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LIMITED-ANGLE IMAGING IN POSITRON CAMERA --THEORY AND PRACTICE 

Kwok-Cheong Tarn 

Computer Science and Applied Mathematics Department 
Lawrence Berkeley Laboratory, Universi ty of Cal i forn ia 

Berkeley, Cal i fornia 94720 

ABSTRACT 

Hie principles of operation of planar positron camera systems 

made up of multiwire proportional chambers as detectors and electro­

magnetic delay lines for coordinate readout are discussed. Gamma con­

verters are coupled to the wire chambers to increase detection effi­

ciency and improve spatial resolution. The conversion efficiencies of 

these converters are calculated and the results compare favorably to 

the experimentally measured values. 

Two reconstruction algorithms, Fourier deconvolution and matrix 

inversion, for obtaining the three-dimensional distribution of the 

radioisotopes from the recorded data are described. Construction of 

generalized tomograms capable of emphasizing the large-angle events is 

introduced. The effects of the angular range of data taking in recon­

structions using the two algorithms are investigated. It is found that 

in the absence of any a priori information there are undetermined com­

ponents in the reconstruction if the point response function of the 

positron camera does not satisfy certain criteria. However, most of 

the undetermined components are recovered in the case in which the 

transverse spacing of the object is discrete, and all of them are 
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recovered if the fact that the object extent is finite is utilized. 

An iterative scheme for recovering these undetermined components is 

developed, which is applicable to other transmission and emission im­

aging devices. 

Experimental and digital methods for suppressing the noise in 

the data due to Compton scattering are detailed. The propagation of 

errors in the reconstruction algorithms is formulated, and methods to 

stabilize their performance in the presence of noise are developed. 

Results of reconstructing a real phantom as well as computer-

generated phantoms are presented. 
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1. INTRODUCTION 

The past decade has seen a rapid development in the field of 

nuclear medicine, the use of radioisotope tracers for diagnosing med­

ical disorders. Such rapid progress is attributed to the availability 

of many new radiopharmaceuticals on one hand, and the improvement of 

radioisotope imaging devices and image reconstruction methods on the 

other. The general procedure is to administer a gamma-emitting radio­

isotope with appropriate half-life to a patient. The gamma radiation 

which escapes from the patient's body is detected by a gamma detector, 

and the data so accumulated are processed to give an estimate of the 

distribution or localization of the radioisotope, which is a reflection 

of the condition of the organ under diagnosis. 

An imaging system in nuclear medicine is made up of three basic 

components: fl) the gamma-ray channel, which selects and directs the 

ga/jmi radiation from the object to the detector; {!) the detector, which 

is sensitive to the gamma radiation; (?>) the data processor, which 

processes the data acquired by the detector to produce an image o[~ the 

radioisotope distribution. Depending on whether the detector is in mo­

tion or stationary while taking data, and the method of channeling the 

gamma rivs, nuclear medicine imaging device can be classified into two 

categories: scanners, and gamma cameras. 

Single-head scanners [l| were the earliest devices employed in 

radioisotope imaging: a detector equipped with a collimator scans 

rect il incarly over the area of interest (F:ig. I. I J. At any instant of 
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data acquisition the collimator, either in the form of a single cylin­

drical bore, or a cluster of tapered apertures focused at a fixed point, 

allows the g;imma rays from a single resolution clement to fall on the 

detector while blocking out those from the rest ,pf the organ. Recording 

the detector signal as a function of the scmining position permits a 

two-dimensional distribution of the gamma-emitting radioisotope to be 

mapped out. in recent years multi-head rectilinear scanners [2| have 

been developed and increasingly used for organ scanning, especially for 

the larger ones such as lung and livorspJeen, .nitl whole body scanning. 

Their design is fundamentally the same as that ol' single-head 

scanners, except that instead of a single scan, two or more scans ire 

obtained from different directions. 

In constrast to the scanners, gamma cameras are, in general, 

stationary devices, though recently some moving cameras are being devel­

oped |3|. Through image-producing collimators such as pinhole aperture 

or multi-channel collimator, their gamma detectors continuously receive 

radiation emitted from all parts oi~ the object being diagnosed (Fig. 1.2). 

By recording the interaction sites of the incident gajrana rays with the 

detector, an image of the radioisotope distribution can be obtained. 

There are a number of position-sensitive instnunents which can be used 

as detectors in gamma cameras: the rninine re ia 1 ! v available Anger 

camera |4] employs Nal (Tl) crystal viewed by a number of photomultiplier 

tubes (1W) around its circumference; spatial resolution is achieved 

through pulse height division method. Other detectors such as image 

intensifier [5], spark chamber [6], multiwire proportional chamber [7], 
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and semiconductor detector [8] have also been used in experimental 

gamma-ray cameras. 

The main advantage of these relatively new imaging devices, the 

gamma cameras, over tfhe radioisotope scanners is their much faster rate 

of data acquisition. The reasons are two-fold. Firstly, the gamma-ray 

cameras collect data in parallel, the radiation from all parts of the 

object is detected at the same time, resulting in much higher sensitivity 

than is possible with the scanners which gather data sequentially. 

Secondly, data acquisition time is not limited by any mechanical motion, 

which is a determining factor in the case of scanners. The shorter 

exposure time of the cameras permits the recording of dynamic processes, 

such as blood flow and heart beat, as well as static distribution, where­

as the scanners are restricted to the latter only. However, gamma-ray 

cameras are limited in their field of view, whereas the scanners are not 

so restricted. The problems imposed by the limited field of view will 

be discussed in detail in the next chapter. 

One major source of errors in the data taken by the scanners and 

the cameras is the attenuation of the gamma rays by the quantity of tissue 

lying between the gamma-ray source and the detector. The amount of atten­

uation depends on the position of the gamma-ray source, and it is this 

position dependence which greatly complicates the image reconstruction 

problem. Furthermore, the septa of the collimators which provide for 

resolution in gamma scanners and cameras absorb a large fraction of the 

photons, limiting the imaging efficiency. 
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The use of positron-emitting radionuclides allows compensation 

for gamma-ray absorption and eliminates the need of collimators. Some 

proton-rich elements decay by emitting a positron and a neutrino to 

achieve stability. The positro.. produced will annihilate with an elec­

tron in the neighborhood, producing two back-to-back gamma rays. The 

direction and location of these annihilation gamma - ray pairs can be 

found by detecting them in coincidence without the need of a collimator; 

therefore positron imaging is capable of much higher sensitivity than 

that of gamma camera, resulting in lower dose to the patient. Moreover, 

the resolution is improved, as it JS no longer limited by the collimator. 

Operation in coincidence also results in lower background count rate, and 

thus improves counting statistics. As for the absoiption of the gamma 

rays, the sum of the distance traversed by the two annihilation gamma 

rays is roughly constant for a given patient thickness, so the atten­

uation is more or less independent of the location of the source. 

More quantitatively, we assume that the two photons must travel 

distances x and x 9, respectively, in the object while the distance 

d - x.+x-, is a slowly varying function of the ann ihi lat ion point. 

Suppose that the effective Compton scattering attenuation coefficient 

for the object is given by a fixed number .. Then the probability that 

both of the photons will not undergo Compton scattering is 

Pjt\ = exp(-ux-) cxpf-i.x.,) = cxp(-,id) 

approximately independent of the position of the annihilation point. The 

probability that either photon undergoes Common scattering is therefore 

proportional, to :-exp(-ud), also approximate!)' independent of position. 
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Qne more advantage o£ positron imaging is that about one half 

of all the radionuclides are positron emitters, such as C , N , 0 , 

F , Ga , Cu , and Ru , etc. These biologically important radio­

nuclides have short half-lives and high specific activity, thus it 

should theoretically be possible to find a positron emitter for almost 

any imaging problem of interest. 

A positron imaging scanner utilizing the time-of-flight prin­

ciple was introduced by Burnham et al., in 1967 [9]. Positron cameras 

using arrays of Nal crystals were constructed by Anger in 1967 [10]. 

There are also positron cameras using two large Nal crystals [11], using 

multiwire proportional chambers with liquid Xe [12]. The purpose of this 

thesis is to investigate the problems involved in imaging in positron 

cameras using multiwire proportional chambers equipped with gamma ray 

converters [13]. 
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II. THEORY OF POSITRON IMAGING 

+ ... In typical positron camera imaging, a 6 active radioisotope is 

injected into the patient's blood stream in a carrier which is chosen 

to be preferentially absorbed by the medical anomaly. The radioisotope 

assumes a quasi-equilibrium distribution in the tissue. In undergoing 

S decay, the nuclei of the radioisotope emit low energy positrons 
+ p -+ n + c +\> 

about 98% of which are rapidly thermalized [14] within a short distance 

from their point of origin (a 1 MeV e has an linear range of 5mm in 

tissue). The thermalized positron then combine^ with a valence electron 

of some atom in the immediate vacinity to form a positronium, usually in 

the singlet state; only about 1/3 of II of these positroniums are formed 

in the triplet state, which emit three photons in the subsequent annihi­

lations [15]. Those positroniums in the singlet state annihilate with 

the production of 2 gammas. By the conservation of energy and momentum, 

these singlet photons have an energy of approximately 511 keV, and travel 

very nearly in opposite directions, i.e., back to back. As the momentum 

of the center of mass of the annihilating pair is of the order ~m ( 1c/l37, 

the 2 gammas are col linear to -1/137 radian [16]. These annihilation 

gammas may subsequently escape from the patient's body and be detected 

by the positron camera in coincidence, with their positions of inter­

action with the camera recorded. 

The data in a positron camera are therefore in the form of 

straight lines defined by the annihilation gamma pairs, with the positions 
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of the radioactive nuclei which have undergone g decay lying somewhere 

along the lines. The positions of the decays can in principle be deter­

mined by the time-of-flight method, but this requires extremely high 

speed electronics. An alternate way is to inverse the distribution of 

the annihilation gamma pairs to yield the radioisotope distribution. 

Thus the problem of imaging in a positron camera consists of 

two parts: (1) to detect the annihilation photons efficiently and 

record their positions accurately, and (2) to reconstruct the distribu­

tion of the radioisotope mathematically from the recorded data. 

2.1. Detection of Annihilation Gammas 

The requirements on the detector in positron camera are high 

efficiency for stopping the 511 keV photons, and good spatial resolution 

to define their positions of interaction. Multiwire proportional cham­

ber (MWPC) equipped with gamma converter is a suitable combination for 

such purposes, besides offering large detection area at relatively low 

cost. 

2.1.1. Multiwire Proportional Chamber 

The advent of MWPC marked a great step foward in the field of 

particle studies. Since its development by Charpak and colleagues in 

1968 [17] much work has been done in investigating the properties of the 

MWPC and in developing various auxiliary devices which greatly extend 

its scope of application. The use of MWPC in nuclear medicine imaging 

was first developed at Lawrence Berkeley Laboratory by Perez-Mendez and 

colleagues [18]. 
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MUTC can be considered as an unproved version of proport ional 

chamber. In a MIVPC, a plane grid of equally spaced wires lying between 

and p a r a l l e l to a pa i r of plane cathode e lec t rodes takes the place of 

the anode wire jn the proport ional chamber. It is equivalent to a 

s e r i e s of quasi •• independent s ingle-wire chambers s ide by s i d e , oper-

at mg in the region of p ropo r t i ona l i t y . The two cathode planes are 

made up of two planes of pa ra l l e l wires orthogonal to each o the r . 

