifying individual web search queries.

Comparing Lymelight predictions with the official CDC statistics
To evaluate the performance of our method, we computed
Spearman rank correlation between the incidence rate of Lyme
disease per county as estimated by our method (Lymelight) and
the corresponding incidence rate from the 2015 CDC data. On the
subset of counties for which de-identified search data was
available, we observed the correlation coefficient of 0.92 (p <
0.0001, using the two-sided t-test to reject the null hypothesis that
the two sets of data are uncorrelated), suggesting a very high
degree of agreement and confirming the informative capacity of
web search data.
We also evaluated the ability of our model to predict the spread

of Lyme disease in the following year. Because of increased risk of
exposure, the incidence of Lyme disease is known to be higher
among whites,24 those employed in agriculture,25 and is related to
income.26,27 We did not have individual-level measures on users’

demographics or socioeconomic status, and used ecological-level
county variables to control for these risk factors associated with
Lyme disease. Ecological proxies for individual-level measures
have been validated and are often used in population health
studies,28 especially when it is related to the context of the social
and physical environment. To this end, we controlled for
demographics by including the following as independent
variables of the model: race, income level, and the number of
people employed in forestry, agriculture, and fishing. We obtained
the relevant demographics data from the United States Census
Bureau’s 2011–2015 American Community Survey.26 In our
prediction experiment, we included all the above variables
alongside the Lymelight estimates for 2014, to predict CDC
incidence rates for Lyme disease for 2015.
Even when controlling for demographic variables associated

with greater Lyme disease risk, Lymelight estimates for 2014 was
the only variable significantly associated with predicting the target
variable, namely, the percentage of Lyme disease cases reported
by CDC in 2015 (p < 0.001). Without the addition of the variable
that reflects Lymelight estimates for 2014, the demographics
variables only explained R2= 15.38% of the variation of Lyme
disease cases in 2015. However, the addition of Lymelight
estimates for 2014 substantially increased the predictive ability
of the model, allowing it to explain R2= 78.6% of the variance, an
absolute difference of 63.22%.
Furthermore, to evaluate the stability of our predictions over

the years, we conducted the following two-stage experiment. In
the first stage, we built a regression model that used as features
the above-mentioned demographics variables together with
Lymelight estimates for 2014, to predict CDC incidence numbers
for 2014. Using historical data to forecast epidemiological patterns
is a common methodological practice employed by the CDC. For
instance, previous case reports on Ebola were used to estimate the
future number of cases in the Ebola epidemic.29 In the case of
Lyme disease, the number of cases for each year available from
the CDC is relatively stable from 2014 to 2015, which enables
better future estimates with the use of historical case data.
Therefore, in the second stage we fixed the learned feature
weights, and plugged in the Lymelight estimates for 2015, to
predict CDC incidence for 2015. We observed a very low
prediction error with RMSE= 0.0001571, which further confirmed
the utility of the Lymelight signal.

Using Lymelight to understand drug searches related to Lyme
disease
We used Lymelight to analyze the searches for top 20 drugs by
users whose searches are estimated to be positive for Lyme by our
model, within a month after the first Lyme-positive query for each
de-identified user. Table 1 shows the probabilities of searching for
each individual drug by users who have and have not previously
conducted Lyme-related web search (in what follows, we call
them Lymelight-positive and Lymelight-negative cases, respec-
tively). The purpose of this experiment was to examine treatment
practices and their appropriateness. As we observe a large sample
of people searching for symptoms of Lyme disease, and then
searching for a variety of treatments, we can reason about the
frequency of use of different treatments, as well as their suitability.
Doxycycline was the top drug searched, and was significantly

(Chi-square= 2,663,557, p < 0.001) more prevalent in cases
identified by Lymelight as positive than in those it identified as
negative. Specifically, Doxycycline had a 26% probability to be
searched by a user who had previously issued queries related to
Lyme disease. Amoxicillin was the second most commonly
searched drug (5.71% probability, Chi-square= 65,301, p <
0.001), followed by penicillin (2.56% probability, Chi-square=
23,698, p < 0.001), with all three drugs being recommended
treatments for Lyme disease.8,9
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We found that prednisone and hydroxychloroquine, drugs for
the treatment of arthritis, had a probability of 1.93 and 1.06%
(respectively) to be searched in Lymelight-positive cases. Although
the absolute numbers of searches for these drugs are low, their
respective rankings (#7 and #13) are noteworthy. If antibiotics are
not promptly used to treat Lyme disease, 60% of untreated
patients develop Lyme arthritis, a late manifestation of Lyme
disease that has symptoms of swelling and pain in joints similar to
arthritis.30,31 Searches for these two drugs may be reflective of
treating the symptoms rather than the underlying disease (Lyme).
Alternatively, they may suggest possible misdiagnosis, as Lyme
disease has overlapping symptoms with arthritis and can be
misdiagnosed for it. We also found that metronidazole, trimetho-
prim/sulfamethoxazole, tinidazole, and fluconazole—drugs that
are explicitly not recommended for the treatment of Lyme
disease32,33—were all in the list of the top 20 drugs searched.
These drugs are used to treat bacterial vaginal infections and are
not effective for the treatment of Lyme disease. If Lyme disease
goes untreated, emerging evidence has found an association
between women with Lyme disease and higher rates of bacterial
vaginal infections.34,35 Overall, we found that under 40% of
Lymelight-positive cases searched for standard treatments recom-
mended for Lyme disease, meaning that over 60% of these
searches were outside the guidelines for the treatment of Lyme
disease. Out of these 60% of drug searches, around 13% were for
drugs not normally used for the treatment of Lyme disease, or
drugs used to treat other conditions, suggesting a possible
misdiagnosis because the underlying condition of Lyme disease
may not have been correctly treated. Also, about 3% of the drug
searches in Lymelight-positive cases were specifically for the

treatment of arthritis, one of the most common misdiagnoses for
Lyme disease. We observe that without access to electronic health
record data, we were unable to determine true cases of
misdiagnosis in Lymelight findings. However, the strong correla-
tion between Lymelight output and searches for these drugs (as
evidenced by high Chi-square values) may suggest a lack of
treatment or delayed treatment of the underlying Lyme disease.

