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LIMITED-ANGLE IMAGING IN POSITRON CAMERA--THEORY AND PRACTICE

Kwok-Cheong Tam
Computer Science and Applied Mathematics Department

Lawrence Berkeley Laboratory, University of California
Berkeley, California 94720

ABSTRACT

The principles of operation of planar positron camera svstems
made up of multiwirec proportional chambers as detectors and electro-
magrnietic delay lines for coordinate rcadout are discussed. Gamma con-
verters are coupled to the wire chambers to increase detection effi-
ciency and improve spatial resolution. The conversion efficiencies of
these converters are calculated and the results comparc favorably to
the experimentally measured values.

Two reconstruction algorithms, Fourier deconvolution and matrix
inversion, for obtaining the three-dimensional distribution of the
radioisotopes from the recorded data arc described. Construction of
Jeneralized tomograms capable of emphasizing the large-anple events is
introduced. The effects of the angular range of data taking in recon-
structions using the two algorithms are investigated. 1t is found that
in the absence of any a priori information therc are undetermined com-
ponents in the reconstruction if the point response function of the
positron camera does not satisfy certain criteria. However, most of
the undetermined components are recovered in the case in which the

transverse spacing of the object is discrete, and all of them are
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recovered if the fact that the object extent is finite is utilized.
An iterative scheme for recovering these undetermined components is
developed, which is applicable to other transmission and emission im-
aging devices.

Experimental and digital methods for suppressing the noise in
the data duc to Compton scattering are detailed. The propagation of
errors in the reconstruction algorithms is formulated, and methods to
stabilize their performance in the presence of noise arc developed.

Results of reconstructing a real phantom as well as computer-

gencrated phantoms are presented.
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I.  INTRODUCTION

The past decade has secen a rapid development in the field of
nuclecar medicine, the use of radioisotope tracers for diagnosing med-
1cal disorders.  Such rapid progress is attributed to the availability
of many new radiopharmaceuticals on one hand, and the improvement of
radioisotope imaging devices and image reconstruction methods on the
other. The gencral procedure is to administer o gamma-cmitting radio-
isotope with appropridate half-1ife to a patient. The gamma radiation
which cscapes from the patient's body is detected by o gamma detector,
and the data so accumulated are processed to give an estimate of the
distribution or localization of the radioisotope, which is a reflection
of the condition of the organ under diagnosis.

An bmaging system in nuclear medicine s made up ol three basic
components: (1) the gamma-ray channel, which sclects and directs the
gasmi radiation from the ohject to the detector;  (2) the detector, which
is sensitive to the gamma radiation;  (3) the data processor, which
processes the data acquired by the detector to produce an image of the
radioisotope distribution. Depending on whether the detector is in mo-
tion o1 stationary while taking data, and the method of chamneling the
ganma ravs, nuclear medicine imaging device can be classificd into two
categorics:  scanners, and gamma cameras.

Single-hcad scanncrs [1} were the carliest devices employed in
radioisotope imaging: a detector cquipped with a collimator scans

rectilincarly over the arca of interest (Fig. [.1). At any instant of
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data acquisition the collimator, either in the lorm of a single cylin-
drical bore, or a cluster of tapered apertures focused at a fixed point,
allows the gamma rays from a single resolution clement to fall on the
detector while blocking out those from the rest of the organ. Recording
the detector signal as a function of the scanning position permits a
two-dimensional distribution of the ganma-cemitting radioisotope to be
mapped out. In recent years multi-head rectilincar scanners [2] have
been developed and increasingly used {for organ scanning, cspecially for
the larger ones such as lung and liverspleen, and whole body scanning.
Their design is fundamentally the same as that of single-hewd

scanners, coxcept that instcad of u single scan, two or more scans Aarc
obtained from different dircections.

In constrast to the scanners, gamma cameras are, in generual,
stutionary devices, though recently some moving cameras are being devel-
oped [3].  Through image-producing collimators such as pinhole aperturce
or multi-channel collimator, their pamma detectors continuously receive
radiation emitted from all parts of the object being diagnosed (Fig. 1.2).
By recording the intcruaction sites of the incident gamma rays with the
detector, an image of the radioisotope distribution can he obtained.
There are a number of position-sensitive instruments which can be used
as detectors in gamma cameras:  the commercially available Anger
camera [4] employs Nal(Tl) crystal viewed by a number of photomultiplier
tubes (PMT) around its circum{erence; spatial resolution is achieved
through pulse height division method. Other dctectors such as image

intensifier {5}, spark chamber [6], multiwire proportional chamber [7],



and semiconductor detector [8] have also been used in experimental
gamma-Tay cameras.

The main advantage of these relatively new imaging devices, the
gamma cameras, over the radioisotope scanners is their much faster rate
of data acquisition. The reasons are two-fold. Firstly, the gamma-ray
cameras collect data in parallel, the radiation from all parts of the
object is detected at the same time, resulting in much higher sensitivity
than is possible with the scanners which gather data sequentially.
Secondly, data acquisition time is not limited by any mechanical motion,
which is a determining factor in the case of scanners. The shorter
exposure time of the cameras permits the recording of dynamic processes,
such 4s blood flow and heart beat, as well as static distribution, wherc-
as the scanners are restricted tc the latter only. However, gamma-ray
cameras are limited in their field of view, whereas the scanners are not
so restricted. The problems imposed by the limited field of view will

be discussed in detail in the next chapter.

Onc major source of errors in the data taken by the scanners and
the cameras is the attenuation of the gamma rays by the quantity of tissue
lying betwcen the gamma-ray source and the detector. The amount of atten-
uation depends on the position of the gamma-ray source, and it is this
position dependence which grea*ly complicates the image reconstruction
problem. Furthermore, the septa of the collimators which provide for
resolution in gamma scanners and cameras absorb a large fraction of the

photons, limiting the imaging eificiency.



The use of positron-emitting radionuclides allows compensation
for gamma-ray absorption and eliminates the neced of collimators. Some
proton-rich clements decay by cmitting a positron and a neutrino to
achicve stability. The positro.. produced will annihilate with an elec-
tron in the neighborhood, producing two buck-to-back gamma rays. The
direction and location of these annihilation gamma-vay pairs can be
found by detecting them in coincidence without the need of o coltlimator;
therefore positron imaging is capable of much higher sensitivity than
that of gamma camera, rcsulting in lower dosc to the patient. Mareover,
the resolution is improved, as it is no longer limited by the collimator.
Operation in coincidence also results in lower hackground count rate, and
thus improves counting statistics. As for the absorption of the pamma
rays, the sum of the distance traversed by the two annihilation pamma
rays 1s roughly constant for a given patient thickness, so the atten-
uation is morce or less independent of the locuation of the source.

More quantitatively, we assume that the two photons must travel
distances x, and X5 respectively, in the object while the distance

I

176 is a slowly varving function of the amnihilation point.

Supposc that the effective Compton scattering attenuation cocefficient

d = x

for the object is given by a [ixed munber i, Then the probability that

both of the photons will not undergo Compton scattering is
PIPZ = cxp(—uxl) cxp(-uxz) = oxp(-ud)

approximately independent of the position of the annihilation point. The
probability that cither photon undergoes Compion <cattering is therelore

proportional to I-exp(-ud), also approximatciy independent of position.



One more advantage of positron imaging is that about one half

of all the radionuclides are positron emitters, such as Cll, le, 015,

F18, Ga68, Cu64, and Ru82, etc. These biologically important radio-
nuclides have sihort half-lives and high specific activity, thus it
should theoretically be possible to find a positron emitter for almost
any imaging problem of interest.

