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Sepsis is the leading cause of critical illness and mortality in human beings and animals.

Neutrophils are the primary effector cells of innate immunity during sepsis. Besides

degranulation and phagocytosis, neutrophils also release neutrophil extracellular traps

(NETs), composed of cell-free DNA, histones, and antimicrobial proteins. Although NETs

have protective roles in the initial stages of sepsis, excessive NET formation has been

found to induce thrombosis and multiple organ failure in murine sepsis models. Since the

discovery of NETs nearly a decade ago, many investigators have identified NETs in various

species. However, many questions remain regarding the exact mechanisms and fate of

neutrophils following NET formation. In humans and mice, platelet-neutrophil interactions

via direct binding or soluble mediators seem to play an important role in mediating NET

formation during sepsis. Preliminary data suggest that these interactions may be species

dependent. Regardless of these differences, there is increasing evidence in human and

veterinary medicine suggesting that NETs play a crucial role in the pathogenesis of

intravascular thrombosis and multiple organ failure in sepsis. Because the outcome of

sepsis is highly dependent on early recognition and intervention, detection of NETs or

NET components can aid in the diagnosis of sepsis in humans and veterinary species. In

addition, the use of novel therapies such as deoxyribonuclease and non-anticoagulant

heparin to target NET components shows promising results in murine septic models.

Much work is needed in translating these NET-targeting therapies to clinical practice.

Keywords: citrullinated histones, acute respiratory distress syndrome, veterinary critical care, immunothrombosis,

platelet-neutrophil interaction

INTRODUCTION

Despite recent advances in medicine, sepsis remains one of the leading causes of death in critically
ill people and animals (1–3). Sepsis is defined as life-threatening organ dysfunction caused by a
dysregulated host response to infection (4). Multiple organ dysfunction, associated with increased
mortality and morbidity, is a common manifestation of sepsis (1, 5). Factors such as virulence of
the invading organisms, co-morbidities, and the host immunocompetence dictate the progression
and outcome of sepsis (3, 6, 7).

Neutrophils are short-lived granulocytes that play a pivotal role in the initial defense against
invading pathogens in mammals. Neutrophils, recruited to the site of infection, effectively
kill microorganisms by phagocytosis, degranulation, and generation of reactive oxygen species
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(ROS) (8). In certain conditions, neutrophils enhance their
antimicrobial properties by releasing neutrophil extracellular
traps (NETs), composed of extracellular chromatin decorated
with histones and numerous granular proteins (9). Many of these
granular components like myeloperoxidase (MPO), α-defensins,
elastase (NE), cathepin G, and lactoferrin, have bactericidal
activities capable of eliminating microorganisms and/or their
virulence factors. Uncontrolled inflammatory response during
sepsis is the proposed underlying cause of excessive NET
formation (10, 11). Increasing experimental and clinical evidence
indicates that overzealous NET formation during sepsis can lead
to the development of multiple organ dysfunction highlighting
the pathophysiological role of NETs in sepsis (12–15). This review
aims to summarize the recent knowledge on the underlying
mechanisms of NET formation in varied species, as well as, the
beneficial and detrimental effects of NETs found in various septic
animal models.

MECHANISM OF NETosis

As sentinel cells of innate immunity, neutrophils can respond
to many pathogens or their associated molecular patterns
by releasing NETs. “NETosis” is the term commonly used
to describe the sequence of cellular events leading up to
the active release of NETs (9, 16). Similar to other forms
of cell death such as apoptosis or programmed cell death
and necroptosis, a regulated form of necrosis, NETosis is
a highly regulated process. Dysregulation of NETosis found
in many disease states like sepsis, can result in collateral
damage to the host. The cellular mechanisms mediating the
release of NETs, however, remain poorly understood. Brinkmann
et al. and Fuchs et al. first documented in vitro NETosis in
human neutrophils using the potent protein kinase C activator,
phorbal 12-myristate 13-acetate (PMA) (17, 18). Following PMA
stimulation, human neutrophils undergo morphological changes
including chromatin decondensation, loss of nuclear envelope,
mixing of nuclear contents and cytoplasmic granular proteins,
loss of membrane integrity and, ultimately, release of cell free
DNA (cfDNA) (18). A recent ex vivo study by the authors
documented similar morphological changes in PMA-activated
canine neutrophils indicating that dog neutrophils may undergo
suicidal NETosis (19). Cell death is inevitable in neutrophils
undergoing suicidal NETosis as they are unable to maintain
a constant intracellular environment without an intact cell
membrane. For that reason, some investigators describe this type
of NETosis as “lytic” or “suicidal” (16). Table 1 is a summary of
microorganisms known to induce NETosis in various species.