DISCUSSION
We introduced a new web-based method for real-time monitor-
ing of the spread of Lyme disease. Our method, called Lymelight,
makes its real-time predictions by leveraging web search data.
To address the challenges posed by noise and ambiguity in this
data, we developed a supervised machine-learned model for
classifying individual queries. This model takes dozens of query-
based signals as input, and estimates the probability that a query
is about Lyme disease. By drawing from established clinical
diagnostic criteria and using professional physician assessments,
we demonstrated the accuracy of Lymelight in classifying
individual queries (Fig. 2) and estimating the number of
individuals with Lyme disease.
We confirmed the capacity of Lymelight to estimate the

incidence of Lyme disease in counties across the United States,
by showing that Lymelight predictions have 92% correlation with
the official CDC data. In order to reduce the likelihood of searches
from long-term sufferers, we restricted our observation period to
summer months, which typically coincides with increased tick
activity.36–39 This increases the likelihood that our model is
capturing new cases of Lyme disease, and allows us to estimate
the incidence thereof.
Our results show that Lymelight can estimate real-world

incidence of Lyme disease much earlier and more efficiently than
the official Lyme disease tracking system, which often reports data
with as much as a two year delay.3 In the light of the recent
findings that Lyme disease incidence in the United States has
been considerably underreported,32,33 our study offers practical
ways to substantially improve Lyme disease monitoring in
real time.
We also showed that the output of the Lymelight model is

predictive of the spread of Lyme disease in the following year. This
is particularly important because warmer winters and the
expansion of agricultural land development have radically
increased tick populations, and consequently increased the
incidence of Lyme disease.40–45 Although scientists are trying to
build models to incorporate all the relevant parameters of the
environment, these parameters fluctuate frequently across time
and space,40,43,45,46 and their measurement requires substantial
resources.41,47–49 This makes it difficult to predict future spread of
Lyme disease, which makes the Lymelight capability to produce
timely estimates of disease incidence even more important.
Prior work, notably on Google Flu trends,50,51 exhibited concept

drift when the same model was applied over multiple years. To
evaluate the concerns for the potential for drift, we calculated
estimates for the entire year of 2014 and the year of 2015, which
consisted of 2 years of analysis instead of 1 year that was done for
Google flu trends.52 Several factors make Lymelight less prone to
concept drift. Importantly, as we explain in the Methods section,
our model is trained in a completely automated fashion, which
allows us to re-train it periodically to account for possible
variations in the query stream. Furthermore, based on data from
the CDC, Lyme disease case counts are relatively stable over the
years, making it very likely that the change in individual query
classifications will not substantially affect macro-level Lymelight
performance. We also note that the symptoms of Lyme disease are
largely consistent from year to year, as opposed to flu that evolves
over seasons53 and hence can result in variation in queries over
time.54

Table 1. Searches for drugs associated with Lyme disease sessions.

Drug searches Lymelight-
positive
cases (%)

Lymelight-
negative
cases (%)

Chi-square p-value

#1 Doxycycline* 26.29 0.51 2,663,557 <0.001

#2 Amoxicillin* 5.71 0.97 65,301 <0.001

#3 Penicillin* 2.56 0.53 23,698 <0.001

#4 Metronidazole+ 2.24 0.58 16,373 <0.001

#5 Ceftriaxone* 2.20 0.14 70,896 <0.001

#6 Ivermectin+ 1.94 0.18 41,860 <0.001

#7 Prednisone# 1.93 1.05 6057 <0.001

#8 Cefuroxime* 1.65 0.06 83,976 <0.001

#9 Trimethoprim/
sulfamethoxazole+

1.56 0.58 7705 <0.001

#10 Rifampicin+ 1.51 0.04 116,892 <0.001

#11 Clindamycin+ 1.21 0.41 6571 <0.001

#12 Ciprofloxacin+ 1.16 0.56 4227 <0.001

#13 Hydroxychloroquine# 1.06 0.12 18,039 <0.001

#14 Permethrin+ 1.05 0.15 14,008 <0.001

#15 Clarithromycin* 0.97 0.07 27,183 <0.001

#16 Tinidazole+ 0.95 0.02 87,125 <0.001

#17 Cefalexin+ 0.94 0.41 3828 <0.001

#18 Amoxicillin/clavulanic
acid*

0.85 0.27 4917 <0.001

#19 Fluconazole+ 0.85 0.30 4309 <0.001

#20 Hash Oil+ 0.83 0.21 3991 <0.001

Searches for drugs associated with Lyme disease sessions. Percentage
figures show the probability of searching for the drug. The “*” symbol
denotes recommended treatment for Lyme Disease (per Clinical Practice
Guidelines), the “+” symbol denotes non-recommended treatment for
Lyme Disease, and the “#” symbol denotes recommended treatment for
arthritis.