The e l e c t r i c po ten t ia l and f ie ld d i s t r i b u t i o n in a Ml\T€ have 

been ca lcula ted by frskino f l 9 | . for a chamber with geometric config­

urat ion as shown in f i g . 2 . 1 , the e l e c t r i c po ten t ia l and the e l e c t r i c 

f ie ld are given by: 

I > ' 
V'lx.y) s q j l ' i l / s - ln |4 s in" (T. X/'S ) + -1 sinrT I, v / s l | .• 

,: (K v ) = . :!Y = -iq s in (2 i^ / s j 
s [ s i n " (T X/S I + smb." (n y/s)| 

! : , , '>V TTCI s m h U ' T v / s ) 

s I s i n ^ f r i x / s ) + s inh"(7vy/s ) ] 

where !. is the plane spacing, s Is the anode-wire spacing, and q is the 

charge JUT unit length on an anode wire, figure 2.2 shows the general 

shape of the field lines and the equipotent la I s ['or such a geometry. At 

regions close to the anode wires (x<< s, y < s), the electric field 

varies as 1/r. The field near the wires is strong enough to enable elec­

trons in that region to acquire sufficient energy between collisions to 

ionize gas molecules with which they collide. 

Mien an ionizing particle passes through a MiVPC, it liberates 

electrons from the gas molecules in the chamber through photoelectric 
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interaction or Compton scattering. The electrons produced drift toward 

the anode wire. As soon as they enter the multiplication region they 

produce secondary electrons by collisions which, in turn, produce more 

electrons by the same process. Consequently there form an avalanche of 

electrons which is collected by the anode wire, and a positive-ion 

sheath which moves toward the cathodes. Detailed consideration shows 

that the total number of electrons produced n (which is also the total 

number of positive ions) is proportional to the number of initial elec­

trons n„, 

n = A n Q . 

The proportionality factor A is called the multiplication factor which 

was found by Rose and Korff [20] to be of the form 

A = exp 2(aNCr 0V) 1 / 2[(^) 1 / 2-l] 
s 

where V is the applied potential, V is the threshold potential (the 

potential at which inelastic collisions start at the surface of the wire), 

r is the wire radius, N is the number of gas atoms per cc, a is the rate 

of increase of the ionization cross section with energy, and C is the 

chamber capacitance per unit length. 

The motion of the electrons and the positive ions induces a neg­

ative voltage pulse at the avalanche anode and a positive one at the 

cathodes, with the major contribution to these voltage pulses coming from 

the positive ion drift. These signal pulses are readout by the delay 

line method to be described in the next section. 
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2.1.2. Delay Li no Readout 

The use of distributed LC electromagnetic delay line furnishes 

a suitable way of accomplishing position-to-time conversion. The signals 

generated on each of the two perpendicular cathode wires are capactive-

coupled to a delay line. The time differences between the time of ar­

rival of the prompt anode signal and the delayed signals from the two 

cathodes give the x and y coordinates of the interaction site. A dis­

tinct advantage of this readout method is the inherent ability to inter­

polate between signal-coupling points for the position of the centroid 

of the si glial. The centroid of a single pulse indicates closely the 

center of an ionization event, even though the signal includes contribu­

tion from the adjacent wires. 

In its simplest, form the delay line is essentially a transmission 

line with uniformly distributed inductance and capacitance L and C re­

spectively. Tor an ideal transmission line, 

3V _ . 3J_ 
\,z L 3f 
il r ^ Uz ' at' 

Combining these two equations we get the wave equations, 

^ = LC ^X 
'dz1- ?t" 

3 I 3 1 
3 z " •.-"St" 

which have the general solutions \2\ ] 

V fz,t) = I-1(z-v0t) + F 2fz+v Qt) 

Z gI (z,t) = I-'j Cz-vQt) - l:
2(z+v0t) 
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finite. This can be seen as follows. 

-f 0(k x,z-z'J = / ° - ^ exp(2Trikxtan-;(z-z')jde. 
",;o 

I'or any function f(z) piece-wise continuous and spatially bounded in 

"1 " -V 

j " d z ' / Z d z ( p 0 f k x , z - z ' ) f" ( ?.) i * f :•.' I 
T "7 

""1 "I 

= / 2 d z ' j ' 2 d z / ° d 9 - - ^ exp(2TTLk tanO (z -z ' J) f (z) f U ' ) 

- '; / ° ROJIJ" 2 exp((27Tik.tan())z)f(z)dzt 2 d' j . (2.12) 
" ~'"n z i 

Since l:((!) • (I for a l l -<ir. •'• 0 < 0 „ , the vanishing of expression (2.12J 

would r eqmre that 

Kk.tanOj - / 1 cxp((2 1 rjk tan<<)z) f fz)dz = 0 

for a l l -Ik t a n 0 j < k tanfjClk tanO,. I. 1 x 0' x ' x 0' 

Now the in t eg ra l Ifk.tanO) is an e n t i r e function | 3 2 ] . if i t i s zero 

within the in te rva l [-k,t;inO n ,k tan i i . J , i t must be zero everywhere. 

Thus f[z) must be zero everywhere. This argument proves tha t the i n t e ­

gral operator 

•7 

gfz.) = J 2 y 0 ( k x , z - z ' ) f ( z ' V l 2 ' 
z l 

j.s po-.i'jve definite, and by [30], the eigenfunctions associated with it 

form a complete set in the class of functions square integrable in (z.,z ?), 
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intersecting line segment. Again, the procedure cannot be used when 

0„ = 0, since then the only region in which R(k) is known is the line 

k, = 0. 
z 

Hie above analysis shows that all the information of any density 

distribution of finite extent is contained in its Fourier components 

within any open cone in frequency space with its apex at the origin. 

This result is in agreement with the fact the such a distribution is 

uniquely determined by any infinite set of projections [33, 34]. 

For the matrix method, the fact that p(k ,z) is entire in k for 

all z. < z < z 7 can be employed to fill in the undetermined components at 

k = II on each z-plane from valuer, at k . ̂  0 on the sane z-plane. If 

0. = (), the components at k =£ 0 are not known themselves, not to mention 
the continuation to k = 0. x 

To continue Rfk) from the allowed cone, the most direct approach 

would be to calculate the successive derivatives of R(kJ at some point k„ 

in the allowed cone to form a Taylor series expansion of R(k) which con­

verges everywhere. In practice such a series has to be truncated,so the 

error for the values of the series calculated at region far away from k„ 

would be very serious. Besides, to accurately determine the derivatives 

of a function numerically is by no means simple. 

A practical way to continue an analytic function is by means of 

the prolate spheroidal function expansion [35, 36], Tie function R(k) to 

be continued is expanded in a series of prolate spheroidal functions <i>. (k) 

R(k) = I a. ^.(k) 
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the coefficients a. being determined from the known values of R(k) in 

the allowed cone. 

Besides the prolate spheroidal functions, Fourier series can 

also be used in expanding the function to fill in the missing cone. 

This method was employed by Harris [31] to continue a one-dimensional 

spectrum, and by Inouye [37] to reconstruct a two-dimensional image. 

A rather obvious way to extend the known portion of the spec­

trum R(k) to the missing cone is by means of the iterative scheme shoxi/n 

in Fig. 2.21. The spectrum S^ ' (k) obtained from deconvolution, with 

the undetermined components set to zero, is Fourier transformed to the 

object space. There the values outside the known extent of the object 

are set to zero, and then inverse transformed to the frequency space, 

giving R (k). The components of R^ (k) inside the allowed cone are 

reset to the original values given by S *• -'(k),<md the cycle repeats 

yielding R. ' (k) after n iterations. 

We note that this iterative scheme has been used by Gcrchberg 

J38] and I'apoulis |39J to improve the resolution of one-dimensional sig­

nals in band-limited systems. The convergence of the scheme in one 

dimension has been proved by both of these authors. The proof given in 

Gerchbcrg's paper made use of the propei'ty that a real analytic function 

in one-dimensional space either vanishes everywhere or only has isolated 

zeros. This proof can be generalized to higher dimensions by using the 

more general property that real analytic functions on n-dimensional s^ace 

cannot vanish on an infinite set of n-1 dimensional planes through the 

origin without vanishing identically. 
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A more quantitative proof of the convergence of the iterative 
scheme is now given. In actual reconstruction, we will he dealing with 
frequency components below a certain maximum frequency determined by 
such factors as the spatial resolution of the imaging system, the avail­
able computer core memory, etc. In Fig. 2.22, R, represents the region 
in frequency space where R (k.J is known, and R, i. ; the extent of the 
object. Define th"' operators A and B operating on functions f defined 
m frequency space as follows: 

A f = X A f 
13 f = F~ lx B F f 

i '.ere !•' and F represent Fourier transformation and its inverse, and 
X-, >'n are respectively the characteristic functions of R and R. , 
A B a b 

defined as: 

A (Q k *. R 
— a 

,1 x > R. 
'« M * R

b ' 
With these operators wc can formulate the iteration procedure as follows, 
[f R(k) represents the Fourier spectrum of the object pfjr), and S (k) 

the Fourier spectrum of pfr) obtained from deconvolution, then 

S ( 0 ) Q O = A R(k). 

Fourier transforming S (k) t( (k)Tj 03.018(n)Tj 6 Tc 1.121 Tw ( ca)Tj 0 T09 Tw ( function)7 =,d  pfd 5 0 9  - 0 . 6 5 2   o 5con4.314 T6caTj 0 Tc (4m Tc (e)Tj 0.339 T1592e929cx0g4.f 254 0.5j 0 Tc   Ts ((0))Tj /Td591.455 Tw ( o)Td0.387 Tc 0.645 Tw ( objec)6lTj 0.298 Tc 2.506x2)Td0.387 Tc 0.644pTj 0 Tct (m)8.767314. 
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XBL 798-11176 
Fig. 2.22. Schematic representations of the allowed 

cone and the object extent. 
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R^Ck) = B S^Q\k) = B A R(k). 

Resetting the components of R '(k) inside the allowed cone to the orig­

inal values given by S*- ' (k) we get S (k): 

S W ( k ) = S(0)(_k) + (1 - A) R ( 1 )(k) 

= AR (k) + (I - A) Rf^(k_) 

Iterating we obtain the spectra R ^ f k ) , S^fk) , R ( n'(k), 

R ( 2 )fk) = B S(i;)(k) 

S(2j(J<) = A R(k) + (I - A) Rf2)(_k) 

S ( n _ 1 )(k) = A R(kJ + (I - A) R(n"'iJ(k) 

R ( n ) ( k ) = B S ( n _ ] } Ckj= B A R(k) + (1 - B A ) R ( n _ 1 ] (k) . (2.15) 

Subtract ing Rfk) from both s ides of equation (2.13) 

R ( n V ) " R(_kJ = B A RQ0 - RQO + (I - B A) R f n " l j f k ) 

M l - B A ) ( R f n " n ( k ) - R(k) l 

= (I - B A ) n ^ ( R ( I ) ( k ) - R(k) ) 

= (F - B A ) n ( R ( 0 , ( k ) - R ( k ) ) 

where we have defined R̂  J (k) = 0. Thus we have 

R C n )(k) = R(k) - (F - BA)nR(k)- (2.14) 

Note that throughout the iterations, all the spectra R - ' l 

on by BA satisfy 

BRfi:)(k) = R ( l )(kj- (2.15) 
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In Appei.Jix II it is shown that the operator B A operating on the functions 

satisfying equation (2.15) is a positive definite operator. Thus the set 

of ei gen functions {ip.} of BA forms a complete si: of functions which are 

orthononnal in the entire k-space, and orthogonal in the region R [40), 

/ *. (k) <|;.*00d3k = & 
k-space J I J 

/ !p. fk) * " fk) A = \.•*.... 
R 1 J • I IJ 
a 

Thus any function f in k-space which satisfies (2.15) can be expanded 

in a series of ^. which converges to f everywhere; if Bf + f, the 

expansion is still valid in the region R , but it does not necessarily 

converge outside R, . All the eigenvalues of BA lie between 0 and J, i.e., 
it - >.. •- 1 . i 

Decompose R(k) into a linear combination of ijj. 