The generation of reactive oxygen species (ROS) by NAPDH
oxidase is an integral, but not essential, cellular process in
NETosis. Suicidal NETosis induced by PMA and pathogens such
as Aspergillus fumigatus and Toxoplasma gondii are dependent

Abbreviations: ARDS, Acute respiratory distress syndrome; cfDNA, Cell free

DNA; citH3, Citrullinated histone H3; Deoxyribonuclease, Dnase; HMGB-1, High

mobility group box-1; NET, Neutrophil extracellular trap; NE, Neutrophil elastase;

PAD, Peptidylarginine deiminase; PMA, Phorbal 12-myristate 13-acetate; ROS,

Reactive oxygen species.

on ROS generation, which occurs upstream of p38 mitogen-
activated protein kinase (MAPK) and extracellular signal
regulated kinase (ERK) phosphorylation (45, 46) (Figure 2).
Interestingly, although PMA-activated neutrophils in horses
undergo ROS generation, PMA is considered a weak trigger
of ex vivo NETosis, suggesting that the role of ROS in
NETosis may vary among species (24, 47) (Figure 1A). It is
not yet clear how ROS generation and its downstream effects
ultimately lead to chromatin decondensation and the release
of cfDNA. Papyannopoulos et al. found that the translocation
of both neutrophil elastase (NE) and myeloperoxidase granules
from the cytoplasm to the nucleus is essential for chromatin
decondensation during PMA-mediated NETosis. This process
appears to be independent of the enzymatic activities of NE but
the exact molecular mechanism responsible for this translocation
is unclear (48).

Many critics question the physiological relevance of PMA-
mediated NETosis (49, 50). First, NETosis induced by PMA
in vitro requires hours to occur, whereas neutrophils in vivo
normally undergo phagocytosis and degranulation within
minutes after encountering microorganisms. Second, some
investigators consider PMA-induced NETosis “suicidal,” given
that PMA-activated neutrophils can no longer maintain normal
cell function following NETosis. To better understand the
relevance of NETosis in vivo, Yipp et al. directly visualized
the behaviors of neutrophils within Staphylococcus aureus (S.
aureus) skin infections in mice and human beings using
intravital microscopy. They found that neutrophils undergo
chromatin decondensation and DNA release within minutes
after encountering S. aureus while maintaining an intact
cell membrane. Interestingly, the NETosing neutrophils, now
anuclear, continued to chemotax to and phagocytize nearby
bacteria (20). This unique mechanism of NETosis, termed “vital”
NETosis, was later confirmed in septic murine models using
either lipopolysaccharides (LPS) or E. coli. Besides maintaining
their functional capacity following vital NETosis, neutrophils
must somehow release their DNA while preserving the integrity
of the cell membrane. The Kubes laboratory answered this
question by demonstrating that in the presence of S. aureus
human neutrophils form budding DNA-containing vesicles from
the nuclear envelop, which later, fuse with the plasma membrane
to release DNA to the extracellular space (22) (Figure 2). In
horses, ex vivo exposure of neutrophils to endometritis causing
bacteria, also results in rapid NET formation but the viability and
functional capacity of those neutrophils remain unknown (24).
To date, how neutrophils commit to one form of NETosis over
the other remains unclear, but some investigators believe that it
may be stimulus-dependent (11, 16).

Studies in murine, human, and canine neutrophils
demonstrated that NETosis and the release of histones and
DNA require histone post-translational modification (30, 51, 52).
Histone citrullination, catalyzed by the enzyme, peptidylarginine
deiminase 4 (PAD4), results in a net loss of positive charge
of histones. This, in turn, obliterates electrostatic interactions
between DNA and histones causing chromatin decondensation
and release of cfDNA during NETosis (53–55). Induction
of PAD4 activation in neutrophils appears to be stimuli
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TABLE 1 | Summary of mechanisms of microorganisms-induced neutrophil extracellular trap formation in various species.

