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ABSTRACT OF THE DISSERTATION

Spectral Characterization of Ekman Velocities in the Southern Ocean Based on Surface

Drifter Trajectories.

by

Shane Elipot

Doctor of Philosophy in Oceanography

University of California, San Diego, 2006

Professor Sarah Gille, Chair

Velocity time series from surface drifter data are exploited in a novel way to study the

Southern Ocean surface circulation response to wind forcing. The ageostrophic compo-

nent of the drifter velocities at 15 m is approximated by subtracting altimeter-derived

geostrophic velocities from the drifter velocities. The resultant ageostrophic velocity

time series are studied in the frequency domain jointly with contemporaneous time se-

ries of local wind stress from atmospheric reanalysis data.

Rotary spectral analysis indicates that both wind stresses and ocean velocities

are predominantly anticyclonic. Cross-spectral analysis shows that the upper ocean re-

sponds preferentially to anticyclonic winds not only at the inertial frequency but also at

subinertial frequencies. The phase of the cross-spectra which is interpreted as a geo-

metric angle indicates that the component of velocity that is coherent with the wind

stress is to the left of the wind at subinertial frequencies and to the right at supra-inertial

frequencies, and is seen as evidence of Ekman-type currents.

A first order closure of the oceanic vertical turbulence, where the oceanic

stress is equal to a viscosity coefficient K times the velocity vertical shear, is used

to interpret the cross-spectrum. In this framework, the real part of the cross-spectrum

of the wind stress and ocean surface ageostrophic velocity is shown to be a measure of

xiii



the wind energy input rate to the Ekman layer. This energy input is therefore estimated

across the Southern Ocean.

The observed transfer function, which is the cross-spectrum divided by the

auto-spectrum of the wind stress, is compared to the theoretical transfer functions aris-

ing from 10 different Ekman-type boundary layer models. These models differ in the

dependence of K on the vertical coordinate and in the bottom boundary condition. The

most dynamically consistent model has a vertical viscosity that is finite at the surface

and increases linearly to the bottom of the boundary layer depth. Results of the com-

parison to models provide in situ seasonal estimates of zonally averaged near-surface

viscosities and boundary layer depths across the Southern Ocean.
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Chapter 1

The Southern Ocean, global oceanic

circulation, and energetics

1.1 The wind energy input in the Southern Ocean

Strong and highly variable winds over the Southern Ocean drive the Antarctic

Circumpolar Current (ACC). The tilted isopycnals associated with this flow outcrop in

the same region where an Ekman transport drives surface water equatorward. The in-

teraction of these two processes suggests that intense mixing is occurring there, and as

such, the Southern Ocean is thought to be a major contributor to the total wind-induced

mixing which is required to sustain the global thermohaline circulation (Wunsch and

Ferrari, 2004). These processes induce transfers of mechanical energy from the atmo-

sphere to the ocean. These transfers take place through different physical mechanisms

that can be distinguished by the time scales on which they occur.

First, at low frequencies, the wind stress τ works on the ocean general circu-

lation (represented by the geostrophic velocity ug at the surface) as:

τ · ug ≡ Ue · ∇ps/ρ. (1.1)

Eq. (1.1) can be seen as either a direct generation of geostrophic kinetic energy or as

an increase in potential energy by the work of the Ekman transportUe against the pres-

1
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sure forces at the surface ∇ps/ρ (Gill et al., 1974; Fofonoff, 1981). Weijer and Gille

(2005) showed that the potential energy framework is more germane to the energetics

of a numerical model of the Southern Ocean. Wunsch (1998) estimated the left-hand

side of Eq. (1.1) by using altimeter-derived geostrophic velocities and wind stress field

analyses for the 1992-96 time period. In his estimate, 95% came from the time mean

components of τ and ug. Over the global ocean, the maximum energy input rates,

greater than 20×10−3 W m−2, were found in the Southern Ocean (his Fig. 2). More-

over, 70% of the wind work integrated over the surface of the global ocean was found

south of 40◦S. Huang et al. (2006) studied the decadal variability of this energy input

from both altimetry data and numerical model outputs. They found that the ACC region

is where most of the variability is found for the 1979-2003 time period and furthermore

that it is increasingly dominant in the global integral.

Second, at high frequencies, around the inertial frequency −f/2π, where f is

the Coriolis parameter1, inertial motions are triggered in the mixed layer by rapid, small-

scale wind stress fluctuations (e.g. D’Asaro, 1985b; Poulain, 1990) and resonance can

occur when the wind stress contains a significant rotary spectral component at the iner-

tial frequency (e.g. Crawford and Large, 1996). The associated energy flux has attracted

interest, because it is oriented towards the ocean interior and downward by propagat-

ing internal waves (e.g. D’Asaro et al., 1995). These waves eventually dissipate and

can drive diapycnal mixing (Gregg, 1987). The energy flux to mixed layer near-inertial

motions has been estimated from wind stress and ocean velocities measured at mooring

locations (D’Asaro, 1985a) or more recently from global wind stress analyses (Alford,

2001; Watanabe and Hibiya, 2002; Alford, 2003). In these global studies, the inertial

velocities ui were inferred from Pollard and Millard’s (1970) damped slab-layer model

for which the inertial currents are uniform in the vertical. By using either numerical

integration in time or spectral resolution of the equations, the wind energy input was

computed as τ · ui. Alford (2003) included depth-uniform Ekman velocities ue arising

from a time-varying Ekman transport, because their energy is also available for dissipa-
1Throughout this dissertation f will either have units of radians per second or radians per day.



