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ABSTRACT OF THE DISSERTATION

Towards a Systematic Analysis of IoT Malware

by

Ahmad Darki

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2020

Prof. Michalis Faloutsos, Chairperson

Internet of Things (IoT) malware established itself as the new type of threat after

enabling the most intense DDoS attacks to date using Mirai botnet. All indications suggest

that the problem will become more acute. First, there is widely-available source code of

IoT malware such as Mirai and BASHLITE making it easy for BlackHat hackers to create

their own botnet. Second, such malware employ capabilities to target particular group of

IoT devices and perform different malicious operations such as harvesting network traffic in

routers. Third, there is evidence of IoT malware getting better: new families appear and ex-

isting families evolve and adopt sophisticated techniques, including proliferation techniques,

and types of C&C discovery mechanisms.

In the first Chapter, we tackle the problem of malware attacking home routers.

Router-specific malware has emerged as a new vector for hackers, but has received relatively

little attention compared to malware on other devices. We propose, RARE, a systematic

approach to analyze router malware and profile its behavior focusing on home-office routers.

The key novelty is the intelligent augmented operation of our emulation that manages to fool
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malware binaries to activate irrespective of their target platform. RARE has the ability to:

(a) instantiate an emulated router with or without malware, (b) replay arbitrary network

traffic, (c) monitor and interact with the malware in a semi-automated way.

In the second Chapter, we develop RIoTMAN, a comprehensive emulation and

dynamic analysis platform for IoT malware. RIoTMAN can activate the malware and

communicate with it to explore its spectrum of behaviors. The power of our platform lies

on two key novelties: (a) Iterative Adaptation, and (b) Automated Interaction.

In the third Chapter, we perform longitudinal study on all IoT malware to analyze

their behavior on the host and networking level. In this study, we break down the malware

techniques and tactics inspired by MITRE ATT&CK framework. We profile the techniques

that the IoT malware employs to communicate with the botnet, recruiting devices, and

the protocol used to communicate with the C&C server. Moreover, by impersonating their

server, we issue control commands for the malware to enter its proliferation phase or start

a DoS attack. One of the outcome of our study is the TBs of attack traffic from real IoT

malware which can be further used in related studies.

Lastly, we develop techniques to explore IoT malware behavior under different

analysis environment configuration. First, we identify the techniques that a given IoT mal-

ware uses to identify the target environment. Second we perform dynamic executions under

different target platform using RIoTMAN and profile changes in the malware behavior. We

identify malware that exhibit 8 distinct behavior depending on the target environment.
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Chapter 1

Introduction

With their quick emergence, Internet of Things (IoT) devices have established

themselves as a unique addition to the cyberspace. Their lightweight design have made

them a favorable approach in producing sensors and single purpose devices in mass. Gartner

anticipates the number of Internet-connect IoT devices to exceed 5.8 billion by the end of

the year 2020 [81]. This preference by device manufacturers introduces opportunities for

fast growth. However, this also raises concerns about the security practices that have been

taken into consideration during their design.

In an era where the Internet is inundated by IoT devices, the security implications

brings about an opportunity for criminals to take advantage of the abundance of such

device. The lack of secure software development practices has enabled numbers of software

vulnerabilities embedded in their IoT device firmware [56].

The number of attacks on IoT devices has exponentially grown in the past few

years [72]. We observed the largest DDoS attack recorded being carried out by Mirai
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botnet of infected IoT devices [20]. In addition, with the release of botnet malware source

code [129] it has made it possible for black hat hackers to deploy more advanced botnet.

For example, TheMoon malware in February 2014 consisted of simple C&C infrastructure

and a few proliferation techniques which later in May 2018 was redesigned to exploit newer

vulnerabilities [143] and had a more sophisticated botnet architecture [191]. All indication

suggest that this threat continues to become more acute.

Problem Definition

The overarching problem we address in this dissertation is: “How can we execute

and analyze IoT malware effectively and efficiently?” More specifically, given an IoT mal-

ware we want to extract information about its target environment and its OS and network

behavior. We propose and implemented tools and techniques to achieve our goal of execut-

ing and analyzing their behavior. We propose novel approaches to automatically identify

the target platform of a given IoT malware and analyze its dynamic behavior. We conduct

longitudinal analysis to automatically engage with the IoT malware as its C&C server to

explore its malicious functions.

Challenges and Assumptions

Following we list the main challenges faced in analyzing IoT malware:

Activating the malware: The plethora of diverse set of IoT devices makes

the problem of analyzing IoT malware more challenging. Compared with PC and smart

phone malware, IoT malware targets a wide range of devices running on different CPU

architectures (such as MIPS, ARM, and PowerPC) under different versions of Linux kernel.
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Almost all IoT devices have vendor specific hardware peripherals that can not be simulated.

Activating a given IoT malware requires knowledge about its target platform and simulating

that is not a trivial effort.

Reducing manual effort: In addition to correctly identifying the target platform

for a given IoT malware another challenge rises with large scale analysis. Given their rapid

growth, we are faced with a large number of IoT malware that require automated malware

analysis. Automatically identifying and creating the target platform for a large number of

IoT malware is a challenging problem.

Engage in communication: For an in-depth analysis, the goal is to make all

the resources available while analyzing a given malware. This includes enabling network

communication and engaging in communication with the malware. The challenge is to

simulate a realistic networking environment for the malware to both contain its spread and

engage in communication with it.

Sensitive IoT malware: More complex IoT malware threat has been observed

to enable state sponsored Advanced Persistent Threat (APT) attacks. Such malware and

similar ones are crafted to start activating or engage in specific activities if the target

environment hosts certain criteria. Identifying such criteria and observing change in the

malware behavior is not a trivial task and requires expensive and heavy in-depth analysis.

Related Work

Although a significant amount of work has been done in analyzing malware behav-

ior, however, there is little research in the space of IoT malware. We group the overarching

related work in the following categories:
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(i) Linux sandboxes and emulators [120, 65, 161]; (ii) studies of malware traffic in

the wild [43, 20, 119]; (iii) IoT binary and firmware analysis [46, 56, 204, 88]; (iv) studies

on malware behavior analysis [115, 109, 53, 52, 158, 159, 28]; (v) studies on environment

sensitive malware [27, 104, 121, 116, 106, 107, 77, 147, 199, 132, 152, 110, 198]. In each

chapter we discuss the related work in more depth.

In this dissertation, we propose novel techniques to analyze the malware targeting

IoT devices. We developed tools and analysis environment to perform dynamic and static

analysis on the malware binaries and record their execution traces. We profile malware

infection process, proliferation techniques, C&C server communication protocols, and other

malicious activity.

The flow of this dissertation is as follows. In Chapter 2, we tackle the problem

of malware attacking home routers by creating tools and proposing techniques to identify

an infected router. In Chapter 3, we develop an IoT malware analysis tool to activate and

engage with any given malware in an automatic way and record its execution traces. In

Chapter 4, we perform a longitudinal analysis on more than 3000 IoT malware to to profile

their behavior in both OS and networking level. Finally, in Chapter 5, we propose techniques

to analyze IoT malware sensitive to target environment and identify new behaviors that are

not observable otherwise. Following, we highlight the motivation and the novelty of each

Chapter.
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RARE: Riverside’s Augmented Router Emulation

Our goal in Chapter 2 is to analyze and profile the behavior of a router malware.

Router-specific malware has emerged as a new vector for hackers, but has received relatively

little attention compared to malware on other devices. A key challenge in analyzing router

malware is getting it to activate, which is hampered by the diversity of firmware of various

vendors and a plethora of different platforms. We propose, RARE, a systematic approach

to analyze router malware and profile its behavior focusing on home-office routers. The key

novelty is the intelligent augmented operation of our emulation that manages to fool malware

binaries to activate irrespective of their target platform. This is achieved by leveraging two

key capabilities: (a) a static level analysis that informs the dynamic execution, and (b)

an iterative feedback loop across a series of dynamic executions, whose output informs

the subsequent executions. From a practical point of view, RARE has the ability to: (a)

instantiate an emulated router with or without malware, (b) replay arbitrary network traffic,

(c) monitor and interact with the malware in a semi-automated way. We evaluate our

approach using 221 router-specific malware binaries. First, we show that our method works:

we get 94% of the binaries to activate, including obfuscated ones, which is a nine-fold

increase compared to the 10% success ratio of the baseline method. Second, we show that

our method can extract useful information towards understanding and profiling the botnet

behavior: (a) we identify 203 unique IP addresses of C&C servers, and (b) we observe an

initial spike and an overall 50% increase in the number of system calls on infected routers.

5



RIoTMAN: Riverside’s IoT Malware Analysis

The motivating question in Chapter 3 is how can we conduct dynamic analysis on

a given IoT malware efficiently? A key challenge is that such malware target a plethora of

different devices, which makes finding the target device not trivial. This problem does not

appear nearly as much in PC and smartphones malware, where devices are more uniform.

The contribution of our work is two fold: (a) we develop RIoTMAN, a comprehensive

emulation and dynamic analysis method, and (b) we study the dynamic behavior of 2885 IoT

malware systematically. The power of our platform lies on two key novelties: (a) Iterative

Adaptation, and (b) Automated Engagement. First, RIoTMAN employs an intelligent

iterative process that incrementally “builds” the configuration of the target device. Second,

our platform automates the interaction with the malware during the Iterative Adaptation

and C&C server impersonation phase. We have studied more than 2885 malware binaries

that encompass major IoT malware identified between July 2014 and January 2018. First,

we achieve an activation rate of 93% of the binaries which includes 173 malicious samples,

which are reported as benign by Virustotal. Second, we engage with malware 79% of the

binaries impersonating their C&C server: we make the malware initiate a DDoS attack, or

enter its proliferation mode. Finally, we study and document some ingenious techniques

that malware uses, including detecting the emulation environment, safeguarding against

anti-virus methods, and making itself persistent.
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A Longitudinal Study of IoT Malware Behavior

Understanding the techniques that malware uses to exploit the resources on an IoT

device and communicate with its server (or the rest of the botnet), helps with identifying

the best practice to contain such threat and further mitigation. Most effort in malware

analysis has focused on the behavior of the malware on PC and smartphone platform and

little work has focused on IoT malware

In Chapter 4, we conduct an extensive study on IoT malware binaries collected

from the wild to understand: 1) the techniques and tactics they use to exploit the infected

IoT device, 2) the proliferation techniques that IoT malware uses, 3) different communi-

cation protocols that are used to operate the malware. We perform exhaustive automated

dynamic analysis on 2885 malware binaries to study their behavior. We show: a) a break-

down of the IoT malware techniques used for exploiting an infected device which speaks

volumes about the differences between IoT malware and that of a PC or smartphone, b)

2 host scanning techniques that can be attributed to botnets characteristics i.e. either a

botnet with more infected devices or one infecting more diverse sets of devices, and c) by

identifying and impersonating their server, we are able to issue control commands to trigger

different denial of service (DoS) functions as well as instructing the malware to reconfigure

or terminate itself.

We have collected magnitudes of TB of real attack traffic from our simulated

environment and which we make available for the community.
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Systematic Analysis of IoT Malware Behavior in Target En-

vironment

One of the critical challenges in analyzing malware is to observe its behavior in

an emulated target environment. However, emulating all possible environments is not a

feasible task given the plethora of IoT devices.

In Chapter5, we present a novel and systematic approach to analyze IoT malware

with polymorphic behavior under different targeted environment. First, we identify the

techniques that malware uses to inquire the type of target environment. Second, we perform

dynamic execution under the different target environment and profile the changes in the

malware behavior. We show case the capability of our approach using real world IoT

malware and identify 3 main type of malware: 1) malware that employs “query and infect”

technique to verify the target environment and infect it: for example a set of 11 malware

binaries exhibit 8 different infection process based on the target environment; 2) malware

that have “split” personality: malware identifies artifacts of analysis environment and stop

its execution 3) malware with “hidden” behavior: malware that reveals additional behavior

upon identifying the specific targeted environment.

Our findings in this work is an indication that IoT malware analysis requires more

scrutiny with respect to its targets.
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Chapter 2

Systematic Augmented Router

Emulation for Malware Analysis

Compromising routers is emerging as a new type of threat with potentially devas-

tating effects [148]. For example, on October 2016, in Mirai botnet attack there has been a

series of DDoS attacks on Dyn, Inc. servers using IoT devices including routers [20]. The

lack of mature protection technologies makes this a fertile ground for attacks. We argue that

a compromised router provides significant new capabilities to an attacker, beyond those of

a compromised end-device. By compromising a router, the attacker can: (a) access or block

the network packets going through it, (b) steal cookies and session IDs[149] to impersonate

the user or compromise her privacy, and (c) hijack and redirect communication via a DNS

redirection to rogue DNS server.

Attacking and protecting routers is significantly different compared to laptops and

desktops, therefore new methods and tools are needed. First, routers have limited resources

9



Figure 2.1: RARE gets the router malware to activate and communicate with the C&C
server in the 3rd run of its iterative operation. We plot the number of system calls for each
1300 seconds of a run. The baseline approach is shown first. The 1st run of RARE is an
emulation informed by the static analysis only. Each subsequent run is informed by the
previous run.

in terms of CPU, and memory. Therefore, malware developers have less resources in their

disposition. However, the same challenges apply to the security solutions as well. Second,

routers have variable device configurations [90] that decreases the applicability of both

malware, and system analysis tools. The former is a challenge for malware authors, while

the latter is a challenge for any emulation capability, which needs to pretend to be many

different configurations in order to get firmware and malware to run. Finally, many, if not

most, router firmware are proprietary, and thus difficult to emulate [46].

Our goal in this work is to fully understand router malware binaries and their

operation focusing on off-the-self home-office routers.The desired output of this work is

two-fold. First, we want to analyze the malware in order to create an environment that
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will “fool” it to activate and reveal its behavior. Second, we want to profile and distinguish

the behavior of an infected router from that of a benign one. The overarching challenge is

the plethora of proprietary firmware and hardware router configurations, as we mentioned

above. In addition, there is a scarcity of tools for static analysis for MIPS and ARM

architectures, which are the most common platforms for routers. Such tools could have

helped inform the emulation environment. As we will see below, a straightforward emulation

attempt could have a very low success rate in fooling the malware to activate.

Router malware has received relatively little attention compared to malware on

other devices. We can distinguish the following areas of research: (a) developing emulator

capabilities [30, 92, 71, 178, 71, 178], (b) vulnerability analysis for embedded devices, [56,

46, 55, 76], and (c) malware analysis focusing on PC and smartphone based malware [52,

115, 109, 110]. We discuss related work in section 2.4.

We propose, RARE (Riverside’s Augmented Router Emulator), a systematic ap-

proach to analyze router malware and understand its behavior in depth. The key novelty

is the augmented operation of our approach, which fools malware binaries to activate irre-

spective of their preferred target platform. In other words, instead of trying to guess the

right router platform for each malware, we start with a generic one and we carefully and

iteratively “adapt” it to fool the malware. This is achieved by leveraging two key capabil-

ities: (a) a static level analysis that informs the dynamic execution, and (b) an iterative

feedback loop across a series of dynamic runs, the output of which informs the subsequent

run. We provide an overview of our approach in Figure 2.2.