A positron imaging scanner utilizing the time-of-flight prin-
ciple was introduced by Burnham et al., in 1967 {9]. Positron cameras
using arrays of Nal crystals were constructed by Anger in 1967 [10].
There are also positron cameras using two large Nal crystals {11}, using
multiwire proportional chambers with liquid Xe [12]. The purpose of this
thesis is to investigate the problems involved in imaging in positron

cameras using multiwire proportional chambers equipped with gamma ray

converters |[13].



II. THEORY OF POSITRON IMAGING

In typical positron camera imaging, a B+ active radioisotope is
injected into the patient's blood stream in a carrier which is chosen
to be preferentially absorbed by the medical unomaly. The radioisotope
assumes a quasi-equilibrium distribution in the tissue. In undergoing

+ - ~ . . .
B decay, the nuclei of the radicisotope emit low energy positrons
+
p—)n+C+\)

about 98% of which are rapidly thermalized [14] within a short distance
from their point of origin (a 1 MeV ¢’ has an linear range of Smm in
tissuc). The thermalized positron then combincs with a valence clectron
of some atom in the immediate vacinity to form a positronium, usually in
the singlet state; only about 1/3 of 1% of these positroniums are formed
in the triplet state, which emit three photons in the subsequent annihi-
lations [15}. Those positroniums in the singlet state annihilate witi
the production of 2 gammas. By the conservation of cnergy and momentum,
these singlet photons have an energy of approximately 511 keV, and travel
very nearly in opposite directions, i.e., back to back. As the momentum
of the center of mass of the annihilating pair is of the order ~my /137,
the 2 gammas are collinear to ~1/137 radian {16]. These annihilation
gammas may subsequently escape from the patient’'s body and be detected
by the positron camera in coincidence, with thQir positions of inter-
action with the camera recorded.

The data in a positron camera arc thercfore in the form of

straight lines defined by the annihilation gumma paivs, with the positions



of the radioactive nuclei which have undergone B+ decay lying somewhere
along the lines. The positions of the decays can in principle be deter-
mined by the time-of-flight method, but this requires extremely high
speed electronics. An alternate way is to inverse the distribution of
the annihilation gamma pairs to yield the radioisotope distribution.
Thus the problem of imaging in a positron camera consists of
two parts: (1) to detect the annihilation photons efficiently and
record their positions accurately, and (2) to reconstruct the distribu-

tion of the radioisotope mathematically from the recorded data.

2.1. Detection of Annihilation Gammas

The requirements on the detector in positron camera are high
efficiency for stopping the 511 keV photons, and good spatial resolution
to define their positions of interaction. Multiwire proportional cham-
ber (MWPC) equipped with gamma converter is a suitable combination for
such purposes, besides offering large detection area at relatively low

cost.

2.1.1. Multiwire Proportional Chamber

The advent of MWPC marked a great step forward in the field of
particle studies. Since its development by Charpak and colleagues in
1968 [17] much work has been done in investigating the properties of the
MWPC and in developing various auxiliary devices which greatly extend
its scope of application. The use of MAPC in nuclear medicine imaging
was first developed at Lawrence Berkeley Laboratory by Perez-Mendez and

colleagues [18].



AMWPC can be considered as an improved version of proportionatl
chamber. tn a MWPC, a plane grid of equilly spuced wires lying between
and parallel to a pair of plane cathode clectrodes takes the place of
the anode wire in the proportional chamber. U is cquivalent to a
series ol quasi-independent single-wire chambers side hy side, oper-
ating in the region of proportionality. The two cathode planes are
made up of two planes of parallel wires orthogonal to cach other.

The electric potential and ficld distribution in a MWPC have
heen calculated by Brskine [19]. Tor a chamber with geometric contig-
uration as shown in Fig. 2.1, the clectric potential and the electric

freld arve given by

[ Y ? '
Vix,y) = qﬂlu L/s - Infd sin™(wx/s) + b sinh™ oy /)
GV . ol 21 /'S
ony) = e g sin (im/s)
’ ’ s[sin” (mx/si+ sinh™ (ry/9)
: | g 3 ] 2my /s
ioyy = o e L misinhUn/s)

s s[sinz(ﬂx/S) +sinh™{nv/s)

where 1 ts the plane spacing, s is the anode-wire spacing, and ¢ is the
chiarpe per unit length on an anode wire.  Figure 2.2 shows the general
shape ol the {icld Tines and the cquipotentials {or such o geometry. At
regions ¢lose to the anode wires (X<« 5, y-< 3}, the electric field
varies as /v, The field near the wires is strong cnough to cnahle clec-
trons in that region to acquire sufficicent cnergy between collisions to
tonize gas molecules with which they collide.

#hen an tonizing particle passes through a MWPC, it liberates

clectrons from the gas molecules in the chamber through photoelectric
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interaction or Compton scattering. The electrons produced drift toward
the anode wirc. As soon as they enter the multiplication region they
produce secondary electrons by collisions which, in turn, produce more
clectrons by the same process. Consequently there form an avalanche of
electrons which is collected by the anode wirc, and a positive-ion
sheath which moves toward the cathodes. Detailed consideration shows
that the total number of eicctrons produced n (which is also the tctal
number of positive ions) is proportional to the number of initial elec-
trons np,
The proportionality factor A is called the multiplication factor which

was found by Rose and Korff [20] to be of the fomm

1/2

A = exp 2@crn M (o
S

where V is the applied potential, VS is the threshold potential (the
potential at which inelastic collisions start at the surface of the wire),
T, is the wire radius, N is the number of gas atoms per cc, a is the rate
of increasc of the ionization cross section with energy, and C is the
chamber capacitance per unit length.
The motion of the electrons and the positive ions induces a neg-

ative voltage pulse at the avalanche anode and a positive one at the
cathodes, with the major contribution to these voltage pulses coming from

the positive ion drift. These signal pulses are readout by the delar

line method to be described in the next section.



2.1.2. Delay Line Readout

The use of distributed LC c¢lectromagnetic delay line furnishes
a suitable way of accomplishing position-to-time conversion. The signals
generaoted on cach of the two perpendiculur cathode wires are capactive-
coupled to a delay line. The time differences between the time of ar-
rival of the prompt anode signal and the delayed signals {rom the two
cathades give the x und y coordinates of the interaction site. A dis-
tinct advantage of this rcadout method is the inherent ability to inter-
polate between signal-coupling points for the position of the centroid
of the signal. ‘The centroid of a single pulsce indicates closely the
center of an ionization cvent cven though the signal includes contribu-
tion from the adjacent wires.

In its simplest form the delay line is essentially a transmission
line with uniformiy Jistributed inductance and capacitance L and C re-

spectively. Tor an ideal transmission linc,

v, Al
= - L
3L _ v
PR S

Combining these two cyuations we get the wave cquations,

2 ~
n /7 ey
AV L2y
Az~ oo
"2 2
B 371
~—3 = ]AC 5
22° At

which have the gencral solutions [21]

Vi(z,t) = Fl(z-vot) + Fz(z+v0t)

201 (z,t) b](z—vot) - bz(z+vot)
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the coefficients a; being determined from the known values of R(k) in
the allowed cone.

Besides the prolate spheroidal {unctions, Pourier series can
also be used in expanding the function to {ill in the missing cone.

This method was cmployed by Harris [31] to continue a one-dimensional
spectrum, and by Inouye [37] to reconstruct a two-dimensionul image.

A rather obvious way to extend the known portion of the spec-
trum R(k) to the missing cone is by means of the iterative scheme shown
in Fig. 2.21. The spectrum S(O)(h) obtained from deconvolution, with
the undetermined components set to zero, is Fourier transformed to the
object space. There the values outside the known cxtent of the object
are sct to zero, and then inverse transformed to the frequency space,
g1ving R(l)(k). The components of R(])(k) inside the allowed cone arc
reset to the original values given by S(O)(E),and the cycle repeats
yiclding R(n)(k) after n 1teratjons.