3

tion, but their impact was modest in the final results. For the period 1989-95, he found

an average zonal-mean energy input rate at 40◦S of about 3×10−3 W m−2 (his Fig. 1).

However, this value may be too large since Plueddemann and Farrar (2006) showed that

the slab layer model systematically results in an overestimation of the work done on

mixed-layer inertial currents.

Third, what energy fluxes are taking place at intermediate or “sub-inertial” fre-

quencies? Vertically-sheared Ekman currents are expected to exist at all frequencies of

forcing: Gonella (1972) extended Ekman’s (1905) theory by retaining the time-varying

terms and derived several frequency and depth dependent transfer functions. The result-

ing Ekman velocities ue, spiral with depth and rotate with the wind-forcing frequency

and also exhibit a resonance at the inertial frequency. While the Ekman currents them-

selves should play a role in the wind energy input into geostrophic currents via Eq. (1.1),

maintaining the Ekman spiral requires dissipation within the Ekman layer, or a wind en-

ergy input rate “to the Ekman layer”.

To estimate this, Wang and Huang (2004) used a spectral approach to com-

pute the ocean surface Ekman velocities from wind stress analyses as a function of

frequency, assuming the simplest frequency dependent Ekman model with a constant

vertical viscosity. They set the Ekman depth to be proportional to the mean friction

velocity (
√

|τ | /ρ) and inversely proportional to the Coriolis parameter, which implies

through Ekman scaling that the vertical viscosity was proportional to the mean wind

stress and inversely proportional to the Coriolis parameter. The total wind energy input

into the Ekman layer was then obtained by summing the dot products τ ·ue computed for

each frequency component. It was apparent that the global integral for this energy input

is also dominated by the contribution from the Southern Hemisphere. Examination of

Fig. 3 in Wang and Huang (2004) reveals that this is mainly due to the strong winds over

the Southern Ocean and notably large values over the ACC of about 20×10−3 W m−2.

They also computed the changes of the global energy input to the Ekman layer over the

1948-2002 time period, which Huang et al. (2006) subsequently attributed to wind stress

variability in the equatorial region and in the Southern Ocean.
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Because the upper ocean is a complicated place where linear and non-linear

superpositions of geostrophic, tidal, wave-induced and inertial currents are expected,

observations of frequency dependent Ekman currents as formulated by Gonella (1972)

and their relationship to the wind stress are few (see Table 2.3). From surface drifter

data, however, attention has been drawn to frequency dependent motions. The work

of Rio and Hernandez (2003) shared some common analyses techniques with this cur-

rent work, though their purpose was ultimately different, i.e. estimating ageostrophic

currents on a global scale.

In Chapter 2 of this dissertation, it is shown again that wind-driven currents at

a wide range of frequencies can be identified using spectral and cross-spectral analysis

of surface drifter velocities and wind stresses, and we describe the spectral results in

greater detail than Rio and Hernandez (2003). In Chapter 3, it is argued that the rate of

wind energy dissipation that is needed to sustain the Ekman balance can be estimated

qualitatively, if not quantitatively, from the real part of the cross-spectrum between the

wind stress and the drifter ageostrophic velocities. This energy estimate is important as

a potential contributor to the upper ocean mixing energy budget.

1.2 The Ekman layer and the mixing at the surface in

the Southern Ocean

As mentioned above, the Southern Ocean is believed to be a primary location

of ocean mixing and wind energy input, of relevance for the global oceanic circulation

(Wunsch and Ferrari, 2004). More specifically, the magnitude of the mixing in the

Southern Ocean has been shown to be critical in numerical process studies (Toggweiler

and Samuels, 1998), and this implies that unless we have observations from this region

to constrain general circulation models, mixing processes there could be incorrectly

represented (Large et al., 1997).

Estimating the “mixing” could consist of obtaining a mixing coefficient that
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models the unresolved physical processes that redistribute quantities in space. In the

ocean these quantities are scalars like temperature, salinity, mass, and other tracers or

vectors like momentum. Starting from a set of observations of an ocean quantity φ,

oceanographers attempt to estimate a turbulent or “eddy” coefficient:

Kφ =
flux of φ

gradient of φ
. (1.2)

This assumes that turbulent fluxes of tracers and momentum are down-gradient, fol-

lowing a Fickian law akin to what occurs at the molecular level. Kφ varies depending

of course on the actual physical quantity φ, the spatial scales on which these proper-

ties are measured, and the direction along which they are measured with respect to an

iso-surface.