R(k) = I a ,̂ fk). 
i=fl 

Then equation (2.1-1) becomes 

R ( n ) ( k ) = I a. (1-fl-A.)")(/'. fk). 
1=0 

The truncation error in terminating the iteration after n steps is thus 

given by 

1-: f n l (kl = R- n ) (k) - R(k) 

= - [ . i j C l - X j " it.(k) (2.16) 
i=0 L l 1 

which is identical to that obtained by Papoulis [39] for the case of 

one-dimensional signals. This error tends to zero as n > ». 
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TII. DATA TREATMENTS AND ERROR ANALYSIS 

In this chapter we shall discuss the effects of noise in the 

imaging problem. Data pre-treatments to reduce the influence of scatter­

ing will be dealt with first, followed by analyzing the propagation of 

errors in reconstructions, and developing methods to stabilize the per­

formance of the reconstruction algorithms. 

3.1. Compton Scattering 

Despite the compensation effect mentioned in Chapter I, Compton 

scattering is still a major source of errors in positron imaging. Scat­

tering, which takes place either inside the object being imaged or m 

the detector itself, modifies the point response function <t>n(_r)> making 

it space variant and thus violating the condition for equation (2.6) to 

hold. 

Scattered events can be rejected effectively by using pulse height 

selection in the case of Nal crystals for energies below 300 keV, and MWPC 

where the gamma ray is below 60 keV [411. For MWPC detectors equipped 

with honeycomb converters, the spectrum of conversion electrons is con­

tinuous and hence rejection of such events is not feasible by pulse 

height, selection. In this section we shall describe two ways to reduce 

the influence of scattering in imaging. 

3.1.1. Delay Line Sum Pulse Rejection 

Those events in which a gamma gives rise to more than one signal 

in the same detector can be identified by the method of reading the 
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signal from each end of the delay line. The time interval between 

arrival of the pulse on the anode wires and that of the delayed signal 

at each end of the delay line is measured. If the gamma generates a 

pulse at only one location of the detector assembly, the sum of the 

intervals to each end should L.,..,., ihe length of the delay line plus 

some fixed delay in the processing electronics, a constant to within 

the accuracy of the timing measurements, figure 3.1 shows the time 

sum distribution for an Fe'' source whose 5.9 keV photon, being stopped 

entirely within the chamber, did not interact with the converter. As 

expected for a single interaction type event, the distribution is sym­

metrical and narrow with a 5 nsec FWllM. in the case of multiple signals, 

however, the sum of the 2 intervals will be some value less than the 

length of the line, and thus these events c;in lie distinguished and re­

jected. Cine additional advantage of reading from both ends is that m 

the case where the accuracy is limited by tuning errors, averaging the 

positions obtained from each end of the line improves the resolution by 

a factor of •/ 2. 

To illustrate this effect we measured the time sum distribution 
08 for a point source of Ge,' a positron emitter. A small Nal detector was 

used in coincidence with the prompt signal from the anode plane to pro­

vide a well collimated beam of 511 keV photons (from the geometry the 

size of the beam at the converter was approximately 3mm). In Fig. 3.2 

an x-projection of the detector point response function for the positron 

source is plotted with accidental background subtracted. In all cases 

discussed here accidental background is removed by applying identical 
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l'ablc 3.1. The number of events contained in intervals about the mean 
of x-projection of the detector point response function for 
various time sum cuts. The fraction of those events pass­
ing the cut, which fall within the interval, is also given. 

Interval No Sum Cuts Sum <168 ns 141<Sum<168 ns 150<Sum <168ns 

5* mm 14003 1249S 11481 8464 
49?. 50°„ 65", 72°0 

1 0 mm 21604 19105 1505~ 10655 
.' Ii o ' -' 0 86>, 91°„ 

IS mm 24867 21942 16472 1 1 346 
86'i 88", 94 "j 97°, 

A Monte Carlo program was written to determine the probability 

of secondar/ interactions from photoelectric escape photons and Compton 

scattering, and their contributions to the spatial resolution. The 511 

keV photon was assumed to enter the converter perpendicularly. The 

material in the converter was assumed to be distributed uniformly through­

out its volume. The point at which the 511 keV photon converted was 

sampled and an average detection probability was assigned. The conver­

sion electron was considered detected if it escaped from the wall of the 

honeycomb into the gas. The Compton scattered photon or the 88 keV es­

cape photon for Pb was followed until it converted or escaped from the 

converter. The program successful predicted the detection efficiency 

of the converter to within 20°; of the experimental value. However, it 

showed that the probabil \ty of having a multiple event due to scattering 

is only 4°,, which is not cnought to explain the effect observed. This 



-7(1-

indicatcs that there are other mechanisms, besides scattering, causing 

the multiple events. Nevertheless, reading out from both ends of the 

delay line provides a means of correcting the problem. 

3.1.2. Digital Filtering 

Another manifestation of the scattered events is in the angular 

distribution of the events. Jf there were no scattering, the annihila­

tion gammas detected should be distributed isotropically, i.e., the 

number of gammas lying within the solid angle dii is proportional to 

dQ = d(cosO)d<t, where 0,<J> are respectively the polar angle and the az­

imuth measured with respect to the axis of the positron camera. Thus 

the distribution of the photons as a function of cosQ should be a flat 

line, independent of cosG. In the presence of scattering, however, the 

distribution would be skewed towards the small angle region. This can 

be understood by considering Fig. 3.7. A pair of annihilation gammas is 

shown emitted within the detection cone of the positron camera. Now 

suppose one of them, say the upper one, is scattered by the medium while 

the other is not. As can be seen from the relative size of the two de­

tection cones shown in the figure, this gamma has higher probability of 

being scattered anticlockwisely within the detection cone of the camera. 

If this gamma strikes the upper detector at A', the angle inferred from 

A'B would be smaller than that of AB. This argument also applies to 

scattering in the converter. 

To verify this analysis, a Monte Carlo simulation was performed 

to study the angular distributions of the events detected in a planar 

positron camera from a point source with and without scattering. The 
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Fig . 3 .7. Effect of s c a t t e r i n g on the angle of the de tec ted 
ann ih i l a t i on gamma p a i r . 
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results are displayed in Fig. 3.8. The two solid histograms show the 

angular distributions for a point source in air and that for a point 

source located at the center of a sphere of water medium of radius 10 cm. 

The total number of events generated is equal in the two cases. For the 

point source m water, the portion of events that were unscattered is 

shown as the broken histogram. No scattering was assumed in the pos­

itron camera in both cases. 

We have also studied the angular distributions of the events 

taken from the MWPC-gamma converter positron camera [sec Sec. 4.1). The 

two histograms in Fig. 3.9 show the angular distribution of annihilation 

gammas from a point Cu source in air and one embedded in a bucket of 

water respectively. Again, it can be seen that those events scattered 

by water are more populated at small angles. The fact that the distribu­

tion for the source in air is also peaked in the small angle region, 

though to a much smaller extent, is attributed to scattering i_n the detec­

tors. 

Knowing that the scattered events occur more at small angles, 

data can be filtered to put more emphasis on the large-angle events. 

Such filtering can be achieved through the use of those angular factors 

F(0) in equation (2.9) which peak at large 9, such as cos 6, sin 6, etc., 

where n is a positive integer. 
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Fig. 3.9. Angular distributions of the real detected events 

from 2 point sources: one in air and the other 
in a bucket of water. The two histograms have 
been normalized at the right-most bin. 



3.2. frror Propagation and .Stabilization in Reconstructions 

As shown in Sec. 2.2, complete 3-D reconstructions can he 

achieved through deconvolution followed by iterations, or throunh matrix 

inversion. in this seen on we -formulate the propagation of errors in 

each of these two approaches, and develop methods to stabilize their 

perfoniiance in 1 he presence of noise. 

3.2.1. Dcconvolut ion hoi lowed ey Iteratjons 

'Hie deconvolut ion method solves for R(k), the Fourier components 

of . i i') . If noise '.••;• (k) is present in 'he data : (k I , the propagated 

error l..ik] in the reconstruction will be given hy 

i:i]fkj - - ^ , : 0 ( M - o - (3.,) 

Lunation (3.1) shows that the error in the data is multiplied by 

the- faCior l/;,,ik] in doconvolut ion. In the region where ;,.(k) is verv (1 ^ U -

small, the error will be greatly magnified. This is 1 lie case in the 

missing cone as well as in the high ik., region, since equation (11.2) 

shows that for fixed Ik !/ik '•, :„(k) • l/'k 
z x (I x 

In t h e i t e r a t i v e s c h e m e ( 2 . 1 3 ) , R l k ) i s s e t t o J.CVO in t h e m i s s ­

i n g c o n e b e f o r e i t e r a t i n g . T h i s p r o c e d u r e r e m o v e s t h e i n s t a b i l i t i e s 

t h e r e . \ wav t o d e a l w i t h t h e i n s t a b i l i t i e s in t IK h i g h jk ! r eg i o n has 

been d e s c r i b e d by P h i l l i p s |- '12|. However, we s h a l l r e c a s t h i s t r e a t m e n t , 

s i n c e t he c o n v o l u t i o n i n t e g r a l p e n n i f s a p a r t icul n i v e l e g a n t r e a l i z a -

t ion of t h e tecl in ique . 



Suppose the scalar field $(£) i



/ <.rV IV 2 , ( r ] ! + ' / d 'Y • ( r ) 2 . 

I t i s c l e a r t h a t , must ho non-ne<.;at i v e , 1 I" t h e r e i s t o tic a m e a n i n g f u l 

s o l u t i o n . The f u n c t i o n a l d e r i v a t i v e o f t h i s e x p r e s s i o n w i t h r e s p e c t t o 

i r ' i skives an e x p r e s s i o n f o r t h e smoothne: s e r u d i t i o n on t h e s o l u t i o n 

subject to the c o n s t r a i n t , equation (5.SJ. 

In tegrat ion by pa r t s and use of ' 'quution (3.:\i y ie ld an expression 

for 1 lie e r ro r which is proport ional to ; , 

i •! 

• I r l •-• - , • d ' r ' . ; r ' \\ ' . ( r * - r ) 15.61 

w h o e 

l J " k 1 

. ' . i r ' - r i - C M ' <\\ , - - , - , - 1 < - ' x p | - - " i k - ( r ' - r ) | . 
' ( ) ( k ) 

Sub st 11 lit i ng equat ion I. v M into equal ion !.".J") gives a new 

convolut ion equat ion, 

S ! 
_' d" !•' [ ; 0(r-r) + -.'.'' <u'-r ! | . (_r' | •- : ( r! . 

The s o l u t i o n loi t h e d e n s i t y d i s t r i b u t i o n i n f r e q u e n c e space i s s i m p l y 

U N O - - - - ^ - - - r - , 

w h i l e t h e e r r o r i s e x p r e s s e d in t onus o l" t he Lagrange m u l t i p l i e r 

i n = - , ( : • • > ' : ' d - \ e x p i - J - i k M - ^ - - 1 - ; - ^ 
'11 M 
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The ideal case in which there is no error in the determination 

of the- scalar field corresponds to setting , = d. Then equation (3.7) 

reduces to the canonical solution of the convolution equation given in 

equation (2.7c). 

The modification made in equation (3.7) can be viewed as the 

action of a low spatial frequency pass filter. The additional term in 

equation ('3."} 

is negligible at low frequencies compared to ! :
n(k), but increases rapidly 

in magnitude with frequency as both k increases and ! nfk) decreases. 
0 V 

:nc 'inrt .-1 

rV 
Thus the infoniiatjon a t low frequencies i s undis tor ted whereas the noise 

at high frequencies i s suppressed. 