From a practical point of view, RARE has the ability to run the malware on
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an emulated router and consists of the following modules, whose goal is to: a) extract

information for malware execution by analyzing the binary statically, b) create an emulated

router enhanced with the appropriate configurations that a malware needs for its execution,

c) inject malware into the router and fool it to activate, d) replay pre-recorded network

traffic with crafted C&C responses to malware requests, e) enhance the emulation using

information derived from the previous runs. This process works in an iterative fashion to

enhance the emulation using information from previous runs in order to have the malware

to activate itself.

We evaluate our approach using 221 router-specific malware binaries from a community-

based project, which requested to be anonymous. Our results can be summarized in the

following points.

a. Achieving 94% malware activation success ratio, and 88.8% for ob-

fuscated malware. We show that our system is successful in fooling malware to activate,

as 94% of our binaries become active. We say that a malware binary activates, when the

malware attempts to communicate with the C&C server. By contrast, an emulation with-

out any of our augmented functions, which we refer to as baseline, can activate only 10%

of the binaries. Furthermore, our approach manages to activate 88.8% of our obfuscated

binaries, which are the types of binaries that are especially crafted to outplay static anal-

ysis techniques. We show the iterative operation of our approach in Figure 2.1, where we

plot the number of system calls for each run. Note that the malware is activated within a

sandboxed environment and thus does not pose any threat to real devices

b. Extracting useful information: IP addresses, and domains. Having
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this powerful capability, we are able to extract useful information for the malware. We find

203 malicious IP addresses and domains, and we naturally consider these addresses

to be malicious, since they are or have been used for botnet communications. Note that

using just static analysis, we find less than 25% of these C&C communication addresses

and domain names.

c. Developing infected router profiles. We identify features for detecting

infected routers. Specifically, we observe an initial spike and a 50% increase in the number

of system calls in infected routers. We also observe an initial large spike and a subsequent

slight increase in the number of active processes.

Our emulation capability is a powerful building block towards understanding router

malware. As a preview of the capabilities provided by RARE, we discuss how we assumed

the botmaster role for two malware binaries at the end of section 2.3. Finally, we intend

to make our tool, the malware binaries, and the data traces available upon request to

researchers.

2.1 System Design and Implementation

We present an overview and highlight the novel capabilities of our approach.

Philosophy. We adopt the following approach: we start with a general purpose

platform and learn what the malware needs to activate through a sequence of executions.

A visual depiction of RARE is shown in Figure 2.2. The key capabilities of the

system are listed below: a) it can perform static analysis on the malware to extract in-

formation for its execution, b) it can instantiate an emulated router with hints on what
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Figure 2.2: Overview of the key components of our approach. A key novelty is the feedback
loop that enables previous runs of the malware to inform the subsequent run in order to
fool the malware to activate.

configurations the malware wants to “see”, c) it can replay arbitrary network traffic and

response to malware requests, and d) it can monitor the malware and provide information

to subsequent runs of the same malware. If the malware fails to activate, we repeat the

process, and the last step provides information that guides the new execution.

Defining success: malware activation. We set as our goal for the emulation

the activation of malware: we want the malware to feel “comfortable” within the emulator,

so as to attempt to contact its bot-master. After reaching this point, we enter a new stage:

if the C&C server responds, the malware will enter a stand by mode waiting for C&C

commands. We define this stage as “activated” stage of the malware. A subsequent goal is

to turn one’s self into the bot-master, by reverse engineering the communication protocol

with the bot, which we achieve for some of our binaries (see the discussion in section 2.3).
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We present the key functionality, novelty and challenges of each module.

a. Static Analysis Module. The first step is to analyze a given malware

binary statically to extract as much information as possible. The purpose is dual: (a) we

want to inform the dynamic execution, and (b) we want to understand as much about

the malware, which could have independent interest. Specifically, this module provides the

following information to the dynamic execution: a) IP addresses and domains that malware

will possibly contact, and b) files and resources that the malware will attempt to access.

This information is collected by the Intelligent Execution module and is provided to the

Emulation Engine module. In more detail, we currently use IDA-Pro [95] for the static

analysis, but one could envision using other tools with similar capabilities. Therefore, we

developed several non-trivial plug-ins, specifically for MIPS and ARM architectures, such

as extensions to extract communication tokens, and control flow information which are the

main components that assists this module.

b. Emulation Engine Module. This module provides the basic capabilities

for emulating the router with the provided augmenting information and records execution

traces. This module can: (a) instantiate an emulated router, (b) inject malware into the

router, (c) replay pre-recorded network traffic or crafted C&C responses for the malware

requests, (d) receive commands and information from the Intelligent Emulation malware in

order to convince the malware to activate. The emulation is hosted in an Ubuntu server

and QEMU [31] (an open source and widely used tool) is used to emulate the router hardware

of interest, which here is ARM and MIPS.

We have made significant extensions and engineering in order to enable all the
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functionality. For example, we modify QEMU to recognize two subnets to represent the

enterprise network and the rest of the Internet. We also added the ability to interact with

the router through the network interfaces connecting to subnets, which is further discussed

in the Traffic Replay module. For the firmware of the instatiated router, we use OpenWrt [7],

which is fairly widely used codebase and it is considered as a reference firmware for routers.

OpenWrt has the essential basic modules of a home router such as DHCP server, packet

forwarding and routing, and a web interface. We added the monitoring capabilities to the

instantiated router to collect execution traces for the router for further behavioral analysis,

which we discuss in the Profiling and Monitoring module.

c. Intelligent Emulation Manager. The key novelty of RARE is represented

by the Intelligent Emulation Manager module. This module drives the emulation in a way

that achieves malware activation. First, it uses information from static and dynamic analysis

in the previous two modules. The intelligence of the emulation is based on a feedback loop

that gets execution information from each run. Every run is a clean start of the router

augmented with information about the malware’s requirement to fully execute itself. This

loop represents the learning process of our approach. Second, the module facilitates the

manual interaction with the malware, such as crafting C&C responses.

d. Traffic Replay Module. To observe a router in its natural element, we

developed the Traffic Replay module, for replaying arbitrary network traffic to the router.

Our module can get a real trace of two directions, incoming and outgoing, and replay it

through the emulated router. This module is built on top of tcpreplay [21], but signif-

icantly we added new functionality. For example, the concept of incoming and outgoing
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traffic needed significant engineering, as it was not fully provided by tcpreplay. We also

needed to take care of implementation issues, such as timing the replay traffic through the

router. The network traffic we use is real traffic data from project MAWI [50], ensuring

that we capture the beginning of each TCP flow across different days and different hours.

Another key feature in this module is its ability to inject traffic at the command of the In-

telligent Emulation Manager. This allows us to impersonate the C&C server by providing

server responses and commands. In other words, our approach combines the knowledge of

who the malware attempts to talk to, and what the malware expects to hear, through the

deep profiling in the Static Analysis and Profiling and Monitoring modules, and we expect

to be able to fully explore the intention and capability of the malware. We further detail

the implementation of this module in Section 2.2.

e. Profiling and Monitoring Module. This module synthesizes information

from the static analysis and dynamic executions with the following goals. We want to: (a)

“understand” the malware in order to create an environment that will make it to activate,

and (b) profile the behavior of the infected router in order to distinguish it from that of a

benign one.

We list the types of data that this module collects and analyzes.

● Network Traffic: The module collects the network traces for both router interfaces

(think incoming and outgoing) and analyzes them. The goal is to observe packets and

flows generated by the malware, so that we can respond to them as if we are the C&C

server. We can determine if a packet is generated by the malware by comparing the

log files of the execution with and without the malware.

17



● OS System Calls: The module also collects the system calls at the operating system

level. The goal is to extract information for augmenting the next iteration of the

emulation. For example, the malware usually checks for existence of different files in

the system as a means to infer which platform it is operating on. Another family of

malware uses the /proc/sysinfo file to infer the CPU architecture, while in another

family they use banner file.

● System Processes: The module also monitors the processes in the router, which pro-

vides a complementary view on the behavior and intentions of the malware. For

example, several malware binaries kill: (a) processes in the router in order to free up

resources for themselves, (b) security processes, such as the iptable firewall process,

and (c) user access processes, such as the http server process.

This module initiates the feedback-loop by providing the information to the Intel-

ligent Emulation Manager to ensure that it can “fool” the malware to reveal itself and even

believe that it is communicating with its C&C server.

Finally, this high-level description of our approach can be seen as a blueprint for

a router malware analysis tool. Although in RARE, we have made specific implementation

decisions for each module, functions and methodologies can be modified and replaced easily

due to its modular design.

2.2 Replaying Traffic

In this section we show the technical implementation of the Traffic Replay module.

We explore the steps that are taken to enable the network traffic replay.
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Step 1. Prepare traffic. In our design of RARE our goal is to replay the

previously recorded traffic as the live traffic that the simulated router processes. In doing

so, given a cap network traffic file, we split it into two separate sets:

● Client traffic: We consider a given flow or traffic belongs to a client if they initiate

the traffic: a TCP SYN packet was sent or in case of UDP, a DNS request was made.

Also, we presume client traffic if ICMP port unreachable traffic is destined to the

client.

● Server traffic: Following the same technique as above, we assume server traffic if the

traffic is in a response to the clients such as sending TCP SYN/ACK or DNS reply.

Figure 2.3 shows by splitting the traffic into clients and server our emulation

sandbox will perceive the two sides of a router which are the server side (known as wan) and

the client side (known as lan). It is crucial to point that given the traffic is being replayed

via a bridge network device by using Linux TAP, we have to rewrite the MAC address of

the client and destination to the that of the lan and wan Ethernet address respectively.

This is because in TAP setup, the routing occurs on the MAC layer.

2.3 Evaluation

We evaluate our method to assess the effectiveness of RARE in activating the

malware and profiling the behavior of malware.

The malware binaries. In our evaluation, we use malware binaries that were

collected from a community-based project, that requested to stay anonymous. These sources
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Figure 2.3: Overview of the client and server side of the sandbox in RARE’s Traffic Replay
module. Note that the MAC address of the packets have to be changed to the Ethernet
address of the emulated router.

use honeypot and manual effort to collect these malware binaries. We have a total of 221

unique malware binaries targeting MIPS Big Endian (BE), MIPS Little Endian (LE), and

ARM architectures. We focus on these architectures given that they are the most common

ones in routers.

Network traffic. A key feature of our emulation is that we can do experiments

using arbitrary network traffic. We report results with real network traffic from MAWI [51]

with a duration of 1300 seconds. Note that we have experimented with other data traces,

and also observed the router with no traffic at all.

The baseline approach. We define the baseline approach, as an emulation using

the RARE infrastructure (OpenWrt over QEMU) but without any of the intelligence of our

approach. We inject the malware in such an instance of an emulated router, and we monitor

its behavior as the traffic passes through.

20



Table 2.1: The success ratio of our solution RARE compared to a baseline method.

Baseline RARE

Binaries Raw No. Percentage Raw No. Percentage Avg Runs

All 221 23 10.4% 208 94.1% 3

Packed/Obfuscated 45 5 11.1% 40 88.8% 3

ARM 101 11 10.9% 91 90.1% 3

MIPS BE 77 6 7.8% 75 97.4% 2

MIPS LE 43 6 14% 42 97.6% 3

Evaluation.

For each malware and data trace, we compare the following approaches in exe-

cutions with and without the malware: (a) Baseline run: which is the approach described

above. (b) RARE run: The emulation gets augmented with the information extracted from

the malware in each run. We define each execution as kth run, being 1st emulation informed

by Static Analysis module and later runs informed by the behavior observed in the previous

run.

Defining failure: no malware activation by the 6th run. Setting a high

standard for our approach, we require that we achieve malware activation by the sixth run.

If this does not happen, we consider this a failure.

A. Evaluating RARE: 94% malware activation success. Using our tool we

have been able to reach activation for 208 malware binaries out of 221. Table 2.1 details this

21



Bas
el

in
e

1s
t 
Run

2n
d 

Run

3r
d 

Run

4t
h 

Run

5t
h 

Run

6t
h 

Run

7t
h 

Run

8t
h 

Run
0

50

100

150

200

250

N
u

m
b

e
r 

o
f 

IP
 A

d
d

re
s
s
e
s
 a

n
d

 H
o
s
ts

Number of IP Addresses and Hosts

Figure 2.4: The number of extracted IP addresses and hosts rises with every run.

China United States Europe Others
0

10

20

30

40

50

60

70

N
u
m

b
e
r 
o
f 
IP

 A
d
d
re

s
s
e
s
 a

n
d
 H

o
s
ts

Figure 2.5: Distribution of the geolocation of the detected IP addresses.

22



success by comparing RARE with baseline approach. We report the average number of runs

that RARE needed in order to reach activation for the binaries in that group that reach

activation. We see that RARE requires a relatively low number of repetitions on average,

namely three. We also separate the malware based on the target architecture: ARM, MIPS

BE, and MIPS LE.

RARE exhibits great performance even for obfuscated malware. We

compare the two approaches on 45 obfuscated malware binaries, as, for these binaries,

static analysis cannot be used. Although there is a drop, our approach maintains a success

ratio of 88.8%.

What does the malware need to activate? We observe an interesting and systematic

progression in the types of requests that the malware generates. In the first few runs,

the malware binaries typically attempt to change or check the existence of files, such as

configuration files such as /etc/ISP name or web interface files from Linksys and TP-Link

routers, which are found specifically in home routers routers or specific brands of routers.

Subsequently, some binaries attempt to tamper with different routing services, such as

libnss and DNS, or change the routing table to subvert traffic. Typically, in the last run

before the activation stage, the malware tries to resolve the hostname to locate its C&C

server. In response, we inject DNS lookup responses using our Traffic Replay module. Note

that, in our system, we retrieve the request that led to the failure using the Profiling and

Monitoring module, we prepare for the subsequent run accordingly. As an example, when

running one of the binaries an HTTP request to userRpm/SoftwareUpgradeRpm.htm (part

of the TP-Link web interface) is observed which tampers with the installed firmware on
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the router. Failure to respond to this request will interrupt malware’s execution. Using

the Intelligent Emulation Manager module the appropriate web interface is installed for the

next clean run of the router emulation.

Why do some malware fail to activate? This is an open question, which we will

continue to investigate in our future work. In many of the malware requests listed above, we

are able to provide a fake answer or a fake file. In most of the cases where we fail to do so,

the malware tries to dynamically link to a custom library, which are not publicly available.

Furthermore, these malware binaries are usually obfuscated, so faking the libraries is not

straightforward.

B. Extracting useful information: 203 botnet IP addresses/hosts. We

highlight initial elements of the information that we can extract with our approach. Overall,

we find that RARE finds 203 malicious entities, IP addresses and host names, which are

used used by the malware for botnet communications.

Static analysis: 48 addresses and hosts. Using static analysis, we traversed

the CFG for all the paths from binary’s Entry Point to system call connect and traced

the input arguments values. We were able to extract 22 unique IP addresses and 26 host

names.

RARE dynamic analysis: 155 addresses and hosts. Using RARE’s consec-

utive runs, we extracted an additional 155 IP addresses and hosts. As shown in Figure 2.4

with every run the number of extracted IP addresses and hosts rises until the 6th run after

which no new IP or hosts are detected.