In the Southern Ocean, mixing of deep water increases the potential energy

that was lost when the water sank in northern high latitudes. When the water upwells,

in the ACC, it closes the deep cell of the meridional circulation. A number of recent

studies have evaluated Southern Ocean mixing. In Drake Passage and downstream of it,

Naveira Garabato et al. (2004) estimated widespread and intense diapycnal diffusivities

linkable to topographic roughness, from observed vertical profiles of ocean properties

and velocities. Using standard hydrographic data, Sloyan (2005) found that mixing

along the ACC was heterogeneous in the vertical and the horizontal directions, with

enhancements in frontal regions and above rough topography. Further up in the wa-

ter column, from approximately 1000 to 100 m of the surface, Thompson et al. (2006)

estimated diapycnal diffusivities from expendable CTD hydrographic data in Drake Pas-

sage and noted a surface intensification for the diffusivity north of the Polar Front, with

seasonal variability that they suspected was linked to wind stress variance. Cisewski

et al. (2005) estimated the vertical diffusivity in the upper 180 m of a mesoscale eddy

within the Antarctic Polar Frontal Zone using CTD and ADCP data. They found values

that ranged several orders of magnitude, from O(10−4 m2 s−1) in the pycnocline up to

O(10−1 m2 s−1) in the mixed-layer during strong wind events.

The same turbulent phenomena could be mixing both temperature and mo-
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mentum but at different rates and on different scales. The value of the turbulent Prandtl

number, the ratio of the momentum to the heat diffusivities is usually found to be ap-

proximately 1 in neutral environments (Kundu and Cohen, 2002), but how can we be

sure that this is applicable in the world ocean? While diffusivity is the term commonly

used for temperature, salinity and mass, the term viscosity is used for momentum. The

adjective diapycnal is used for fluxes perpendicular to iso-density surfaces while the

adjective isopycnal for fluxes along these surfaces. For the viscosity and diffusivity

that enter the equations of motion in a three-dimensional Cartesian coordinate frame,

K takes values that differ by several orders of magnitude for its vertical and horizon-

tal counterparts. How do these various K relate to each other? As an example, in

the zonally-averaged conceptual picture of the Southern Ocean, historical hydrographic

data show that isopycnals are horizontal to the north and curve upwards to the south

to become vertical when reaching the surface (e.g. Orsi and Whitworth, 2004) and this

has implication for the mixing schemes of eddy fluxes implemented in oceanic general

circulation models (OGCMs) (Ferrari and McWilliams, 2006). The vertical viscosityK

must vary from values closer to the surface determined by an oceanic boundary layer

(OBL) model, to interior values that are usually ascribable to the background internal

wave field. This is the approach used in theK-Profile Parameterization (KPP) by Large

et al. (1994), implemented commonly in OGCMs, where a cubic vertical profile for K

is made to match smoothly a background value at the bottom of the OBL.

In Chapter 4 of this dissertation, estimates of the vertical viscosity and bound-

ary layer depth are obtained by identifying the wind-driven processes taking place at the

ocean-atmosphere interface and studying the ocean frequency response to wind stress

forcing, using surface drifter velocity data in the Southern Ocean. It is beyond the scope

of this study but potentially of interest to compare the values for the vertical viscosities

and boundary layer depth obtained here to what is determined by the KPP algorithm in

neutral or stable conditions in an OGCM run for the Southern Ocean. One objective of

Chapter 4 is to assess realistic values for momentum diffusivities that can be compared

with recent heat or buoyancy diffusivity estimates.



Chapter 2

Data and spectral methods

In this chapter, we review the datasets used for this work and discuss in detail

the results from the spectral and cross-spectral analyses.

2.1 Data selection

The Surface Velocity Program (SVP) (Siedler et al., 2001) and the ongoing

Global Drifter Program (GDP) both provide horizontal velocity data from surface drift-

ing buoys (drifters) on a global scale. A SVP drifter has a Holey-Sock drogue centered

at 15-m depth, linked by a tether to a subsurface float and a surface float that radio-

transmits its positions to the ARGOS satellite array at an uneven time rate, depending

on satellite coverage and the drifter’s setup (Sybrandy and Niiler, 1991; Niiler et al.,

1995). The NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML)

processes the raw position data and interpolates them using a kriging procedure (Hansen

and Poulain, 1996), resulting in a time series of velocity ud(t,x(t)) and position x(t)

at a six-hour intervals. Positioning uncertainties cause a 1 cm s−1 inaccuracy in daily

drifter velocities.

In principle, the drifter motions represent the currents averaged over the 6.1 m

length of the drogue. Vertical shear of velocity has been observed over this vertical

7
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extent from vector measuring current meters mounted at the top and the bottom of the

drogue (Niiler et al., 1995). Here this information is unavailable and we interpret the

drifter velocities to be at the nominal 15 m depth when comparing to the theoretical

transfer functions, which are explicitly a function of depth (see section 3.2.3).

In the Southern Ocean between 30◦S and 60◦S, 2,839 independent SVP

drogued drifter trajectories are available from November 1989 to May 2003. Undrogued

drifter data were discarded. We identified 666 trajectories from drogued drifters that

were at least 40 days long between October 1992, the first date for which AVISO al-

timetric maps are available (see below), to August 2002, the date when the ECMWF

ERA-40 re-analysis ends (see below). The coastal areas are avoided by discarding the

points of drifter trajectories for which a dynamic height relative to 3000 decibars from

the 1◦ gridded historical atlas data by Gouretski and Jancke (1998) could not be inter-

polated linearly. When divided in 40-day long segments that overlap by 20 days, these

trajectories provide 10,387 time series segments, shown in in Fig. 2.1. These segments