We note that this itcrative scheme has been used by Gerchberg
|38] and Papoulis [39] to improwve the resolution of one-dimensional sig-
nals in band-limited systems. The convergence of the scheme in one
dimersjon has heen proved by both of these authors. The proof given in
Gerchberg's paper made use of the property that a real analytic function
in onc-dimensional spacc cither vanishes everywhere or only has isolated
zeros.  This proof can bc generalized to higher dimensions by using the
more general property that rcal analytic {unctions on n-dimensional snace
cannot vanish on an infinite set of n-1 Jdimensional plancs through the

origin without vanishing identically.
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A more quantitative proof of the convergence of the itcrative
scheme is now given. [n actual reconstruction, we will be dealing with
I'requency components below a certain maximum frequency determined by
such factors as the spatjal resolution of the imaging system, the avail-
able computer core memory, ctc. In Fig. 2.22, R3 represents the region
in I'requency space where R (k) is known, and Rb i3 the extent of the
object. Define th~ operators A and B operating on functions { defined

in frequency space as follows:
/\f=XA

F_lXB

B I F f

viere Foand F 7 represent Fourier transformation md its inverse, and
Apo i are respectively the characteristic functions of Rq and Rh’

defined as:

1 ke R‘l
4p (k) = { ‘

0 ki R,l

xRy
’(B(_)f) = '!

0 XER -

With these operators we can formulate the iteration procedure as follows.
[f R(k) represents the Fourier spectrum of the object p(r), and S(D)(k)

the Fourier spectrum of r(r) obtained from deconvolution, then

sWay = arw.

Fourier transforming S(O)(k) to the object space, sctting the values
outside the known extent of the object to zero, and then inverse trans-

forming to the frequency spacec, we get the first iterated spectrum R(l%k):
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In Apperdix H 1t is shown that the operator BA operating on the functions
satisfying cquation (2.15) iIs a positive definite operator. Thus the set
of eigenlunctions {wi} of BA forms a complete sc: of functions which are
orthonormal in the entire k-space, and orthoronal in the region Ra[40],

*
[ 00w 00d% = ¢
k-spacc J

{{ bR vy (D dTk= 0
a

Thus any function [ in k-space which satisfies (2.15) can be expanded

in 2 series of vy which converges to { everywhere; if Bf # f, the
cxpansion is still valid in the region Ru’ but it does not necessarily
converge outside Ra' All the cigenvalucs of BA lic between 0 and 1,1i.c.,
TR

Decompose R(k) into a linear combination of wi

R(k) = 4 a Qi(h)‘
Then equation (2.11) becomes

ROy = 7 a (1-(-3 )", (k) -
P20

The truncation crror in teminating the iteration after n steps is thus

given by
e = v ™ - reo
- . (-2 6. (k) (2.16)
iiO R it ~e

which is identical to that obtained by Papoulis [39] for the case of

onc-dimensional signals. This error tends to zero as n > o,






signal from cach end of the delay line. The time interval between
arrival of the pulsc on the anode wires and that of the delayed signal
at cach end of the delay line is measurced. If the gamma pencrates a
pulse at only onc location of the detector assembly, the sum of the
intervals to cach end should (... the length of the delay line plus
some fixed delay in the processing clectronics, a constant to within
the accuracy of the timing measurements.  Figure 3.1 shows the time
sum distribution for an FUSS source whose 5.9 kev photon, being stopped
cntirely within the chamber, did not interact with the converter. As
expected for a single interaction type event, the distribution s sym-
metrical and narrow with a 5 nscee FWHM.  in the case of multiple signals,
however, the sum of the 2 intervals will be some value less than the
length of the line, und thus these cvents can be distinguished and re-
jected.  One additional advantage of rcading from both ends is that in
the case where the accuracy is limited by tuning crrors, averaging the
positions obtained from cach end of the line improves the resolution by
a factor of /2

To tllustrate this effect we measured the time sum distribution
for a point source of Géﬂgu positron emitter. A small Nal detector was
used in coincidence with the prompt signal from the anode plane to pro-
vide a4 well collimated beam of 511 keV photons (from the geometry the
s1zc of the beam at the converter was approximately 3Zmm). In Fig. 3.2
an x-projection of the detector peint response function for the positron
source 1is plotted with accidental background subtracted. In all cases

discussed here accidental background 1s removed by applying identical
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Table 3.1. The number of cvents contained 1n intcervals about the mean
of x-projection of the detector noint response function for
various time sum cuts. The fraction of thosce events pass-
1ng tho cut, whlch fall within tho 1ntorva1,LS d]SO glven

Inlcrval No Sum (utq Sum /168 ns 141 <Sumn< ]6bns 1§O<Swn <168n5

»
5% mn 14003 12495 11481 8464
49% 506 65% 72%
10 mm 21604 19105 150567 10655
5% 7T 86% 916
15 mn 21867 21042 16472 11346
865 884 945 97%

A Monte Carlo program wuas written to determine the probability
of sccondar interactions from photoclectric escape photons and Compton
scattering, and their contributions to the spatial resolution. The &11
kel photon was assumed to enter the converter perpendicularly.  The
material in the converter wias assuned to he distributed uniformly through-
out its volume. The point at which the 511 keV photon convertod was
sampled and an average detection probability was assigned.  The conver-
sion clectron was considered detected if 1t escaped from the wall of the
honcycomb into the gas. The Compton scattered photon or the 88 keV es-
cupe photon for Ph was followed until it converted or cscaped {rom the
convercer.  The program successful nredicted the detection efficiency
ot the converter to within 20% of the cxperimental value. lHowever, it
showed that the probability of having a multiple cvent due to scattering

is only 4%, which is not cnought to ecxplain the cffcect observed. This
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Fig. 3.7. Effect of scattering on the angle of the detected
annihilation gamma pair.
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results arc displayed in Fig. 3.8. The two solid histograms show the
angular distributions for a point source in air and that for a point
source located at the center of a sphere of water medium of radius 10 cm.
The total number of cvents generated is cqual in the two cases. For the
point source 1n water, the portion of events that were unscattered is
shown as the broken histogrum. No scattering was assumed in the pos-
itron camera in hoth cases.

We have also studicd the angular distributions of the events
taken from the MWPC-gamma converter positron camera (scece Sec. 4.1). The
two histograms in Fig. 3.9 show the angulur distribution of annihilation
gammas {rom a point Cu source in air and one embedded in a bhucket of
witer respectively. Again, it can be scen that those cvents scattered
by water arce more populated at small angles. The fact that the distribu-
tion for the source in air is also peaked in the small angle region,
though to a much smaller cxtent, is attributed to scattering in the detec-
tors.

Knowing that the scattered events occur more at small angles,
data can be filtered to put more emphasis on the large-angle cvents.
Such filtering can be achieved through the use of those angular factors
F(8) in cquation (2.9) which pcak at large 8, such as cos_na, sinne, ete.,

where n is & positive integer.
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Fig. 3.8. Angular distributions - the simulated
detected cvents frow 2 polnt sources:
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in a bucket of water. The two histograms have
been normalized at the right-most bin.



ion and Stabilization in Reconstructions

3.2. [lLrror Propag

As shown in Sec. 2.2, complete 3-D reconstructions can he

achiceved through deconvolution followed by 1terations, or through matrix
inversion.  In this secuion we formulate the propagation of crrors in

cach of these two approaches, and develop methods to stabilize their

performance tn the presence of noisc.