The dynamic analysis finds 75% of the malicious entities. The corollary
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Figure 2.6: The number of system calls of a benign and two infected routers for the last 1200
seconds of the execution. The infected routers have consistently 1.5 times more system
calls.

of the observations above is that the dynamic analysis is essential in detecting malicious

entities of botnet communication. Using just static analysis, we find less than 25% of

these C&C communication addresses and domain names. The issue is that the malware

often obfuscates the addresses and the domain names, by using hexadecimal numbers and

using number transformation and encryption techniques. For example, one binary has the

following address generation approach: a hardcoded hexadecimal base value, and a function

that adds decimals values to this base to obtain a series of IP addresses.

What is the geographical distribution of these malicious Internet entities? In

Figure 2.5, we do a reverse look up to identify the geolocation of the IP addresses, and we

observe that China (64.3%) and United States (18.7%) are the top destinations for hosting

C&C servers. Many times these botnet entities could be compromised machines. In figure

2.4, we plot the number of malicious IP addresses extracted at each run of RARE. Initially,

more information is extracted with each run, but this stops by the sixth or seventh execution
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Figure 2.7: The number of active processes of a benign and two infected routers for our
1300 sec experiment. Initially, the malware spawns child processes to make itself persistent.

for most binaries.

C. Profiling infected router behavior. Our approach gives us the ability to

compare the behavior of non-infected and infected router with a rich set of information at

both the network and OS layers.

In all malware, we observe an increase in the number of system calls of almost 50%

or more in an infected router compared to a benign one. Figure 2.1 shows a comparison

of the number of system calls between infected router using the baseline, and the different

RARE executions (numbers 1 to 8). This particular malware binary, reaches the activation

stage at the third run. On the fourth run, we impersonate the C&C and we start issuing

commands to the malware.

To better understand the malware, we show the number of system calls over time

for two infected routers compared to a benign one in Figure 2.6. For visual clarity, we

show only 1200 seconds of the execution to avoid the huge initial spike which corresponds

typically to the reconnaissance of each malware. However, we do show the initial spike
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in the number of processes of an infected router in Figure 2.7: the malware makes itself

persistent by spawning child processes.

Discussion: Becoming the botmaster. Using RARE we identify the functions

available on two of the malware binaries from MIPS LE and MIPS BE. This was achieved

by combining the static analysis and profiling information after the execution. We were

able to convince the malware that we are the botmaster, and we were able to have it do:

1) HTTP flooding, 2) reverse shell, and 3) kill processes based on their process ID.

2.4 Related Work

We briefly review related work due to space limitations.

Emulation techniques: Several emulation techniques and tools exist, but they

mostly focus on PC and Android platforms: Anubis [30], PANDA [68], DECAF [92]. The

approach is to simulate the target platform and apply monitoring tools to record the exe-

cution traces of the malware. PC and Android platforms and malware differ significantly

from router-specific ones, which is our focus here.

Vulnerability detection in embedded systems: Several recent studies focus

on detecting vulnerabilities in the firmware of embedded devices [56, 46]. Chen et al. [46]

argue that emulating platforms for specific firmware is not a trivial task since it includes em-

ulating hardware components designed by vendors who do not necessarily practice a global

Hardware/Software design standard. Other approaches [202] use real hardware to overcome

this difficulty, but introduce the high cost and overhead. In our case, with thousands of

router configurations, this approach would be very expensive and time consuming.

27



PC and smartphone malware studies: Many studies propose malware anal-

ysis tools using static or dynamic analysis. In static analysis, several studies focus on

Control Flow Graphs characteristics [52, 105]. Static analysis on binary code requires plat-

form specific tools, so PC-based or smartphone bases tools do not work for ARM and MIPs

platforms. A limitation of the static analysis is that it does not work for obfuscated mal-

ware [133]. Several studies use dynamic analysis to classify and distinguish between different

families of malware by studying the operation at the OS level [109, 115, 78]. In the PC and

smartphone space, getting the malware to activate is an easier task given the more limited

diversity in these platforms.

2.5 Conclusion

We propose, RARE, a comprehensive approach to analyze router malware. The

key novelty is the augmented operation of our approach: instead of trying to guess the right

router platform for each malware, we start with a generic one and we iteratively “adapt” it

to fool the malware.

Our system provide the following key capabilities: a) perform static analysis on

the malware, b) instantiate an emulated router, c) inject malware into the router and fool it

to activate, d) replay arbitrary network traffic, and e) profile the malware behavior. Using

real router malware, we are able to show that: (a) our system works effectively and manages

to activate 94% of all our binaries, and (b) we can extract useful and insightful information

from the execution of the malware. First, we find that we can identify malicious IP addresses

and domain names, which subsequently could be investigated and blocked in firewall filters.
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Second, we identify tell-tale signs of an infected router operation, such as 50% increase of

the system calls.

Our approach is a solid first step towards developing a key capability for an under-

served segment of devices. Although the results are already promising, we plan on expanding

the capabilities significantly in two different dimensions. First, we will develop a more

extensive static analysis capability, where we could infer the structure and key operations

of the malware code. Second, we will further explore how to fully interact, and ultimately

control both a bot, but ultimately a C&C server.
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Chapter 3

Comprehensive Emulation and

Dynamic Analysis Platform for IoT

Malware

New tools and techniques will be required to combat IoT malware, since it is

significantly different compared to computer-based and smartphone malware as discuss

further in Section 3.1. The first key difference is that IoT malware can exploit a largely

diverse set of devices, including industrial controllers, home sensors, and the power grid

infrastructure. As a result, even finding which is the target device for a given malware

binary is not an easy problem. Second, many of these IoT devices have limited resources,

which changes the rules of the game: (a) the malware is designed to operate within these

minimum resources, and (b) our ability to design counter measures is also limited. Finally,

these devices have traditionally been built without extensive security considerations, and
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Figure 3.1: Our automated iterative approach is able to activate and impersonate the C&C
server for an IoT malware.

this makes them a fertile ground for malware. It is indicative that, in most cases, IoT

botnets are discovered after they deliver their attacks or infection [20].

How can we effectively analyze IoT malware and engage with it to perform an

in-depth analysis? This is the problem we address in our work. We focus on conducting

dynamic malware analysis in order to analyze its malicious behavior. Specifically, given an

IoT malware binary, the goal is to: (a) activate the malware, by providing the appropriate

target device configuration and (b) engage with the malware in order to explore as much

of its functions as possible. We also consider a realistic assumption: we assume no prior

knowledge about the malware binaries, which makes the problem harder, but also more

relevant to practice.

Challenge 1. Activating the malware requires us to determine the right

target device in order to emulate it. Each malware may expect device-specific files, such as
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drivers and libraries from a plethora of target IoT devices, and some binaries target very

specific devices. In the absence of an appropriate configuration, the malware binary will

terminate its execution.

Challenge 2. Reducing the manual effort in engaging with the malware is

a challenge in studying its behavior effectively and at scale. Namely, even if the malware

is activated, how can we see the full spectrum of its functions without requiring significant

human effort and trial and error? Ideally, we would like to have the malware go through all

its phases, including connecting to its botnet, proliferating, and attacking.

So far, there have been limited efforts that focus on dynamic analysis tools and

emulation capabilities for IoT malware. A recent effort [57] analyzes Linux-based malware

and its behavior focusing on the operating system level interactions. Other related work can

be grouped in the following large categories: (i) Linux sandboxes and emulators [120] [65]

[86] [161]; (ii) studies of malware traffic in the wild [43, 20, 119]; (iii) IoT binary and

firmware analysis [46, 56]; (iv) Static and dynamic analysis of malware [115, 109, 53, 52].

We discuss related work in more detail in Section 3.4.

In this work, we develop RARE1, a comprehensive emulation and dynamic analysis

platform for IoT malware. Our approach is designed to addresses the two aforementioned

challenges by employing two techniques that complement each other: (a) Iterative Adapta-

tion, and (b) Automated Interaction. We depict the operation of our approach in Figure 3.1.

After several failed attempts, we create the required target configuration that makes the

malware activate in execution 4. From that point, we begin to “control” the malware by

impersonating its C&C server. We elaborate on the key novelties of our approach next.

1Riverside’s Augmented Router Emulator
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Novelty 1. Iterative Adaptation: Activating the malware. RARE employs

an Iterative Adaptation process, which incrementally creates the malware’s target device

configuration. The platform starts with a generic IoT hardware configuration, and keeps

executing the malware, while fine-tuning the configuration. The number of iterations range

from at least 3 and at most 8 depending on the type of malware, and whether it tries to

narrowly target a particular device.

Novelty 2. Automated Interaction: Engaging with the malware. Com-

plementing the iterative process, RARE has a suit of automation techniques that minimize

the need for manual effort. We collectively refer to these techniques as the Automated In-

teraction process. This automation facilitates two distinct phases: (a) while generating the

target device configuration, and (b) while impersonating its C&C server. In our platform,

we have created a knowledge base of: (a) more than 5000 files, and (b) 148 unique C&C

commands.

Our approach is an elegant and fundamentally different way to address the mal-

ware activation problem. The key advantages are: (a) cost effectiveness: we have one

“adaptive” emulation instead of a large array of pre-made but fixed device configurations,

and (b) wide-behavior exploration: our tool enables us to engage with the malware and

observe its multi-faceted behavior.

We evaluate the effectiveness of our tool using 2885 malware binaries including

128 packed or obfuscated binaries, which we collected from public and private sources, as

we discuss in Section 3.1. Our initial analysis results show the effectiveness of our platform

in executing and analyzing IoT malware:
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1. Activation success: 93%. We activate nearly all (93%) of our malware binaries.

This includes all the 128 packed and obfuscated binaries.

2. Activation of 173 hard to detect binaries. We were able to activate 173 binaries,

which other services and tools could not detect, even when provided with the binary.

In fact, at the time of writing, we submitted these binaries to Virustotal [181], a point

of reference in the security community, and none of the detection engines recognized

the binaries as malicious.

3. C&C impersonation success: 79%. We impersonated the C&C server for 79%

of our binaries. We consider the impersonation successful if we can issue at least one

command, that will make the malware initiate a behavior, such as its proliferation

process, a DDoS attack, or self-termination.

Our work in perspective. Our work is a building block towards understanding, pro-

filing, and mitigating malware outbreaks. Our dynamic analysis can provide: (a) “behavior

signatures” and (b) strategies for counter-attacking the malware, e.g. providing instructions

for taking over a botnet.

3.1 Platform Architecture

The system consists of several modules, which complement each other. We depict

the system architecture in Figure 3.2 and we discuss the role and function of each module

below.

The key novelty of RARE is two fold: (a) Iterative Adaptation, and (b) Automated
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malware then interact with the use of Iterative Learner capability along with Automation.

Interaction. These capabilities work in a synergistic way to: (a) incrementally create the

malware’s target device configuration starting from a generic setup, and (b) minimize the

need for any manual effort.

The Supervisor module: The Supervisor module oversees the whole operation.

It interacts with the user, initiates the analysis of a binary, and coordinates the execution of

the other modules, until the analysis is completed. Its key functions include: (a) collecting

information from the Static Analysis module, (b) initiating the emulation at the Sandbox

module, (c) interpreting the information from the Profiler module, and (d) repeating the

dynamic analysis to extract as much information about the malware as possible. We use

the term iteration to refer to each dynamic execution of the same binary. This module

implements a key novelty of our approach: the Iterative Adaptation process, as we mentioned

above and shown in figure 3.2.

The Automation module: This module automates the Iterative Adaptation

operation and enables the Automated Interaction mechanism. It facilitates the analysis

in two distinct phases: (a) while building the target device configuration, and (b) while

impersonating the C&C server. For this reason, we have created two separate databases
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that provide: (i) a collection of commodity IoT configuration files, and (ii) C&C server

protocol specifications.

One of the key challenges in designing this module is to understand the different

type of resource requests and respond to them correctly. For example, if a malware attempts

to accesses contents from non-volatile memory (NVRAM), this module will instantiate an

NVRAM simulation.

The Static Analysis module: This module performs static analysis on any new

binary in order to extract information, which could guide the execution. The information

can include the target CPU architecture and dynamic linked libraries, which we can typi-

cally extract even for packed and obfuscated binaries. When the binary is neither packed

nor obfuscated more information can be extracted. Leveraging IDAPro [95], we created

significant new functionality using IDAPython for different CPU architecture to identify

key functions, communication strings (e.g. embedded IP addresses), and in some cases,

encryption keys and IRC channel login passwords.

The Sandbox module: This module is the work-horse of our platform. It is

responsible for creating an emulated environment, where the malware is injected. The

configuration is provided by the Supervisor module, as discussed above. Each execution

starts without an infection, and the binary is injected once the emulation starts.

We highlight the key functions of this module. First, the module creates a virtual

environment based on QEMU [31]. We modified QEMU to enable network interaction

with the emulation instances. Second, this module adds monitoring capabilities at different

layers of observation including: system calls, library calls, and network traffic. It records
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execution traces along with network traffic and feeds the generated log files to the Profiler

module, as we discuss below.

The NetComm module: This module is responsible for all the network layer

communication, essentially emulating “the Internet”. Once activated, the malware starts

communicating: a) assessing the availability of connectivity, b) C&C server discovery and

connection, c) proliferating, and d) perform malicious network attack. However, this poses

a challenge of correctly identifying the intention of each packets that the malware generates.

The Profiler module: This module analyzes all the data that is collected during

the emulation in order to: (a) understand deeply the behavior in the current execution, and

(b) inform the next execution of the malware. The profiling synthesizes multiple levels

of information including: system calls, file accesses, hardware peripherals accesses, and

network layer communication. The analysis is performed by correlating the different level

of traces through a dependency graph. For example, when analyzing the intention of each

network packet, we use the series of system calls that lead to its creation starting from the

creation of the process and including all the file system accesses.

The outcome of the profiling provides critical input to the Supervisor module, in

order to set up the next execution. When analyzing a binary is completed, this module

provides an extensive report about the a wide-range of behaviors of the malware to the user.

The report can provide behavior signatures of the malware, which can be used to detect

and contain malware infections.
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3.2 Platform Implementation

This section provides a more in depth discussion and implementation issues of

RARE. We describe the key novelties and highlight key points and challenges for each

module and the key novelties: Iterative Adaptation and Automated Interaction.

3.2.1 The Supervisor module

The Supervisor module is the main component that drives RARE to perform the

analysis.

The operation of this module starts with selection of a malware and the following

steps are performed: (1) it sends the malware to the Static Analysis module for initial

analysis, (2) the derived information from Static Analysis module will be used to start the

Sandbox module for the first iteration of dynamic analysis, (3) later the Sandbox forwards

the execution traces to the Profiler module for execution analysis, (4) the Profiler module

generates analysis results, which include information about any failure in the dynamic

execution, (5) the Supervisor module uses the derived information from the Profiler module

to inform the subsequent iteration of execution, (6) with the use of Iterative Adaptation,

the Supervisor module incrementally builds the target device for the malware. The goal

is to drive the analysis towards “activation” and “engaging” with malware through C&C

server impersonation.

The Supervisor module is also responsible for terminating the analysis of a binary.

There are two reasons to do so:

1. No further changes: The analysis of a given binary should terminate, if we
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cannot “invoke” new malware behaviors.