A. Sadilek et al.

3

Scripps Research Translational Institute npj Digital Medicine (2020)    16 



We examined the drugs searched by de-identified users who
have previously searched the web about Lyme disease (Lymelight-
positive cases). Our results demonstrate that many drugs which
are not recommended for Lyme disease, as well as drugs
commonly associated with misdiagnosed Lyme disease, are still
frequently searched by users who are also conducting Lyme-
related searches. We found that doxycycline, amoxicillin, penicillin,
and ceftriaxone—all drugs recommended for Lyme disease2,8,55—
together account for less than 40% of drug searches in Lymelight-
positive cases. Yet the majority of the drugs that had relatively
high probability of being searched for, are suitable for conditions
that are often incorrectly diagnosed instead of Lyme disease. For
instance, arthritis has similar symptoms of joint pain and swelling
as Lyme disease, and is often incorrectly diagnosed in patients
who may in fact have Lyme disease.32 Two drugs typically used for
treating arthritis—prednisone and hydroxychloroquine—ranked
as #8 and #13 on the list of most commonly searched drugs.
Other drugs in the top 20 list included rifampicin (#10, 1.51%),

which is used to treat Legionnaires’ disease,56 a condition that has
similar muscle pain symptoms as Lyme disease;57,58 Clindamycin
(#11, 1.21%), used for treating Babesiosis,59,60 another tick-borne
disease;61,62 and ciprofloxacin (#12, 1.16%), used to treat urinary
tract infections,63,64 a symptom that is sometimes caused by Lyme
disease. All of these drugs are associated with conditions
frequently diagnosed incorrectly instead of Lyme disease. The
frequency of these drug searches among users who conduct
Lyme-related research online, suggest that people with symptoms
of Lyme disease may be misdiagnosed.
We also examined searches for drugs that are considered by the

Infectious Disease Society of America as being ineffective and not
recommended for the treatment of Lyme disease, because of the
lack of efficacy data, absence of data, or potential harm to
patients.64 Notably, our findings show that a large number of such
drugs are still frequently searched for by users who have earlier
searched about Lyme disease. For example, metronidazole (#4,
2.24%), trimethoprim/sulfamethoxazole (#9, 1.56%), tinidazole
(#16, 0.95%), and fluconazole (#19, 0.85%), were all in the top
20 list.
While our empirical evaluation has shown our classifier to be

fairly accurate (using data labeled by doctors according to current
clinical diagnostic criteria), the classifier is not perfect. Conse-
quently, our findings may suggest that patients searching for
these drugs might have been misdiagnosed and treated
incorrectly. It may also be the case that when Lyme disease goes
untreated, the person develops conditions such as Lyme arthritis
or bacterial vaginal infections, and subsequently searches for
corresponding treatments; these searches may suggest possible
lack of treatment or late treatment of Lyme disease.
Recent studies suggest that in the light of the ongoing climate

change,41 it is imperative to collect evidence on the effectiveness
of possible interventions, as well as on their implementation in the
community (Type 2 and Type 3 evidence, cf.,65 pp. 2–3). We
believe that the near real-time latency of Lymelight, paired with its
ability to work at a very large scale covering entire countries, will
help shed light on these very questions, and thus will help design
interventions to mitigate the negative health effects of global
warming.
Our approach has a number of limitations. First, and most

importantly, searching for Lyme disease does not necessarily
equate to a diagnosis of Lyme disease, as users might be
searching for their friends and family, or even search after reading
a news article about Lyme disease or about a celebrity having the
disease. Thus, a Lymelight-positive case is not a confirmed case for
Lyme disease. Similarly, drug searches may also not always be
reflective of actual prescriptions for medications. This is an
inherent ambiguity when examining Internet search patterns to
better understand the incidence of any disease.

Exogenous events may also impact the statistics of Lymelight
cases. For instance, media events related to Lyme disease may
cause more people to search for it online. We minimized this
effect by training our model to consider the plurality of one’s
searches rather than isolated queries. For example, a mere query
[Lyme disease] does not exceed the confidence bar for labeling
the case as positive. However, if the same individual also searched
for [tick rash] and [doxy], then the probability that this person
investigates an active case of Lyme disease increases considerably.
Additionally, some Lyme disease sufferers might not be

searching on Google. To account for that, we normalize the
number of searches about Lyme disease by the total number of
active users in that area (U.S. county in this study) in the same
time frame, rather than the size of the entire population in the
area. While Lymelight by design doesn’t explicitly distinguish
between searching on behalf of oneself or someone else (e.g., a
family member), this distinction largely disappears in aggregation.
Whether a user is researching their own infection or on behalf of
someone else, that positive instance will increment the estimated
case count in the appropriate geographical area and time. There
may be, however, instances where a single user researches
multiple ongoing cases of Lyme. In these rare cases, the incidence
rate would be slightly underestimated.
An important limitation of our approach is the scarcity of Lyme-

related search data in many counties, which precludes us from
computing Lymelight results there in order to maintain strict
privacy of our users. We discuss this limitation in detail in the
section “Lymelight validation”, and show the properties of the
counties for which we can and cannot compute results. This
limitation is substantially alleviated for more common diseases,
such as foodborne illness, which we have studied using web
search data in our prior work.14 In our future work, we plan to
address this limitation by applying machine-learned epidemiology
to additional, more common diseases, as well as by experimenting
with higher levels of aggregation.
Research has shown that the risk of Lyme disease increases with

forest fragmentation, which is attributed to houses with larger lot
sizes.66–68 Such houses can be associated with socioeconomic
groups with higher income, whose members are able to afford
larger land lots for dwelling, making the population at risk include
those with higher socioeconomic status. However, it has been
noted that Lyme disease is often under-reported in rural areas as
well as in areas with lower socioeconomic status, because of the
lower presence of and access to medical care facilities there.
Therefore, the population at risk might also not be fully
encompassed within this study. Yet, although these areas may
have lower Internet access, which may limit detection of the
disease cases using online signals, individuals in these areas may
be more reliant on the Internet for information about their
disease. Consequently, Lymelight has the potential to improve
detection of Lyme disease throughout the country, including in
areas with lower socioeconomic status.
Another limitation of our study is the lack of access to electronic