-1. beconvolution Followed oy Jierations
The deconvolution method solves for Rek), the Fourier components

the propagated

>

of ,yri. I noise (k) is present in rhe data @ (k

Crror quk) 1 the reconstruction will be grven hy

oy oondsl NISENE 1)

Lauation (3.1) shows that the crror in the datia is multiplicd hy

the tacior I/;”ik) in deconvolution.  In the region whero :W{k) 15 very
\ oo °
small, the error will be greatty magnificd.  This is the case in the

mi=sing cone as well as in the hieh Ek\] region, since equation (D21

shows that for tixed Tk i /Hk o, i“[k) *1/‘k\
fn the sterative scheme (20450, R(K) ox =et to zevo an the miss-

tng vone before iterating.  Phis procedure removes the instabilitics

there.  Voway to deal with the mstabilities in the high jk(‘ region his

been described by Phillips [42). llowever, we shall recast hrs treatment,

s

since the convolution ntegral permits o particularly clegant reatiza-

tion of the technique.
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Suppose the scalar field ¢(r) is known only up to some error

+(r). "Then, the equation to be solved is,

s+ = [ bolr-rh)e () (3.2)

where the error : (r) is an arhitrary function cxcept for some condition
on its magnitude, such as [f (r)!< M. [quation (3.2) may be solved for

((r) by taking the Fourier transfoim,

plry = fdsr'[t([f) + ¢(£3]fd3k el Zzl%k§r =L

The functional derivative of p(r) with respect to ¢ (r') is a function of

gt
s

%f%_.l_ = f dbk Mﬂ%ﬂ Cafr-r')- (3.3)
¢‘( X

The error tends to be random from point to point, and it gener-
ates instabilities in the solution p(r) which are manifested as sharp
fluctuations. Thus, a reasonable condition on p(r) 1s a requircment for

smoothness, in which a solution is sought such that

3.2 2. )
{d7r [v7 p(r)1” = minimum . (3.4)

Supposc the total error is some fixed number ¢ where

= [ & et (3.5)

Then the smoothness condition may be re-expressed by introducing a
Lagrange multiplier 1/y and minimizing the following cxpression with

respect to variations in e(r):



e e} < < ~
e

! dJr[» R f 7 ()T

It is clear that ; must be non-negative, 1§ there is to be a meaningful
solution.  The Nnctronal derivative of this expression with respect to
{r' grves an expression for the smoothne: s cendition on the solution

A,

o
[

~ubject to the constraint, cquation (3.5).
(

Integration by parts and use of cquation {3.3) vield an expression

for the error which s proportional to .,

where

substitutmg cquatioh (3.6) Into cauat1on (3.2 cives § Dok

convolution cyuation,

= 1

’ djr'[;ﬂ(r—rl+'v.'fqr'-r?l.gr‘)= HERP

The solatron for the density distribution in frequency space is smply

Rik) - ""“:"'""”‘T': (37

vhinle the error s expressed i terms of the Lacrange moaltiplier

4y = ~,(2“)l;'djk uxpt»l"ik~r\kn——;j






As for the itcrative scheme (2.13), the rate of convergence,

.(n . . . N

1.c., the rate hé ) goes to zero, depends on the alstribution of {Aj:
and {ui}. The distribution of {kj} is detemmined by the regions R_1 and

R In general the region R, , which represents the extent occupicd by

b
the object, is fixed, whercas the region Ru can be changed by varying
the angle subtended by the imaging device.

Figurc 3.10 shows a plot of the cigenvalues for various opening
angles of R, while Rb is chosen to be a 9x§G square sub-lattice 1in a
21 x 21 rcconstruction lattice. 1t can be scen that the spectrum shifts
towards zero as the angle decreases. The implication is that the con-
vergence as expressed by cquation (2.16) will become worse when the
angic of Ra is reduced.

To show this e{fect we applied the iterative algorithm to restore
the missing-cone components for a 2-D phantom. The reconstruction arcu
1s a 128 x 32 lattice, with equal lattice spacings in the x(i) and z (k)
directions. The phantom has a squarc boundary with perpendicular diag-
onals which are both 11 lattice spacings tong in the x and - directions,
respectively.  The Fouricr components oi the phantom outsrde the aliowed
cone were first set to zero, and then the iterative scheme was employed
to recover them. The solid curve in Fig. 3011 shows the root mean
square error ¢ of the results after 20 iterations as a {unction of the

halt-angle of Rq. Here o 1s defined as

) (reconstruction (i,),k) - phantom (i,j,k))-
total number of picture clements :




0.8

Fig.

1 | | & |

3.

10.

tO 20 30 40 50

Eigenvalues of BA for a two-dimensional problem
angles of the allowed cone.

i
o0 70
XBL 798-2379

O various semi-vertical

S-S -



g (arbitrary units)

-81-

8 T B T T T
9300 events
— JSERactE
\“‘C\\\ _,,//’
\ \\ ________
6 SO —
~ ~
~ \\
o~ \‘~\~ 37200 events
 gmannd ) ~a - o ——f
\ 186 0 events |
N
— -1
“Ninfinite statistics
\
\\
\\\\
- — ‘ N
0 A l I 1 o

¢ 1 2 3
Tangent of the semi-vertical angle

XBL 798-2378
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Figure 3.12 shows the corresmonding results for a three-dimensional phan-

tom. The shane of the noint resnonse function by was in the form of a
square pyramid with <emi-vertical angle e (Fig. 2.19A). These two
(n)

resules soow clearly the dependence of the truncation error “t (k) on
the size of the opening angle of the allowed cone.

The above results can be viewed as reconstructions from perfect
data generated by the phantom- | using deconvolution + iterations. For
compartson, deconvolution + iterations were performed on a number of
sets of fimrte statistical pusitron annihilation cvents gencrated by the
2-D phantom. The valuecs of o for these results are plotted as the
broken curves in Fig. 3.11. It can be scen that the truncation crror
1s the main source of error at smail angles of Ru’ whercas the statis-
tical crror dominates at large angles. The minimum in ¢ which occurs
for finite statistical reconstructions is due to the competition of two
cffects: the improvement in the behavior of the cigenvalues (Ai} on the
onc hand, and the increase in the error magnitude of ¢(r) on the other,
as the angle increascs whi'e keeping the number of annihilation cvents
fixed.

Besides the truncation erraor Esn), the measured error & S(k) in
the frequency components in the allowed cone Ru also propagates in the
tierations.  Following Papoulis [39], we expand A S(k) in a series of
cigentfunctions of BA in the region Ra

1 - a

AS(K) = ) Y ki R
1.=0)
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Fig. 3.12. Root mean square error after 20 iterations as a fun:ction
of the semi-vertical angle of the allowed cone for a
three-dimensional phantom.






bk, = oo B0 YT

where o &)L the crgenvalues and cigenfunct ions of the integral

operidtor (2.8a), and

Q = |i{‘- =) I N
(8> ¥ f' g ik, Pk, T

1T the duta (k\,,:] contain error [ (k‘,:J, then the propagated error

in inversion lim will be given by

I;m [k.‘( , )

Aian, the cxpr sston (30105 shows that the major errvors in the recon-
struction come trom the small crgenvialucs.

R g R

NOw 'f/, 15 of the form (sce Sce. 2.2.35.2

) A U IS RO ) s
f()(kx,;_ ') = [ — expf itk e (zont) de

T
. - -2 . .
For the particulay case Fi) = cos 7 inside the detection cone, the

cxpression for \}?” simplifies to

70 “(kx,z—z' j - l _( v uxp{;";'lkx tanr to-otpkdttan)

"0

sin [Z'nkx t;mf}'() (z

K :
r }\X(._—“

The cigenvalue cquation of this kernel is

g, ky,2) =[ ——dzt (3.11)
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On rearranging cquation (3.11) becomes

z- 51n(2ka??ncU{z»z ))

I e ST g](kx,: 1dz

which 1s the zeroth order prolate spheriodal crgenvalue equation.  Thus
'nkx'li is a sct ol zeroth order prolate spherordal crgenvalues.  As

pointed out n [35,43], the distribution of thosc cigenvilue depends on
(z

the quantity ¢ z‘gwkxtunu —zl), as shown 1n Fig. 5.13, and for a

0

fixed ¢ the cigenvialues (a1l off to zero rapidly wrth increasing i

>
<

once 1 exceeds (Z/n)c. This means that noise muel tiplication would

be especially scerious wnenever k‘, tani,, or { :IJ hecones
smalt,

One way to stabilize the method, for fixed tans, and (z,-z,), 1%

0 2l
to discard the results at smul]]kxlwhero the errors deminate, and, hy
making usc of the finite extent of the object in the x dimension, fill
in thosc values using the results obtained from the higher [k [ vabves
through the iterative scheme shown in Fig., 3.14.