2. Exceeding the maximum number of iterations: This is a practical constraint to

ensure that the emulations are not executing for an arbitrary amount of time.

3.2.2 The Automation module

One of the key novelties of RARE is the Automation module, which automates the

Iterative Adaptation operation for the Supervisor and enables the Automated Interaction.

4.2.1 Automating Iterative Adaptation

The Automation module provides the configuration requirements for each itera-

tive execution. This module has an extensive Configuration database which consists of

repositories for device configuration files, libraries, drivers, and binaries. Currently there

are more than 80 firmware collected from vendor’s website which includes routers and IP

cameras. Our database consists of more than 5000 configuration files and binaries. We

show case a subset of 10 firmwares in Table 3.1.

We define two types of resource requests: (a) software, and (b) hardware resources

requests. Below, we discuss how the Automation module handles each type of resource

request.

1. Software resources. In order to understand this resource request, we cate-

gorize the extracted data into four groups:

a. Lib: This group includes files found under known library folders such as /lib

and /usr/lib.
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CPU Lib Shell LKM Config

Linksys MIPS LE 45 38 4 5

Netgear
MIPS BE 154 334 27 36

MIPS BE 73 253 33 347

Tplink

MIPS BE 63 13 58 19

MIPS BE 55 18 64 20

MIPS LE 46 68 18 26

Ubiquity
MIPS BE 260 937 290 49

ARM LSB 43 54 6 18

DVR ARM LSB 0 5 0 46

NAS ARM LSB 939 577 N/A 423

Table 3.1: Overview of the files in our Configuration database for different architectures and
vendor. Files are grouped into different categories: library, shell binary, Loadable Kernel
Module, and configuration files.

b. Shell: This group includes binary files that are specific to command execution

which are found in directories such as /bin.

c. LKM: This group consists of Loadable Kernel Modules, which are binaries

used for loading kernel module into the operating system as device drivers, on demand.

These are relocatable binaries with .ko extension.

d. Config: This group consists of all files found under different library directories,

including /etc, /mnt/Conf, and other directories according to the firmware’s setup.

Depending on the type, the Automation module searches for the particular file or

binary in the repository and responds with the appropriate file(s). For example, when in an
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execution an embedded library like libcms msg.so is requested, the response includes a copy

of the library along with its dynamically linked library libc.so.0 and the corresponding

C library.

2. Hardware resource. This includes any hardware peripheral resources that

may be accessed during an execution. In this situation, we consider two cases of requests:

(a) reading configuration setting, and (b) modifying the hardware setup.

a. Reading: The module creates a key-value based type of driver that will return

values that indicate success. For example when the NVRAM is accessed to read a hardware

configuration, a key-value service will return a string that indicates success.

b. Writing: The Automation module manages this access the same as “read-

ing” a configuration. For example, there are cases where the malware binary modifies the

watchdog timer to prevent the device from rebooting. We understand the possibility that a

successful and realistic hardware configuration modification is part of the observable behav-

ior of malware binary. However in the current implementation, RARE does not emulate the

real hardware modification. Simulating embedded devices hardware and driver is a known

issue and several work [202] has been proposed, however such solution is not practical when

analyzing binaries in scale.

What happens when the requested resource is not in the database? First, we

log this request which gets provided as input for improving the next execution. Second,

we respond with a “dummy” file based on the type of the resource (e.g. shell binary

or configuration). Interestingly, this can be sufficient for the malware to continue, if the

malware wanted to verify the existence of such a file, or it does not use its content in a
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substantial way. For example, one of the binaries reads the content of the file /etc/words

to generate nickname for joining the IRC channel: any non-empty text dummy file would

satisfy the request.

Clearly, as we add more information to our Configuration database, the more we

improve the capabilities of our Automated Interaction process. As we will see later, even

our current initial database is quite powerful.

4.2.2 Automating the C&C Impersonation

As shown in Figure 3.1, after activating the malware binary, we want to imper-

sonate its C&C server. The challenge is to identify the connection attempt packets and

the C&C communication protocol. We were able to find some of the IoT malware source

codes [18, 57], which we use in our source code repository, as we discussed previously.

We studied 174 IoT malware source code and created 5 C&C server simulations,

which we incorporate into RARE. Table 3.2 shows the type of the C&C communication,

number of DDoS function commands, and other commands such as reverse shell or killing

the bot. As shown in this table, in two cases killing the bot requires a passphrase.

The Automation module selects the appropriate C&C server communication pro-

tocol, which we briefly explain below.

a. Extracting information from the packets. We parse the packet that the

malware sends to the server, and extract revealing keywords. For example, if the packets

include keywords related to IRC, we use the IRC C&C protocol. We have created a “dic-

tionary” of keywords that are indicative of different types of C&C protocols by examining
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C&C name C&C type # of DoS funs Other cmd

Lizkebab Plain text 4 Shell, kill

Gafgyt IRC 7 Shell, Kill with pass

Kaiten IRC 15 Shell, kill with pass

Remaiten IRC 4 Shell, kill

Mirai Plain text 4 Stop scanning

Table 3.2: Given the 174 source code, we simulate C&C servers with DDoS commands and
any other command such as enabling reverse shell or killing the bot.

the malware source codes in our repository.

b. Trying all possible servers. If we cannot identify a target server, we will

iterate through all our possible C&C protocols.

c. Creating an “echo” response. In case, none of the previous steps works,

we “echo” the packet that we received. Note that this is not considered a successful C&C

impersonation even if the malware exhibits different behavior upon receiving the response.

3.2.3 The Static Analysis module

We use static analysis to guide and facilitate the dynamic analysis, which is our

focus here. The first analysis on a malware binary is performed by Static Analysis module.

On the one hand statically analyzing binaries can help understanding the binaries. On the

other hand, it is commonly known that malware developers make use of runtime packers

to obfuscate the binary in order to evade common static analysis techniques by changing

structure of the binary. We use this module to extract as much information we can to

43



facilitate the analysis process. Static Analysis module performs two types of analysis:

1. ELF analysis: By using readelf[80] we analyze different sections of each

ELF file and identify used CPU architecture, and information about dynamically linked

libraries. RARE uses this data to select the emulation’s CPU architecture and dynamically

linked libraries.

2. Structure analysis: If the binary is not using runtime packers or obfuscation,

it is possible to extract more information via static analysis. Although in this work we focus

on dynamic analysis as the main analysis technique, however we also adapt established

techniques in analyzing the structure of the binary [78, 62]. In more detail, we perform

control flow analysis to extract artifacts such as: (a) embedded IP addresses and hostnames,

(b) encryption keys in Mirai instances, (c) channel names in IRC based botnets, and (d)

passphrases used in the IRC channels. In the current implementation, we use IDA Pro [95],

but other disassemblers can be used, such as Ghidra[135]. At the time of writing, IDAPro is

the most effective disassembler [17]) and with the use of IDAPython we employ the control

flow analysis and guided symbolic execution for ARM and MIPS architecture.

The extracted information will be provided to the Supervisor module to initiate

the dynamic analysis through the Sandbox .

3.2.4 The Sandbox module

The main analysis of a binary happens in this module. It enables the fundamental

platform for dynamically analyzing a malware binary. It creates a fully functional emulated

IoT device based on the configuration instruction that it receives from the Supervisor mod-

ule. In each execution, the Sandbox is configured to setup an instance through the following
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step:

1. QEMU. We used QEMU [31], an open source project for CPU emulation. We

modified QEMU (added/modified ˜2000 LOC), to introduce the networking and monitoring

capabilities required to engage in communication with the Sandbox as we explain later in

the Networking capability part of sandbox. Overview of the intended architecture for the

QEMU is shown in Figure 3.3.

2. Filesystem and configuration resource setup. The filesystem includes

required files and binaries that are described by the Supervisor module for the dynamic

execution. As we explained in Section 3.2, the Sandbox module requests configuration

resources from the Automation module. A configuration resource can include: (a) vendor

specific library files e.g. libnat, libacos shared that are available in Netgear home router

firmware, (b) shell binaries that are used to modify IoT devices configurations, such as

sncfg in D-Link routers or cfgmtd in Ubiquiti Networks devices, (c) device configuration
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files for example /mnt/Config/ in ZyXel devices.

3. Configuring the kernel. We used the Linux kernel based on OpenWrt [7].

The initial standard C library is glibc and depending on the resource requirement, Sandbox

can select different C library such as musl or uClibc. We create a modified kernel that

supports: (a) system call monitor, and (b) hardware peripheral emulation.

a. System call monitor: We collect system calls though kernel with the use of

kernel probes (kprobe). We use kprobe over userspace system call monitoring tools, such

as strace, to prevent the malware binaries from detecting the monitoring capability. As

we will ass in Section 3.3, there are binaries that abort execution, once they detect that

strace is “attached” to the process.

b. Hardware peripheral emulation: The goal is to intercept system calls and re-

quests to hardware peripherals to emulate them. This includes requests to non-volatile

memory (NVRAM) and non-standard IOTCL system calls. We implemented a specific

libnvram.so that works in a key-value fashion based on the contents from a nvram.conf

file. Later we populate the nvram.conf file based on the requests to the NVRAM.

4. Injecting the malware. After setting up the file system and kernel modules,

we place the malware sample in the /root directory. When the instance starts running, the

init process will execute the binary with root user privilege.

5. Networking capability. Setting up and emulating a network infrastructure

is critical in creating a realistic emulation. For example, some of the binaries use specific

network interfaces chip(NIC) for communication such as hwsim0 and wlan0.

Moreover, in analyzing malware binaries it is necessary to contain the network
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access and prevent any threats such as attacking the experimental infrastructure. We

leverage the network TAP option to enable network accessibility. Each instance will be

assigned an IP address (by the dnsmasq service) to enable interaction with the NetComm

module which we discuss in Section 3.2.5. In Figure 3.4

6. Execution trace. In each execution, the Sandbox module collects execution

traces at the OS and network layers. As previously discussed, we use kprobe to collect the

system calls. We directly collect data from QEMU. We do not rely on tcpdump inside the

emulated device, since there are malware binaries that terminate any monitoring process

upon activation. The collected execution traces are then sent to the Profiler module for

further analysis as we discuss in Section 3.2.6.

3.2.5 The NetComm module

One of the key capabilities of this platform is the NetComm, which provides net-

work communications for the Sandbox . As discussed previously, this is a crucial step in
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exploring malware’s behavior in level of communication. A malware may use a network

connection for different purposes. In this work, we consider the following three common

network behavior in malware communication: (a) the malware checks for the network avail-

ability with active services, such as DNS, (b) it contacts the C&C server, and (c) it starts

scanning IP addresses or port numbers in its proliferation phase.

a. Active network services. The goal here is to make the binary to believe there

is network access availability. In doing so, the NetComm module uses information derived

from previous execution iterations to determine: (a) the contacted server IP address or

hostname along with the port number, (b) the transport layer protocol of choice. Using this

information, NetComm creates instances of Server Impersonator to intercept the requests

and engage with the malware binary.

The main challenge is to correctly identify the communication protocol used.

On the one hand there are common communication purposes, such as DNS lookup using

Google’s 8.8.8.8:53, while on the other hand it is important to not assume the intention

of the connection based on the communication end point. For example a sophisticated

malware can use DNS tunneling to obscure its communicate with the C&C server [66].

b. Server Impersonation. The other key goal is to impersonate2 the C&C

server to which the malware tries to connect. As discussed in Section 3.2, we have developed

an automated capability to issue valid C&C commands to the malware binary and make

the malware take action in response. This helps us reveal interesting malware behaviors:

such as ordering the malware to enter its proliferation phase or terminate itself, as we see

2Our goal here is not to reverse engineer the communication protocol fully, which is a research topic in
its own right [40, 60, 41] and part of future plans.
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later in Section 3.3.

c. Honeypot. The goal here is to detect the proliferation techniques of the

malware. The most common proliferation approach is to start scanning a wide range of IP

addresses in one or multiple port numbers. We identify this behavior by the increase in the

number of connection requests and the number and type of packets.

Distinguishing the intent of a connection. A key challenge is to differentiate

between scanning traffic and a C&C discovery effort. For example, there are binaries that

scan randomly generated IP addresses on port 23 and at the same time attempts to connect

to their C&C server on the same port number. Therefore, redirecting all traffic on port 23

to the Honeypot will interfere with the effectiveness of our C&C impersonation.

We overcome this challenge by integrating a Honeywall technique [174] to redirect

the C&C server traffic based on its IP address to the Server Impersonator part of the

NetComm. We identify the C&C server based on the number of attempts that the malware

makes to contact an IP address, as well as the duration of connection maintaining. Typically,

the higher the number of attempts and the longer the communication time are, the more

likely that the destination is a C&C server [186].

In our current implementation, we use Cowrie [145] for SSH, Telnet and a simple

HTTP server for web interface and UPnP types of attacks. Based on the scanner’s port

number, we create instances of Honeypot listening to the particular port. For example, if

the scanning is on port 7457 (UPnP service), we create an HTTP server honeypot on the

particular port number.

In Figure 3.5, we show the interaction between the Automation module with
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the Sandbox and NetComm modules. In each Iterative Adaptation process, there are 4

steps(shown with the arrows) that each module has to take in order to request resource or

identify C&C server for impersonation.

3.2.6 The Profiler module

The Profiler module creates a detailed profile of the behavior of each malware

binary by analyzing each execution. A key novelty here is that we monitor the malware at

both the OS and networking layers and we combine the information for a deeper under-

standing of the intention of each malware action.

A. OS layer analysis: The module analyzes the system call of the the whole

emulated system’s and the goal is to identify and focus on the system calls that generated

by the malware. To do this, we monitor the system calls by each process and focus on

malicious processes: which are processes created by other malicious processes. In this

analysis we employ a careful data dependency analysis proposed in [109] on the system call

traces. This careful analysis helps us discover the root cause of error and failure in sample’s
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execution in addition to more in depth analysis.

Following we describe each of these groups and our technique in identifying the

errors and failures.

1. File access monitoring: We examine the trace for file related system calls such

as open and fstat to determine the type of access (read/write) intended for the file as well

as the returned result. This helps us identify the missing files or binaries, which often lead

to the malware dying. The missing resource will be reported to the Automation, which will

try to provide it in the next execution.

2. Network-related system calls: We also monitor carefully networking system

calls such as connect and sendto. We monitor which process generates the system call and

data dependencies, such as what information was included in a particular packet.

Note that some network system calls reveal activities that do not generate packets,

and thus, we would not have observed them at the traffic trace. For example, some binaries:

(a) create packets that are crafted for non-existence network interfaces, or (b) create raw

sockets on specific network interfaces to sniff the the traffic.

B. Network traffic monitoring: We monitor the network traffic by collecting

all the PCAP files through QEMU’s network interface. As we mention earlier, we combine

this information with information about networking system calls, which helps associating

network packets and flows with system processes. This is critical for identifying malware

generated packets. Analyzing the network traffic in depth is critical for impersonating the

C&C server effectively.

As the goal here is to enable the malware to activate and engage, we focus on the
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cases where we fail to do so, and we summarize below.

I. Software resource failure: This refers to any failure due to software operation.

More specifically if the malware fails to access configuration files, library and shell binaries,

or kernel modules this is treated as a failure that can be resolved by making the particular

file or binary available in the later execution.