A na tura l gene ra l i za t ion of the f i l t e r is 

where m i s a pos i t i ve in teger governing the sharpness of the f i l t e r and 
? 

m corresponds to d i f fe ren t powers of Vr l . r ) in the smoothness condi t ion 

(3 .1 ) . By adjust ing m an optimum f i l t e r can be constructed to su i t the 

noise charact e n ; : t i c s of individual imaging system. 

A convenient way for specifying . i s to note the surface S. ,-, 

in k-space where the two terms in the denominator of equation (3.7) be­

come equal . At these frequencies the o r ig ina l Fourier components of the 

object are a t tenua ted by a factor of 1/2. The surface S , , should be 

chosen not too c lose to the o r ig in so that reconst ruct ions are not 

oversmoothed beyond the des i r ab le r e so lu t ion . 



As for the iterative scheme (2.13), the rate of convergence, 

i.e., the rate E^ ' goes to zero, depends on the uistnbution of {A ; 

and f a ) . The distribution of {Xl is determined by the regions R and 1 r b a 
R, . In general the region R, , which represents the extent occupied by 

the object, is fixed, whereas the region R, can be changed by varying 

the angle subtended by the imaging device. 

Figure 3.10 shows a plot of the eigenvalues for various opening 

angles of R while R, is chosen to be a 9x9 squire sub-lattice in a 

21x 21 reconstruction lattice. It can be seen that the spectrum shifts 

towards zero as the angle decreases. The implication is that the con­

vergence as expressed by equation (2.16) will become worse when the 

angle of R is reduced. 
fi a 

To show this effect we applied the iterative algorithm to restore 

the missing cone components for a 2-D phantom. Th.c rcconstmction area 

is a 128x 32 lattice, with equal lattice spacings in the x(i) and z(k) 

directions. The phantom has a square boundary with perpendicular diag­

onals which are both 11 lattice spacings long in the x and z directions, 

respectively. The Fourier components of the phantom outride the allowed 

cone were first set to zero, and then the irelative scheme was employed 

to recover them. The solid curve in Fig. 3.11 shows the root mean 

square error o of the results after 20 iterations as a function of the 
half-angle of R . Here o is defined as to a 

JT (reconstruction (i,j,k) - phantom (i,j,k))-
k - (3.9) total number of picture elements 
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Figure i.l,! shows the corresponding results for a three-dimensional phan­

tom. Hie shri'ie of the noint response function •))., was in the form of a 

square pyramid with -emi-vertical angle n ffig. 2. IDA). These two 

resuU.-. show clearly the dependence of the truncation error i, MkJ on 

the size of the opening angle of the allowed cone. 

The above results can be viewed as reconstructions from perfect 

data generated by the phantom-- , using deconvol ut ion + iterations. For 

comparison, deconvol ul ion + iterations were performed on a number oi~ 

sets of finite statistical positron annihilation events generated by the 

2-f) phantom. The values of •••• for these results are plotted as the 

broken curves in Fig. 5.11. It c;in be seen that the truncation error 

is the main source of error at small angles of R, , whereas the statis-
a 

t i c a i e r r o r dominates at large angles . The .'iiinimum in c which occurs 

for f i n i t e s t a t i s t i c a l recons t ruc t ions is due to the competition of two 

e f f e c t s : the improvement in the behavior of the eigenvalues fA.} on the 

one hand, anil the increase in the e r ro r magnitude of if( r ) °n the o the r , 

as the angle increases w h j , e keeping the number of ann ih i l a t ion events 

fixed. 

Besides the t runca t ion e r r o r li/• ' , the measured e r r o r A S(k) in 

the frequency components in the allowed cone R. a lso propagates in the 

i : e ra t ions. Following Papoulis [39] , wc expand A S(k) in a s e r i e s of 

elgenfunctions of BA in the region R 

AS(k) = I c <Mk) h R 
i -0 ' 1 a 
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with | A S| = / | A S(k) ! d\k = J c ." / . 
Ra - i J ' 

Since the i t e r a t i o n is a l inear process , the resul t a f t e r n s teps ' f 

i t e r a t i o n s en the measured frequency components, S(k]+ AS(kj, is given 

by R ( n J ( k ) <• A R [ r l J f_kj wlit'rc 

/ . R ( n J ( k ) = ) c. fl - fl-> )") .,. | k ) . 
1=0 ' ' J 

An upper bound of the magnitude of the propagated error ,'. R ' (k) can be 
estlmated as fo11ows: 

\r.\i(n)'1 - I c , 2 (; - n - o V 
1=0 

= I <-,2 * , 2 ( i + n - > : > + - - - + d-> ) " " ' ) . 
i=0 l J 

Since a l l the A.'s l i e in (0 ,1 ) , we have 

1 + (1-X.) + - - - + (1-A ) " " ' •• n. r i 

Thus 

| A R f n ) r < n" 1 c ' \ =n- |AS|\ 
i=0 

Therefore 

|AR ( n )| < n |ASj. 

3.2.2. Matrix Inversion 

The matrix method solves the integral equation (2.8a) in the z 

dimension for every spatial frequency k , The unique solution is given 

by 



• s r , -

i 

where •'. • , g are the eigenvalues and ctgenfunct inns ol' the integral 

operator {2 .Sri) , and 

If the data ?̂ (k . , z ] contain e r ro r .'. y> | k , , z ) , then the propagated e r ro r 

in inversion I! will he given by 

.. '-v '-9 ] 

I ; ( k ~) = > g I k , . , : I . ( 3 . 10) 
in \ ' •• < . l . x 

i i 

Again, the expr ssion (.i.lOj shows that the major errors m the recon­

struction come from the small eigenvalues. 

Now 'y is of the form (see Sec. 2.2.3.2) 

y? ( )fk x,z-z\) = / " F~- ) ex|)|-i'iikx l;r,v(z-::') ]&-. 

" , ;n 
for the particular case I-;-) = cos ":• inside the detection cone, the 

expression for \p simplifies to 

vp 0(k.,z-z'l -- ;; / " ex p [ 2r i k (. arv (:: - z ' ; j d (t atr') 

sinf2nk . tanO (z-:;T I | 

The eigenvalue equation of this kernel is 

z 7 si n i 2-nk tann (z-z'D 
A g | ( k z) = / " g f z) -,* ^ d z 1 . (3.11) 

1 z x ^k xCz-zM 
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On rearranging equation (3.11) becomes 

z- sin(2~rk tan1;..f z- z' J J 
x i ' h i x ' ' ' •• (:. - z' ) f i x 

z l 

which is the zcroth order prolate sphermdal eigenvalue equation. Thus 
rTik • i is a set of zeroth order prolate spheroidal eigenvalues. As 

pointed out in |35,43|, the distribution of those eigenvalue depends on 

the quantity c = , 2rk tail; fz ,-z J , as shown in Fig. 3.13, and for a 

fixed c the eigenvalues fall off to zero rapidly w.'th increasing i 

once i exceeds (2/-njc. Hi is means that noise multiplication would 

be especially serious unenever k., tan'.',., or I.- z.i becomes 

smal 1 . 

One way to stabilize the method, for fixed tan-:, .and (z.^-z-,), is 

to discard the results at sma 11 |k .1 where the errors dominate, and, by 

makmg use of the finite extent of the object in the x dimension, fill 

in those values using the results obtained from the higher ]k J va i MC;" 

through the iterative scheme shown in Fig. 3.14. 

Another way to stabilize the matrix method is by mc;ms of the 

smoothing procedure proposed by Phillips [421 and Twomey [441. Instead 

of solving the i11-conditioned matrix equation 

Y = AX 

which is the digital version of equation (2.8a), another matrix equation 

with a modified kernel 

Y = (A + Y B)X 

is solved. Here the matrix B is obtained from A in the following manner: 
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LIMITED PORTION OF 
p(k x,z) at |k x| 
GREATER THAN SOME 
k0( >0) 

ESTIMATED p(k x >z), 
CORRECTED TO THOSE |k x 

F.F.T. 

F.F. 

ESTIMATED r(x,z\ 
CORRECTED TO ZERO OUT­
SIDE THE KNOWN EXTtNT 
OF THE OBJECT 

A PRIORI INFORMATION 
ON THE EXTENT AND 

- LOCATION OF THE OBJECT 

Fig. 3.14. Iterative scheme to stabilize the matrix inversion 
algorithm. 



h , = a, - la, . + bu, - la, . . + a, 
• k ! . - . , • V.- 1 , k , • k + 1 , . k + _ , • 

and . is a parameter dependent on the muse level in the da ta . This pro­

cedure i . i l l remove the i n s t a b i l i t i e s at the high spa t ia l frequencies k^ 

for each o<~ the operators (J.Sal ' ' i iaracter i .led by di t i e rent k . . 

3 .2 .5 . Comparison between I'cconvolut ion + iteni_tiei:> ;ind 
Matrix Inversion 

After analyzing the basic p roper t i e s of the decor.vol ut ion + 

i t e r a t i o n s and the matrix methods, a comparison <>l t h e i r r e l a t i v e merit 

is now in order . If the data contain no e r ro r or 'inly a neg l ig ib l e 

amount of e r r o r , the main e r ro r in the resu l t of deconvolut ion »• i t e r ­

a t ions will come from the truncal ion e r ro r 1: ' in i t e r a t i n g , as the 

deC'jnvolut ion e r r o r H, will be ins ign ; ' ' leant m th i s case . I-'or 1 he 

matrix method, the inversion e r r o r 1; will .also be nogl i i! iblc. i'he onlv 

unknown so lu t ion at k , = 0 can be f i l l ed Ln by cont inuat ion from other 

non-zero k vaLues, and the e r ro r introduced jr. continuing the so lu t ion 

to one point wi l l be very small compared to the er ro t II ' i n continuing 

the so lu t ion outs ide R. for general ha l f -angle ". Thus in the case of 

very small ainr, - ts of no i s e , the matrix inversion has an advantage over 

the deconvol" .ion + i t e r a t i o n s approach, unless some accelera ted scheme 

can be devised to reduce 1 . -1 . 

To predic t t h e i r r e l a t i v e performance in the presence of s ignif­

icant amounts of no i se , i t suff ices to compare the condit ion number of 

the deconvolut ion operation witn ihat of the matrix inversion, lor 

deoonvnlut ion, the condition number v , is u ivx-ii bv 
u 
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v 0*—^max 
v 0 — JJmxn 

And for each k ̂ 0 , the condition number K (k ) of the integral operator 
(2.8a) is given by 

K (k ) = Jiax . nr x' a . m m 

Now equation (D.2) in Appendix D shows that <i>n(k) is in the form 

F(8,)cos20. 
*nfk ,k ) = V - 1 — -

0 • x' z' n k 
1 x 1 

where tan6i = - k 2/k x, and F(9) is the angular factor used in construc­
ting ^ ( r ) . For each k ̂ O , the condition number is thus given by 

2 
f, , = (F(8) cos 8) max 

x (F(9) cos 8) min 
2 In general the maximum and minimum values of F(8) cos 8 do not differ 

by several orders of magnitude; in fact, for the generally used angular 
-2 2 

factors F(6) = 1 and F(6) = cos 0, K, (k ) equals sec 6„ and 1 respec­
tively. On the other hand, a and a . can differ by a factor of 

' ' max m m ' 

order hundreds of thousands; in fact, a. asymptotically approaches zero 
as the index of the eigenvalue increases, as shown in Appendix I. The 
decrease of a. with the index is especially fast at small values of k 

1 X 

and 8 n. Thus matrix inversion is expected to be more unstable to noise 
than deconvolution + iterations. 
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This comparison is still valid even if the iterative scheme in 
Fig. 3.14 is employed to stabilize the matrix method. The reason is the 
following. In iterating, all the solutions from inversion with |kj below 
some k„(> 0) are discarded, and they are filJed in using th e with 
Ik |> k-. But as the solution from inversion for every k coi. ains both 1 x1 0 ' x 
reliable and unreliable components corresponding to the large nd small 
eigenvalues of the integral operator (2.8a) cliaracterized by that k , 
the solutions used to start the iterations for the matrix method always 
contain some unreliable components. In contrast, the deconvolutic results 
used to start iteration do not have unreliable components. 
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IV. IMP1JEMENTATI0N 

4.1. MMC-Gamma Converter Positron Camera System 

The MWPC-gamma converter positron camera system is shown in Fig. 