health records (EHR). To protect privacy, it is by design impossible
to link Lymelight inferences with EHRs. As a result, without EHR
data, we are unable to confirm Lymelight-positive cases, nor are
we able to determine cases of possible misdiagnosis. If a
Lymelight-positive case searched for the correct drug, we
assumed that a correct diagnosis of Lyme disease was given,
but cannot confirm this is truly a case of Lyme disease. Similarly, if
a Lymelight-positive case searched for a drug not recommended
for Lyme disease or recommended for a disease that is often
misdiagnosed for Lyme disease such as arthritis, we again, can
only assume this is a misdiagnosis. Without ground truth data
from EHRs, we are unable to estimate the true disease incidence.
However, the high correlation at an aggregate population level we
observed between Lymelight and CDC data suggests strong
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evidence supporting that Lymelight accurately estimates the cases
of Lyme disease.
Symptoms of Lyme disease can also be long-term,32 thereby

making it difficult to determine if the cases that Lymelight
classifies as positive are actually new cases of Lyme disease.
According to CDC, 10–20% of patients who undergo full course of
antibiotics have “post treatment Lyme disease syndrome”,59,69

which manifests as lingering fatigue, pain, or joint and muscle
aches.70–73 Furthermore, although an early course of antibiotics
can usually effectively treat Lyme disease, diagnosis and treatment
can often be delayed, resulting in long-term symptoms of
headaches, chronic gastrointestinal problems, memory loss,
stiffness of joints, and speech impairment.74 Without access to
electronic health records (EHR), we are unable to confidently
determine if a Lymelight-positive case is acute or chronic.
However, we trained our model based on the CDC definition of
a confirmed incident case, which is defined as having evidence of
infection defined by clinical presentation of symptoms and
likelihood of exposure to ticks. Although chronic Lyme disease
patients have persistent symptoms of Lyme disease, these
patients would likely have previously received a diagnosis because
of their signs of tick exposure, which would not be present for
chronic Lyme disease. Similarly, we trained Lymelight using
queries based on symptoms of Lyme disease and the likelihood
of exposure to ticks, this making Lymelight estimate incidence and
not prevalence.
There could be additional reasons why the correlation between

Lymelight predictions and CDC data is imperfect, suggesting
possible limitations of the traditional surveillance mechanisms.
Some patients may not be diagnosed if they do not seek medical
care, or may be misdiagnosed (as suggested by our analysis of
drug searches), and so they will not be included in the official
statistics. Other cases might not be timely reported in the correct
observation period.
Digital methods such as Lymelight are not intended to replace

traditional epidemiological methods but are instead leveraging
online data to mitigate some of the existing gaps. Findings from
this study can offer greater sensitivity and speed of disease
detection. Future work should explore how digital monitoring
methods can be employed to enhance current epidemiological
practices, through studies that can further validate the capacity of
our machine-learned infrastructure to identify cases of misdiag-
noses and under-reporting.
Although traditional methods of capturing infectious disease

epidemics such as Lyme disease have begun to incorporate new
data collection methods and streams of information, current
public health approaches to epidemiological surveillance have a
number of limitations. For instance, the accuracy of the data
aggregated by CDC is subject to individual states’ abilities to
capture and classify cases in a timely manner, which depend on
states’ budget, personnel, and strategies, which vary not only
between states but also from year to year.2,6,75,76 Individual states
have their own dataset preparation timeline compared to that of
the CDC, and states may close their annual surveillance period at a
different time than the CDC, making the final case counts
published by the CDC not reflective of the actual numbers
published by each state agency.2,6,75,76 Finally, current data
collection practices usually record statistics by the county of
residence and not the county of exposure.
These limitations of traditional surveillance tools often result in

a lack of consistency in reporting, and changes in reported cases
from a state do not always represent a true change in disease
incidence.2,6,7,76 Additionally, traditional data collection routines
are highly labor intensive and resource-heavy, which may result in
under-reporting and misclassification of cases, because not every
case of Lyme disease is reported to the CDC and in some instances
cases that are reported as Lyme disease are due to another
cause.2,6,76

Lymelight may also help capture additional cases not tradition-
ally captured by counting visits to hospitals and doctor’s offices,
and thus can help reduce under-reporting that has been often
seen with vector-borne diseases. While it has been noted that
areas with lower socioeconomic status have less Internet access,
these areas also have lower access to health care facilities, and
hence have fewer resources to diagnose, detect and capture
disease cases. Thus, even with limited Internet access (e.g., in
public libraries), individuals living in these areas may be more
reliant on the Internet for information on their disease prior to
visiting a healthcare facility, or using web searches as a primary
source to self-treat themselves at home. Therefore, new digital
approaches should be deployed in lower resourced and rural areas
to evaluate their potential for identifying cases within these areas
that traditional sources have had difficulty capturing.
Modeling of Lyme disease based on web-search data offers a

complementary approach to traditional methods, and can
mitigate the above mentioned limitations. Our results showed
that Lymelight was able to adequately estimate Lyme disease
incidence compared to the official Lyme disease statistics
published by the CDC. Unlike the traditional methods, Lymelight
retrieves data through de-identified online search queries, and has
the potential to assess the disease incidence without the
additional resource cost incurred by traditional epidemiological
methods. Since Lymelight can use data across the entire country, a
more accurate and consistent estimation of the disease incidence
can be produced.
Future studies should explore approaches that combine the

benefits of traditional disease tracking mechanisms with those
offered by Lymelight.
The most significant benefit of using the proposed monitoring

infrastructure is the potential for faster and earlier detection of the
spread of disease. Notifications by traditional surveillance systems
are highly dependent on reports by doctors or laboratories.76