Microorganisms Species Mechanism in NETosis Types of

NETosis

References

BACTERIA

Staphylococcus aureus Mice Dependent on TLR2 and Complement C3 in

mice PAD4 dependent

Vital (20)

(21)

Humans Response to virulence factor, PVL in a ROS

independent manner

DNA extruded via vesicles

Vital (22)

(20)

Bovine Unknown Unknown (23)

Streptococcus equi subspecies

zoopeidemicus

Streptococcus capitis

Equine Unknown Unknown. (24)

Streptococcus pneumoniae Humans α-enolase dependent Suicidal (25)

E.coli Humans*

Mice*

Horses

Cats

Bovine

*Mediated via platelet TLR4

Histone H3 citrullination by PAD4

Vital in the

presence of

platelets

(26)

(27)

(24)

(28)

(29)

E. coli LPS Humans*

Mice*

Dogs

*Mediated via platelet TLR4 and present

HMGB1 to neutrophils

Histone H3 citrullination by PAD4

Vital in vivo

and in vitro

(30)

(31)

(32)

Leishmania Cats Modulation by co-infection with FeLV Unknown (29)

Leptospira sp. Humans

Mice

Unknown but bacteria viability is required Unknown (33)

VIRUS

HIV Humans ROS dependent Suicidal ?

Influenza A Mice Not dependent on PAD4 Suicidal (34)

Influenza H1N1 Humans ROS and PAD4 dependent Suicidal (35)

Feline Leukemia Virus Cats Naturally occurring FeLV augments NETosis

induced by Leishmania

Unknown (29)

PARASITES

Eimeria bovis Bovine Recognition by CD11b

Dependent on NAPDH oxidase, NE and MPO

Requires p38 MAPK and ERK1/2

phosphorylation

Unknown (36)

(37)

Eimeria arloingi Goat NADPH oxidase dependent Unknown (38)

Besnoitia besnoiti Bovine Dependent on NAPDH oxidase, NE and MPO Unknown (39)

Toxoplasma gondii Humans

Mice

Harbor Seals

ERK-MEK dependent

*NADPH oxidase/ROS dependent

Suicidal (40)

(41)

FUNGAL

Asperguillus nidulans Humans NADPH oxidase dependent (42)

Asperguillus fumigatus Humans ROS dependent and modulated by RodA Suicidal (43)

Candida albicans Humans Recognition of beta-glucan by complement

receptor 3

Fibronectin and ERK

Vital (44)

TLR, Toll-like receptor; C3, Complement 3; PAD4, Peptidylarginine deiminase 4; PVL, Panto-Valentine Leukocidin; HMGB1, High Mobility Group Box 1; FeLV, Feline Leukemia Virus;

ROS, Reactive oxygen species; NE, Neutrophil elastase; MPO, Myeloperoxidase; MAPK, Mitogen-activated protein kinase, ERK1/2; Extracellular signal regulated kinase ½, NADPH;

Nicotinamide adenine dinucleotide phosphate. *Mechanism found in specified species.
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FIGURE 1 | Immunofluorescent imagines of equine and canine neutrophils. Neutrophils were fixed, permeabilized and stained for citrullinated histone H3 (red) and

myeloperoxidase (MPO). DNA was stained with DAPI (blue) (A) Isolated equine neutrophils were incubated with the calcium ionophore, A23187, for 2 h. Note the

intracellular expression of citH3 in neutrophils (arrow heads) and release of NETs decorated with MPO and citH3 (arrow). Original 100x magnification (B) Cells

collected from endotracheal wash from a dog with aspiration pneumonia. Note the extent of cell-free DNA and colocalization of MPO and citH3 (NETs) (arrows) (C) In

the respective phase contrast image, bacteria (arrow heads) can be detected within NETs (dotted outline). Original 40x magnification.

FIGURE 2 | A schematic diagram demonstrating the molecular pathways involved in NETosis. Elevation of intracellular calcium in the presence of phorbal

12-myristate 13-acetate (PMA) or microbial interaction WITH pathogen recognition receptors on neutrophils subsequently activates protein kinase C (PKC) and

NAPDH oxidase. Reactive oxygen species (ROS) generated by NADPH oxidase leads to downstream signaling mediated by Akt, extracellular signal regulated kinsase

(ERK1/2) and p38 mitogen-activated protein kinase (MAPK). Decondensation of chromatin requires translocation of myeloperoxidase (MPO) and neutrophil elastase

(NE) into the nucleus and histone citrullination (citH3), facilitated by the enzyme, peptidylarginine deiminase 4 (PAD4). Activated platelets in response to

lipopolysaccharide (LPS) or agonists such as thrombin stimulate neutrophils to produced NETs via soluble or adhesive interations.

dependent. The proinflammatory cytokine, Tumor Necrosis
Factor-α, hydrogen peroxide and molecular patterns like
LPS and lipoteichoic acid have been shown to induce PAD4
activation and histone citrullination (19, 30, 32, 55). The
elevation of citrullinated histones in clinical septic patients
suggest that ongoing activation of PAD4 occurs during
sepsis.