Another way to stabilize the matrix method is by means of the
smoothing procedure proposed by Phillips [42] wad Twomey [44]. Instead
of solving the i1ll-conditioncd matrix cyquation

Y = AX
which 1s the digital version of cquation (2.8a), another matrix equation
with a modified kernel
Y = (A+y B)X

is solved. Here the matrix B is obtained from A in the following manner:
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3.14. TIterative scheme to stabilize the matrix inversion

algorithm.
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kT M LI + b“k,I - *”k+1,? + e

and , 1s o parameter dependent on the notse Tevel o the data. this pro-
cedure will remove the mstabiiiticos at the high spatial {requencies K

for cach of the operators (2.8a) <naracterzed by ditYerent k\'

32,5, Lomparison hetween Deconvolution + jteraticns and
Matrix Inversion

After analyzing the hasic properties of the decorvolution +
1terations and the matrix methods, a comparison of therr relative merit
is now tn order. [f the data contain no crroy or snly g negligible
amount of crrorv, the main cerror in the result eof deconvolution + iter-
attons will come from the truncation error Et(”J i iterating, as the
deconvolution error Hd will be insign’“icant 1n this case.  For the
matrix method, the inversion crror Km will also be negligihles  The only
unknown solution at kx = ( can be filled in by continuation {rom other
1On - 2¢T0 kX values, and the cerror introduced in continuing the solution
to one point will be very small compared to the crrot h(?!in continuing
the solution outside Ra for genceral holf-angle <. Thus in the cuse of
very small ame . ts of noise, the matrix inversion has an advantage over
the deconvol _i1on + iterations approach, imless some accelerated scheme
can be devised to reduce Etg).

To predict their relative performance in the prescnce ol signii-
icant amounts of noise, it suffices to compare the condition number of

the deconvolution operation witn chat of the matrix inver-ion. ior

deronvnlution, the condition number Y 15 piven by
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_ (¢0(KJ)max
Kq = IONG) I

0 X) min

And for each kx#=0, the condition number Km(kx] of the integral operator

(2.8a) is given by

Now equation (D.2) in Appendix D shows that ®O(§) is in the fomm

. 2
I(ei)cos Gi

Yo lkeork,) = —x
X
where tanei = - kz/kx’ and F(8) is the angular factor used in construc-

ting ¢O(£). For each kx#=0, the condition number is thus given by

(F(0) cosze) max
(F(8) cos®8) min

Kd(kx) =

In general the maximum and minimum values of F(8) cosZG do not differ
by several orders of magnitude; in fact, for the generally used angular
factors F(8) = 1 and F(8) = cos_ZO, Kd(kx) equals seczeO and 1 respec-
tively. On the other hand, Oax and a4 in can differ by a factor of
order hundreds of thousands; in fact, oy asymptotically approaches zero
as the index of the eigenvalue increases, as shown in Appendix I. The
decrease of a with the index is especially fast at small values of kX
and 60. Thus matrix inversion is expected to be more unstable to noise

than decenvolution + iterations.
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This comparison is still valid even if the iterative scheme in
Fig. 3.14 is employed to stabilize the matrix method. The reason is the
following. In iterating, all the solutions from inversion with]kg below
some k0(> 0) are discarded, and they are filled in using the e with
|kX|3Z ko. But as the solution from inversion for every kx col ains both
reliable and unreliable components corresponding to the large nd small
eigenvalues of the integral operator (2.8a) characterized by that kx’
the solutions used to start the iterations for the matrix method always
contain some unreliable components. In contrast, the deconvolutic results

used to start iteration do not have unreliable components.
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1V, IMPLEMENTATION

4.1, MWPC-Gamma Converter Positron Camera System

The MWPC-gamma converter positron camera system is shown in Fig.
4.7. The camera structure can be roughly divided into 3 parts, as
11lustrated in the block uiagram in Fig. 4.2, The first group consists
of MWPCs, gamma converters and delay lines for detecting the 511 keV
annihilation gammas and localizing their positions of interaction. Next
15 the clectronics system for signal processing. It includes low noise
amplifiers, timing discriminators, a data sclector unit, and an inter-
face unit. The last group of hardware, which processes and stores the
diata, consists of a DNigital Fquipment Co. (DEC) PDP 11,20 computer with
an extended memory of 28K, and periphcrals including a display storuage
scope, two data storage disc unlits, a fast paper tape reader/punch, and
o Decwriter keyboard temminal.

The sequence of data acquisition is as follows: On detecting a
pair of annihilation gammas, 3 amplificd signals from cach detoctor (i
prompt anode =ignal and 2 delay line signals) arce fed to multichannel
timing discriminators. The 6 discriminator outputs dre transmitted to
the data scelector logic unit which perfomms decision logic functions
such as valid coincident event sclection and invalid cvent inhibit/reset.
At the same time the anode signals initiatc 4 digitizing scalers which
arc stopped later by the delay line signals. If the cvent satisfies
some data selection requirements (to be described in Sec. 4.1.2), an
interrupt signal is transferred via the buffer unit to the memory of the

computer. Otherwise, an inhibit/reset signal is issued by the data
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sclector to all units. Some important components are described in

detail in the following sections.

4.1.1. The Detection Assembly
Four MWPCs each with 48 cmx 48 cm scnsitive area were used to

form a pair of detectors, each of which was made up of 2 MWPCs and 2 Pb
converters housed in an air-proof Al box. The cathode wires in each
chamber were 50 um in diametcr and spaced 2 mm apart. They were termi-
nated through 220 KQ resistors to a common bus. The anode wires were

20 ym in diameter and spaced 3 mm apart. The chamber frames were made

of Nema G-10 fiberglass; the two central frames and the outer frames were
ecach 4 mmn thick. On these frames were epoxied the coupling strip PC
boards. The delay lines were mountced on the coupling strips with 0.1mm
thick mylar between them and the strips for insulation. The detailed
construction of the chamber is shown in Fig. 4.3.

The delay lines used were the phased compensated electromagnetic
delay lines for wire chamber rcadout developed by Grove, Perez-Mende:z,
ct al. [22,45]. The basic design,illustrated in Fig. 4.4, consists of
a helical winding of #32 gauge copper Formvar wirc on a plastic core
with longitudinal copper bands on onc side. A mylur strip with ctched
metallic bands of copper is cemented onto one of the flat sides of the
delay line for phasc compensation. The delay to risc time ratio is
28:1 and the total delay is 1.1 usec.

The ganma converters were made of Pb <haped in the form of
honcycomb, as shown in Fig. 4.5. The cell size 1s 3.5 nm and cell wall

is 75 um. The height of the converter is 15 mm. ‘The detailed procedures
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Fig. 4.3. Multiwire proporticnal cl. mber construction,
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XBB 7410-7153

Fig. 4.5. A section of the layered, honeycomb shaped gamma converter.
Graded voltages are appnlied through the bus-wires to
individual cells.
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is common to a family of pulses, regardless of their amplitude [48].