II. Hardware resource failure: There are situations that the malware fails to access

certain hardware peripherals (for example NVRAM). This stands as a more challenging

resource request for the Sandbox module, since emulating hardware is not as trivial.

III. Communication failures: This describes the case where the malware is not

receiving the communication response that will encourage to not only not terminate itself,

but to exhibit its full behavior.

IV. Trigger checks: As discussed in earlier, the malware often attempts to detect

an emulation environment, and and if does, it shuts down. Our goal is to understand what

are the triggers for each malware, which can help both other emulation studies, but also

develop techniques to contain the malware spread. For example, if the existence of a file

triggers a shut-down, making devices have that file could protect them from that malware.

The malware profile and the failure-related information is provided to the Super-

visor module, which will drive the analysis in subsequent executions for a more in-depth

understanding of the malware binary.

3.3 Evaluating RIoTMAN

In this section, we evaluate the effectiveness of RARE using our malware binaries.
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Implementation and safety issues. We implemented RARE on an Ubuntu

18.10 server in a lab machine with 16 GB RAM memory and 1TB hard drive, and Intel

Xeon E5 CPU. For safety, the server is in a private network and isolated from other campus

networks and the Internet.

Conducting experiments: details and logistics. We provide some practical

issues on how the platform will be used.

a. Clean Starts: Each malware execution starts with no prior infection in the

emulated device.

b. Generic platform: Each analysis starts with a generic configuration which

the Iterative Adaptation process will incrementally modify to build the target device. The

generic configuration is based on a simple OpenWrt as the embedded OS with glibc. We

use QEMU as the CPU emulation. No further hardware peripherals, or network accessibility

and services are provided in the first iteration.

c. Infection Process: The infection can take place at a default time and fashion,

but we also allow the user to customize these choices. By default, malware is placed in the

/root/ directory and we start the malware through the start up process (init) in root

privilege mode. Although one could start the malware in user mode, our goal is to give the

malware root privilege to avoid any access issue.

d. Experiment Duration: By default, in each execution, we observe 20 min-

utes of malware activity, unless otherwise stated. Naturally, the duration is a changeable

parameter, but we found that 20 minutes is a sufficient amount of time. We noticed that

in three cases where the malware suspends its execution via a sleep command, which can
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be used as a technique to avoid automatic analysis tool.

e. Activation Success: To have a clear definition for success, we consider that

the malware activates when it initiates its first communication packet. Our rationale is

that the malware observes it is in the “intended” target environment: a) it has identified

the emulated device as appropriate, and b) it begins the first step to achieve its mission:

connect with the botnet.

3.3.1 Activation effectiveness of RARE

Key Result 1: We activate 93% malware binaries. We argue that our

iterative approach works: it is feasible to start with a generic configuration and morph

it into the desired target device. Out of the 2885 binaries, we are able to activate 2884

binaries. The number of iterations range from at least 3 and at most 8 for a successful

activation.

We investigated the reasons why we could not activate that last binary. Using

manual inspection, we found that the binary requests to access resources from a hardware

peripheral specific to a NETGEAR home router. The shortcoming stems from a set of

configuration values that are initialized in the boot up phase in the actual NETGEAR

device, and it was not straightforward to replicate.

Key Result 2: We activate 173 undetected malicious binaries. We were

able to activate and observe the malicious behavior of 173 binaries, which Virustotal failed

to report as malicious. At the time of writing this paper, we submitted the instances and

the returned results shows that the binaries remained as undetected.

Are these binaries really malicious? As we will show in Chapter 4, we imper-
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sonate the C&C server for 131 (˜76%) instances out of the 173 undetected binaries. This

result confirms the maliciousness of the majority of these binaries. Furthermore, manual

inspection suggests that the remaining binaries are also malicious.

Why does Virustotal fail? We examined the characteristics of the unreported

173 binaries to understand the shortcomings in identifying them as malicious binaries.

Below, we describe some initial observations as to the challenges that these binaries impose,

and we highlight how our approach was able to overcome them.

1. Packers and obfuscation: We identified 12 binaries among these 173, which

use UPX and other non-generic runtime packers to bypass static detection signatures. In

another instance we observe the malware binary uses obfuscation technique to scramble the

data part of the binary. In 7 instances based on Mirai the malware binary uses encryption

key or series of keys such as 0xBAADF00D and 0x33C001DE as opposed to the original key

observed in the source code(oxDEADBEEF) [19].

2. Dynamic linked libraries: There are malware binaries that rely on custom

libraries that are found in the firmware of specific devices, such as libacos shared.so and

others. The absence of these custom library files leads to failure to activate. In RARE,

we are able to overcome this through the combination of the Iterative Adaptation and

Automated Interaction operations.

3. Non-DDoS malware: In some cases, the malware does not exhibit botnet

behavior and instead they manifest “passive” functionalities, such as: (a) setting up network

traffic sniffer, or (b) creating a reverse shell on specific port number.
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3.4 Related Work

We review related work in the following broad categories.

a. Emulation approaches for IoT malware: There are several open source

sandboxes, such as Limon [120], Detux [65], and cuckoo [86], which provide a dynamic

analysis capability for Linux malware. However, they lack support for IoT specific malware,

e.g. ARM and MIPS architectures. In addition, they do not support engagement with

sandbox instances at the networking layer.

Recently, Padawan [57], an online malware analysis service, was introduced for

analyzing Linux malware binaries. It profiles the malware behavior at the OS level, but it

does not focus on IoT malware or networking behavior. The approach is philosophically

different from ours, as it creates a large number of pre-configured instances of devices. In

addition, a recent effort, RARE [62], focuses on routers, a subset of IoT devices, and does

not provide any automated engagement capability as we do here.

To the best of our knowledge, none of the above approaches combines all three

elements: (a) building the IoT device configuration iteratively, (b) providing automated

capability to communicate with the malware, and (c) profiling the malware at the network

layer.

b. Measurement studies of malware traffic in the wild: Several studies

analyze the large scale effects of real attacks using observed data [119, 73, 114, 118, 117]. A

recent study studies the Mirai botnet, which was enabled by IoT malware [20]. These efforts

differ in nature from our work, which is binary-centric: we assume no access to measured

network data.
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c. Non-malware IoT network traffic analysis: Several recent works measure

and analyze IoT devices to identify patterns malicious behavior [138, 34, 15, 47] In addition,

other efforts focus on the privacy concerns introduced by such devices [157, 8]. By contrast,

we focus on dynamic analysis of IoT malware in this work.

d. Embedded device firmware analysis: Several efforts focus on identifying

vulnerabilities in the firmware of embedded devices using static [56, 197, 76] and dynamic

analysis [46]. These efforts are complementary to our work, as we do not focus on identifying

vulnerabilities on the device.

e. Dynamic analysis of non-IoT malware: There is a extensive literature of

dynamic analysis studies for malware, which focus on PC and Android malware [115, 109,

110, 106]. As we discussed in the introduction, IoT malware poses several challenges and

requires novel approaches and tools.

f. Static analysis of malware: The majority of static analysis efforts target

PC-based and smartphone malware. In addition, using only static analysis for malware

binaries has known limitations [133]. Several efforts develop techniques to understand

the structure of the binary [16, 52]. Other efforts use symbolic execution to explore the

execution path of binaries, such as project angr[170].

3.5 Discussion and Future Work

We discuss the usefulness and limitations of our approach.

a. Do we need IoT-specific malware tools? Throughout this work, we saw

the need for IoT-specific approaches and tools. First, we have the challenge of identifying the
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target device configuration. This forced us to create the IoT-specific Configuration database

as we discussed earlier. Second, IoT malware targets different architectures than PC-based

malware, and some of the OS-level tools require significant adjustments (see Section 3.2).

Further, we identified distinct IoT requirements and behaviors, which point to the need for

novel methods.

b. Is our malware dataset representative? Finding a representative dataset

is a hard problem in malware analysis research. In this work, we were able to amass a

large archive of IoT malware binaries. We provide below intuitive arguments that give us a

level of confidence in our dataset: (a) our archive includes binaries from all the reported IoT

malware families [72], (b) Virustotal corroborates that our binaries are indeed IoT malware,

and it spans at least 20 malware families, as we have mentioned earlier.

c. Will RARE work with new malware? Clearly, we cannot guarantee that

RARE will work for all future IoT malware. However, we argue that it can efficiently create

configurations within its capabilities, and it will continuously become more powerful as

information is added in its knowledge base. Furthermore, the 93% success rate with our

DNew dataset is a promising indication.

d. Can we fully explore the malware behavior? This is a challenging

research question for any dynamic analysis approach. We are, arguably, the first approach

to attempt an automated malware engagement capability at the network layer. Automating

the server impersonation is an essential step. We saw that RARE is capable of issuing at

least one successful command for 79% of the binaries. We intend to further improve this

capability in the future in an effort to observe as many as possible of the phases of the
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malware life-cycle. Note that exploring the execution paths of a binary is a hard problem,

which requires a combination of static and dynamic analysis [201, 170].

e. Is an adaptive configuration creation necessary? We argue that it is,

and at the very least, it is more elegant and efficient. In traditional sandbox techniques,

the analysis is done via pre-configured emulators [57] One could envision two different pre-

configuration solutions.

First, one could create an “all encompassing” emulator, but that would not work:

many emulation choices will lead to file and resource conflicts. For example, we can not

have an environment that encompass multiple standard libc libraries or multiple hardware

peripherals of a certain type. Second, creating a plethora of pre-configured emulation

instances is arguably tedious, less cost effective, and possibly less successful. As we showed

in Section 3.3, a total of close to 700 unique emulation configurations were created to

analyze all the malware binaries in an adaptive way combing configuration resources as

needed. The millions of distinct IoT devices and their ever increasing number argue in

favor of an adaptive approach.

3.6 Conclusion

Our approach is an elegant and conceptually novel way to enable the dynamic

analysis of IoT malware at scale and with minimal manual effort. It tackles head-on the

key challenge: the difficulty in identifying the target device configuration.

Our main contribution in the combined effect of two key novelties: (a) Iterative

Adaptation, and (b) Automated Interaction. First, our platform employs an iterative process
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that incrementally “builds” the configuration of malware’s target device. Second, our plat-

form minimizes the need for manual effort: it automates our interaction with the malware

during the Iterative Adaptation and the C&C server impersonation phase. Our platform

also combines in-depth analysis at the system call, and the network level, which helps us

understand the intention behind the malware activity. Our platform is successful at both

activating and engaging with the malware binaries. We activate 93% of our binaries and

manage to impersonate the C&C server for 79% of our binaries.

By open-sourcing our approach, we expect to establish a community-driven capa-

bility in the fight against IoT malware. We view RARE as an important step towards an

effective dynamic analysis capability for IoT malware.

60



Chapter 4

A Longitudinal Study of IoT

Malware Behavior

With the rise of Internet of Things devices in our daily lives and the lack of security

in their implementation [55], more devices are susceptible to become part of a malicious

botnet. Firstly, a botnet of IoT devices that were infected by Mirai malware have caused

a world record DoS attack [20]. Secondly, there is widely-available source code of IoT

malware, such as Mirai [19] and Lightaidra [18] making it easy for black hat hackers to

create their own botnet. Lastly, there is evidence of IoT malware getting better: new

families appear and existing families evolve and adopt sophisticated techniques, including

proliferation techniques, and types of C&C discovery mechanisms [191].

The problem: How can we study the characteristics of an IoT botnet? This is the

problem we focus on in this work. We conduct multiple iterations of dynamic analysis on IoT

malware binaries and interact with them on the networking level to collect network traffic
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behavior. More specifically, given an IoT malware our goal is to: (a) analyze the techniques

used for malware proliferation, (b) understand how the malware finds and connects with

its C&C server, and (c) identify the communication protocol used to operated the malware

and trigger its different functions.

Analyzing the networking behavior of a given malware is faced with three main

challenges: (1) an analysis environment to install and collect networking behavior of IoT

malware, (2) identify the type and the intention of traffic generated by the malware, and

(3) by replicating the communication protocol, operate the malware to trigger its different

functionality.

Previous work: There has been limited work focusing on analyzing IoT malware

traffic, especially their C&C traffic. Previous work can be summarized into the following

categories: (i) Analyzing IoT malware [65, 57, 120]; (ii) Static analysis of malware analy-

sis [52, 124, 132, 163, 16]; (iii) Dynamic analysis of non-IoT malware [115, 109, 110, 106];

(iv) malware network traffic analysis [119, 73, 114, 118, 117, 97, 190, 84, 85, 37, 54, 83, 66].

We explore these and additional related work in Section 4.3.

In this work, we conduct an extensive and large-scale study on IoT malware com-

munication patterns. First, we develop a non-trivial capability to engage with a malware

binary by facilitating/automating the impersonation of its bot master. This impersonation

combines: (a) the identification of the right communication protocol, and (b) issuing spe-

cific botnet commands. Second, using this capability, we conduct large-scale study on 2885

malware binaries caught in the wild and spanning roughly 21 families. We are able to im-

personate the ”botnet” for 25% of the families (78% of the binaries) and get them to enter
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different phases such as proliferation, and attack phase. Note that the binaries within each

family still exhibit variations.

Specifically, we focus on the networking behavior of the IoT malware which includes

the traffic from proliferation phase and the malware C&C operation. In Figure 4.1 shows

the architecture of our work which consists of an analysis environment along with a server

impersonation capability for IoT malware.

RIoTMAN
Infected VM

C&C server 
impersonation

C&C 
commands

Network traffic analysis

Proliferation 
behavior

C&C 
infrastructure

DoS attack 
traffic

Victim A Victim B

Host behavior analysis

Persistence 
behavior

Infection
process

Defense 
evasion

Figure 4.1: In this work, we extensively examine the networking and host behavior of all
the IoT malware.

We conduct extensive dynamic analysis experiments on 2885 malware binaries

collected from the wild, using a RIoTMAN from Chapter 3 to enable a large scale study as

well as having the capability to operate the malware. We summarize some of the important

findings of this study:

1. Distinct host scanning defines botnet goal. We identified 2 unique

scanning techniques which attribute to the different characteristics of IoT botnets; we find
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Mirai malware is specifically designed to recruit more devices. While in other cases, e.g. in

IoTReaper and Hajime malware, more diverse set of devices were infected via exploiting at

least 19 unique firmware vulnerabilities.

2. IoT malware proliferation requires a loader server. In their proliferation

phase, IoT malware is required to have a server where it hosts the same malware but created

for different CPU architectures such as MIPS and ARM. This is because IoT devices are a

diverse set of devices built on diverse set of CPU architectures.

3. IoT malware uses one or many C&C infrastructures techniques.

We observe multiple techniques used to connect to Command and Controller(C&C) server

and/or join botnet. In some cases a combination of multiple techniques is used. E.g.

there are malware that use Domain Generation Algorithm (DGA) along with fixed domain

names. Recognizing the C&C infrastructure is especially important to stop the operation

of the botnet.

4. 5 major unique protocols used for operating majority of IoT malware.

Although there are more than 20 IoT malware families identified, most of them use one of

the 5 C&C communication protocols. Given some of the IoT malware are based on previous

open source bots (Section 4.1), we are able to impersonate the C&C server for 78% of all

the malware binaries. We are able to operate the malware to start DoS attacks, reconfigure

itself or terminate itself. We observe a total of more than 50 unique DoS attacks.