NETosis AND PLATELET-NEUTROPHIL
INTERACTION

In addition to being the primary effector cells of hemostasis,
recent evidence indicates that murine, human and canine
platelets play a direct role in innate immunity by directly
interacting with pathogens or recognizing pathogen-associated
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molecular patterns (PAMPs). Platelets also augment innate
immunity by facilitating NETosis via platelet-neutrophil
interaction (26). In ex vivo systems, human, murine, and
canine neutrophils undergo a limited degree of NETosis in
response to LPS (19, 31, 56). But in the presence of LPS-activated
platelets, murine and human neutrophils release substantial
amounts of NETs, indicating that sepsis-associated NETosis
is highly dependent on platelet-neutrophil interaction. Clark
et al. first discovered that platelet-mediated NETosis induced
by LPS in humans is dependent on platelet Toll-like receptor 4
(TLR4) (26). Subsequent studies in mouse sepsis models showed
that intravascular NETosis under shear conditions is highly
dependent on platelet-neutrophil interaction. McDonald et al.
found that LPS-treated mice not only had increased platelet-
neutrophil aggregates but also NETs within their liver sinusoids.
However, this process does not occur in platelet-depleted
mice treated with the same doses of LPS (27). In addition to
LPS, platelets activated by the agonists, thrombin, ADP, and
arachidonic acid also stimulate NETosis in humans and mice
(57). The exact mechanism of platelet-mediated NETosis,
however, is not clearly understood and, likely, differs among
species.

In general, platelet-neutrophil interactions can be broadly
divided into 2 mechanisms: adhesive and soluble. Regardless
of the mechanisms involved, platelet activation induced by
pathogens, damage-associated molecular patterns, or classic
agonists must occur in order for secretion of soluble mediators
and expression/activation of adhesion molecules to occur.
Platelet activation by stimulants results in inside-out signaling
that leads to the expression of P-selectin and a conformational
change in the extracellular domains of the integrin, αIIbβ3,
increasing its affinity for ligands. The binding of platelet P-
selectin to its neutrophil receptor, P-selectin glycoprotein ligand-
1 (PSGL-1) is shown to be essential in inducing NETosis in
mice with sepsis and transfusion-induced acute lung injury
(58, 59). However, treatment of activated human platelets with
anti-P-selectin function blocking antibodies does not attenuate
NETosis suggesting that P-selectin/PSGL-1-mediated NETosis
may be species dependent (60, 61). In mice and humans,
platelet-neutrophil interaction and NETosis also are mediated
by the binding of αMβ2 (MAC-1), a neutrophil integrin, to
its counterreceptor, glycoprotein 1bα (GP1bα), a heterodimeric
glycoprotein on platelets (62–64).

Upon activation, platelets secrete a variety of soluble
mediators like high mobility group box-1 (HMBG-1) and
platelet factor 4 (PF4), known to modulate NETosis. Platelet
factor 4 or CXCL4 and CCL5 (RANTES), released by LPS-
activated platelets, are platelet-derived chemokines that can
activate neutrophils to undergo adhesion. In mice, thrombin-
stimulated platelets release both CXCL4 and CCL5, which
induce NETosis via the neutrophil G-protein coupled receptors.
The heterodimerization of platelet-derived CXCL4 and CCL5
are found to enhance NETosis (64). LPS or the synthetic
lipopeptide, Pam3CSK4, also stimulates platelets via TLR 4 or
2, respectively, to release CXCL4 enhancing NETosis in human
neutrophils (61). Platelet-derived HMGB-1, a damage-associated
molecular pattern, secreted by activated platelets, stimulates