4.1. The camera structure can be roughly divided into 3 parts, as 

illustrated in the block diagram m Pig. 4.2. The first group consists 

of MWPCs, gamma converters and delay lines for detecting the 511 keV 

annihilation gammas and localizing their positions oi' interaction. Next 

is the electronics system for signal processing. It includes low noise 

amplifiers, timing discriminators, a data selector unit, and an inter­

face unit. The last group of hardware, which processes and stores the 

data, consists of a Digital 1'qui.pment Co. (DHCj PDP 11/20 compute! with 

an extended memory of 28K, and peripherals including a display storage 

scope, two data storage disc units, a fast paper tape reader/punch, and 

a Decivriter keyboard tcnninal. 

The sequence of data acquisition is as follows: On detecting a 

pair of annihilation gammas, 3 amplified signals from each detector (i 

prompt anode signal and 2 delay line signals) are fed to multichannel 

timing discriminators. The 6 discriminator outputs are transmitted to 

the data selector logic unit which performs decision logic functions 

such as valid coincident event selection and invalid event inhibit/reset. 

At the same time the anode signals initiate 4 digitizing scalers which 

are stopped later by the delay line signals. If the event satisfies 

some data selection requirements (to be described in Sec. 4.1.2), an 

interrupt signal is transferred via the buffer unit to the memory of the 

computer. Otherwise, an inhibit/reset signal is issued by the data 
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selector to all units. Some important components are described in 

detail in the following sections. 

4.1.1. The Detection Assembly 
Four MWPCs each with 48 cmx 48 cm sensitive area were used to 

form a pair of detectors, each of which was made up of 2 MWPCs and 2 Pb 

converters housed in an air-proof Al box. The cathode wires in each 

chamber were 50 ism in diameter and spaced 2 mm apart. They were termi­

nated through 220 K resistors to a common bus. The anode wires were 

20 urn in diameter and spaced 3 mm apart. The chamber frames were made 

of N'ema G-10 fiberglass; the two central frames and the outer frames were 

each 4 mm thick. On these frames were epoxied the coupling strip PC 

boards. The delay lines were mounted on the coupling strips with 0.1mm 

thick mylar between them and the strips for insulation. The detailed 

construction of the chamber is shown in Fig. 4.3. 

The delay lines used were the phased compensated electromagnetic 

delay lines for wire chamber readout developed by Grove, Perez-Monde?, 

et al. [22,45]. The basic design, illustrated in Fi.g. 4.4, consists of 

a helical winding of #32 gauge copper Formvar wire on a plastic core 

with longitudinal copper bands on one side. A mylar strip with etched 

metallic bands of copper is cemented onto one of the flat sides of the 

delay line for phase compensation. The delay to rise time ratio is 

28:1 and the total delay is 1.1 usee. 

The gamma converters were made of Pb shaped m the form of 

honeycomb, as shown in Fig. 4.5. The cell size is 3.5 mm and cell wall 

is 75 urn. The height of the converter is 15 mm. The detailed procedures 
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XBL "111- 14.V, 

Fig. 4.3. Multiwire proportional cl, nber construction, 
the location of gamma converters is indicated. 
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Chambar Strip 

(T) Ptetic Cor* 

(2) Floating Matal Strip* On Mylar Ba»: Strip* = 13mm Wkta; 
Gap* = 03mm WW*; Mylar = 25 Micron* Thick 

® Winding = #30 Formvar Wir* 

© 8 Coppar Strip* On Mylar Baaa: Strip* = 1.8mm Wide; 
Gap* = 03mm WW*; Mylar = 25 Micron* Thick 

XBL 714-679 

Fig. 4.4. MWPC delay line construction. 
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XBB 7410-7153 
I:ig. 4.5. A section of the layered, honeycomb shaped gamma converter. 

Graded voltages are applied through the bus-wires to 
individual cells. 
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for constructing these Pb converters were given in [46]. 

The sensitivity of camera system was measured to be 900 counts/ 
22 min/jjCi. The spatial resolution in FWHM was 8-10 mm for a Na point 

source. 

4.1.2. The Electronics System 

A modified version of a charge-sensitive amplifier (MCSA), shown 

in Fig. 4.6, was specially designed to be suitable for amplifying signals 

from either the anode wires or the delay lines. The principle of "elec­

tronic cooling" [47] has been utilized in the circuit to reduce noise. 

The MCSA has an effective bandwidth of 10 MHz and an adjustable gain from 

SO to 2000. 

Pulse shaping is performed by a RC differentiator at the input to 

the operational amplifer (yL733). Further differentiation can be accom­

plished by adding a RC network at the outpi c of the amplifiers. With an 

output differentiator of time constant 250 nsec, the rise time and fall 

time of the anode signal from the MCSA are 100 nsec and 400 nsec respec­

tively. The delay line signals, however, have already been differentiated 

through the capacitive coupling to the wire planes before input to the 

amplifiers, resulting in a rise time of 100 nsec and fall time 250 nsec. 

Therefore no differentiation is necessary at the output of a delay line 

amplifier. 

The spatial resolution is determined by the time interval between 

the arrival of the prompt anode signal and the delayed cathode signal, 

and hence depends critically on the timing accuracy of the timing discrim­

inator. The timing discriminator is of the differentiating zero-cross 

type which operates on the principle that the occurrence-time of the peak 



•^nnrMIE) + •• 

Notes: (11 AP resistors 1/4 W, 5', carbon unless otherwise noted. 
(2) L1. L ? - 10 turns of a26 wire on 3E2A core. 

F i g . 4.6. Schematic diagram of the Modified Charqe-sensitive Amplifier. 

XBL 796-10295 
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is common to a family of pulses, regardless of their amplitude [48]. 

The contributions to the timing inaccuracies include time slew 

which arises from the difference in pulse amplitude, and time jitter 

which is caused by the noise [49]. For the timing uiscriminator we 

used, the time slew is 6 nsec over a dynamic range of 20 in signal ampli­

tude, and the time jitter associated with 100 mV si.'jnal and 20 mV noise 

is 8 nsec; but improves to 1 nsec as the input signal is increased to 1 V. 

The Data Selector unit is made up of a network of flip-flops and 

gates to which the outputs from the timing discriminators are applied. 

Figure 4.7 shows its logic diagram. An event will be validated if it 

satisfies the following conditions: 

Prompt anode signals 

1. Only one of the two MVil>Cs ,s triggered in each of the 

upper and lower detector boxes (2 chambers were housed in 

one detector box). 

2. When one of the two chambers in a detector box is triggered, 

the coincident signal from one of the chambers in the oppo­

site detector oox must arrive within the coincidence resolv­

ing time. 

Delayed cathode signals 

3. If conditions (1) and (2) in the prompt signals are met, there 

must exist 4 delayed cathode signals associated with the cham­

bers which were triggered. 

An event is rejected by the initiation of an inhibit/reset 

signal if, 
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Fig. 4.7. Logic diagram of the data selector. 
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4. Any one of the conditions (1), (2), (3) is not satisfied. 

5. A second prompt signal should occur on either one of 

the four chambers before a valid coincident signal is 

initiated. 

6. More than one signal should occur en any one of the delay 

lines within delay line time (1.5 psec) before a valid 

signal is initiated. 

Whenever any one of the four MWPCs is triggered, further signals 

from that particular chamber would be gated off for 1.5 ysec while the 

other detectors are still operative. This would prevent accidental coin­

cidence and minimize the detector system dead time. 

4.2. Reconstruction Results 

We have tested the results developed in Sections 2.2 ;md 5.2 by 

performing studies on some computer-generated phantoms and a real phan­

tom. As the computa8( syste) 0.131 phantom soiv Tc (y)Tj -0.26 Tc 1.1s83i1s6 Tc (e)Tj -0.067 Tc -0.275 Twsa
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non-negative was also utilized in the reconstructions. 

The use of lattice of finite extent introduces errors into the 

results of the Fourier transforms: the finite latuce spacing gives rise 

to "aliasing", while the finite extent causes "leakage" [50]. Aliasing, 

the distortion of the desired Fourier transform due to sampling, is min­

imized by making the lattice spacings Ax, Ay, Az small enough, while 

leakage, the distortion due to truncation, can be reduced by windowing 

[51]. In this work Gaussian window functions appeared to give the best 

results, but the type of window did not seem to be critical. Windowing 

is not required when taking the inverse transform of R(k), as R(k) is a 

periodic function with period equal to the truncation interval in which 

case there is no leakage. 

All the Fourier transforms were performed using Fast Fourier 

Transform algorithms: if each dimension of the array being trans formed 

was a power of 2, the subroutine FOUR2 by K. F. Subhani and F. Chu 

(private communication) was employed, otherwise the subroutines FIT and 

REALR by Singleton [52] for computing mixed radix Fourier transform were 

used. The subroutine RFAI.R has been modified to three dimensions by the 

author. 

4.2.1. Computer-Simulated Data 

We first examined the capability of the iterative scheme shown 

in Fig. 2.21 to recover missing-cone components. Figures 3.11-3.12 give 

only the relative magnitude of the truncation error in iterating as a 

function of the angular size of the allowed cone. To get a qualitative 

feeling of how well the iterations work at small allowed-cone angles, 
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wc applied the algorithm to restore the missing-cone components of a 

2-1) point source located inside the square boundary of the 2-D phantom 

cf Fig. 3.11. The assumed allowed cone subtends a semi-vertical angle 

of tan (O.SJ along the k -axis. 

figure 4.8A shows the shape of the point source at the center of 

the square with the Fourier components in the missing cone set to zero. 

Only the middle 52 * 32 picture elements are shown. Two kinds of dis­

tortions are seen. Firstly, the point source is considerably widened. 

Secondly, decaying oscillating rid.;es appear on the edges of the detec­

tion cone corresponding to the assumed missing cone ;md centered at the 

point source. 

Figure 4.#1) shows the s;ime point source after 30 iterations. 

The ridges are lowered in height. Also, the point source is signif­

icantly narrowed. 

Figure 4.9 illustrates the corresponding results for a point 

source located on the boundary of the square: m this case at the cor­

ner with the lowest k-index. The improvement after iterations is much 

more impressive in this case than that with the point source at the 

center of the square. The greater improvement is due to the fact that 

for the point source on the boundary, at least two of the four decaying 

ridges lie outside the square and thus are repeatedly reset to zero in 

iterating; whereas for the point source at the center, only those low-

amplitude lobes of the ridges far away from the point source are reset 

to zero, producing smaller effect in restoring the missing-cone compo­

nents in comparison. 
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Fig. 4.8. Recovering the missing-cone components of a 2-D point 
source located at the center of a square which acts as 
the finite object extent in the iterations . The semi-
vertical angle of the allowed cone is tan * (0.5). 
(A) The point source with the missing-cone components 

set to zerc. 
(B) The point source after 30 iterations. 
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K8L >910-1?U-

4.9. Recovering the missing-cone components of a 2-D point 
source located on the boundary of a -.quare which acts 
as the finite object extent in the iterations. ̂  The 
semi-vertical angle of the allowed cone is tan x (0.5). 
(A) The point source with the missing-cone components 

set to zero. 
(B) The point source after 30 iterations. 
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We then tested the effect of the size uf the camera angle on 

dcconvolution using the computer-generated 3-D phantom shown in Fig. 4.10, 

which was a spherical skull with a tumor located off-center inside. 