Our work sheds light onto the unknowns of IoT botnets and investigates the dif-

ferent techniques that they use. Our goal is to release the dataset collected from these

experiments for the community to further the research in this field and bridge the gap
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between the current defense mechanism and the mechanism required to stop IoT attacks.

4.1 Experimental setup and Methodology

In this section we describe the experimental setup as well as the methodology used

to perform malware analysis in large scale.

4.1.1 Experimental setup

Given the main goal of this study is to analyze the networking behavior of IoT

malware, the goal is to have an analysis environment that can support: (1) the analysis

environment should install and execute any IoT malware, (2) to avoid further malware

proliferation, the analysis environment should not be connected to any network, and (3)

a semi-realistic network connectivity should be made available for the malware to interact

with the environment. Aside from the points mentioned, it is crucial to have the analysis

done in an automated and accurate way to enable analysis at scale.

In this project we used RIoTMAN from Chapter 3. We added network interaction

capability to provides network communications for the analysis environment which is a

crucial step in exploring the behavior of malware. Here, we support the following two main

types of communication:

a. Intercepting proliferation traffic. Inspired by honeypot project [174], we

redirect the proliferation traffic to instances that simulate services that are targeted during

this phase. In this work, we use Cowrie [145] for SSH, Telnet scanners, and a simple HTTP

server for attacks targeting web UI and UPnP interfaces.
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b. Impersonating the C&C Server. As previously discussed, our goal is to

impersonate1 the C&C server for the under study malware to trigger its different functions.

This helps us reveal interesting malware behaviors: we can make the malware enter its

proliferation phase or terminate itself. We show an overview of the experimental architecture

in Figure 4.2.

Gafgyt Remaiten

Kaiten Tsunami

Mirai

Malware analysis VM

C&C communication 
protocol (Table 2)

C&C server 
impersonation

Select protocol

C&C 
commands

IoT malware traffic analysis

Proliferation 
behavior

C&C 
infrastructure

DoS attack 
traffic

Dataset of 
IoT malware

Figure 4.2: We use IoT C&C server communication protocols (Table 4.3) to operate malware
in the analysis environment.

4.1.2 Methodology

The goal is to distinguish the different types of communication network traffic

that are generated in our confined environment into three separate groups: (1) Proliferation

traffic: this group of communication is used to expand the botnet by recruiting other devices,

(2) Control traffic: this is any traffic generated between the malware and a centralized

1Our goal here is not reverse engineering the communication protocol, which is a research topic in its
own right [40, 60, 41].
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Command and Control (C&C) server or peer-to-peer network to direct the botnet, and (3)

Attack traffic: this refers to the group of network packets that are generated to carry out

attacks such as volumetric network packet flooding. Other network communication traffic

generated by the malware such as checking internet availability is out of scope of this study

and are treated as auxiliary traffic.

To differentiate between the types of communication, we use heuristics developed

using domain expertise and empirical observation. More specifically, we manually inspected

Dtrain =500 binaries to derive the following intuitions in identifying the type of network

traffic:

1. Proliferation traffic: Here, the malware contacts different IP addresses on

one or multiple port numbers. We identify this group of communication by redirecting the

traffic to honeypots. When the malware is able to make a connection to a particular port

number, it performs a brute force attack or sends an exploit payload to the destination.

2. Server Discovery: All malware binaries want to communicate with a

centralized C&C server or join a peer-to-peer network to receive commands from the botnet

operator. Upon establishing foothold on the infected device, malware tries to contact one

or multiple IP addresses or resolving domain name. In case of connection absence, malware

periodically fails to communicate with the intended destination. However, when there is a

connection, it tries to maintain the communication by sending data.

3. DoS attack traffic: Given their nature of volumetric scale, DoS traffic in

our confined environment can be identified with a heuristic that will get triggered if any of

the following meets: i) more than 50 packets is sent on same destination IP address in a
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Table 4.1: Evaluation of our heuristics for characterizing communication intent on Dtest.

Type Precision Recall

IP C&C 99% 99%

Domain C&C 100% 83%

Proliferation 100% 99%

DoS Attack 100% 99%

period of 1 second, and ii) more than 50 packets is sent from a “spoofed” source IP address

(a source IP from the actual device), to multiple different destination IP in a period of

1 second. There is a slight difference between this type of traffic and the proliferation

traffic; we distinguish the two according to the source IP address which will be the same as

the device’s in the proliferation phase, while in the “reflection” type of DoS traffic it will

have a different source address.

Our heuristics classify communications with at least 99% precision and

at least 83% recall. We evaluate the performance of our heuristics using our Dtest =300

dataset and show the results in Table 4.1. Although the results indicate our heuristics are

effective in identifying the type of communication, but there is a lower Recall in identifying

the C&C server based on domain. This drop on Recall (83%) is due to use of DGA function-

ality to find the C&C server. Although our heuristics was able to identify the fixed domain

name from the same malware, however it failed to identify the DGA generated domain since

it does not maintain the connection with it.
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Figure 4.3: Host scanning of a subnet directed by the botnet operator to the botnet or to
an external synchronizing server.
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Figure 4.4: Host scanning randomly generated IP addresses from predefined subnets on one
or multiple ports.

4.2 Study of IoT Botnets

We conduct extensive number of dynamic execution with network interaction.

Specifically, we analyzed each of the 2885 malware binaries from our dataset and through

multiple iterations we collect information about: i) malware proliferation techniques and

how the exploits used, ii) different techniques used to connect to the server and/or to the

botnet, and iii) communication protocol and the control commands that they have.

4.2.1 Malware proliferation

In our study we identified malware that perform propagation. We study this be-

havior based on two main characteristics: 1) Host scanning and 2) propagation mechanism.
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Figure 4.5: Proliferation mechanism as a built-in function in malware to enable rapid
growth.
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Figure 4.6: Proliferation mechanism as an external function controlled by the botnet oper-
ator to enable selective growth.

1. We identify 2 main host scanning techniques. In Figure 4.3 and Fig-

ure 4.4 we show the IP address selection for a potential device scanning varies:

a) In Figure 4.3 the botnet operator instructs the bots to scan a subnet to recruit potential

vulnerable hosts. In some cases, the operator uses a separate “synchronizing” server which

the botnet uses to coordinate their host scanning with the rest of the scanning.

b) In Figure 4.4 the malware scans a host on one or multiple ports by randomly selecting

an IP address from a pre-defined list of subnets. This behavior can be attributed to the
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botnet that recruits more diverse set of devices from a specific network regions.

2. We identify 2 main propagation techniques. In Figure 4.5 and Figure 4.6

we show the main propagation techniques observed in our study:

a) Figure 4.5 shows the propagation technique that uses a “reporting server” to keep track

of the infected devices and potentially vulnerable devices. Upon identifying a potentially

device, the malware sends a payload that exploits the vulnerability which will inject an

infection vector that will download a malware from a loader server and executes it. This

propagation technique commonly used in Mirai IoT malware. In other malware families we

did not observe a reporting server, however the “loader server” is an inseparable part of the

propagation in IoT malware.

b) Figure 4.6 shows the malware propagation is done via an external “scanning” server

instead of having the botnet to recruit the devices. As it appears such malware do not

recruit a large number of devices hence a smaller botnet. This behavior has been observed

in less known malware family such as TheMoon[191] and Moose [36].

In this study we identified Loader server that hosts malware binaries which is used

as an important part of the IoT malware propagation. In most cases this is a separate server

from the C&C server. Further investigation suggests that the malware developers use this

server to host malware binaries compiled with different CPU architecture (such as MIPS

and ARM) to enable infecting as much IoT devices as possible. This has been observed by

Mirai botnet as well [20].
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4.2.2 C&C server infrastructure

We investigated the different techniques observed in our IoT malware dataset in

finding and connecting to the server and/or join the botnet. We show a breakdown of these

techniques in the following.

1. We observe single C&C server infrastructure. The majority of the IoT

malware binaries in our dataset use one technique to connect to their C&C server. About

2458 of the malware binaries use hardcoded IP addresses to connect with their server. In

Some cases malware that use domain names to resort to a stronger C&C infrastructure

2. We observe C&C server via domain names. Aside from using IP ad-

dresses, there are malware that use domain names to resort to a stronger C&C infrastruc-

ture; botnet operator can change the IP address behind the domain name easier. Along

with that we observe

Table 4.2: Malware approach for finding the C&C server.

IP address only
Single 2170

Multiple 46

Domain only
Fixed 231

DGA 2

Both 207
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4.2.3 Malware communication protocol

As previously mentioned in before, there IoT malware source code available We

observe 5 main botnet architectures that we show in Table 4.3.

4.2.4 Effectiveness of C&C impersonation

A key novelty of our work is that it can automate the engagement with a malware

by impersonating its C&C server, as we explained in Chapter 2.

Key Result 1: We achieves 79% C&C impersonation success. We are

successful in impersonating the C&C server for 79% of the binaries as shown in Table 4.5.

Our approach makes the malware follow botnet commands, using the process which we

described in Section 3.2.5.

We also study the number of binaries that responded to different types of com-

mands in Table 4.6. All malicious activity is safely contained within the emulated environ-

ment.

a. 61% of binaries respond to Configuration or Report commands. This

group of commands take care of operational logistics, such as changing the nickname of

the bot, resetting the spoofing IP used in attacks, or reporting status information, such as

memory usage.

b. 70% of binaries start a network attack. All the attacks that we initiate

are DoS attacks.

c. 64% of binaries enter proliferation phase. In the proliferation phase, the

bot tries to identify and infect other devices.
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Total binaries 2885

Activated 2688 93%

Engaged 2291 79%

Table 4.5: We can impersonate the C&C server for 79% of the binaries. Versions of the
Gafgyt and Mirai of communication protocols are most widely used.

Command Type Malware

Configuration or Report 1750 61%

Attack 2031 70%

Scanning 1842 64%

Termination 1684 58%

Table 4.6: The number of binaries that acted upon different commands received from the
C&C server impersonation.

d. 58% of binaries respond to termination commands. We make the bot

stop an ongoing attack or kill itself. This knowledge could be helpful in botnet containment

efforts.

Key Result 2: Observing cross-talk in 294 binaries. We identify 294 mal-

ware binaries that engage in “cross-talk” behavior: they use a C&C communication protocol

from different IoT malware family than the one they belong to. Recall that our classifica-

tion here is based on Virustotal, as discussed earlier. In Table 4.4, we show the number of

activated binaries for six C&C communication protocols. Specifically, the columns corre-

spond to a subset of widely used C&C communication protocols that are associated with

four malware families. The rows of the table correspond to broad families of malware, which
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often consist of several variants or sub-families. For example, Gafgyt consists of more than

6 sub-families, such as Lizekebab and Torlus. The coloring is supposed to make the rela-

tionships easier to see. The numbers in each colored cell indicate the number of malware

binaries using the expected C&C communication protocol. For example, the numbers in

soft blue (∎) cells indicate Gafgyt binaries, which engage with one of the Gafgyt C&C

server protocols.

The white cells in the table represent malware binaries that communicate with

C&C protocols from other malware families. For example, we find 5 malware binaries that

are classified as Gafgyt, but use the Mirai communication protocol (top right cell). We find

294 such binaries in total. We identify two possible reasons for this phenomenon: (a) there

are “hybrid” malware that use communication protocols from other known malware families,

or (b) the detection engines in Virustotal fail to correctly classify the malware. Intrigued

by this, we found at least one hybrid binary among the 5 Gafgyt binaries mentioned above.

The binary uses functions such as a telnet scanner, known to be used in Gafgyt family,

while it uses the C&C communication protocol of the Mirai family. In the future, we will

further investigate this interesting phenomenon.

Key Result 3: Identifying uncommon communication behavior. We in-

vestigate the binaries with which we failed to engage. First, we failed to activate 198

malware binaries, and therefore we could not even attempt to communicate with them. We

investigate the remaining 397 binaries and identify the following reasons:

a. Unknown protocol: There are malware binaries that use communication

protocol with end-to-end encryption and employ specific packet exchange with their server
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to ensure the legitimacy of the communication. For example, upon establishing a connection

with a server the malware expects an authorization “key” from the server to continue with

the connection, otherwise it terminates it.

b. Peer-to-peer botnet: We identify 14 binaries that exhibit peer-to-peer

behavior by creating listeners on a number of UDP ports and exchange packets with what

appears to be a super-node that includes keywords such as DHT. These binaries appear to

be instances of Hajime which are explored in a recent study [94].

c. Proxy agent malware binaries: We observe 74 malware binaries are proxy

agents waiting for a connection on particular open ports. We find that 68 of them are clas-

sified as Proxy Agent by Virustotal. The other 6 malware belong to the Luabot family [160];

they setup a proxy on an infected device, which can provide HTTP and SMTP services [12].

d. Destructive malware: We identify a class of malware that exhibits a purely

destructive behavior. For example, these malware corrupts the system memory, essentially

“bricking” the device, like Brickerbot [6]. We also found malware that prohibits all network

communication: it installs firewall rules to drop all incoming and outgoing packets.

4.2.5 Malware behavior in host

We highlight some interesting behaviors from our DMain malware dataset. In-

spired by the MITRE ATT&CK framework [130], we show a break down of the common

techniques used in each of the malware operation in Table 4.7 with the number of binaries

exhibiting each behavior.
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a. Evading detection via process masquerading: Process masquerading

refers to the techniques that malware uses to change the name of malware-created processes

to either: (a) the name of a common benign process, or (b) a randomly generated string.

We observe 1494 binaries that employ this technique using the prctl system call.

b. Stopping remote access services: We observe that 413 malware binaries

stop the HTTP, SSH, and Telnet services on the infected device. We suspect two possible

reasons for this: (a) safeguarding against competing malware, and (b) avoiding detection

or malware “clean-up” operations.

c. Cryptocurrency mining: We find 6 binaries that participate in a cryptocur-

rency mining botnet. Interestingly, none of these malware establish any connection to a

potential C&C server during the 20 minute emulation interval. These binaries setup SOCKS

proxy as a means of communicating with the rest of the botnet [35].

d. Unusual library file checks: Malware checks for the existence of library files

in unusual directories and, based on their availability, the malware exhibits significantly

different behaviors. For example, some binaries check for libnss in “/lib/mips-linux-gnu/”,

which is usually not available in a native MIPS Linux machine. If available, it starts making

a DNS requests to connect with its C&C server, otherwise it resorts to a fixed IP address.

e. Displacing prior malware: Some malware will check and attempt to sup-

plant prior malware on the device. The malware searches for files and processes on the

infected device as an indicator of a prior infection. In that case, the binary attempts to

displace the other malware by killing the related processes and removing relevant files. For

example, we find binaries that scan the list of processes for malware-related names such as
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if "/bin/cfgmtd": # Ubiquiti device

cfgmtd -w -p /etc/

echo "wget http://${url}/nvr > /etc/persistent/rc.poststart"

cfgmtd -w -p /etc/ && sleep 432000 && reboot #

elif "/sbin/sncfg": # D-Link router

/sbin/sncfg commit

echo "wget ${url}/nvr"

chmod +x /etc/custom.sh

/sbin/sncfg commit

else: # generic device

echo "* * * * * /malware_name" > /etc/crontabs

Listing 1: Example of an “adaptive persistent process”; malware uses services specific to a

device to make itself persistent by deploying a different technique per device.

daemon.mipsel.mod or lightaidra.

f. Adaptive persistent process: We observe 7 malware binaries that use a

sophisticated approach to make themselves persistent, which adapts to the type of device.