human and mouse neutrophils to undergo NETosis by binding
to receptor for advanced glycation endproducts (RAGE). The
role of HMGB1-RAGE signaling pathway in the formation of
NETs is unclear but downstream pathways of RAGE have been
shown to facilitate autophagy, an essential cellular event during
NETosis (60, 65–67). Activated neutrophils also contribute to
this cellular cross-talk by shuttling arachidonic acid containing
extracellular vesicles to platelets, in which arachidonic acid is
synthesized to thromboxane A2 by cyclooxygenase-1 for further
platelet activation (68). It is important to note that the adhesive
and soluble interactions between platelets and neutrophils
synergistically mediate NETosis since inhibition of either type
of interaction inhibits NET formation. Table 2 summarizes the
molecular interactions between neutrophils and platelets during
NETosis.

BENEFICIAL ROLE OF NETs IN SEPSIS

Microbial Trapping and Prevention of
Dissemination
In a mouse model of necrotizing fasciitis, PAD4 knockout
mice with the decreased ability to produce NETs were more
susceptible to Staphylococcus (S.) aureus infection strongly
suggesting that NETs have protective roles in the defense
against invading organisms (21). NETs have been shown
to exert antimicrobial activities by physically trapping or
directly killing microorganisms. The earliest evidence of
the antimicrobial properties of NETs was gathered using
high-definition scanning electron microscopy. Microorganisms
including: Shigella flexneri, S. aureus, Klebsiella pneumoniae,
Candida albicans, and Leishmania were observed to be physically
attached onto the structural elements of NETs. The ability of
NETs to trap bacteria was confirmed by Buchanan et al., who
utilized group A Streptococcus that expresses deoxyribonuclease
(DNase), in a mouse model of necrotizing fasciitis. The group
found that mice treated with the strain that expresses DNase
had more substantial skin lesions and bacterial dissemination
indicating that NETs not only enhance the killing of bacteria
but also ensnare bacteria to hinder their spread (70). This was
further confirmed by McDonald et al. who utilized fluorescently
labeled E. coli to document in vivo trapping of bacteria within the
liver sinusoids in LPS-treated mice (27). The group also found
that NETs within the liver sinusoids potentiate the ability of the
liver to entrap bacteria once the Kupffer cells are overwhelmed by
extensive bacteremia. As expected, microorganisms that possess
the ability to rapidly breakdown DNA are more virulent. For
example, Streptococcus pneumoniae, a Gram-positive bacteria
commonly found in the human respiratory tract, can express
the virulence factor, endA, which degrades DNA, allowing for
bacteremia and sepsis to occur (71). We recently demonstrated
that NETs within the septic foci of clinical septic dogs can bind
directly to bacteria suggesting that entrapment of bacteria by
NETs may occur in dogs (Figures 1B,C) (72).

Direct Antimicrobial Activity
In theory, NETs should possess antimicrobial properties since
NET components like histones, cathepsin G, and MPO can
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TABLE 2 | Summary of NETosis mediated by platelet-neutrophil interactions.

Stimulants Platelet Neutrophil Species Clinical relevance References

ADHESIVE INTERACTIONS

Thrombin

LPS

P-selectin

?

↔

↔

PSGL-1

LFA-1 (CD11a)

Mice Sepsis (59)

(27)

LPS ? ↔ LFA-1 (CD11a) Humans Sepsis (27)

TRAP GP1bα ↔ MAC-1 (αMβ2) Mice Acute Lung Injury (64)

LPS

Pam3CSK4

Arachidonic acid

GP1bα ↔ Beta-2 integrin Humans Sepsis (61)

SOLUBLE INTERACTIONS

LPS TxA2 : ? Mice Transfusion-related

acute lung injury

(57)

Collagen

Thrombin ADP

HMGB1 : RAGE Mice

Humans

Coronary thrombosis (60)

TRAP Platelet Factor 4

(CXCL4) /CCL5

(RANTES) heterodimer

: ? Mice Acute Lung Injury (64)

LPS

Pam3CSK4

arachidonic acid

Platelet Factor 4

(CXCL4)

: ? Humans Sepsis (61)

ADP, fMLP MAC-1 : Vesicles containing

arachidonic acid

Mice Sepsis associated

acute Lung Injury

(68)

Citrullinated histones TLR2

TLR4

: NETs ? (69)

PSGL-1, P-selectin glycoprotein ligand-1; LFA-1, lymphocyte function-associated antigen 1; LPS, Lipopolysaccharide; MAC-1, Macrophage-1 antigen; GP1ba, Glycoprotein 1b alpha;