The contributions to the timing inaccuracies include time slew
which arises from the difference in pulse ampiitude, and time jitter
which is caused by the noisc [49]). For the timing uiscriminator wec
used, the time slew is 6 nsec over a dynamic runge of 20 in signal ampli-
tude, and the time jitter associated with 100 mV sisnal and 20 mV noise
is 8 nscc; but improves to 1 nsec as the input signal is increased to 1 V.

The Data Selector unit is made up of a nctwork of flip-flops and
gates to which the outputs from the timing discriminators are applied.
Figure 4.7 shows its logic diagram. An cvent will be valiaated if it
satisfics the following conditions:

Prompt anode signals

1. Only onc of the two MWPCs .s triggered in cach of the
upper and lower detector boxes (2 chambers were housed in
one detector box).

2. When one of the two chambers in a detector box is triggered,
the coincident signal from one of the chambers in the oppo-
site detector pox must arrive within the coincidence resolv-
ing time.

Delayed cathode signals

3. If conditions (1) and (2) in the prompt signals are met, there
must exist 4 delayed cathode signals associated with the cham-
bers which were triggered.

An event is rejected by the initiaticn of an inhibit/reset

signal if,
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4. Any one of the conditions (1), (2), (3) is not satisfied.
5. A second prompt signal should occur on either one of
the four chambers before a valid coincident signal is
initiated.
6. More than one signal should occur cn any one of the delay
lines within delay line timec (1.5 psec) before a valid
signal is initiated.
Whenever any one of the four MWPCs is triggered, further signals
from that particular chamber would be gated off for i.5 usec while the
other detectors are still operative. This would prevent accidentul coin-

cidence and minimize the detector system dead time.

4.2, Rcconstruction Results

We have tested the results developed in Scctions 2.2 and 3.2 by

performing studies on some computer-gencrated phantoms and a real phan-
tom. As the computations had to be donc on digital computers, all the
mathematical quantities were digitized on a finite-extent lattice with
lattice spacings b&x, Ay, bz, the choice of which is governcd by the
spatial resolution of the imaging device and the available core memory
capacity of the computer. In digitizing we have restricted ourselves to
frequency components below the maximum frequencies given by

<L

T e

kx(max) =

The components at frequencies above this value were very small in magni-
tude as a consequence of the finite resolution, and were set to zero for

computational purposes. The constraint that the density distribution is
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non-negative was also utilized in the reconstructions.

The use of lattice of finitc cxtent introduces errors into the
results of the Fourier transforms: the finitce latiice spacing gives risc
to "aliasing’’, while the finite extent causes “'leakage' [50]. Aliasing,
the distortion of the desired Fourier transform duc to sampling, is min-
imized by making the lattice spacings Ax, Ay, Az small cnough, while
leakage, the distortion due to truncation, can be reduced by windowing
[51]. In this work Gaussian window [unctions appcarcd to give the best
results, but the tvpe of window did not seem to be critical. Windowing
is not required when taking the inversc transform of R(k), as R(k) is a
periodic function with period equal to the truncation interval in which
casc there is no leakage.

All the Fourier transforms were perfoirmed using Fast Fouricr
Trans{orm algorithms: if each dimension of the array being trans(ormed
was a power of 2, the subroutine FOURZ by K. F. Subhani and F. Chu

(private communicgtion) was empqugd, oghcrwkfg‘thq subroutines FFT and
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Recovering the missing-cone components of a 2-D point

Fig. 4.8.

source located at the center of a square which acts as

the finite object extent in the iterations .

The semi-

(0.5).

-1
(A) The point source with the missing-cone components

vertical angle of the allowed cone istan

set to zerc,
(B) The point source after 30 iterations.



-107-

XBL 7910-12147

Fig. 4.9. Recovering the missing-cone components of a 2-D point
source located on the boundary of a .quare which acts
as the finite object extent in the iterations. ,h The
semi-vertical angle of the allowed cone is tan* (0.5).

(A) The point source with the missing-cone components
set to zero.
(B) The point source after 30 iteratioms.
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We then tested the cffect of the size of the camera angle on
deconvolution using the computer-generated 3-D phantom shown in Fig. 4.10,
which was a spherical skull with a tumor located off-center inside.

The skull was of inner radius 9 cm and thickness 2 cm, while the tumor
had radius 1.5 cm. The concentration ratio was
tumor:skull:background = 10:5:1.

We performed reconstructions using the deconvolution method in
three positron camera configurations with three different point response
functions. The first point response function subtended a viewing angle
{(the solid angle of the detection cone in Fig. 2.19A) of one-third of é4n
along the z-axis; the sccond one subtended two-thirds of 4m: one-third
along the z-axis and the other third along the y-axis; and the last one
had complete 4w viewing anglc. The corresponded to camera configurations
having one, two, and threce pairs of detectors, respectively, with the
axes join‘ng cach pair perpendicular to each other. The last configura-
tion, though not very rcalistic practically, was included for making com-
narisons, becausc its point response function obviously contained no zero
Fourier componcnts. According to condition (2.11) in Sec. 2.2, the first
point response function contained zero Fourier components, whereas the
second onc did not. The phantom generated a total number of 1.2 million
events in each case. Reconstructions were done on a 48 x 48 x 48 lattice,
with lattice spacings | cmx 1 ecmx lcm. Each event was weighted by
F(6) = cos %8 in constructing ¢(r). R(k) was set to zero wherever &, (k)
is zero or close to'zero. The value of ¥ was set to zero in all the

3 deconvolutions.
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Fig. 4.10. A computer-generated phantom simulating a brain tumor.
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Fig, 4.13. Deconvolved image in the six-sided camera having a
point response function with complete 47 viewing
angle. Each event is :2ichted by cos™ 0 in con-
structing ¢. The value of y is O.
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Fig. 4.17. Profile of the deconvolved image in Fig.
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Fig. 4.18. Profile of deconvolved image in Fig. 4.13

along the line i=7j=25.
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The deconvolved image in Fig. 4.11 after 10 iter-
ations using the scheme shown in Fig.

4.20.,

Fig.

2.21.
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Fig. 4.22.

Back-projection image of a rcal phantom
which consists of a cylindrical shell to
simulate a skull, and 2 c¢ylindrical tumors.
The shell 1s 1.5 cm thick, 16.5 cm high,

and has an inner radius of 7.5 cm. Each
tumor is 4 cm high and has a radius of 1 am.
The concentration ratio is 5:1 for the skull
and one tumor, and 10:1 for the other. Each
picture element is 0.5x 0.5 cm2. The plancs
are 2 ¢m apart in the z direction.
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Fig. 4.24.
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Reconstruction of the real phantom by Fourier
deconvolution + 4 iterations.

angular factor: F(8) = cos~12p,

Filtering parameters: m=10, y = 35.9.

XBB 799-11800
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V. DISCUSSIONS AND CONCLUSIONS

h.ol.  Discussions

Comparcd to cameras using detectors such as Nal. the present
MWPC-Pb converter position camera has excellent spatial resolution and
the advantage of low cost, but suffers in the a-ea of inadequate detec-
tion efficiency. Roughly speaking, the conversion efficiency of the
gumma converter is determined by the total amount of surface arca avail-
able for interacting with the gammas, and thus can be increased eilther
by decrcasing the cell size of the converter, as illustrated in Fig. 2.6,
or by increasing its height. Both decreuase in cell size and increase in
height are made possible through the use of Ph0O-glass converter [53].