are further sorted in 2◦ latitudinal bands according to their mean latitude and are plotted

with different colors to distinguish these zonal bands. The number of segments per band

is listed in Table 2.1. These numbers are used to evaluate the number of degrees of free-

dom for the spectral estimates, as explained in section A.2. Panel a of Fig. 2.2 reveals

the latitudinal biases, due to the decrease in data segments south of 44◦S. In panel b of

this figure, the longitudinal distribution of the data segments indicates that the drifters

are primarily from the Atlantic and Indian sectors of the Southern Ocean. The temporal

distribution of the data segments (Fig. 2.3) suggests that the observations are weighted

more heavily toward the second half of the decade but show little seasonal bias. The

drifter dataset is also further divided into an austral winter subdataset (5,282 segments)

and a summer subdataset (5,105 segments) to study the seasonal variability. The austral

winter is taken to correspond to the months of April through September and the aus-

tral summer to the months of October through March. The nominal month of a 40-day

trajectory segment is chosen here as the month of the median date of the segment.

It is hypothesized that the statistical characteristics of the flow in the ACC
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Figure 2.1: (a) Drifter trajectory segments used in this study between 30◦S and 60◦S.
The 40-day segments are colored according to their mean latitude, following a repeated
5-class qualitative colormap to distinguish one 2◦ latitudinal band from the next. The
solid blue line is the Polar Front position from Orsi et al. (1995). The 1 and 2.2 m
dynamical height contours relative to 3000 decibars are drawn with black solid lines.
These circumpolar contours delineate the ACC to the north and to the south.
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Table 2.1: Characteristics of trajectory segments per 2◦latitudinal band and in the ACC.
The constant time lag is discussed in sections 2.3.2 and 4.2.2. χ(0) is the mean angle
with the wind stress for drifter velocities ud and ageostrophic velocities u.

Latitudes Number of segments Lag (◦cpd−1) χ(0) (◦)

all summer winter ud u

30-32◦S 723 361 362 41.53 42.58 46.13

32-34◦S 1080 570 510 48.36 29.45 37.88

34-36◦S 1124 587 537 39.01 28.68 35.69

36-38◦S 1045 525 520 36.43 27.85 33.86

38-40◦S 1076 505 571 37.95 20.09 27.24

40-42◦S 1172 569 603 34.77 16.87 33.18

42-44◦S 1019 542 477 29.68 15.30 39.68

44-46◦S 848 397 451 27.82 17.23 33.31

46-48◦S 622 279 343 28.26 17.59 34.17

48-50◦S 543 261 282 22.56 16.88 27.80

50-52◦S 363 167 196 26.63 15.83 25.80

52-54◦S 279 105 174 23.54 21.32 35.29

54-56◦S 222 118 104 30.81 16.44 28.44

56-58◦S 143 65 78 29.93 17.71 26.71

58-60◦S 128 54 74 21.23 16.11 23.48

Total 10387 5105 5282 - - -

ACC 3528 1689 1839 28.07 16.04 31.74
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should differ from the subtropics and that circumpolar streamlines could be controlled

by different forcing than non-circumpolar streamlines in the subtropical gyres (Mestas-

Nuñez et al., 1992). As such, a subdataset for the ACC is constituted by selecting the

3,528 segments south of 40◦S and between the 1 and 2.2 m dynamic height contours

relative to 3000 decibars (e.g. Pond and Pickard, 1983), which we calculated from 1◦

gridded historical atlas data (Gouretski and Jancke, 1998).

In order to obtain an estimate of the absolute geostrophic velocity component

of the drifter velocities, two satellite altimetry datasets were combined. The anomalies

u′
g were derived from “Archiving, Validation and Interpretation of Satellite Oceano-

graphic” data that are produced by the Centre Localisation Satellite (AVISO). These

provide high-resolution maps (1/3◦×1/3◦ Mercator grid) by merging TOPEX/Poseidon

(T/P) and ERS-1 and -2 altimeter measurements, using an objective analysis method

(Ducet et al., 2000). These maps are available at 7-day intervals implying a Nyquist

frequency of 1/14 cpd, which is the highest frequency that one can hope to resolve

in the geostrophic signal. We computed the velocity anomalies from the zonal and

meridional gradients of the height anomalies. To these, a mean geostrophic velocity ūg

was added, computed from the Gravity Recovery and Climate Experiment (GRACE)

satellite-derived dynamic topography available on a global 1◦ grid (Tapley et al., 2005).

This mean geostrophic velocity field was interpolated linearly in space, and the velocity

anomaly maps were linearly interpolated in space and time, at all the drifter positions,

to obtain the absolute geostrophic velocity u′
g + ūg at the surface every 6-hours along

the drifter trajectories. In the coherence analysis (section 2.3) it is shown that adding a

mean velocity permits us to resolve some of the geostrophic velocity variance at zero

and low frequencies.

The ageostrophic velocity u at 15 meters at the location x0 is then obtained as

the drifter velocity minus the absolute geostrophic velocity at the surface:

u(t) = ud (t,x(t) = x0) − (u′
g (t,x0) + ūg(x0)). (2.1)

This neglects the geostrophic shear in the upper 15 meters of the ocean. Expendable
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bathythermograph data in the Drake Passage indicate a geostrophic shear of less than

10−3 s−1 in the upper 400 meters (Janet Sprintall, personal communication), yielding a

potential maximum 1.5 cm s−1 geostrophic velocity difference between the surface and

15 meters. This is of the same order as other sources of noise in this study.