TxA2, Thromboxane A2; HMBG1, High Mobility Group Box 1; RAGE, Advanced Glycation Endproducts; TRAP, Thrombin receptor-activating peptide; Fmlp, N-Formylmethionin-leukcyl-

phenylalanine, ?; Unknown.

exert bactericidal activities. However, the direct antimicrobial
activity of NETs in vivo is controversial. The conflicting published
data likely reflects the different methods used to measure the
antimicrobial properties of NETs (73). The most direct way
of evaluating the microcidal properties of NETs in vitro is by
culturing microbes and assessing their viability after incubation
with NET-forming neutrophils. Using this method, studies found
that NETs dismantled by DNase digestion allowed for the
growth of entrapped S. aureus and Candida albicans (74). One
plausible explanation for this, is that granular proteases released
into the extracellular space are rapidly inactivated by plasma
alpha1-proteinase inhibitor. Proteases like NEmust, therefore, be
shielded from nucleic acids in order to carry out its proteolytic
and microcidal activities. Another method used by investigators
is to assess the viability of microbes in the presence of neutrophils
that are unable to produce NETs. By using neutrophils from
human patients with chronic granulomatous disease, a familial
disease caused by mutations of the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase gene, Bianchi et al.
showed that the lack of NETosis was associated with growth of
Aspergillus nidulans (42). Since PAD4 is required for NETosis,
Li et al. found that neutrophils from PAD4 knockout mice
had limited abilities to kill Shigella flexneri when phagocytosis

was inhibited demonstrating that killing of Shigella flexneri is
mediated by NETs (21). NET components also can minimize the
pathogenicity of microbes by inactivating their virulence factors.
For example, NE found within NETs inactivates the virulence
factors IpaB and Ipac A in S. flexneri making the invasion into
the colonic mucosa and escape from phagocytic vacuoles more
difficult (17, 75).

DETRIMENTAL ROLE OF NETs IN SEPSIS

While NETs protect the host by limiting microbial growth
and dissemination, excessive NETosis during sepsis can be
detrimental to the host. Recent discoveries in in vitro experiments
and animal models demonstrated the crucial role of NETs
in the pathogenesis of intravascular thrombosis, disseminated
intravascular coagulation (DIC), andmultiple organ dysfunction,
all of which can increase morbidity and mortality in sepsis (1, 5).

NETs and Thrombosis in Sepsis
Systemic inflammation and release of proinflammatory cytokines
during sepsis can result in abnormal activation of the
coagulation system. Excessive thrombosis is normally prevented
by concurrent activation of the anticoagulant pathways involving
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tissue factor pathway inhibitor, antithrombin, thrombomodulin,
and protein C. Ongoing activation of the coagulation pathways
during sepsis can overwhelm the anticoagulant systems leading to
excessive intravascular thrombosis. Ultimately, overconsumption
of platelets and coagulation proteins result in consumptive
coagulopathy or DIC. Advanced DIC in septic patients
usually presents as hemorrhage or multiple organ failure.
Recent evidence in humans and dogs demonstrates that
NETs and their components can exacerbate DIC by directly
enhancing ex vivo clot formation, activating platelets, as well
as, inhibiting anticoagulant pathways (76–78). Observational
studies have shown that human or canine septic patients
have aberrant amounts of circulating cell-free DNA (cfDNA),
which can influence the dynamics of thrombus formation
in several ways (12, 79). Studies in human patients found
that cfDNA concentration in plasma from septic humans
correlates positively with the rate and extent of thrombin
generation (76). Oligonucleotides of double-stranded DNA-
hairpins can bind to both factor XII and high molecular weight
kininogen (HMWK) thus accelerating the activation of factor
XII and prekallikrein, both critical in initiating the contact
pathway of coagulation (80, 81). cfDNA not only impairs
fibrinolysis by inhibiting tissue plasminogen activator, it also
fortifies thrombus ultrastructure by creating a scaffold for the
binding of red blood cells, platelets, fibrin and coagulation
factors (82). Besides cfDNA, other NET components also
exert procoagulant properties. Extracellular histones can induce
platelet activation, platelet aggregation, and thrombin generation
via platelet TLR2 and TLR4 (69). Extracellular histones also dose-
dependently inhibit the generation of activated protein C in the
presence of thrombomodulin (83). Neutrophil elastase (NE) and
cathepsin G can proteolytically degrade tissue factor pathway
inhibitor bound on human endothelial cells in vitro (84). The
pathophysiological relevance of NETs-induced thrombosis has
been further explored in septic mouse models. Intravital imaging
of organs of LPS-treated mice demonstrated entrapment of
cfDNA within pulmonary capillaries and post-capillary venules
where formation of platelet-leukocyte aggregates impedes blood
flow in microvessels (85).