Due to its more uniform electric drift field, the drift time
spread in electron collection TC in a PbO-glass converter is much shorter
than in a Pb converter, being 110 nsec {or a 15 mm high PbO-glass con-
verter compared to 330 nsec for a Pb converter of the same hieght. The
reduction in TC makes it possible to use converters of increased height.
The increased uniformity of the drift field also means higher extraction
efficiency Eg» @S implied in Fig. 2.9, and thus converters with smaller
cell size can be used. Fabrication of Pb0O-glass converters with cell
size ~1 mm is readily achievable by fusing together PbO-glass tubings
followed by slic'ng. Recent measurements on a PbO-glass converter of
cell size 1.4 mm and height 2 cm yielded 8% detection efficiency [54].
This translates into a nine-fold increase in the coincidence count rate

over the present camera system equipped with Pb converters.






limitation on the minimum size of the angle of the allowed cone that

can be used in limited-angle imaging. The minimum practical allowed-cone
angle is primarily governed by the accuracy of the digital computer
employed for computation, which sets a limit on the minimum magnitude

of the eigenvalues that can be computed, and hence determines the number
of eigenfunction components of the object that can be recovered in the
1terations.

Onc way to improve on the situation 1is to use direct inversion
to solve for the missing-cone [requency components instead of using
iterations. Sabri and Stcenasart developed the extrapolation matrix [56]
for such a purpose. This approach requires inverting a matrix of order
m x m, where m is the number of frequency components in thce allowed ccne
and missing cone combined. As m usually ranges from a fcw thousand up-
wards in two-dimensional and even more in three-dimensional imaging,
extrapolation matrix is not very practical in such applications.

Another approach is to devisc schemes to accelerate the iter-
ations, possibly through the usc of other constaints on the object cr
its Fourier components, such as boundedness in object density, continuity,
etc, Positivity (57, 58] has already been utilized in our iterations:
all the negative values in the cbject density were set to zero after
each Fourier *ransform. This procedure produced a 20% rcduction in o
for the 2-D point sources in Figs. 4.8 - 4.9. For ordinary phantoms
with extended regions of positive density, the reduction in ¢ was much
smaller, about 0.5%, due to swamping of most of the negative-undershoot
artifact of each point source by the positive density values of other

point sources.






APPENDIX A

t/2
EVALUATION OF 1 = | (L + 2x) P (x, E.)dx
0 CsC 1

We consider the following 2 cases:
Case 1 R(L:J.») < t/2
t-x > 2 R(Ei) - X Rr’lij)
Plt-x, Ej = 0.
In this case we only have to cvaluate

t/2
{ (L + 2x) P(x, L.)dx
0 1

R(E)
= (1L + 2x) P(x, E )dx.
(

=

Putting y = IX and 1ntegrating we get
1'R(Eij
R(E.)
[ = i

5~ [2R(E) + LA + D],
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Case 2 R(E.) = t/2

1= L+ 20) P (x, L))

t/2 t/2
= f (L + 2x) P(x,E)dx+ [ (I + 2x) Pt-x, EJdx.
0
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To find 1 we {1rst evaluate the integral

>
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AT x o A X :
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cxp(A) R(E.)3
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Substituting into I, wc obtain

2 exp(MRE(E) ey, )1y If t SR(E,)
IZ = A L (28()’.[/2 )_g[l)— { t }) 1
= 0 / if t>R(E)
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1
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Similarly we have
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The results are summarized as follows:
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APPINDIX B

TRACK-LINGTH DISTRIBUTION INSIDE AN INFINITELY LONG CYLINDER WITH SOURCE
POINT OUTSIDL THI: CYLINDER

Consider the fumily of lines generated {rom the source point
“becated at the origin) and intersecting the cvlinder {sce Fig. B.1).
Let the Tine characterized by the polar angle and the azimuth (o) 1)

intersect the surface  of the cylinder at distances R] and R, from the

source point. Rl and R, both satisfy the equation

7 Rl
(R sin® cos »)7 + (R sind sin ' -7 = a

solving the quadratic cquation gives

..............................

) 2 5 > 3 i
R _ Zb sinh sin ;¢ \/H)“ sin"e o sin” o -d sinTe(hT-aT)
1,2 2 '
i 2 sin7y

The track Tength inside the cylinder AR 1is

p—
2 > b)

/0 - ) ?
o 2y/bTsinT ohToal)

AR [R, - R -
¢ | o Tsin”,
V2 T, Ml SRl Sl s
h 2 2 [
/I,—) ST - (-5) 1)
VAN A IO
2 Tsan
. R b o - . ) )
Befane ro= 5, 0= X E cos The above expression then becomes

Duc to the symmetry of the geometry, the domains of ¢ and x can be taken
. R
-1 =1

to be :O,vi/:);md (C,1) respectively, where T sin K
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Fig. B.1.

tion

Geometry for calculating the track-length distribu-
inside an infinitely long cylinder.

\j

a = Radius of the infinitely long cylinder

b = Distance frow the source point to the
axis 0° the ¢yiinder

¥BL 798-11177
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The distribution of (r, w) is obtained from {B.1), (B.2) and (B.6):

£, 41
rw(r W) = b x 7
r((b =)

f¢(¢) fx(x)

“r[)y X
7r (1-w )

v l W ;+(c -1) /1— 2 1-w2)

The track-length distribution is thus given by

(1-w )dw

V/r (1-w )+ (c -1)\/1 T (]—

3]
j)d

f(r) =

Case 2: v > 1

In this case we put

&ZEZSin2¢ - (CZ-IJ
9]
V1oox©

Following cxactly the same procedurc used in case 1, we get

n/“ 2
f(r) = 2 c“sin w -(L 1) dw .

5
¢0 / c C7sin"w-{ h L —])
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APPENDIX C.

DERIVATION OF THE FACTOR C(TT/TC) IN THE TRUE COINCIDENCE RATE WHEN
T «<T._.
roc

I{ ’l‘r < Tc’ true coincidence rate and hence the ratio of true
to chance coincidences as given by equations (2.2) and (2.4) are mod-

ified by a factor C(Tr/TC), which is the probability that the two elec-
tions ¢y and ¢, generated in detector A and detector B respectively in

an annihilation cvent will be in coincidence within the time Tr'

Referring to Fig. C.1, this quantity is given by

CIT /T probability that | t,-t, | = T,

P{ lty-t, ]s“l‘r}-

We consider the following two cases:

Case 1. T < 7T_/2

Partition the time interval TC for detector A into the 3 intervals 1,
Il and 111, as shown in Fig. C.Z2.

If ¢ occurs within the interval [,

dt]
P j(: occurring within dt. at t,} = =—
|71 1 1 Fr
- e 1 tl * Tr
P {Jtl-tzl <'TA ¢, occurring within dty at tlf =
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T
. _ r _ | . .
LC(T/T) = % P {]t] tzjsgrr] e, occurs within dt; at tl}

< P { e, occurs within dt1 at tl}

Tr (t+Tr) d 4

D

c T
T
L

T
C

!
™| L

By symmetry,

T
] _3
CrpT/T) = CT/T) = 5 T

If e, occurs within the interval II,
2T

o B T
/T = 7

C

Combining the contributions from I, II and III we get

C(TT/TC) = P {el occurs within I} X CI(Tr/Tc)

P {e 0

‘th Ils} Cq & /T)

rl

ut



in Detector A

T /O 1| Tc Time=

Time at which
the annihilation

in Detector B

event occurs | €
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o N ! S R,
0 12 TC Time

Fig. C.1. Occurrence of detected signals.

T, <T./2

0 T, Time

<—Tr—.. ¢—Tr.—.

Fig. C.2. Partition for Tr < TC/Z.