However, evidence has indicated that individuals often search for
health information online, especially at earlier stages of their
illness, before making a medical visit; they also sometimes use the
web to decide whether to visit a doctor.54 Therefore, by utilizing
de-identified web search queries there is a potential to provide
earlier signals of disease detection than clinical or laboratory
reporting. Research has also shown that some individuals choose
to search for health information online instead of making a
medical visit.54 Therefore, not only can search queries help detect
cases earlier, but they may also help capture cases not traditionally
reported, which can help reduce under-reporting.
Our present study, by design, makes it impossible to link web

search data with data from electronic health records. However, we
recognize that such data could make our findings more
comprehensive. Future studies could consider ways to validate
online signals using data from electronic health records, in a
privacy-preserving way, to better estimate disease incidence, as
well as identify possible cases of misdiagnosis.
Aggregated statistics from searches for drug treatments may

also be useful for identifying incorrect treatment practices. Future
work may also combine information about drug-related searches
with diagnostics from laboratories, in order to identify areas with
higher risk for miscommunication, misclassification, or poor
reporting procedures. Through this information, digital data could
be used to identify areas in need of better provider training or
resource management. An additional future direction could
quantify distributions over the time elapsed between the first
potential evidence of Lyme and subsequent searches for various
drugs. More broadly, digital data can be a low-cost complement to
traditional disease tracking, and future work should involve
coordination between traditional and digital methods to help
mitigate the gaps.

A. Sadilek et al.

5

Scripps Research Translational Institute npj Digital Medicine (2020)    16 



METHODS
Machine-learned query classification model for Lyme disease
In order to estimate county-level incidence rate of Lyme disease from
Google search traffic, we first need a scalable way to estimate which
queries are about the disease. Using this core module, Lymelight calculates
the proportion of de-identified users who are searching for Lyme disease.
Our model aggregates the statistics at county level, thereby preserving
privacy and allowing direct comparison with the official CDC data. The
remainder of this section explains each step of this process in detail.
Lymelight leverages as input search sessions from de-identified signed-

in users, thereby eliminating the need to depend on less reliable
mechanisms of deduplication (e.g., using Internet cookies or IP addresses),
particularly over multiple days of data. This is important in the case of
Lyme as it involves long incubation periods of up to 30 days, and even
longer disease progression. User data has been de-identified to maintain
user privacy.
The key challenge here is the inherent noise and ambiguity of individual

search queries. For example, the query [tick bute] is predictive of Lyme
disease incidence rate, but also contains a typo and does not convey
information about the details of the tick bite (e.g., whether the bite site got
swollen or itchy). We solve this challenge by developing a privacy-
preserving supervised machine-learned classifier of Lyme disease queries,
which mitigates this noise by leveraging a collection of signals beyond the
query string itself. To this end, we use aggregated search results for the
query and aggregated clicks on those results.
Web search queries and online data have been found useful in prior

public health research.10–12,77 Most relevant to this paper is Google Flu
Trends,13,78 which tracked the proportion of 45 specific whitelisted flu-
related queries among all the queries from a given geographical region.
The selection of these whitelisted queries was not machine learned, and
therefore was more susceptible to topic drift and noise over time. In
contrast, Lymelight uses automated learning techniques to identify the
infinite variety of ways in which symptoms, treatments, and other aspects
of Lyme disease can be described in natural language. Furthermore,
Lymelight improves the understanding of individual queries, which are
usually short and ambiguous, using the search results returned for them.79

As a result, Lymelight can be continuously re-trained and therefore
adapted to changes in the query stream and web use.
Finally, the Google Flu Trends study estimated the general query volume

about the disease, rather than the actual incidence rate as we do herein.
This distinction is important for two reasons. First, certain web users, such
as medical professionals or academic researchers, may issue a significant
number of relevant queries, which does not necessarily imply higher
incidence of the disease in the population. We believe that using a
machine-learned classifier at the user level allows us to estimate the true
incidence rates of the disease in a more robust and accurate way. Second,
working at the user level allows us to conduct novel kinds of analysis, such
as studying the treatments searched by users who had previously searched
about Lyme disease. This analysis, which allows us to reason about the
appropriateness of those treatments for Lyme disease, was made possible
thanks to our user-level modeling.
Other publicly available systems that aggregate online signals, such as

Google Trends and Yahoo! Buzz, have also been used in epidemiology
research. Google trends allows its users to examine the popularity of top
web search queries, with the ability to focus on different geographical
areas and time periods. It has been widely used in prior published work on
a variety of diseases,65,80–84 including Lyme disease.85,86 Our proposed
approach expands the capabilities of Google Trends and features several
types of functionality that are particularly important in epidemiological
research and applications. Specifically, our method counts affected
individuals rather than queries, which allows us to assess disease incidence
more reliably. Whereas Google Trends is by design limited to the most
frequent (so-called “head”) queries, Lymelight classifies all queries in the
query logs, including the less frequent ones (“torso” and “tail” queries,
which cumulatively account for a non-negligible part of the overall query
volume). Furthermore, by classifying all queries we gain generalization
ability, and thus can account for misspellings, syntactic variants, as well as
semantically related queries. In contrast, when using Google Trends
researchers have to decide in advance on the list of queries to focus on,
because they need to explicitly submit every query to the Trends engine to
get its occurrence statistics. Finally, whereas Google Trends data is only
offered at the level of entire states and a few large metro areas, Lymelight
can examine data at the finer spatial granularity of counties, while still
aggregating data and maintaining high standards of privacy.