For the wind data, the chosen product is the European Center for Medium-

Range Weather Forecasts (ECMWF) ERA-40 Project re-analysis wind stresses (Sim-

mons and Gibson, 2000) obtained from the Data Support Section of the Scientific Com-

puting Division at the National Center for Atmospheric Research. The zonal and merid-

ional wind stress components are available four times daily at the times 00, 06,12 and

18 UTC. The values are instantaneous and are given as forecasts valid 6 hours after the

re-analysis time. This detail will appear to be crucial for the interpretation of the phase

of the cross-spectra (see section 2.3.2). The data are released on a Gaussian grid with

resolution of 1.125◦ longitude by roughly 1.125◦ latitude. These grids were linearly in-

terpolated on the drifter positions to obtain contemporaneous six-hourly time series of

wind stress.

2.2 Power rotary spectra of wind stress and ocean ve-

locity

2.2.1 Rotary spectral decomposition

For this study, time series of vector quantities are analyzed. A vector time

series of temporal length T (here of the wind stress, drifter velocity or ageostrophic

velocity) can be written as a complex quantity. Such a time series can be assumed to

have a complex Fourier series representation and be written 1:

u(t) = u(t) + iv(t) =
k=+∞∑

k=−∞

uk(t), (2.2)

1Formally the assumption is that the times series are periodic of period T . The usual approach is to
assume that the real time series coincides with an idealistic periodic time series over a time window T .
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where u and v are the zonal and meridional components, respectively; t is the time, and

i =
√
−1. At each discrete frequency νk = k/T , the rotary component is

uk(t) = Ck exp(i2πνkt), (2.3)

with

Ck(νk) =
1

T

∫ T

0

u(t) exp(−i2πνkt)dt, (2.4)

which is the complex Fourier series coefficient. Each component represents a rotating

vector component of the original vector time series, the hodograph of which is a circle

described in the sense given by the frequency sign. The absolute value and phase ofCk

give the magnitude and angle at the time origin of each rotary component. Fig. 2.4 gives

a graphical representation of rotary components at opposite frequencies.

The generalization of the complex Fourier series representation to stationary

complex random variables constitutes the rotary spectral analysis. A rotary spectrum

decomposes a vector signal into clockwise and counterclockwise rotary spectral com-

ponents continuously as a function of frequency. This type of analysis can reveal polar-

ized oscillatory movements characteristic of geophysical fluids and was introduced by

Gonella (1972) and Mooers (1973) in oceanography. For this study, negative frequen-

cies correspond to clockwise motions, cyclonic in the Southern Hemisphere. As such,

the anticyclonic inertial frequency is −f/2π > 0.

Rotary power spectral density functions Syx(ν), functions of the frequency ν

of the motions, are estimated for this study by the periodogram (e.g. Bendat and Piersol,

1986), for a finite number of frequency bands νk:

Ŝyx(νk) =
〈Yk Xk

∗〉
T , (2.5)

where 〈·〉 is the expected value operation over an ensemble of time series segments

and .∗ is the complex conjugate. Xk is the finite Fourier transform of x, computed over

the finite time T :

Xk(νk) =

∫ T

0

x(t) exp(−i2πνkt)dt. (2.6)
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Figure 2.4: Sketch of rotary Fourier series components. The circles are the hodographs
described during one time period by the rotary Fourier components of the wind stress
(black) and of the ocean velocity (gray), for counterclockwise components (dashed cir-
cles) and clockwise components (solid lines). For random variables, the radius of these
circles are representative of the power spectral density at the corresponding frequency.
When considering pairs of coherent variables, as an example the wind stresses and the
ocean velocities, the coherence phase χ± is the constant angle between two co-rotating
components. The black (light gray) triangle arrow vector is the ocean velocity rotary
component representative of the magnitude of the co-spectrum (quad-spectrum).
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The finite Fourier transform is computed using a standard Fast Fourier Transform algo-

rithm.

Since the drifter trajectories in the Southern Ocean are T = 40 days with a

sampling interval ∆t =0.25 day, the formal Nyquist frequency is 1/(2∆t) = 2 cycles

per day (cpd), and the frequency bands considered are given by νk = k/T = k/(N∆t),

positive for k = 0, . . . , N/2 and negative for k = −N/2 + 1, . . . , 0, with N = 160.

The frequency resolution, or bandwidth, is theoretically νr = 1/T =0.025 cpd, but in

reality it is 50% larger at 0.0375 cpd, because we applied a Hanning window to reduce

spectral side-lobe leakage (Harris, 1978). Since the drifter data were ultimately sorted

in 2◦-latitudinal bands between 30◦S and 60◦S, this frequency resolution is sufficient to

resolve the smallest difference in the inertial frequency from one 2◦-latitudinal band to

the next, except between the two most southern bands.