Some of these binaries have customized behaviors for up to 8 types of device. In more detail,

these binaries access a series of resources, which reveal the type of the device. For each device

type, they have a different approach to make themselves persistent. In Listing 1, we show

the pseudocode for 2 out of the 8 configuration checks that a binary from the Tsunami family

performs to determine the type of device and use the appropriate technique to make itself

persistent. It checks for: /bin/cfgmtd (used in Ubiquiti devices) or /sbin/sncfg (used in

D-Link routers) to configure the NVRAM of the infected device. If none of these succeed,
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it will use the crontab process scheduler to make itself persistent by becoming a recurring

process.

4.3 Related Work

We review related work in the space of analyzing IoT botnet traffic through the

following broad categories.

a. Analyzing IoT malware: There are a few number of open source sandboxes

focusing on executing and analyzing Linux malware binaries and their behaviors such as

Limon [120], and Detux [65]. Padawan [57] recently released was released as an online

malware analysis platform. The main purpose of these projects is to analyze the behavior

of the malware on the OS level without profiling them. In this work we focus on the

networking aspect of IoT malware and deliver longitudinal analysis on a great number of

malware binaries.

b. Static analysis of malware: There has been an extensive effort in analyzing

the structure and the behavior of a given malware binary. The majority of the effort in

static analysis is focused on PC and smartphone malware [52, 124, 132, 163, 16]. However,

static analysis for malware binaries has known limitations [133]. In this work we make use

of dynamic analysis technique to impede the challenges in static analysis.

c. Dynamic analysis of malware: Besides static analysis technique, there are

literature in dynamic analysis of malware, which focus on PC and Android malware [115,

109, 110, 106]. In this work our focus is to dynamically analyze the malware to understand

its behavior in OS and networking level. In addition, our focus is on IoT malware which
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poses several challenges that requires novel techniques and tools.

d. malware network traffic analysis: Several effort has been established in

understanding malware traffic to identify trends and growth of such malicious traffic [119,

73, 114, 118, 117]. In addition to that there has been several effort to model and profile

botnet traffic [97, 190, 84, 85, 37, 54, 83, 66]. However, compared to our work these efforts

make use of the live traffic of the malware. In this Chapter our focus is to analyzing the

malware and engaging in communication to profile its behavior.

4.4 Conclusion

The goal of this chapter was to perform a longitudinal on the IoT malware binaries

to profile its behavior in both OS and networking level. Our work sheds light into the

unknowns of IoT malware behavior and undertake the challenge of hard to analyze IoT

malware.

Our main contribution is that we perform in depth analysis on the behavior of

IoT malware. We map the lifecycle of any given malware to the techniques and tactics

introduced by MITRE ATT&CK framework [130]. We identified common techniques such

as defense evasion and persistence process. In addition, we explore the networking behavior

of such malware and identify the common techniques used to communicate with their C&C

server. We engage with the malware as its C&C server and issue commands to have the

malware engage in malicious activity in the contained environment. Moreover we identified

cross-talk behavior between different families of malware indicating that IoT malware may

have been classified incorrectly. One of the immediate results of our work is the TBs of
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attack traffic generated from our analysis.

Our work is a first one of its kind to tackle the unknown threats of IoT malware

threat head on and discover common techniques used by such malware. We believe the

outcome of this work can be used to propose defense mechanisms against such threat.
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Chapter 5

Systematic Analysis of IoT

Malware Behavior in Target

Environment

It is evident that the malware targeting IoT devices has grown exponentially [72]

with the emergence of Internet connected IoT devices and the widely available malware

source code [129]. Streamlining the analysis of such threat has been proposed by researchers

for a faster mitigation [61, 57]. The idea is to makes use of pre-built virtual machines to

analyze streams of malware binaries to extract actionable information such as malware

Indicator of Compromise (IoC). However, this approach fails to address the diversity of IoT

devices which stands which stands as a key challenge in IoT and firmware analysis [204, 88].

Moreover, using pre-built VMs to emulate all possible IoT environment is not feasible [46]

and does not scale [202].
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The problem: How can we effectively analyze IoT malware with behavior sen-

sitive to the target platform? This is the problem we tackle in this Chapter. We focus

on performing dynamic execution to analyze the malware behavior. More specifically the

goal is to: a) identify the techniques that an IoT malware uses to identify the type of the

platform it is in, and b) measure the changes in the behavior of the malware being ana-

lyzed under different environment. Following we layout the challenges faced in solving this

problem

Challenge 1. Identifying target environment requires analyzing the dynamic

behavior of the malware and observe its interaction with the resources in the analysis

environment. Throughout its life cycle, a malware binary invokes large number of API calls

to the OS via system calls to access the different resources. Depending of the duration of

the analysis the number of system calls may be in the order of hundreds of thousands to

millions. The challenge is to pinpoint the system calls that malware may use to either verify

or identify its target environment.

Challenge 2. Measuring the changes in the behavior is a crucial step in

detecting and analyzing environment sensitive malware. As previously mentioned in the

above, the number of system calls in each execution exceeds hundreds of thousands. On

the one hand detecting changes in behavior requires a reference execution trace [104] which

is not defined or available for IoT malware. On the other hand identifying the changes in

the invoked system calls is not a trivial task given that the execution trace may differ in

different iteration of analysis under the same analysis environment.

At the time of writing this work, there has been limited efforts to address the
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issue of IoT malware behavior and its variability with respect to target environment. We

split the most relevant work into the following categories: (i) studies concerning malware

sensitive to analysis environment [27, 104, 121, 116], (ii) force executing malware functions

[199, 132, 152, 110, 198], (iii) analyzing environment evasion techniques [106, 107, 77, 147],

and (iv) studies on malware behavior analysis [28, 53, 158, 159, 28].

In this chapter, we develop a tool to efficiently analyze IoT malware behavior in

different target platform. To achieve this we record the behavior of the malware when

interacting with the analysis environment. This includes any data exchange between the

malware process and the OS kernel which is observed via system calls. we profile all the

resource requests that malware performs which includes device drivers, files, network access,

and other similar interactions. Next, the malware will be executed in a series of sandboxes

to accommodate the malware’s resource request. Later we compare the malware behavior

in each execution to profile the changes in their behavior.

We show an overview of the tool architecture in Figure 5.1. Our tool uses RIoT-

MAN (Chapter 3) as the means to execute the malware in different analysis environment

and collect the execution traces.

The contributions of this work is as follows:

● We propose a novel approach to identify IoT malware sensitivity to the target envi-

ronment. We record malware behavior based on its interaction with the OS kernel and

detect any requests to the target environment including accessing files and drivers.

● We profile the changes of behavior of the IoT malware under different target environ-

ment. We propose a technique to first analyze the malware behavior under a reference
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RIoTMAN

Behavior A

Behavior B

Behavior C

Different Behavior

Malware 
Binary

Behavior
Profiler

Configuration
Variability

Figure 5.1: The overview of the tool. In this tool we are using RIoTMAN from Chapter 3.

sandbox and second identify changes in its behavior when executed under different

simulated target environment.

● We demonstrate that our approach is able to identify malware that exhibit 2 to 8

different behaviors under different target environments. We identify malware that

use “query and infect” and malware that terminate execution if identified analysis

environment artifacts.

5.1 System Design and Implementation

We used RIoTMAN, our analysis tool in Chapter 3, and added two modules:

1) Configuration Variability, and 2) Behavior Profiler. The two modules work together to

create different configuration setup and profile changes in malware execution. Below, we

explore the technical details of our approach in this work.
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5.1.1 Configuration Variability module

The purpose of this module is to direct RIoTMAN for creating different emulation

setup for analyzing a given malware. This is based on the resource requests the malware

makes on the infected device. By iteratively making each resources available, RIoTMAN

creates a new analysis environment for the malware. In this work we focus on resources that

the OS provides to the malware which includes filesystem and network communication by

observing system calls invoked by the malware. Following we explain each of these resources

and how we collect the information about each interaction.

A. Monitoring resource requests

The goal is to monitor any resource requests to the target environment that a

malware makes in order to identify the resources that may change the behavior of the

malware. In our desig, we use RIoTMAN to execute the IoT malware and record its

execution traces which includes system call traces and networking traffic. We analyze

malware behavior in the target environment to detect all the resource requests it makes.

Our assumption is that we can monitor this via the malware’s API call to the OS kernel.

Although there are malware that may make use of kernel module and eliminate the need for

API calls to the OS, however, to this date no IoT malware was observed to install a kernel

module to conceal its malicious activities [57]. In our work, we focus on the following group

of system calls shown in Table 5.1:

Filesystem: Malware may use filesystem resources to establish foothold or make

itself persistent [130]. At the same time, it can use this resource to verify the target
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environment. For example, in different distribution of Linux OS the rc file may reside

in different folder under different names which an adversary may use to identify the

type of the infected environment.

Process: Malware may spawn multiple child processes to enable concurrency and

avoid interruption in the main malware process in case any of the child processes

stops due to any errors. The number and the purpose of each child processes work

as an indication of how the malware may use the OS resources. For example, when

a malware spawns multiple child processes to carry out the same behavior, it is an

indication that whether that source is available or not does not intervene with the

main execution.

Interactive Shell: This group refers to the system call that enable executing com-

mands using the interactive shell in Linux such as execve system call 1. In this work

we consider this group of system calls as a separate category since malware developers

may use this system call to use native shell commands on a given IoT firmware to

carryout malicious functionality.

Networking: Malware uses network communication to receive control command from

its server. Our goal is to identify the type of communication socket. For example, in

a Mirai instance all communications are carried out via raw socket setup which is an

indication that the adversary may not use known communication protocols, such as

TCP or UDP.

1In their nature, such group of system calls are considered the same as Process, however, as opposed to
fork or clone, execve does not copy of the main process and instead creates a new process.
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Category Description System calls

Filesystem Any actions on file system including

read, write, create, and permission

change

open() close() read() write() link()

chown() create() mkdir()

Process This includes creating processes,

killing, cloning, and other similar

actions

clone() fork() vfork() exit() getpid()

Interactive

Shell

Any shell commands that are exe-

cuted using interactive shell.

execve() execveat()

Networking All of the networking system call

which includes creating a file de-

scriptor (fd) using socket to per-

forming any data send and receive

socket() send() connect() socke-

topt() bind() listen() accept() recv()

recvfrom() sendto()

Table 5.1: Group of system calls used to detect resource requests made by the malware.
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B. Syscall Data Dependency Graph

Automatically identifying the type and the name of the resource that a malware

requests is a challenging task. As previously mentioned, depending on the analysis duration,

each iteration of execution results in thousands of individual system calls. Each resource

may be accessed differently, with a read or write type of command. Understanding such

interactions with a given resource can not be retrieved in a trivial way from traces of the

system calls. That is because when a userspace process accesses a particular resource,

many system calls are invoked and the challenge is to identify the kind of access done on

the resource by analyzing the many system calls. To tackle this challenge, we use Syscall

Data Dependency Graph technique [109] to create graphs that represent resources and how

they are being used.

In Figure 5.2, we show the conversion of the system call traces to multiple sub-

graphs that represent each resource and access to them. The root node is the resource and

the other nodes are the actions on that resources. The connection between each node can

be reconstructed using the arguments from each system call. All subgraphs are categorized

into 4 groups which is shown in Figure 5.2: 1) filesystem subgraphs, 2) process subgraphs,

3) interactive shell subgraphs, and 4) networking subgraphs.

Following we demonstrate an example of how this method works. As shown in the

following, this example consists of a process opening fileA to read from and write in it:

Listing 5.1: Example of opening file with readonly permission

open ( ” f i l e A ” , READ ONLY) = 2
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Figure 5.2: Conversion of traces of system call to subgraphs representing the interaction
with each resources. Resources are the root of each graphs.

read (2 , ” f i l e A content ” , 13) = 13

wr i t e (2 , ” wr i t e f a i l s ” , 11) = −1

The output from open system call is the fd id (which is 2 in this example) that

will be used as the first input argument for both read and write. It is important to note

that different arguments may be inputs or outputs of a system call. In this example, the

second argument for read and write are output result and input argument respectively. In

Figure 5.3 we show how this trace is converted to the resource graph.

5.1.2 Behavior Profiler Module

One of the key novelties of this work is the the Behavior Profiler module. The

purpose of this module is to profile the execution trace from each iteration of analysis

and utlimately compare different execution of the same malware to identify the changes
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open("fileA", READ_ONLY) = 2
read(2, "fileA content", 13) = 13
write(2, "write fails", 11) = -1
close(2) = 0

fileA

Read Write Close

Syscall DDG

Figure 5.3: The example of accessing fileA syscall trace to data dependency graph.

in malware behavior. In doing so we use the system call data dependency graph to both

profile the behavior and compare the execution traces.

An overview of the steps in this module is depicted in Figure 5.6. The input is

the execution traces collected from different iteration of analysis in RIoTMAN and convert

them to structured subgraphs of interactions with system resources which will be used to

identify the differences between each execution.

Below, we explain the steps in profiling the behavior to use in identifying the

changes in malware behavior:

Remove Noise: A malware may invoke system calls that may differ across different

iteration of analysis under the same environment. These includes listing directories,

listing running processes, and similar. The goal is to remove such traces when com-

paring the behavior of the malware across different iteration of analysis. As we will

show later in our evaluation, this step helps with reducing the similarities between
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Figure 5.4: The overview of the Behavior Profiler module.

executions that exhibit different behaviors.

Flatten Graphs: Comparing graphs is not a trivial task as it is known to be an

hard problem. Given the nature of this work focuses on identifying the differences in

resource usage when comparing malware behavior under different target environment,

we resort to flattening the subgraphs to create strings that represent actions on each

resources. The root node represents the name of the resource and we traverse the rest

of the nodes (which indicate an action on the resource) based on their timestamp.

Note that each subgraph may belong to one of the 4 categories of filesystem, process,

interactive shell, and networking. If the a resource with the same sequence of actions

is being accessed multiple time in an iteration of execution, an additional number will

be added to the profile to indicate the repetition of that particular behavior. The

output of this step will be referred to as the profile of a given execution trace.

Remove Similarities: For calculating the similarities between each iteration of ex-

ecution, in our algorithm we remove the similarities in behavior. A similarity in
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behavior refers to a series of action on a given resource (subgraphs) that appear with

the exact same sequence of accesses and similar actions. We identify these by exact

matching each flatten subgraphs. As we show later, this helps with identifying changes

in malware behavior executed under different target environment.