The skull was of inner radius 9 cm and thickness 2 cm, while the tumor 

had radius 1.5 cm. The concentration ratio was 

tumor:skull:background = 10:5:1. 

We performed reconstructions using the deconvolution method in 

three positron camera configurations with three different point response 

functions. The first point response function subtended a viewing angle 

(the solid angle of the detection cone in Fig. 2.19A) of one-third of 4TT 

along the z-axis; the second one subtended two-thirds of -ITT : one-third 

along the z-axis and the other third along the y-axis; and the last one 

had complete 4TT viewing angle. The corresponded to camera configurations 

having one, two, and three pairs of detectors, respectively, with the 

axes joining each pair perpendicular to each other. The last configura­

tion, thougli not very realistic practically, was included for making com­

parisons, because its point response function obviously contained no zero 

Fourier components. According to condition (2.11) in Sec. 2.2, the first 

point response function contained zero Fourier components, whereas the 

second one did not. The phantom generated a total number of 1.2 million 

events in each case. Reconstructions were done on a 48x48x48 lattice, 

with lattice spacings 1 cmx l cmx lcm. Each event was weighted by 

F(6) = cos 6 in constructing (j)(r). R(k) was set to zero wherever ^ H O 

is zero or close to "zero. The value of y was set to zero in all the 

3 deconvolutions. 
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XBL 797-10701 
Fig. 4.10. A computer-generated phantom simulating a brain tumor. 

The skull is 2 cm thick and has an inner radius of 9cm. 
The tumor has a radius of 1.5 cm. The concentration is 
5:1 for the skull and 10:1 for the tumor. Each picture 
element is 1x1 cm^. The pLines are 3 cm apart in the 
z direction. 
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The deconvolved images obtained in each of the camera configura­

tions are shown in Figs. 4.11-4.13. For the sake of comparison, the 

image obtained by back-projecting the data in the two-sided camaera 

configuration is illustrated in Fig. 4.14. Figures 4.15-4.18 show the 

profile of the various reconstruction results along the lattice line 

with lateral indices i = j = 25, which runs parallel to the z-axis pass­

ing through the tumor; the corresponding profile of the phantom is shown 

as the dotted histogram in each of these figures. Table 4.1 summarizes 

the values of a of these results as defined in equation (3.9). 

It can be seen that quality of the deconvolved image in the four-

sided camera is essentially the same as that in the camera with 4n viewing 

angle, showing clearly that the Fourier components of the four-sided 

camera point response function arc also non-zero everywhere, as stated 

above. On the other hand, the deconvolved image in the two-sided camera 

is considerably worse than the other two, as can be expected from the 

presence of zero components in its Fourier transform. 

Next the iterative scheme was applied to recover the missing-cone 

components of the deconvolved image in the first camera configuration 

(two detectors: 1/3* 47r viewing angle). The values of a as a function 

of the number of iterations are shown in Fig. 4.19. It can be seen that 

the scheme converged at about 10 iterations. The image after 10 iter­

ations is illustrated in Fig. 4.20, and its profile along the lattice 

line with lateral indices i=j =25 is shown in Fig. 4.21. After iter­

ations o is reduced to a level much closer to, though still higher than, 

that obtained using the point response function with 4IT viewing angle, 
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Fig. 4.11. Deconvolved image in the two-sided camera having a 

point response function with viewing angle one-third 
of 4TT along the z-axis. Each event is weighted by 
cos'^9 in constructing cj>. The value of y is 0. 
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Fig. 4.12. Deconvolved image in the four-sided camera having a 

point response function with viewing angle one-third 
of 4TT along the z-axis and one-third of 4TT along the 
y-axis. Each event is weighted by cos"36 in construc­
ting <j>. The value of y is 0. 
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Fig, 4.13. Deconvolved image in the six-sided camera having a 

point response function with complete 4TT viewing 
angle. Each event is iirhted by cos 6 in con­
structing <f>. The value of > is 0. 
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4.14. Back-projection image in the two-sided camera. 
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Z COORDIKAi. 

Fig. 4.15. Profile of the back- pro ject.ion image in 
Fig. 4.14 along the line i = j = 25. 

jOF.r I 

Fig. 4.16. Profile of the deconvolved image in Fig. 
along the line i = j = 25. 

4.11 
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Fig. 4.18. Profile of deconvolved image in Fig. 4.13 

along the line i = j = 25. 
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Table 4.1. Root mean square error of the images. 

Number of detectors in 
9 4 

the positron camera 

Reconstruction Back - Deconvolu- Jeconvolu- Deconvolu-
projection tion tion tion 

o 1.652 1.000 0.582 0.569 
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Fig. 4.19. The values of the root mean square deviation of the deconvolved image in the two-

sided camera as a function of the number of iterations. 
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XBL 797-10703 
Fig. 4.20. The deconvolved image in Fig. 4.11 after 10 iter­

ations using the scheme shown in Fig. 2.21. 
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there being a factor of three in the reduction of the difference in o. 

The residual difference is attributed to the truncation error in termi­

nating the iterations and the propagation of errors in iterating, as 

discussed in detail in Sec. 3.2.1. 

4.2.2. Real Data 

The deconvolution-and-iterations reconstruction algorithm was 

applied to the real data generated by a cylindrical head phantom in the 

MWPC-Pb converter positron camera. The head contained 2 simulated 

tumors: one had activity concentration of 5:3, and the other 10:1. The 
68 

head phantom was immersed in a container filled with Ga (concentra­
tion 5:1) simulating the peripheral activity around the 'skull'. The 
'skull' was in the form of a cylindrical shell which was 1.5 cm thick 
and 16.5 cm high, with an inner radius of 7.5 cm. The two tumors were 
also cylindrical in shape, with 1 cm radius and 4 cm height. 

For this phantom we have used a lattice of dimensions 64 * 64x 30, 
3 

and the lattice spacings were .5* .5* 2 cm . The point response func­
tion <pn was in the form of a square pyramid with semi-vertical angle 
9 n = tan (0.5). 437229 annihilation events were used in the recon­
structions. 

Figure 4.22 shows the results obtained by simple back-projection 

with solid angle limitation. The images of the tumors are almost com­

pletely buried under the off-plane activities and can hardly be seen. 

Figure 4.23 was obtained from Fig. 4.22 by subtracting from the content 

of each pixel 55% of the peak activity. This helps to bring out the 

contrast, and the tumors faintly appear near the central planes. 
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Fig. 4.22. Back projection image of a real phantom 
which consists of a cylindrical shell to 
simulate a skull, and 2 cylindrical tumors. 
The shell is 1.5 cm thick, 16.5 cm high, 
and has an inner radius of 7.5 an. liach 
tumor is 4 cm high and has a radius of 1 cm. 
The concentration ratio is 5:1 for the skull 
and one tumor, and 10:1 for the other. Each 
picture element is 0.5x0.5 cm2. The planes 
are 2 cm apart in the z direction. 
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Fig. 4.22. 
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B 

- i ' ' • r 

Fig. 4.23. Back-projection of the data from the real 
phantom with 55% background subtraction. 

XBB 799-11797 
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Figure 4.24 shows the results obtained by deconvolution + ltcr-
-12 ations using the angular factor F(8) = cos 9 in constructing the scalar 

fields. The point response function that was used was obtained by fit­

ting a smooth analytic function to the experimentally measured values. 

Compton scattering has the effect of making the point response function 

non-zero in the missing cone. Though these missing-cone components arc 

relatively small in magnitude and thus are less reliable, they neverthe­

less furnish some useful information. For this reason the missing-cone 

components of R(k) were not set to zero before iterating. 4 iterations 

were performed. The parameters used in the frequency filter were m = 10 

and y = 35.9. The two tumors and the skull region are clearly visible, 

and well separated. 

As a comparison, the result of deconvolution + iterations using 
4 the angular factor F(8) = cos 8 in the scalar fields is shown in Fig. 

4.25. The parameters used in the frequency filter were also m = 10 and 

Y = 35.9. The two tumors and the skull also appear distinctly, but the 

two tumors are not so well separated as those in Fig. 4.24. Their dif­

ference verifies the conclusion in. Sec. 3.1.2 that putting more weight 

on the large-angle events would improve the signal-to-noise ratio in 

data affected by scattering. 
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A 

B 

Fig. 4.24. Reconstruction of the real phantom by Fourier 
deconvolution + 4 iterations, 
angular factor: F(6) = cos~ 1 29. 
Filtering parameters: m=10, 

XBB 799-11800 
35.9. 
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B 

Fig. 4.25. Reconstruction of the real phantom by Fourier 
deconvolution + 4 iterations. 
Angular factor: F(0) = cos 49. 
Filtering parameters: m = 10, t =35.9. 

XBB 799-11799 
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V. DISCUSSIONS AND CONCLUSIONS 

!i.J. Discussions 

Compared to cameras using detectors such as Nal, the present 

MWPC-Pb converter position camera has excellent spatial resolution and 

the advantage of low cost, but suffers in the a -ea of inadequate detec­

tion efficiency. Roughly speaking, the conversion efficiency of the 

gamma converter is determined by the total amount of surface area avail­

able for interacting with the gammas, and thus can be increased either 

by decreasing the cell size of the converter, as illustrated in Fig. 2.6, 

or by increasing its height. Both decrease in cell size and increase in 

height are made possible through the use of PbO-glass converter [53J. 

Due to its more uniform electric drift field, the drift time 

spread in electron collection T in a PbO-glass converter is much shorter 

than in a Pb converter, being 110 nsec for a 15 mm high PbO-glass con­

verter compared to 330 nsec for a Pb converter of the same hieght. The 

reduction in T makes it possible to use converters of increased height. 

The increased uniformity of the drift field also means higher extraction 

efficiency e , as implied in Fig. 2.9, and thus converters with smaller 

cell size can be used. Fabrication of PbO-glass converters with cell 

size ~ 1 mm is readily achievable by fusing together PbO-glass tubings 

followed by slicng. Recent measurements on a PbO-glass converter of 

cell size 1.4 mm and height 2 cm yielded 8% detection efficiency [54]. 

This translates into a nine-fold increase in the coincidence count rate 

over the present camera system equipped with Pb converters. 
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Equation (2.4) shows that the reduction by a factor of 3 in T,., 

and thus T , carries with it a corresponding gain in the true-tc-chance-

coincidcnces ratio. Alternately, for a fixed ratio of true to chance 

coincidences, the PbO-glass converter can afford going to much higher 

count rate, and thus shortening the exposure time. This is evident 

from the curves shown in Figs. 2.12 - 2.13. 

The use of PbO-glass also gives better spatial resolution, due 

to the reduced T and smaller cell size. On a tost chamber, a PbO-glass 

converter of cell size 2 mm and height 15 mm gave a spatial resolution 

of 3 mm for a N a " point source, compared to 5 mm for a I'b converter of 

the same height with cell size 2.5 mm. 

The continuation method developed in Sec. 2.2.3.2 is not 

restricted to positron imaging only. In transmission imaging using 

parallel beams of x-rays and some other applications, the measured data 

are in the form of projections Pfr, 0) of the object at certain tingles 

u. By the projection theorem [55], the one-dimensional Fourier trans­

form of Pfr, S) in r gives the components of the two-dimensional Fourier 

transform of p(x, zj on a line at angle (u + ir/2). If the projections 

arc taken in a limited range of angle, we will get the Fourier components 

of p(x, z) within a cone, giving rise to the situation shown in Fig. 2.20. 