For this type of ensemble-averaging method for spectral estimation, it is usu-

ally recommended to subtract the mean value of each realization (Bendat and Piersol,

1986), in order to remove the bias or influence of any signal occurring at a lower fre-

quency than νr. This procedure is applied in this chapter for the estimation of the au-

tospectra of the wind stress and of the ocean velocity in the next section, as well as for

the estimation of the coherence squared in section 2.3. In Chapter 3, for the purpose

of estimating the wind energy input rate into the Ekman layer, it will be shown that the

estimation of this mean is crucial and does carry an important physical meaning. In

Chapter 4, for the purpose of estimating the transfer function, it will be seen that the

zero frequency component is representative of the mean Ekman currents and should be

kept as well. Table 2.1 lists for each latitudinal band the phase at zero frequency of the

cross-spectrum between the wind stress and the drifter velocity, as well as between the

wind stress and the drifter ageostrophic velocity, for which the mean was not subtracted.
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2.2.2 Analyses of the instrumental noise spectrum

A variety of sources of noise may alter the spectral estimates. We focus on

the noise in the drifter data, since ECMWF does not provide formal error estimates with

the re-analysis wind fields. For the drifter velocities, three sources of “instrumental”

error are considered. The first is the uncertainty in the ARGOS drifter positioning,

which leads to velocity errors of about 1 cm s-1 (Niiler et al., 1995). The resulting noise

velocity spectrum follows a quadratic law (Rupolo et al., 1996) and becomes greater

than the velocity spectrum only at very high frequencies (|ν| ≥ 1.8 cpd), but its power

density remains below 10−4 m2 s−2 cpd−1. The second source of error is the “wind-slip”

or direct action of the wind on the drifter surface buoy which results in an erroneous

downwind component in the ocean current velocity (see also section 3.2.3). Niiler et al.

(1995) estimated the wind slip to be a linear function of the 10-m wind velocity. For

standard SVP drifters they predicted about 1 cm s−1 slip for winds of 10 m s−1, a scale

factor of 10−3. Assuming that the wind slip spectrum is correspondingly proportional

to the 10-m wind spectrum (not shown), the wind slip should have a maximum power

density of about 10−4 m2 s−2 cpd−1. Another error in the ocean velocities comes from

a slippage proportional to the velocity shear across the length of the drogue (Chereskin

et al., 1989). On the basis of the data tabulated by Niiler et al. (1995), we estimated

that in the worst case, shear slippage would be of the order of the wind slip. Thus,

for the purpose of spectral estimation, we combine the effect of wind and shear slips

and assume the maximum slippage noise to have a power spectral density of 2 × 10−4

m2 s−2 cpd−1.

2.2.3 Spectral analyses

The spectral analysis in this work aims at studying the relationship between

the wind stress and the ocean surface velocity in the Southern Ocean. In the remainder

of this chapter, we focus on the ACC subset of the drifter dataset in the Southern Ocean.

Since the number of trajectory segments in the ACC is much larger than in any 2◦ latitu-
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dinal band across the Southern Ocean, the spectral estimates are smoother and the error

bars are smaller. However, it is found that the spectral characteristics discussed in this

chapter are qualitatively similar all across the Southern Ocean.

The rotary autospectral density functions for the wind stresses, the drifter ve-

locities and the ageostrophic velocities from the ACC sub-dataset are plotted in Fig. 2.5.

2.2.3.1 Wind stress spectra

The wind stress rotary autospectrum Sττ (heavy black lines in Fig. 2.5) should

be interpreted with care. These estimates do not formally represent Lagrangian spectra

since they are not derived frommaterial trajectories, but instead represent the wind stress

forcing at drifter locations and measurement times. They show that anticyclonic power

density (dashed curves) is higher than cyclonic power density (solid curves) for all fre-

quencies considered. The maximum anticyclonic polarization is found for ν = 0.525

cpd or a period of 1.9 days. The anticyclonic and cyclonic spectra have the same red

shape with an attenuation of about 10 dB per frequency decade. Rio and Hernandez

(2003), who interpolated ECMWF analysis wind stresses onto global SVP drifter posi-

tions found similar features in their wind stress spectral estimates. Similarly, Stockwell

et al. (2004) found that the anticyclonic power exceeds the cyclonic power in spectra

from moored buoy surface winds on an almost global scale.

Spectral slopes were computed by a least-square fitting procedure, using the

error bar of the spectra to deduce 95% confidence intervals for the slopes. Spectral

slopes of the anticyclonic and cyclonic domains were not statistically different and were

averaged to obtain the overall slope estimates, listed in Table 2.2. The wind stress in-

dicates several regimes: slopes are near zero at low frequencies, around 0.5 (ksl) from

ν = 0.05 to 0.325 cpd, and steepen to around 2.25 (ksh) from ν =0.5 to 1.5 cpd. These

values agree with slope estimates from Eulerian zonal and meridional wind stress fre-

quency spectra for ECMWF analyses (Gille, 2005). This is not surprising given that
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Figure 2.5: Rotary power spectral density functions of stresses (heavy black curves)
with ordinate axis to the right, drifter velocities (thin black curves) and ageostrophic
velocities (thin gray curves) with ordinate axis to the left. Solid curves correspond to
cyclonic motions and dashed curves to anticyclonic motions. Slope magnitude estimates
are listed in Table 2.2. The error bar is the formal 95% confidence interval for autospec-
tral estimates.
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Table 2.2: Spectral slopes of Fig. 2.5. Error bars are the 95% confidence intervals
determined from the least-square estimates

Spectrum Slope ν-k

Drifter velocities kd = 2.03 ± 0.02

Ageostrophic velocities ka = 1.63 ± 0.02

Low frequency stress ksl = 0.52 ± 0.03

High frequency stress ksh = 2.25 ± 0.05

winds have larger spatial scales than do ocean flows and therefore are relatively spa-

tially homogeneous along the 40-day trajectories of the drifters.