The Role of NETs in Sepsis Associated
Multiple Organ Failure
Studies in human septic patients have shown that aberrant
amounts of circulating NET components, including cfDNA
and histones, are associated with poor outcome and multiple
organ failure (86). cfDNA has a short half-life of 0–15min in
circulation due to enzymatic degradation by endogenous DNases
and hepatic clearance. In sepsis, elevated levels of circulating
cfDNA could be due to increased NETosis, apoptosis, necrosis
or decreased clearance. Several in vivo studies in septic mouse
models have shown improved survival and attenuation of organ
injury by increasing cfDNA clearance using exogenous DNase
(14, 15). The exact mechanisms of how cfDNA contributes to
organ dysfunction are not clear. It is possible that degradation
of cfDNA likely reduces the formation of microthrombi, and
thereby, alleviating microvascular occlusion and tissue hypoxia.

The immune modulatory effects of exogenous DNase seen in
the septic mice also suggest that cfDNA may play a role in
inflammation. Cell-free DNA from serum has been demonstrated
to induce TNF-α mRNA expression in human monocytes
and the telomeric sequence of cfDNA is potentially involved
in the fine tuning of inflammation (87). Besides playing a
key role in chromatin remodeling and gene transcription,
histones, once released into the vascular space, can function
as damage-associated molecular patterns. Extracellular histones
can induce organ damage by functioning as a chemokine to
promote proinflammatory cytokine release, induce apoptosis of
leukocytes or nearby cells and incite direct cytotoxicity. Findings
from in vitro studies of human endothelial cells suggest that
extracellular histones may directly cause endothelial dysfunction
by inducing cytotoxicity and increasing ROS to modulate
nitric oxide production. Nitric oxide, generated by nitric oxide
synthase, is important for maintaining vasodilation and normal
tissue perfusion in health and disease (88, 89). Activation of
endothelial cells further promote adhesion and transmigration
of leukocytes to tissues. In mice, ischemic reperfusion injury
can result in elevation of extracellular histones triggering the
production of proinflammatory cytokines (90). in vivo histone
injection into the renal arteries of mice induces acute kidney
injury by directly causing renal tubular cell necrosis and
expression of IL-6 and TNF-α via TLR2 and 4 (91).

Acute respiratory distress syndrome (ARDS) is characterized
by disruption of the alveolar-capillary barrier resulting in
increased permeability of the endothelial and epithelium
leading to protein-rich edema and subsequent respiratory
failure. Migration of neutrophils from the vasculature into
the interstitium and bronchoalveolar space is a key feature
of ARDS in sepsis. NETs in bronchoalveolar lavage fluid
collected from septic people and dogs with ARDS have recently
been documented indicating that transmigrated neutrophils
undergo NETosis in naturally occurring ARDS (56, 57, 72,
92). Serine proteases released via NETosis can have a direct
pathophysiological role in the progression of ARDS. For example,
proteinase-3, cathepsin G and NE can degrade surfactant D
and A, both of which are important in the clearance of
inflammatory cells and attenuation of residual inflammation
(93, 94). in vitro studies have shown that NE increases alveolar
epithelial permeability by altering the actin cytoskeleton of
epithelial cells (95). Extracellular histones released via NETosis
also may exacerbate neutrophil accumulation migration and
elicit direct destruction of the alveolar epithelium leading to
disruption of the alveolar permeability barrier.