Yahoo! Buzz was a conceptually similar tool offered by the Yahoo!
Search engine (the tool has since been discontinued), which was used to
study search activity related to the 23 most common cancers in the United
States87 and other studies. A survey of similar tools that have been used in
epidemiology research can be found in.88

Data description
We applied our query classification model to the aggregation of all English-
language web search queries from the United States spanning years 2014
and 2015, and estimated the proportion of user sessions that suggest
significant evidence of online research about Lyme disease. The query-
level confidence threshold was chosen at 93%, which is the optimal
operating point established in our empirical evaluation (see below). We
filtered out users who are unlikely to be investigating an active case of
Lyme disease but are still querying for it, e.g., those who may be
researching the disease for academic purposes, searching for symptoms of
a family member or a friend, or searching about a news story related to
Lyme disease. To do so, we only counted users who issued three or more
queries that our model identified as Lyme-related.
This processing has been performed on data from logged-in users who

opted to record their web search history. At the beginning of processing,
queries have been de-identified. This allowed Lymelight to count the
number of users who have issued queries about Lyme disease, and those
who later issued queries about relevant drugs, in a privacy-preserving way.
All the processing has been done automatically, including the labeling of
training examples for query classification (both positive and negative
examples), so that no training example query was analyzed by humans.
This work has been performed in accordance with relevant guidelines

and regulations, and approved by Google. The data has been collected
with users’ consent in accordance with the Google Terms of Service and
Privacy Policy. This study was designated as non-human subjects research
by Boston Children’s Hospital Institutional Review Board (IRB).

Query-level classification model
We built a log-linear maximum entropy model89 that estimates for a de-
identified search query the probability that the query is about Lyme
disease. Model training happens in a supervised way from automatically
inferred labels. This allows us to deploy the model at scale and avoid
relying on human raters, which can be very costly, and also maintains user
privacy, as no training query is looked at by humans.14 To achieve this aim,
we observe that queries that lead to significant time spent on web pages
about Lyme disease (broadly defined, including pertinent treatments and
symptoms) are more likely to be about Lyme disease. Examples of such
pages are the Wikipedia article about Lyme disease or the CDC web site
devoted to the disease (https://www.cdc.gov/lyme/index.html).
Anchoring on web pages allows us to regularize over the noise in

individual queries, which—unlike pages—tend to be short, ambiguous,
and often ungrammatical. Our training pipeline automatically aggregates
queries leading to these websites, and uses them as positive examples.
Then, it randomly samples other queries (in proportion to their frequency
in the overall query stream) to serve as negative examples. The Lymelight
model is trained using these two automatically-labeled sets of queries. The
resulting model estimates the probability that a query is used for online
research about Lyme disease (producing a score between 0 and 1 for each
query), and does not require any human effort or manual inspection of
individual queries.
The model has a feature space of dimensionality 50,000 and uses feature

hashing for compactness.90 The features consist of unigrams and bigrams
extracted from the query string, as well as from the search result URLs,
snippets (short summaries of each result displayed by the search engine),
and web page titles. We also construct features based on Google’s
Knowledge Graph91 annotations of the concepts mentioned in the query.

Feature analysis
To explore the patterns that our model has automatically learned from the
training data, we examine the top 50 n-gram features ranked by
information gain (Table 2).92 We computed information gain using the
automatic labels, which were obtained as explained in the previous
section.
We see that most features are strongly related to Lyme disease (e.g.,

“borrelia”) and ticks (e.g., “blacklegged”). Some features are broad
categorical terms (e.g., the Knowledge Graph concept of pathogenic

A. Sadilek et al.

6

npj Digital Medicine (2020)    16 Scripps Research Translational Institute

https://www.cdc.gov/lyme/index.html


bacteria), which enables the model to learn a good decision boundary
between positive and negative Lyme cases.
The features we used include plain text unigrams and bigrams (e.g.,

“tick”, “lyme disease”), as well as more general concepts such as those
found in the Google Knowledge Graph (e.g., “Lyme disease” or “Parasites”).
Occasionally, query terms are misspelled, yet if they appear often enough
they can still be informative as features (e.g., “Lymedisease” in one word).
We did not perform stemming and did not remove stop words.

Evaluation of the query-level classification model
We evaluated our model on two levels. In this section, we discuss its
performance at the micro level of de-identified individual queries, and we
compare the output of the Lymelight query classification to the human-
provided labels. In the next section, we discuss the macro level
performance of Lymelight, where we compare the incidence it computes
for US counties with that available from the CDC.
Lymelight relies on the ability to determine if a web search query is

about Lyme disease. We evaluated this ability on a set of 5000 queries, and
collected a total of 50,000 expert judgements. To evaluate the precision
and recall of our query classification model, we employed two types of
human judges: non-medical professionals as well as licensed medical
doctors (MDs), trained in various medical specialties and located across the
United States. Experts in both rater groups were unknown to and
independent of the authors. Additionally, the raters were not aware of this
research and did not know the purpose of the task. They were engaged by
a third party provider—also independent of the authors—that ensured
proper qualifications of the raters.
The raters assessed the search queries to identify if a query was related

to Lyme disease based on current clinical diagnostic criteria. The raters
were presented with the task shown in Fig. 1.
Five non-medical professionals and five MDs independently judged the

relevance of each query to Lyme disease. Inter-rater agreement—
measured by Krippendorff’s alpha68—was 0.7 over all judgements
collected from both groups, indicating a high agreement. We evaluated
the Lymelight model by aggregating all ratings from the ten raters (five
MDs and five non-professionals) for each query using majority-vote rule.
Ties were broken using majority rule over MD votes. Since searches
potentially related to Lyme disease are relatively rare, we designed a high-
recall filter that leverages clicks on web pages about Lyme (annotated with
Knowledge Graph topics described at https://www.google.com/intl/en_us/
insidesearch/features/search/knowledge.html). Specifically, we collected a
large set of queries that led to clicks on such topical web pages, and then
sampled queries out of this set according to their traffic weight. All queries
were de-identified and highly aggregated to preserve privacy.
Of the resulting 5000 queries, 9% (450 queries) were labeled by human