2.2.3.2 Ocean velocity spectra

The Lagrangian rotary autospectrum Sudud
of the drifter velocities is indi-

cated with thin black lines in Fig. 2.5. Both anticyclonic and cyclonic spectra display

a plateau at low frequencies below about 0.1 cpd. As frequency increases, they follow

a power law intermediate regime up to about 1.2 cpd. The anticyclonic spectrum then

differs greatly from the cyclonic spectrum with a peak at about 1.45 cpd. This peak,

which has been previously reported in drifter data, corresponds to near-inertial motions

in the ocean mixed layer (e.g Poulain, 1990; Poulain et al., 1992; Saji et al., 2000). The

so-called inertial peak is broad, extending from about 1.2 to 1.8 cpd because of the lati-

tudinal distribution of the ACC data selected for this plot and because of the latitudinal

displacement during each 40-day trajectory segment. In contrast with the wind stress

spectra, for the drifters the polarization is less pronounced and varies in sign. Anticy-

clonic power predominates for all frequencies except from ν = 0.2 to 0.375 cpd. There

the polarization is not statistically significant (i.e. the difference between the cyclonic

and anticyclonic spectra is less than the 95% confidence interval) except at ν = 0.25

cpd, where it is marginally cyclonic. We further tested the statistics of this polarization

reversal by applying a bootstrapping method (Efron and Gong, 1983) to recompute the
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drifter spectra a hundred times. Our findings indicate that this is a robust feature since

cyclonic polarization is found in at least one frequency band between ν = 0.225 and ν =

0.325 cpd in 95% of the cases. Similarly, Colin De Verdière (1983) observed an anti-

cyclonic polarization of Lagrangian spectra at low frequencies from 14 drifters drogued

to 100 meters in the eastern North Atlantic. In contrast, from SVP drifter data, Lump-

kin and Flament (2001) found polarizations of either sign in the wake of the Hawaiian

archipelago in the North Equatorial Current. They ascribed these features to the cy-

clonic and anticyclonic vorticity of the respective gyres that transported the drifters.

Here, ascribing the polarization to local flow features is difficult since we are using data

collected all along the ACC.

The ageostrophic velocities u (Eq. 2.1) were used to compute the ageostrophic

rotary autospectrum Suu (gray lines in Fig 2.5). For |ν| < 0.1 cpd, the power density

of ageostrophic velocities is about 40% of the drifter velocities. This suggests that at

low frequencies, the geostrophic component dominates the drifter velocities. For |ν| ≥

0.3 cpd, the ageostrophic and drifter velocity spectra are identical. The ageostrophic

velocities are polarized anticyclonically at all frequencies, except from |ν| = 0.2 cpd

to 0.35 cpd. In this range, in contrast with the drifter velocities, the polarization is

not statistically different from zero anywhere. This suggests that the aforementioned

cyclonic power in the drifter velocities can be ascribed to the geostrophic component

of the velocities. This polarization might occur because drifters preferentially sample

regions of convergence, where quasigeostrophic motions have cyclonic vorticity (e.g.

Middleton and Garrett, 1986). In contrast, the anticyclonic polarization is explained by

the stronger anticyclonic wind forcing and by a preferential response of the wind-driven

upper ocean to anticyclonic wind stress (Gonella, 1972), as discussed in Chapter 4.

2.2.4 What sets the ocean spectral slope?

For the drifter and ageostrophic spectra, slopes were estimated for the fre-

quency range between 0.1 and 1 cpd, where a power law decay is observed. Results
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are listed in Table 2.2. The drifter spectra display a slope kd = 2.03 ± 0.02 while the

ageostrophic spectra have a smaller slope ka = 1.63±0.02, as a result of reduced power

at low frequencies. Our choice of data processing also affects the slope estimates. In

the high-frequency range, spectral leakage from the inertial peak certainly occurs, and

without windowing to reduce this effect, the slopes are reduced by about 15%. Applying

the Niiler et al. (1995) wind slip correction did not modify the spectral slope estimates

significantly.

Spectral slopes carry information about the physics governing variability.

First, spectral slopes can be controlled by turbulent variability: power laws are expected

in the inertial subrange. Kolmogorov’s similarity theory predicts that wavenumber k

spectra should scale as k−5/3 whereas frequency spectra should scale as ν−2 (Pinton

and Labbé, 1994). In addition, in geostrophic turbulence, energy is transfered towards

larger scales from one spectral band to the next with no energy input from outside forc-

ing. Such free decay should also give rise to a power law regime. Turbulence theories

are therefore compatible with our slope kd for the drifter spectra, as some previous

Lagrangian studies have also found. Rupolo et al. (1996) identified from 700-m float

trajectories in the North Atlantic a three-piece shaped typical power spectrum for which

a plateau at low frequency is followed by an intermediate power law regime with a small

slope (≈ ν−0.25) and finally a power law regime with steep slope (> 3). They suggested

that slopes greater than 2 may be due to the Lagrangian nature of the frequency spectra

in contrast to Eulerian spectra which have longer decorrelation time scales. In spectra

computed from three drifters drogued to 100 meters in the Kuroshio region, Osborne

et al. (1989) found a power law regime with a ν−2.5 slope that they interpreted as a

manifestation of the inertial range of geostrophic turbulence.