] T, 2T, /2
I s

0 o ST Time

XBL 798-2286

Fig. C.3. Partition for Tr = TC/Z.
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tase 2. T > T /2
= C
Partition the t.ne interval TC for detector A into the 3 intervals I,

[1 and [II, as shown in Fig. C.3. Similar to case 1, we have

T

I

T
c

™ol

CI (TT/TC) - CII[ (Tr/Tc) -
For thc interval 11,

CII frr/Tc) =1
Combining the o tributions from I, I, and 1I1 we have

T - T 3T 2T -T T -T 3T
C (/T =S r r,- r ¢, c 'r T

r’ T 2T T T T.

c c c c C

S e 12
SRR RGN, IR S



APPENDIX D

EVALUATION OF THE TWO-DIMENSIONAL OPTICAL
TRANSFER FUNCTION

Tolkok,) = dz :f(“dx ty(x,2) exp(2ri(k x+k_z))
fes] T 2
= [ dz [ do 4, (8,2) exp(2iz(k tano+k )) |z}sec™
—(0 -
= fodG F'(G] [ d:z oxp(Zriz(k\,tzm%]\'_)).
“‘j(] n L h Z
Now
f exp (2riz(k tan8+kz))d: = &(k tant +k_] (0.1)
therefore

£}
vtk ) = 0 EEL ek tan vk as

- 1
"0
(k,) 9
S U RN i ko=
T L5 X
- 0 (0. 2)
F(ai)coszﬂj ,
k—v
; e tan?d, = - =
where tkm\,i -
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APPENDX E

EVALUATION OF THE THREE-DIMENSIONAL OPTICAL
TRANSFER FUNCTION

In three dimensions, equation (2.9) takes the fomm

bo(ss Dzl” = is/2) E.1)

where s = (X,y), and the angular function H is positive inside the data
conc and zero outside. Defin ig t =s/z, w = (kx,kv), and performing

the Fourlier transformation, we get
Bk ) = fdz [[d” b(s,2) expl@mi(yes + k 2))
=[] W) £w-t+k)dt,

The vector t = (tl,t7) can be c..osen so that Y lies along w, giving

wet+l = %E[tf k - Then we get

s(k) [ fHind ifw=0

('bo {Eskz) = (E.2)

[ H(-K,/|w] . t,)dt, if w0 .

[n the particular case where ¢>D is 1n form of a square pyramid,

¢y (5;y,2) > 0 whenever 0 < |x| <jztaneoj
and 0 < |y] s[ztaneoi

application of (E.2) shows that

¢ (]\'X,ky, k) >0 if (k| + \ky])>ik1|/taneo when |k |, |ky| >0
or (|13(|+ |k}[);|k:|/taneO when 1kX|=Oor [ky|=0
(E.3)

= 0 otherwise .
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APPENDIX F

NECESSARY AND SUFFICIENT CONDITION FOR AN OPTICAL TRANSFER
FUNCTION TO BE NON-ZERO EVERYWHERE

In this Appendix we prove the statement (2.11), namely, the
necessary and sufficient condition for an optical transfer fumction to
be non-zero everywherc is that every plane passing through the origin
of the corresponding point response function contain at least a linc

of non-zero values.

If there is a plane A through the origin of ¢ on which only
the origin is non-zero, then we take the normal to A at the origin to
be the z-axis. Equation (E.2) shows that ¢0 is zero on the kz—axis

cxcept at the origin.

Sufficiency

Given a point response function satis{ying condition (.11},
we want to show that the value of $O at any arbitrary point D in the
frequency space = non-zero. First rotate the coordinate system in
frequency space s that P lies on the kx-axis. The plane x =0
contains at least one line on which bo is non-zevo.  Take any such
line to be the z-ax . Then decompose o into two parts in the

following manner:
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%m(xy.\', o =

Joplxs v,z 0t z=0
(2), . o .
¢O ('\7 ,\'y 1-) t
0 if -#0.
o1 _ (1) (2) TR B R o o,
Clearly Py = % + rpo . osince gy satis{ies (E.1), equation (f.2)
shows that q,-OH) v 0, because H(t) > (0 at t = 0. Now it remains to show
e a2 e at P 2y . o e
that i is non-negative at P ¢ can bhe written as
(2) R N R R S
N (\'y ( ’ 2 "“;‘_‘*N

where we have made the coordinate transformation rix, v) - r(s, 7).
Trans{oming k(k‘(, kv) to polar coordinate k{w, «), and taking the
> ) .

Fourier transtform of ¢n( , we get

2, - S0y 8w
¢0 (w, O"k:’ ; fffm:{ifl exp(2ni (swcos(f-rn)+k_z))sdsdedz

Fla +T[/.7__l

- 21w

which is clearly non-negative.
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APPENDIX G

EFFECTS OF SAMPLING cbo(x, z) IN THE x AND z DIMENSIONS.

lLet the object distribution g{r) be sampled in the - dimension

Bbootae smmpling function:

The peint response function @0(.\’, 2) can thus be saapled in the same wav.

f

)
!

By the convolution theorem, the optical transfer {unction §, 7 H\\,, k_!
A tiwe sampled q,voix, z) is given by
(z) . % o ] .
+ = o <Q { ) Loy
TO (kx’ kz} 15(](kx’ }\:‘ *k }\: ta. 1

where il,)(k\, K.V 1s the original optional transfer [unction, S“}\' th_i is

the fourier transform of sﬂ_[:), and * denotes  convolution.  Now
reference [03] shows that q*k (k_V i alse a sampline function in the

k.« mension given by

< (l’\] = Ak Z 5(1(_‘ nak ], Ak = 5. [(;.:)

From equations (G.1) and (G.2) we secc that . 'H\\,, K_)1s the super-

imposition of repetitions of the original optical transfer function in

the k. dimension at intervals of Ak_. Thus ?rvn\“) (k‘, k_'1s non-zero

in the region Zlkxl tang, > Akz; as for the region Ik, tang,- ak,,
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the mumber of zero Fourter components is reduced by a factor of Z.
tf sampling of &, (x, z) is done in the x dimension instead,
similar considerations show that the corresponding optical transfer

- R X .
function & ( J(k , kﬁl will hc non-zcro everywherce.

{) X
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APPENDIX [

JOWER BOUND OF THE EIGENVALUES OF THE MATRIX INTEGRAL OPLRATOR

We first simplify the kernel \f’U

5} .
o= (O EM) e L tanot ~id
kf() (kx,_) LT expi(dni kxtdn.,) zid
0
tani i
= 0 Z’(Tt)v exp(2wi k tz)dt
-tany ‘ X
0
. 1 -1 2 -1
where t = tané, and g(ty=Fftan " (t)) cos (tan "(t}). Let s = kxt and
s =k tan<,., then we have
0 X (
(k_,z) = ,50 G(b) exp(2mi s 2)ds (1 1)
Yotkoo =1 "3 explamis 2)d; 1.
S ¥

where G(s) = g(—}-\,s— ). Equation (I.1) shows that we can treat z and s as

o - -rre 'py -+ Fouricr trapsform ve - bl 3 We define a function I'(s) to be
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By well known theorem in variational calculus, the lower bound of this
ratio for all z-limited functions is equal to the infimum Goin of the

cigenvalues {ai} of the 1integral operator.

Z,/ S
2 0 G(S . ~t -1
uigi(z) = (] 7;7% exp(—Zv15(z-z'ﬁds) gi(a Jdz"'.
2, \-S X
1 0
We want to prove that ®nin 0. Assume U U let b“ be the
maximun value of gig)in (-SO, Spl- For the special case %4%2 =1, the

cicenvalues xi of the integral equation

Z, Sy .

= (-2mis(z-z")) ds V. (z")dz’

Aifi(z) & ( { exp(-2mis( ) g) 1( )
1 0

g0 to zero as the index i + « [35], so there is an integer m such that

GOX <a . . Substituting the z-limited function f (z) and its Fourier
m ~ ‘min m

trans{orm Fm(s) into the expression (I.2) we get

s 2 s 2
0 G(s 0 5 -
[OIF ] 21 Gy /15 (s3] ds
- « s
0 < g < 0 .
Y 2 o L
] IE (s)] ds [ IR ()] ds
B >‘m GO < %min
which contradicts the definition of CY Thus o . is equal to zevo.

nin min
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