annotators as positive for Lyme disease, and the rest were labeled as
negative.
Overall query-level agreement across annotators was 80%, with MDs

being more conservative (saying “no Lyme disease” with 15% higher
probability). Most of the disagreements between the two rater groups
occurred for queries that were ambiguous (e.g., had a 3:2 vote split inside
each rater group). Disagreement on queries that were less ambiguous was
only 8%.
We used the query dataset labeled as explained above to evaluate our

query classifier (Fig. 2). In addition to the area under the receiver operating
characteristic (AU-ROC), we examined the area under the precision-recall
curve (AU-PR, cf. Fig. 2) because we face a class-imbalance problem where
the number of estimated negative queries far exceeds the number of
positives. Since AU-PR incorporates the prior probability of a class, it
provides a better estimate of real-world performance in the presence of
class imbalance. We found the query classifier to exhibit robust
performance over a range of operating points, with AU-ROC= 0.99 and
AU-PR= 0.83. At the optimal decision point, we observed Precision= 0.81,
Recall= 0.82, and F1= 0.82 (the F1 score is a harmonic mean of precision
and recall69,70).

Lymelight validation
In the previous section, we presented the results of Lymelight classification
accuracy on de-identified individual queries. Here we discuss its
performance on predicting Lyme disease incidence at the level of US
counties.
We validated Lymelight’s capacity to estimate the true incidence of

Lyme disease using a two-pronged approach. First, we compared

Table 2. Top 50 classifier features, ranked by information gain.

Feature Information gain (in bits
of information)

Lyme 1.10E−03

Lyme disease 1.08E−03

Tick 6.90E−04

Ticks 6.60E−04

Of lyme 6.40E−04

Disease 6.20E−04

[Lyme disease] (KG concept) 5.50E−04

A tick 5.10E−04

[Tick] (KG concept) 4.70E−04

Parasites 4.50E−04

Tick borne 4.40E−04

Tick bite 4.30E−04

Tick bites 3.80E−04

[Pathogenic bacteria] (KG concept) 3.80E-04

Borrelia 3.70E-04

For lyme 3.50E-04

Conditions lyme 3.50E-04

Diseases 3.40E-04

Bite 3.30E-04

Borne 3.30E-04

Burgdorferi 3.30E-04

cdc 3.30E-04

[Disease vectors] (KG concept) 3.20E-04

[Disease] (KG concept) 3.20E−04

Borrelia burgdorferi 3.20E−04

Disease cdc 3.20E−04

Disease is 3.10E−04

[Infectious diseases] (KG concept) 3.10E−04

Ticks are 3.10E−04

Ticks and 2.80E−04

The tick 2.80E−04

[Disease or medical conditions] (KG concept) 2.80E−04

Symptoms 2.70E−04

Blacklegged 2.60E−04

Of ticks 2.50E−04

Disease symptoms 2.50E−04

The bite 2.40E−04

Of tick 2.40E−04

Disease lyme 2.40E−04

Lyme disease 2.40E−04

Health 2.30E−04

Infection 2.20E−04

Bites 2.20E−04

Treatment 2.20E−04

Infected 2.20E−04

Rash 2.20E−04

Transmitted 2.20E−04

About lyme 2.20E−04

With lyme 2.10E−04

Deer ticks 2.00E−04

Top 50 features, ranked by information gain. KG concepts are those found
in the Google Knowledge Graph.
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Lymelight predictions with the incidence of Lyme disease as reported by
CDC at the US county level for the same year. Second, we showed that
Lymelight estimates can also be used to better predict Lyme disease
incidence at the same location in the following year.
The Lyme disease case counts prepared by the CDC are first individually

collected and verified by state and local health departments (all personally
identifiable information is removed during the collection phase prior to

reporting to CDC). CDC makes this data publicly available approximately
two years after the cases were originally recorded. At the time of our
experiments (August 2017), the most current publicly available dataset
with CDC Lyme statistics dated back to 2015. Therefore, we compared the
incidence of Lyme disease in 2015 as reported by the CDC to that
predicted by Lymelight using web search logs from the same year.
The percentage of Lyme disease cases in the population was calculated

by dividing the number of reported cases of Lyme disease in CDC data, by
the total population of each county retrieved from the United States
Census Bureau’s 2011–2015 American Community Survey.26 Lymelight
data was normalized in a similar way, by dividing the number of users
estimated to research Lyme disease online by the total number of active
users in the same county and the same time frame. The evaluation data
was restricted to summer months within each year (June to August), as this
is the most active season for ticks and has the greatest incidence of new
Lyme disease cases.69 We computed Spearman rank correlation at the
county level between the CDC data and Lymelight predictions, in order to
assess the accuracy of our model in identifying the incidence of Lyme
disease.
CDC incidence data is indexed by the county of residence of the

patients. We use coarse query location aggregated at the US county level
to match existing CDC datasets and to facilitate paired evaluation on the
same counties. Each Lymelight case represents a web search user detected
by our model as conducting online research about Lyme disease; it is
assigned to a county by taking a majority vote among the locations of all
the user’s queries. The county was inferred using coarse IP address-based
geocoding in accordance with the Google Terms of Service (https://www.
google.com/policies/terms/). We ensured user privacy by using aggrega-
tion buckets at county level with at least 50 data points in each bucket, and
by automatically removing all potentially personally identifiable informa-
tion from the queries to de-identify the data.

Fig. 1 Task definition for obtaining human judgements on queries. The same template was used to solicit labels from non-medical
professionals as well as from medical doctors.