The process of analytic continuation (2.13) can therefore be applied to 

obtain the rest of the Fourier components of o(x, z). 

The iterative scheme (2.13) works very well at large allowed-

coae angle, but deteriorates rapidly when the angle is reduced as the 

spectrum of the eigenvalues shifts towards zero. This poses a practical 
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limitation on the minimum size of the angle of the allowed cone that 

can be used in limited-angle imaging. The minimum practical allowed-cone 

angle is primarily governed by the accuracy of the digital computer 

employed for computation, which sets a limit on the minimum magnitude 

of the eigenvalues that can be computed, and hence determines the number 

of eigenfunction components of the object that can be recovered in the 

iterations. 

One way to improve on the situation is to use direct inversion 

to solve for the missing-cone frequency components instead of using 

iterations. Sabri and Steenaart developed the extrapolation matrix [56] 

for such a purpose. This approach requires inverting a matrix of order 

m x m, where m is the number of frequency components in the allowed, cone 

and missing cone combined. As m usually ranges from a few thousand up­

wards in two-dimensional and even more in three-dimensional imaging, 

extrapolation matrix is not very practical in such applications. 

Another approach is to devise schemes to accelerate the iter­

ations, possibly through the use of other constamts on the object or 

its Fourier components, such as boundedness in object density, continuity, 

etc, Positivity [57, 58] has already been utilized in our iterations: 

all the negative values in the object density were set to zero after 

each Fourier transform. This procedure produced a 201 reduction in a 

for the 2-D point sources in Figs. 4.8- 4.9. For ordinary phantoms 

with extended regions of positive density, the reduction in a was much 

smaller, about 0.51, due to swamping of most of the negative-undershoot 

artifact of each point source by the positive density values of other 

point sources. 



-131-

In implementing the deconvolution + iterations algorithm, two 

Fourier transforms are required for the deconvolution process, and two 

more for each iteration. For an N . x N *N array, deconvolution + n 

iterations requires approximately 2(n+l)N N N log. [N N N ) complex 

multiplications. In comparison, the matrix inversion algorithm needs 

N x N y N v (2 log 4 ( N M ) + N z) complex multiplications. For a CDC 7600 

computer with a cycle time of 27.5 nsec, Fast Fourier transform of an 

32 x 32 >; 32 array takes 0,2 sec, and 5 sec for an 64 x 64 x 30 array 

(different Fast Fourier Transform algorithms were used for the tivo 

arrays). If computing has to be done on a small machine with limited 

high speed storage, data could be stored in slower memory devices such 

as tape or drum. Separate transforms are computed and then combined 

!59, 60, 61]. 

5.2. Conclusions 

We have shown that MWPC equipped with gamma converters is 

capablc of imaging the distribution of S -active radioisotopes in three 

dimensions. The Fourier deconvolution + iterations algorithm provides a 

practical method for reconstructing the object from the positi-on camera 

data. The use of a suitable angular factor F(n) in constructing the data 

scalar field $ improves the signal-to-noise ratio through digital filter­

ing of the scattered events. In principle, one can reconstruct the 

object completely no matter how small the solid angle the iiositron camera 

subtends, though the noise in the data and the numerical implementation 

pose a practical limit to the quality of the reconstruction. The 

method of analytic continuation by iterations is applicable to other 

limited-angle imaging problems. 
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APPENMX A 

t / 2 
EVALUATION OF I = / (L + 2xJ P fx, /•• Jdx 

0 L S C J 

We consider the following 2 ca se s : 

Case 1 RCIip < t / 2 

t - x > 2 R(E.) - x • Kfli. 

' f t - x, i;.j = o. 

In t h i s case we only have to eva lua te 

t / 2 
/ (I, + 2x) P(x, li.Jdx 
0 x 

R('E,) 
= / fL + 2x) P(x, I. )dx. 

0 

Put t uig y 

R(E ; 

RfK, 

and in tegra t ing we get 

;2R(F..) + I, (A + 1)1. 

Case 2 R(EL) > t / 2 

1 = / ' *" (L + 2x) P c s c ( x , li.) 

t / 2 t / 2 
= / (L + 2x) P | . x ,E r )dx+ / (1. + 2xj P(.t- x, r^Jdx. 



Changing v a r i a b l e s and c o l l e c t i n g t e r m s , we have 

t , t / ; t 
1 = 1 . . ' I ' (x , i; ) d x + : - j / x P i x . I i j M x - / x P l x J ^ l d x 

11 0 

+ J t f1 P ( X , I : )dx 
1/2 

t/2 

- 1 , - I-

1 , - 1 ' P ( x , P. )dx 

1 cxplA) I L ' x p f r : V ) ( ' - K ( F T ilx 

1. R i l i . j c x p ( A ) f ( > ' t , i ^ K— ( r „ H - } 
i f t • K ( i : . 

i f t •• K ( H - ) 
] 

w h e r e 

•(>•) = o x p ( - A y ) ( y + j ) , y t ) i = \\ - ^ 

To f ind I , , we f u s t e v a l u a t e t h e i n t e g r a l 

' \ Pix , h Idx 

exp(A) / x « p ( r \ - V ' - R ^ l * d*" 
RiJ^J 

P u t t i i ig V 1 " RTfTT * ' w c g e t 

exp(A) R( l i . ) 
/ x P ( x , E ^ d x = jx ?— expf-Ay) ( 1 - y - - ^ ) . 



• 1 7A -

Subs t i t u t ing in to I., wc obta in 

h-
2 e x p M R ' O - . ) 

A -fat/z.O-* Ci)-

1, 

where 

g(y) = exp(-Ay) fl - y - ^) , 

S imi1a r1y we have 

&(.YttL)\\ i f t < R f E i 

i f t > Rff^) 

'3 "£ ( f ( w - { 0

 t , i } ) i r t 

Thep T j  / T 1 _ 2  9 . 8 - [ 7 8 ( S ) T j  0 :  h a v ttL>>>>>>>>>>>>: h2 Tf 3.715 6 3.E7-2-148.08 14.88 Td (wher)Tj 0 1_2 9 Tf 1.0148.08 14.8/T1_^85i
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APPliNDIX B 

TFUCK-I.I-L\GrIH DISTRIBUTION INSlDIi AN INFINJTlil.Y LONG CYLINDER WITH SOURCE 
POINT OUTSIDE THE CYLINDER 

Consider the family of l ines generated from the source point 

•'li\ iied at the or ig in} ant! i n t e r sec t ing the cy l inder (see Fig. ! ! . ! ) . 

Let the l ine charac te r ized hv the polar angle and the azimuth r , .') 

intei 'sect the surface of the c) ' l inder at d i s t ances R and R., from the 

source po in t . R. and R, both sa t i s fy the equation 

(R sin- 1 cos •:• ) " + fR sinO sin ' -h!~ - a" . 

Solving the quadratic, equation gives 

. _ 2b__sinw s i n j t \Alb''_s_in_"!.' s m " : -•I_siiri,(h""-a_"'] 
2 s j i r i j 

The t rack length inside the cyl inder A.R i s 

in ,, i _ 2^t>" s in" ' -(ir-a"") 
/',K K. - h , \ - — J 1—; ! "-

1 2 ' ! s i n • • , 

, . . . . . . . . . - - . - - . , - - - • -

/ l})- s i n " ; - | ( V -1) 
2a Ts in-7 7 

• p u 
Define r = '-,-"> e = - , x = cos 1 ' . The above expression then becomes 2a ' a ' 

/ - T — T -v-
r = 7 c"sin"; • (c"-l) -T . 

v' I - x-

Due to the symmetry of the geometry, the domains of .; and .\ can be taken 

to be I I.,ii/2) and (0,1) respectively, where .; (1 = sin — - — . 
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*• y 

a = Radiu r . of thp i n f i n i t e l y lonq c y l i n d e r 

b - Distance fron thp source po in t to the 

ax is o- the cy 1inder 

XBL 798-11177 

Fig. B.l. Geometry for calculating the track-length distribu­
tion inside an infinitely long cylinder. 
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Th is d i s t r i b u t i o n functions of <j> and x are given by 

V*) 
0 0 < <p < <p0 

(B.l) 

f (x) = 1. x 

he consider the foLlowing two cases: 

Case 1: r < 1 

Following [62], we define the following 

CB.2) 

rr~~. 
V c s in 

? 7 
" * - ( c - - J) 

V 1 " X' 
(B.3) 

(K.4I 

Solving (B.3) and (B.4) y ie lds 

. -1 \ / r ' - ( l -w i ' )+ (c ' " - ] ) 
tj> = s in —-—'-— -

2„ 2-, -w 
c (B.S) 

; rom (B.S) wc ge t 

y 7 T 
1 - r (1- w" 

'Hie Jaeobian i s then given by 

> , x J 

2 • . 
C S1IKJ) CQS(|) 

V 1- x v c s in <j) - (c - 1) 

y r 2 ( l - w 2 ) + ( c 2 - I) y / l - r 2 ( l - w 2 ) 
T{1- W 2 ) 

(B.6) 
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Th e distribution of fr, w) is obtained from (B.l), (B.2) and (B.6) 

r W '' ' '' if r' w ) 

r„(<i» rxfx] 
-r, w 
•'K x 

2r ( 1. - w 2 ) 

-/r ( 1 - w V fc"-l) N/l-r'-(l-w^ 

The track-length distribution is thus given by 

V r (1-w )+ (c -IJv^-i" fl-w ) 

Case 2: r > 1 
In this case wc put 

/ 2 . 2 A , 2 , , 
r = v c -sin ̂  ' l c "^ 

W = <|). 

Following exact ly the same procedure used in case 1, we get 

7j/7 7 2 2 
c,- •, 2 c c " s i n w - (c -1) , 
f i r ) = —_ J > dw 

irr $„ / 2 . 2 , 2 n 
T 0 / , c s in w-(c -1) 

r" 
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APPENDIX C. 

DERIVATION 01- TIE FACTOR C(T /T ) IN THE TRUE COINCIDENCE RATE WHEN 
T < T . r c 

If T < T , true coincidence rate and hence the ratio of true r c 
to chance coincidences as given by equations [2.2) and [2.4) are mod­

ified by a factor C(T /T ), which is the probability that the two elec­

tions e. and c. generated in detector A and detector B respectively in 

an annihilation event ivill be in coincidence within the time T . 

Referring to Fig. C.l, this quantity is given by 

CfTr/T ) = probability that | t, - t, | < T r 

= P { I ^-t, |<T r}. 
We consider the following two cases: 

Case 1. T < T /2 r c 
Partition the time interval T for detector A into the 3 intervals 1. 

c 
II and III, as shown i:\ Fig. C.2. 

f e. occurs within the interv; 

{ \ d t l 
i c. occurring within dt. at t.V = -=— P < e occurring within dt. at t., - ._ 

r 
t, + T. 

|t,-t7| < T J c, occurring within dt, at t.j = = 
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T 
J I ^ i r / 1 c ' ~ J r 1 ' ""l ^2' * s l r l c l " v - , - , J i o "xi-iij... uuj (T /T ) = J P -Ut - t j <T_| e, occurs within d t , a t 

_ i e, occurs within d t . a t t . x P < 1 1 1 

Tr ( t+T r ) d t j 
J — Y -^ 
0 c r 
, T 

2 T ' c 
By symmetry , 

S T r C T r T ( T /T ) = C T ( T /T ) = 4 T ^ I I I r cJ l y v' cJ 2 T 

If e . occurs within the in te rva l I I , 

2T 
C T T (T /T J = -J-11^ r c ' T c 

Combining the con t r ibu t ions from I , II and I I I we get 

C(T /T ) = P U1 occurs within i t x Cj C^/T ) 

+ P -{e occurs within IIV x C n ( T /T ) 

+ P ^ e x occurs wi th in I I I V x C i n ( T r / T c ) 

T 7 T T -2 T 2 T T .. T 
_ r _3 _r _c r r r i r 
T 2 T T " T T 2 T 

c c c c c c 
2 ( T r / T c ) - ( T r / T c ) 2 . 
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'""Vb 
Time at which 
the annihilation 
event occurs 

in Detector A 

in Detector B 

Fig. C.l. Occurrence of detected signals. 