POTENTIAL THERAPEUTIC TARGETS

Since the outcome in sepsis depends heavily on early recognition
and interventions, clinical assessment of NETs may serve
as a valuable biomarker for the early diagnosis of sepsis.
Direct visualization and quantification of NETs using
immunofluorescence microscopy in clinical samples can be
challenging since this technique is labor intensive and requires
advanced training in microscopy. Preliminary studies using flow
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cytometry and advanced sequencing to quantify surrogates of
NETosis like cfDNA, histones and nucleosomes in serum or
plasma have shown promising results as these methods are more
objective, reliable and repeatable than microscopy(96). Because
overzealous production of NETs causes organ dysfunction
and mortality, therapeutic interventions that target NET
production or individual NET components present novel
treatment strategies for sepsis. As mentioned previously, elevated
levels of cfDNA released from NETosing neutrophils can
have detrimental effects by activating the coagulation system
and inflammation. One study showed that delayed systemic
treatment of recombinant DNase in a mouse sepsis model
reduces organ damage and bacterial dissemination, while early
administration (2 h after cecal ligation) yields the opposite effects
suggesting that NET-targeted therapy may be time-dependent
(14). Interestingly, findings from a different study showed that
early and concurrent treatment with DNase and antibiotics
resulted in improved survival, reduced bacteremia and organ
dysfunction(15). This indicates that combined therapies
that incorporate conventional treatments such fluid therapy,
antibiotics and NET-targeted drugs can potentially optimize
treatment efficacy and outcome in clinical septic patients. To the
authors’ knowledge, there are no clinical trials to date evaluating
the use of systemic DNase in clinical sepsis.

Treatment of PAD4 is a suitable therapeutic target because of
its essential role in sepsis-mediated NETosis. In a mouse model
of lupus, systemic treatment with the PAD4 inhibitor, BB-Cl-
amidine, protects mice from developing NET-mediated vascular
damage, endothelial dysfunction and kidney injury (97, 98).
Sepsis models utilizing PAD4 knockout mice demonstrated that
PAD4 deficiency improves survival and decreases the severity
of organ dysfunction without exacerbating bacteremia (99, 100).
Nonetheless, since the long-term physiologic consequences of
systemic PAD4 inhibition are unknown, developing a suitable
targeted therapy for PAD4 can be challenging.

Given its proinflammatory, cytotoxic and prothrombotic
properties, citrullinated histone H3 (citH3) is a potential
molecular target in sepsis. By neutralizing circulating citH3
in a septic mouse model, Li et al. found that blockade of
citH3 significantly improves survival (101). Non-anticoagulant
heparin, which binds to extracellular histones with minimal
affinity to antithrombin, has been shown to reduce histone-
mediated cytotoxicity, attenuate endotoxin-mediated lung injury
and improve survival in septic mice (102). Although citrullinated
histones have been found in canine and equine NETs, further
studies are needed to characterize their effects in these species
(Figure 1) (30). Activated protein C, a natural anticoagulant,
cleaves extracellular histones abolishing the ability of histones
to induce ex vivo platelet activation and potentially its cytotoxic

and proinflammatory properties (69). However, large-scale
randomized clinical trials evaluating the efficacy of recombinant
protein C for human septic patients did not demonstrate any
clinical benefits of protein C, ultimately, leading to its withdrawal
(103).

Because platelet activation and platelet-neutrophil interaction
are crucial for NETosis to occur, antiplatelet therapy may

attenuate NETosis and its detrimental effects in sepsis. Recent
studies in human and canine platelets have shown that
endotoxin-mediated platelet activation requires excessive
production of eicosanoids like thromboxane A2 (104, 105).
In a mouse model of endotoxin-triggered acute lung injury,
pretreatment of mice with acetylsalicylic acid or aspirin, which
prevents thromboxane A2 generation, decreases intravascular
NET formation and the degree of lung injury (57). Inhibition of
the platelet ADP receptor, P2Y12, may also attenuate platelet-
neutrophil interaction and NETosis, as endotoxin-mediated
platelet activation is dependent on ADP in canine and equine
platelets (19). Interestingly, prehospital administration of
antiplatelet therapy has been shown in several observational
studies, to be associated with improved outcome in human
clinical patients with sepsis(106, 107). A large-scale clinical trial
evaluating the benefits of aspirin therapy in sepsis is currently
underway (108).

CONCLUSION

Evidence in the literature indicates that NETosis is a highly
conserved mechanism of innate immunity among numerous
species. Research in mice and people demonstrates that the
dysregulation of NETosis caused by sepsis can have detrimental
effects resulting in inflammation, thrombosis and multiple organ
failure. NETs may play a similar pathophysiological role in other
species. NETosis and NET components are potential therapeutic
targets for the treatment of sepsis.
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