Fig. 2 Precision-recall plot for the Lymelight query
classification model.
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In order to preserve the privacy of our users, we required that there
should be at least a certain number of users in each bucket that satisfied all
the selection criteria, namely, a minimum number of unique users who
issued web search queries during the analysis period (summer months of
2015), and also specifically issued at least three queries that Lymelight
classified as positive. This privacy aggregation threshold restricted
Lymelight results to only a subset of counties. More specifically, Lymelight
results are not available for two classes of counties: those with small
populations, where the number of searchers is small to start with, and
those with low endemic rates of Lyme disease, because the number of
users searching about Lyme is small.
Under these privacy-preserving constraints, Lymelight produced results

for 33 counties, which offer a small but diverse sample of all US counties. In
what follows, we first analyze the properties of this sample (which we
henceforth refer to as LL2015), and then compare the Lymelight ranking of
counties to that produced by the CDC.
We sorted all the 3193 counties for which CDC data was available in

2015, in decreasing order of incidence rates. Figure 3 depicts the ranks at
which LL2015 counties appear on this list. Our list effectively samples
counties on the CDC list at ranks 240–1055. Below rank 240, we have
counties with the highest rates of Lyme disease - those happen to be
located primarily in the northeast, and are of smaller size, so they do not
have enough searchers to meet the aggregation threshold. We have a near
uniform sample of counties at ranks 240–1055. Towards the end of this list
are large counties such as Santa Clara County, CA, or Los Angeles County,
CA—they have low rates of Lyme disease, but have huge populations that
allow them to meet the aggregation threshold. Above rank 1061, counties
have zero rates of Lyme according to CDC data, which explains the scarcity
of Lyme-related searches there.
We also computed the total number of cases, which according to CDC

happened within the LL2015 subset of counties in 2015. These cases
summed up to 5482, or 14.4% of the total burden of 38,069 cases in the US
in 2015 according to CDC. The total population of these counties amounted
to 63.4 million people, or 19.7% of the total US population in 2015.
Table 3 shows the ranking of LL2015 counties according to CDC and

according to Lymelight, when sorted in decreasing order of incidence rates
computed for each data source.

Drug searches
Lyme disease may often be misdiagnosed,93 resulting in inappropriate
treatments. To this end, we investigated whether users who search for
Lyme disease would subsequently search for clinically recommended
treatments for this disease. We made an assumption that people who
search for specific prescription drugs are likely to have been prescribed
and are taking the drugs. Therefore, to identify the drugs that are being
prescribed for Lyme disease, we calculated the probability of a drug to be
searched in cases identified by Lymelight as positive and negative. Then,
we used Chi-square test to determine if a drug was searched for
significantly more frequently in the Lyme-positive cases. As in all other
experiments, we ensured user privacy by de-identifying the queries and by
automatically removing all potentially personally identifiable information
from the queries.
We performed this analysis on a list of recommended and non-

recommended treatments for Lyme disease, which we compiled using the

Clinical Practice Guidelines for the treatment for Lyme disease.7,94–96 We
specifically included in our list those drugs that are often prescribed for
conditions whose symptoms overlap with those of Lyme disease, such as
arthritis, babesiosis, and urinary tract infections. This allowed us to analyze
if users who had searched for Lyme disease were subsequently searching
for inappropriate treatments.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Fig. 3 Rank coverage by LL2015 counties. The plot shows ranks at
which LL2015 counties appear in the list of all counties, which is
sorted by decreasing order of incidence rates according to CDC. We
observe near-uniform coverage between ranks 240 and 1055.

Table 3. Ranking of counties according to CDC and according to
Lymelight.

Rank CDC Lymelight

1 New Haven County,
Connecticut

Fairfield County, Connecticut

2 Montgomery County,
Pennsylvania

New Haven County,
Connecticut

3 Chester County, Pennsylvania Chester County, Pennsylvania

4 Fairfield County, Connecticut Suffolk County, New York

5 Middlesex County,
Massachusetts

Middlesex County,
Massachusetts

6 Essex County, Massachusetts Allegheny County,
Pennsylvania

7 Hartford County, Connecticut Essex County, Massachusetts

8 Montgomery County, Maryland Westchester County, New York

9 New York County, New York Hartford County, Connecticut

10 Suffolk County, New York Montgomery County,
Pennsylvania

11 Hennepin County, Minnesota Suffolk County, Massachusetts

12 Fairfax County, Virginia Fairfax County, Virginia

13 Westchester County, New York Hennepin County, Minnesota

14 Allegheny County,
Pennsylvania

Montgomery County, Maryland

15 Suffolk County, Massachusetts New York County, New York

16 Kings County, New York Philadelphia County,
Pennsylvania

17 Philadelphia County,
Pennsylvania

Nassau County, New York

18 Queens County, New York Wake County, North Carolina

19 Nassau County, New York Kings County, New York

20 DuPage County, Illinois DuPage County, Illinois

21 Wake County, North Carolina Oakland County, Michigan

22 Cook County, Illinois Queens County, New York

23 Orange County, Florida Cook County, Illinois

24 Santa Clara County, California Santa Clara County, California

25 Broward County, Florida King County, Washington

26 Oakland County, Michigan San Diego County, California

27 Miami-Dade County, Florida Orange County, Florida

28 Travis County, Texas Travis County, Texas

29 King County, Washington Miami-Dade County, Florida

30 San Diego County, California Los Angeles County, California

31 Harris County, Texas Tarrant County, Texas

32 Tarrant County, Texas Broward County, Florida

33 Los Angeles County, California Harris County, Texas

Ordering of LL2015 counties according to CDC and according to
Lymelight, in decreasing order of incidence rate computed by each source.
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