T r < T c / 2 

Time 
- T r -

Fig. C.2. P a r t i t i o n for T < 1 /2. 
r e 

-v 
I I IE 

T r > T c / 2 

0 T c 

T r - T c - T r ~ 
[ ime 

XBL 798-2S86 

Fig . C.3. P a r t i t i o n for T > T /2. 
r e 
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Cuse 2. T > T /2 r c 

Partition the t̂ ne interval T for detector A into the 3 intervals I, 
c ' 

II and III, as shown in Fig. C.3. Similar to case 1, we have 

ci fW =cm <W i f -
c 

For the interval II, 
c n cyr c) - i . 

Combining the c< tributions from I, U , and III we have 

T - T 3 T 2 T - T T - T 3 T 
r r r n _ c r r r c c r r 

c c c c c 

- 2 (Tr/Tc) - (T rA' c) 2-
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APPHNDIX II 

EVALUATION OF THE TWO-DIMENSIONAL OPTICA!. 
TRANSFER FUNCTION 

Now 

* 0 ( k x ' k

2

J = ' d z ' d x ' • - ! ! ( x ' 2 J e x p f 2 7 d J k

x

x + k z z ) ) 

00 IT 

= / d z / do cj> ( 6 , z ) exp(2T.Lz(k tanO+k J ) | z | s e c " 0 

/ °dO ^ i / dz c x p ( 2 - i z ( k , t a n 9 + k j ) . 
0 

/ e x p ( 2 n i z ( k tanO+k J J d z = 6 ( k . t a n O + k „ ) (D 
X Z X Z 

the re fore 

0 
<I>n(k ,k 1 = J ° ^ - 6(k taiv; +k JdO Ov x ' z' ' , v x z 

J ( k 7 ) o n 

/ F(::)d>; i f k = (i 
T J „ X 

- , J o 
F ( e ) c o . s 2 0 . 

iry—T— I f t # 0 
•f I k v I x x 

k 
where tan9 

CD 

x 
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APPENDTX E 

EVALUATION OF THE THREE-DIMENSIONAL OPTICAL 
TRANSFER FUNCTION 

In three dimensions, equation (2.9) takes the form 

<p0(s, z)|z! 2 = h(s/z) (E.l) 

where _s = (x,y), and the angular function H is positive inside the data 

cone and zero outside. Defin lg _t = s/z, w = (k.,k ) , and performing 

the Fourier transformation, we get 

* 0(w,k z) - / dz / / d 2 ^(s.z) exp(2iri(w-s_+ k.,z)) 

- // H(t) «.w-jt+k )d zt. 

The vector t = (t t 7 ) can be c.osen so t ha t t . l i e s along w, giving 

w • t̂ + k„ = | w | t + k . Then we get 

( 6(k ) / | H i t ) d 2 t i f w = 0 
* n f w , k J = z " (E.2) 

z ( / H ( - k z / | w | . t 7 ) d t 2 i f w > 0 . 

In the p a r t i c u l a r case where <)>„ i s in form of a square pyramid, 

i . e . , 

$,,(::,y,z) > 0 whenever 0 < | x | < j z t a n 9 J 

and 0 < |y | < | z t a n 6 J 

app l i c a t i on of (E.2) shows tha t 

* ( ) ( k x , k , k z ) > 0 i f ( |k x | + | k y | ) > | k j / t a n e 0 when j i g , | k y | > 0 

o r d k ^ l + l ^ l k J / t a n e Q when | k x | = 0 o r | k y | = 0 

(E.3) 

= 0 otherwise . 
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APPENDIX F 

NECESSARY AND SUFFICIENT CONDITION FOR AN OPTICA!. TRANSFER 
FUNCTION TO BE NON-ZERO EVERYWHERE 

In this Appendix we prove the statement (2.11), namely, the 

necessary and sufficient condition for an optical transfer function to 

be non-zero everywhere is that every plane passing through the origin 

of the corresponding point response function contain at least a line 

of non-zero values. 

Necessity 

If there is a plane A through the origin of $ on which only 

the origin is non-zero, then we take the normal to A at the origin to 

be the z-axis. Equation (E.2) shows that <f<n is zero on the k -axis 
u z 

except at the origin. 

Sufficiency 

Given a point response function satisfying condition (2.11), 

we want to show that the value of 1> at any arbitrary point P in the 

frequency space s non-zero. First rotate the coordinate system in 

frequency space s that P lies on the k.-axis. The plane x = 0 

contains at least one line on which •;>,-, is non-zero. Take any such 

line to be the z-ax . Then decompose $ n into two parts in the 

fo11owi n g manner: 
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0 if 

, f l J ( x . v . z , = l 
4=01 x, y, zj if z^O 

(x , y , z) 

r 6 ( , ( x , v , ; | i f - = 0 

< t r , ' 2 ) ( x , y , z) + I 
( ( 0 i f z * 0. 

(.."Jearly <j>n = $,. + <t>n • Since -;„ ' s a t i s f i e s (1..1), equation (I-..2J 

shows that 4., ~- 0, because il(t_) > 0 a t t = 0. Now it remains to show 

that i . is non-negative a t I'. <t-„ " can he wri t ten as 

2) 
, n I s , , .. i 

where wc have made the coordinate transformation r (x , >•)•>• r ( s , 0J. 

Transforming k ( k . , k ) to polar coordinate k(w, ct), and taking the x y 
( ? ) Fourier t ransionn of <£n , we get 

*(1 " ( w > a > k

z > = jffimiill exp(^u(swcos[0- .O + M l ) s d s d e d z 

F(q + TT/2 J 
2 T f ^ 

which is clearly non-negative. 
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APPKNDIX G 

KPPLCTS Of SAMPLING <j>0(x, z) IN nil- x AND z DIMENSIONS. 

Let the object distribution p(r) be sampled in the z dimension 

!v fie sampling function: 

s (zj = I 61 .-n»z). 

Die point response function <Pn(x, z )can thus be sampled in the same way. 

By the convolution theorem, the op t ica l t r ans fe r function ',, '""' ( k . , k , : 

>f tile sampled <l<n(x, z^ i-s g i v c n '">>' 

where v,,(k , k.. i is the o r ig ina l opt ional t r ans f e r function, S A , ik_i is 

the i nu r i e r transform of s. ( z l , and * denotes convolution. Now 
LJZ 

reference |f-~] show"; that S (k_ ) is also a samp lint: function in the 
k d '-lens IMP given bv 

(k„) = Ak„ [ f (k_- nAk.l, Ak, 
n=--" •- - -

Pre:-! epilations (G.lj and (G.2) we see that I , " ' l k , , k_) is the super -

ii::pos i t ion of r e p e t i t i o n s of the o r ig ina l opt ica l t r ans fe r function in 

the k_ dimension a t i n t e rva l s of Ak_. Thus 1> „ l " ( k , , k _ ; is non-zero 

in the region 2|k | tan6„ > Ak ; as for the region - |k j tany^-- Ak,, 
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tlie number of zero Fourier components is reduced by a factor of 2. 

If sampling of fy.lx, z) is done in the x dimension ins tead , 

s imi la r cons idera t ions show that the corresponding op t i ca l t r ans f e r 

function ;.,. J (k , k I will be non-zero everywhere. 
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APPFNIUX II 

PROOF I;OR Tin; POSITIVT. m;Ff.\'nT.Ni;ss OF BA 

IVe w;tnt to prove tha t BA is a pos i t i ve d e f i n i t e operator For 

a l l functions v sa t i s fy ing Ify = i . 

Lemma !. For a l l ,.• such that Av - ,., B is a pos i t i ve d e f i n i t e operator 

Proof: B, = 0 

- i - - ' i / B F , A ; . = o 

* 'B 1: 'A * = ° 

-> V . '• = 0 I "•' I ; • ,'; i s an e n t i r e func t ion ) 
A A 

> .. ~~ 0 . 

Le:wiia_ .;. Wir a l l ip such t h a t R.' = . , A i s a p o s i t i v e d e f i n i t e o p e r a t o r . 

I 'roof: A. = P 

'A 1 ' ' X B | : ' ' = ° 

I-" ,.;f,F -i = ( 1 f '•' ' ; ' i i } : - J S an entire function) 

= 0 . 

Combining Lemma 1 and Lemma 2 we get the desired result. 
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APPENDIX I 

LOWER BOUND OF THE. EIGENVALUES OF THE MATRIX INTEGRAL OPERATOR 

We f i r s t simplify the kernel ^.. 

9 
Vf 0 ( k x , z j = j ° -£± exp((2;: i k^an,-) z )d . 

~°0 

= j " KLU c x p ( 2 T I 1 k t , ) d t 

-tanu.. 

where t = tanO, and g(t>=Fftan ( t l ) cos" (tan" ( t ) ) . Let s = k t and 

s = k t;uvJ , then we have 

f ( , [ k x , z D = f0 ^ exp(2^i s ; )ds ( M ) 

where G(sj = gh-"-). liquation (1.1) shows that wc can treat z and s as 
Kx 

reciprocal Fourier transform variables. Wc define a function F(sj to be 

z-limited if its Fourier transform f(z) is zero outside (z,,z-,). For 

such a function F(s) the ratio of the energy of F(s) V-, H~ < in (-s-,,.0 
x 

to the total energy of F(s) is given by 

s J 2 ** ~* s 
f° i FMyf^ fds j~2dzi[z)fZdz^\z')f°ds exp(-Msfz-z')) £ M 
" s0 X zl zl " S 0 x 

— „ _ _ ^ 

j \y fs) I 2 ds f 2 | f ( z ) f d z 
z l (1.2) 
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By well known theorem in variational calculus, the lower bound of this 

ratio for all z-limited functions is equal to the infimum a . of the 
M m m 

eigenvalues {a.} of the integral operator. 

u i g i(z) = / 2 ( / ° ^ exp(-2TTis(z-z'))ds)gifz,)d-'. 
h v" so x ' 

We want to prove tha t a . = 0 . Assume a . •• U. Let C.,, be the y mm mm (I 
maximum value of ; — - i n ( -s„ , s n J . For the special case -A-— = 1, the k T 0' \v k TT ' 

X X 
ciccnvalucs X. of the in tegra l equation 

z s 
2 / r 0 „ „ „ r - i T ^ ( z - z ' ) ) ds \f. ( z ' ) d z ' \.f. (z) = / 2 / / ° exp(-2Tiis(z-z'J) d s \ i 

1 1 h ' -so ' 
t 

go to zero as the index i •+ °° [35], so there is an integer m such that 

G„ A < ot . . Substituting the z-limited function f (z) and its Fourier 0 m m m & m v 

transform I-' (s) into the expression (1.2) we get 

fS° |F (s)| £i5l G n fb° |F (s)| ds ; ' m J ' k IT 0 J ' nr J ' -s x -s„ 
0 < 0 <- u 

s 

,2 ? 

/ | F m ( s ) | ds / l F m f s ) | ds 

X G < a . m 0 mm 

which con t r ad ic t s the de f in i t i on of a • . Thus a is equal to zero. 
mm mm ' 
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