Measure Sequential Similarities: The remaining subgraphs after removing the

similar behavior, represent the differences in malware behavior analyzed under dif-

ferent target environment. In this work we use Ratcliff et. al.[156] to measure the

similarity score between each flatten graphs. More specifically, given two sequence

of the flatten graphs, a similarity score is consists of the number of matching nodes

determined by longest common substring (LCS) in addition to recursively performing

LCS on the matching and non matching nodes. Therefore, identical behavior will have

a score of 1 (or 100%) and the less identical the lower the score will become. We set a

threshold for the similarity score, determined empirically, that below which indicates

variation in the given two behavior. We resort to this matching algorithm since it

is robust against slight difference between matching nodes. For example, in case of

networking behavior a source port number for a communication may be different in

each execution and the goal is to avoid such variation be tolerated when measuring

the similarities. In addition to the similarity score, this algorithm provides the list of

insertion and deletion of nodes to help identify the changes in the behavior of malware

under different analysis environment.

As shown in Figure 5.5, the outcome of these step is a set of unmatched behavior

that had a similarity score of less than the threshold.
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Figure 5.5: The steps taken to compare the execution traces of a given malware under two
different analysis environment.

Similarity Threshold

We establish the similarity threshold when comparing the behavior of malware

empirically. We randomly selected 2000 malware binaries and executed each 4 times under

the same analysis environment as the one determined by RIoTMAN. In Figure 5.6 we show

the frequency of similarity score of each execution compared to itself. As it appears, the

distribution of similarity score is skewed towards complete similarity (100%) in behavior.

We notice that the lowest similarity score is close to 90% for a small number of malware.

Our manual investigation determined this variation in malware behavior is due to randomly

generated nick for the IRC channel as well as source port number used in communication.

Such small differences in the behavior similarity score does not lead to changes in malware

behavior. Given this chart and the minimum similarity score being close to 90%, we selected

that as the threshold for determining changes in malware behavior.
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Figure 5.6: Similarity score calculated for 2000 malware that are executed 4 times under
the same environment determined by RIoTMAN. The similarity score varies between 90%
to 100%.

5.2 Evaluation

In this section we evaluate our tool using 2885 real world IoT malware binaries

from Chapter 4. The goal is to identify variations in malware behavior when the analysis

environment is configured differently. More specifically our goal is to answer the following

questions:

● What techniques do IoT malware use to verify the target environment?

● How do changes in analysis environments result in variations in malware actions?

● What variation in malware actions constitute to changes in malware behavior?

We explore each of the questions in details to verify the effectiveness of our analysis

method.

Verifying target environment: The first problem in analyzing IoT malware

sensitivity to target environment is to identify how they confirm the environment they are
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in. As explained earlier in Section 5.1 to tackle this challenge we focus on the interaction

with the following resources on an analysis environment: filesystem, process, interactive

shell, and networking. We use the generated subgraphs of malware interaction with the

environment resources to identify its technique in verifying an environment. These resources

can not be any of the following: 1) their absence may result in failing to activate the malware

(see Chapter 3), and 2) such resources can not be the default resources files available in all

Linux distribution (e.g. /etc/hosts).

Changing target environment: Given a list of resources that malware has

interacted with in its execution trace, the goal is to make each resources available in a series

of analysis experiments. The goal is to have the malware be able to access each resources

per each execution which leads to a new analysis environment i.e. target environment.

Identifying changes in behavior: Using the similarity algorithm defined in

Section 5.1, we use the unmatched nodes as the grounds to claim changes in malware

behavior. As we show later in Case Study, upon the availability of each resources per

execution, the malware exhibits additional behavior which is an indication of change in

behavior. These changes are in fact series of system calls that are observed only in the

appropriate analysis environment.

Resource requests

We found 981 unique resources requested that were made by malware binaries

since they are not available in the generic platform. In Table 5.2 we categorize the resource

requests based on their type and how they were resolved.
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Resource Request From database “Dummy” file

Total 623 358

Software

Resource

Lib 171 -

Shell 189 40

LKM 10 1

Config 245 317

Hardware

Resource

NVRAM 5 -

Other 3 -

Table 5.2: Summary of resource requests made by the our dataset of IoT malware. If
the resource is not available in Configuration database, RIoTMAN creates a “dummy” file
appropriately constructed per request type.

I. Software Resource: There have been 973 of such requests. 615 of such re-

quests were resolved through the use of Configuration database (Chapter 3) which includes

library files specific to IoT devices e.g. libcms msg.so and libnat.so or configuration files

like ISP name. On the other hand in 358 cases the resource was resolved with “dummy”

files (details in Section 3.2): (1) files related to scanning; e.g. login file that holds list of

credentials for bruteforce scanning, (2) specific configuration file related to the malware;

e.g. Zopee3ve is requested by an instance based on linux.wifatch [179], or (3) in one case

malware loads (using modprobe) hi rtc.ko kernel module specific to HiSilicon2 IP camera.

II. Hardware Resource: We identified 8 types of such request. Interestingly,

we observed malware binaries that tampers with the watchdog timer to prevent the device

from rebooting. In other cases the malware requests to modify or read configuration from

2http://www.hisilicon.com/
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the NVRAM directly or through the use of shell commands such as nvram or cfgmtd.

5.2.1 Case Study

In this section, we explore 3 case studies of: a) query and infect, b) analysis

environment evasive, and c) hidden behavior. We show that IoT malware behavior differs

depending on the target environment since there is a plethora of diverse sets of IoT devices

which serve different and unique purposes.

Query and infect

In this category, the malware infects an environment by first query ’ing the config-

uration setup. Originally, this technique was observed in APT malware targeting PC [199].

In this study, we observe similar behavior in 11 of the IoT malware in our dataset which

exhibit 8 distinct behavior related to persistent process. Below, we detail this behavior

using one of the malware binaries in this category.

In this example, the malware queries series of configuration file resource which was

observed in its behavior subgraphs. None of the resources are available in a basic Linux

distribution. With further investigation we are able to associate each configuration file to

a group of commodity devices as we show in Table 5.3.

The Configuration Variability module is responsible to inform RIoTMAN to make

each resources available per iteration of execution. Figure 5.7 depicts each iteration of the

analysis execution under different target environment configuration. Table 5.4 compares

the number of system calls invoked per each execution under 8 distinct configuration setup
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Configuration file name Commodity device with the file

/etc/init.d/rcS Older Linux devices, raspberry Pi

/usr/sbin/nvram Home routers such as Linksys

/bin/cfgmtd Ubiquity Network devices

/mnt/Config ZyXEL home routers

/sbin/sncfg D-Link routers

/etc/ISP name Seowon Intech WiMAX

/etc/Model name Unknown home routers

Table 5.3: List of configuration file resources and the name of the commodity devices that
host them.

from None, indicating none of the configuration files are available, to Conf-0 to Conf-7 and

All which hosts all the configuration files.

Using the similarity measure introduced in Section 5.1, we compare the malware

behavior across all the iteration of execution. In Figure 5.8, we show a heatmap that shows

the similarity score between executions compared pairwise. The lower the similarity score

the less similar behavior they exhibit.

We further investigate the mismatch between the behavior from each iteration

and identify that this group of malware takes advantage of commodity device Interactive

shell to make itself persistent. We investigate the shell commands that were executed

in each iteration of analysis and observe 69 commands with exact same parameters have

been observed across all of the iteration of analysis. Additional commands are executed
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Figure 5.7: Through 8 iteration of execution in this example, the Configuration Variability
module makes one of the configuration resources available (colored in green) and exclude
other (colored in red) in each iteration of analysis.
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Figure 5.8: Heatmap of similarity for the same malware under 8 different configuration.
The score ranges from 0 to 100% indicating least to total similarity in malware behavior.
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Figure 5.9: Venn diagram of intersection of shell commands across each analysis iteration. 69
commands are commonly observed in all iterations and a total 124 commands was observed
in a system with all configuration.

depending on the availability of particular resources. Interestingly, if all resources are

available (in analysis iteration All) all of the shell commands are from all the other iterations

is observed. We show a diagram of shell commands observed in each iteration of analysis

in Figure 5.9.

Observation: In this category of malware, we observe unique and distinct behav-

ior depending on the target environment configuration, which we highlight here:

● Conf-1: malware makes itself persistent as part of the firewall rule setup.

● Conf-2: malware downloads a copy of itself after 2 minutes.

● Conf-3: malware makes itself persistent and after 3 months reboots the device.

● Conf-4: malware creates an additional function to the timezone synchronization

function of the device to download a new version of itself.
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● Conf-5: malware makes itself persistent by adding a custom startup script to its

NVRAM.

● Conf-6: the persistent process is added as part of a new file under the /etc/init.d/S99nvrak.

It uses the file content from /etc/ISP name to create a nickname to connect with C&C

IRC server.

● Conf-7: Same as above, however, it uses /etc/Model name to generate a nickname.

Besides the change in malware behavior observed via OS behavior, there are change

in the communication as well. Our analysis have determined that depending on the type of

target environment, the malware may take longer time to initiate the first communication

packet to its C&C server. Further investigation shows that the reason in delay is the longer

persistent process with respect to the target environment. We show a break down of the

seconds taken from starting of the malware execution until the first C&C packet is initiated

in Table 5.5.

None Conf-1 Conf-2 Conf-3 Conf-4 Conf-5 Conf-6 Conf-7 All

First comm packet 10 s 20 s 18 s 18 s 19 s 18 s 20 s 20 s 23 s

Table 5.5: The malware may take longer to initiate its first communication packet. The
more general the infected target environment is the less time it takes for the malware to
start engage in communication.

Hidden behavior

This category of malware describes a greater group of malware that have “hiddern”

functionalities which will reveal depending on the target environment. We define such IoT
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None Conf-1

# of Process 14 15

# of Shell cmd 13 13

# of Socket 11054 284

# of Connect 1091 1494

# of Open 49 366

# of File access 18 35

# of Success file open 10 27

Table 5.6: In this example, the malware behavior changes in the number of sockets created
when different configuration setup is available for it.

malware as malware with hidden behavior, which refers to a class of behaviors that will

emerge only if the target environment meets certain criteria. We highlight one of such

malware below.

In this example, the malware requests to access resources that are not available

in a basic Linux environment native to MIPS architecture. It requests to access NS lookup

library files under /lib/mips-linux-gnu directory which indicates a non native MIPS

environment. Upon the availability of the library files under the certain MIPS architecture,

the malware reveals a new behavior which is to start initiating connection with a particular

hostname. If the resource is not available, it resort to using a harcoded IP address to

communicate with its server. Table 5.6 shows changes in the number of system calls invoked

indicating changes in behavior.

Observation: In this category of malware, we observe hidden behaviors in dif-
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ferent configuration setups that would have not been observed otherwise. In Conf-1 the

requested artifacts indicate a non native MIPS Linux environment. Our further investiga-

tion suggests that this is a technique employed by the malware to verify, in a naive way,

that it is being executed via qemu-mips-static and chroot. This is a common practice

by malware researchers when analyzing malware targeting non x86 CPU architecture. In

this study, we are able to analyze the malware to reveal a behavior that it has for being

executed under non native environment.

5.3 Related Work

In this section we explore the related work in the space of analyzing malware

sensitive to target environment.

a. Analyzing environment sensitive malware: This group of malware anal-

ysis is the most relevant body of work to this chapter. So far, most studies have focused in

analyzing PC or smart phone specific malware. Balzarotti et al. [27] focus on PC malware

that are sensitive to analysis environment. In another study researchers have compared

the execution traces of a malware in a reference environment compared to an analysis

setup [104]. More studies have focused on changes in the behavior of PC malware with

respect to target environment[121, 116]. In this work we focus on the IoT malware and

having a plethora of target devices makes the problem challenging and unique compared to

the previous studies.

Force executing malware functions: This category of work focuses on identi-

fying and isolating malware functions to extract malicious function gadgets [110] or in some
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work [198] use malware communication function to identify their C&C server in the wild.

Other works focuses on exploring different execution path of a given malware [199, 132].

Firstly the mentioned research work focus on PC malware and do not address IoT malware.

Second, one of the key novelty of our work is to focus on resource usage of a given mal-

ware which makes the problem space limited to target environment and does not require

exploring its execution path.

Analysis evasive techniques: To combat automated malware analysis, a body

of work has been dedicated to identify analysis evasive malware [106] and analyzing evasive

malware [107]. In addition to that a body of work is dedicated to understand the evasive

techniques that malware can employ [77, 147]. In this work, focusing on IoT malware,

we have identified malware with hidden behavior that may not have been invoked if their

evasive technique was not recognized.

Malware behavior analysis: There is a tremendous amount of work dedicated

in this space with mostly focusing on PC and smart phone malware[28, 53, 158, 159, 28].

The main focus on these study is to compare the malicious behavior of a malware to that of

a benign one. In this work our main focus is to understand the changes in malware behavior

when compared to a reference analysis execution. We focus on the interaction of a given

malware with resources of the analysis environment and proposed techniques to identify the

changes in their behavior.
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5.4 Conclusion

The focus of this work is analyzing IoT malware behavior sensitive to target envi-

ronment. We have propose and implemented novel and unique analysis techniques with the

main focus on IoT malware. We tackle the difficult challenge of identifying environment

sensitive malware and analyzing them.

The main contribution of this work is two fold: (a) we identify the techniques that

IoT malware uses to identify target platform, and (b) we analyze such malware and identify

changes in its behavior. we first analyze the malware using the reference platform, RIoT-

MAN (Chapter 3, to identify the resources that a given IoT malware accesses throughout

its execution. Second, we iteratively create different analysis environment using the infor-

mation from the reference platform. Lastly we compare each of the iteration of execution

to identify changes in the behavior of the malware. We observe malware with 8 different

infection processes that depending on the type of target environment they exhibit unique

behavior. Our approach is able to identify malware with hidden behavior that is revealed

when the infected environment meets the target platform criteria.

With the results achieved in this study, we expect to observe more IoT malware

sensitive to the target platform. We view our approach an important addition in battling

IoT malware in the near future.
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Chapter 6

Conclusions

The key novelty of this dissertation is that it: (a) focuses on IoT malware, and (b)

provides unique capabilities to engage and communicate with the malware. We tackle each

key challenges in IoT malware analysis which includes identifying malware target platform

and engage in communication with it.

The contribution of this dissertation lies in the following: (a) an iterative adapta-

tion approach to identify the target platform for a given IoT malware, (b) enable automa-

tion in analysis by using information from other IoT malware and the use of Configuration

database, (c) identify environment sensitive malware and detect the changes in IoT malware

behavior under different target environment. We combine in-depth analysis of dynamic

behavior of the malware and its interaction with the target environment to explore IoT

malware behavior and its characteristics.

The tools we implemented are successful at activating given unknown IoT malware

binaries, engaging in network communication, and profiling their behavior. We successfully
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activate 93% of our malware binaries (2688 out of 2885 binaries) by dynamically create

suitable analysis environment. We observe more than 900 different configuration setup is

required to activate 2688 of all the malware binaries. In addition we are able to activate

and observe malicious behavior from 173 malware binaries that are deemed as benign by

the detection engines available in Virustotal reporting. We manage to impersonate the

C&C server for 79% of our binaries: in a contained environment we make the malware

begin DDoS attacks, enter its proliferation mode, and trigger functions other. We observe

“cross-talk” behavior in the malware family; a given malware maybe labeled as a particular

malware family, however, its behavior is similar to another family. We enumerate the

propagation and C&C server discovery techniques observed in our malware dataset.

With the rapid growth of Internet connected IoT devices, we expect to see more

threats concerning such devices. We view our work as an important step towards analyzing

threats towards IoT devices effectively and efficiently with the focus on IoT malware.
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