Second, specific ocean features can alter or modify spectral slopes. Rupolo

et al. (1996) linked their intermediate power law regime to their floats’ sampling of

energetic features like jets or vortices. In computations based on SVP drifters around

Hawaii, Lumpkin and Flament (2001) found slopes between ν−1 and ν−3 in the approx-

imate (40)−1 to 1 cpd frequency range. They also ascribed these anomalous slopes to
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the coherent vortices in the flow. This is reminiscent of the slight bulge in the shape of

our spectra in the 0.2 to 0.375 cpd frequency bands, which changes the polarization of

the drifter velocity spectrum and that we suggested was due predominantly to mesoscale

geostrophic cyclonic motions.

Finally, external forcing influences spectra. Hasselmann (1976) noted that

the ocean integrates high-frequency wind variations, and therefore the ocean velocity

spectral slope is expected to be steeper than the forcing slope (e.g. Colin De Verdière,

1983). Such a regime is found in our drifter and ageostrophic spectra for which ka and

kd are greater than ksl, the spectral slope of the wind stress forcing at low frequencies.

This stochastic interpretation fails toward higher frequencies as the wind stress slope

steepens and becomes greater than the ocean velocity slope. This may be due to a lack

of high-frequency power in the ECMWF re-analysis wind stress fields.

The ocean spectral slopes therefore appear to represent a combination of in-

trinsic variability and wind stress forcing, and a simple spectral slope analysis is in-

conclusive. The surface currents in the Southern Ocean do not mirror the local wind

stress forcing but the common anticyclonic polarization of the wind stress forcing and of

the ageostrophic spectra suggests a relationship between these two. The cross-spectral

analysis of the next section as well as the study of the transfer function in Chapter 4

elucidates this relationship.

2.3 The linear relationship from the coherence

What fraction of the drifter or ageostrophic spectra in Fig. 2.5 can be attributed

to local wind stress forcing? Rotary cross-spectral analysis allows us to study the rela-

tionship between the pairs of vector time series of the local wind stresses τ and the

drifter or ageostrophic velocities u. Gonella (1972) and Mooers (1973) developed these

vector time series cross-spectral analysis techniques and pioneered their application to

meteorological and oceanographic data. Table 2.3 reviews results from previous La-

grangian studies. Details in these results diverge for a variety of reasons associated
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with differences in drifting buoy design and data processing, in oceanic or atmospheric

conditions, and in the quality of wind stress data used. In contrast, the standardized

SVP drifters used here are all expected to have the same water-following capabilities,

whatever their location in the Southern Ocean. Moreover, the data span a decade and we

expect that they represent the average response of the surface circulation in the Southern

Ocean.

The rotary cross-spectral power density function Sτu(ν) between τ and u was

estimated. Sτu(ν) is a complex quantity that measures the covariance between the co-

rotating rotary components of u and τ as a function of frequency (e.g. Mooers, 1973)

and consequently has the units of a spectral density of a momentum flux. A detailed

interpretation of the meaning of the cross-spectrum is the focus of Chapter 3.

We first examined the coherence squared γ2, which quantifies the linear rela-

tionship between two signals as a function of frequency:

γ2(ν) =
|Sτu(ν)|2

Sττ(ν)Suu(ν)
, (2.7)

where Sττ(ν) and Suu(ν) are the autospectral power density functions of τ and u,

respectively. One can interpret γ2 as the percentage of variance of u that is ascribable

to linear forcing by τ . γ2 was estimated as

γ̂2(νk) =
|〈Tk Uk

∗〉|2

〈Tk Tk
∗〉 〈Uk Uk

∗〉
. (2.8)

The phase of the cross-spectrum is,

χ(ν) = arctan

[
I (Sτu(ν))

R (Sτu(ν))

]
, (2.9)

where R and I designate the real and imaginary parts, respectively. χ is interpreted as

the geometric angle between the coherent components of the two quantities (Gonella,

1972), as shown schematically in Fig. 2.4. In this study a positive angle means that the

coherent rotary component of u is to the left of the rotary component of τ .

Fig. 2.6a and b show γ2 and χ for the wind stresses and the drifter velocities

(black curves) and for the wind stress and the ageostrophic velocities (gray curves). The
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clonic frequencies. The 95% confidence limit for γ2 is indistinguishable from the 0 on
this plot.
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subset of data used to compute these estimates is the same as the one used to compute

the spectral estimates of Fig. 2.5 and is expected to produce results representative of

the ACC. The formal 95% confidence level (Bendat and Piersol, 1986) for γ2 is 5 ×

10−4. For frequencies lower than 1 cpd, the average error bar for γ2 is ±10−3 and for

χ it is ±0.05◦. The large number of degrees of freedom make these error bars small

and therefore not visible on the scales of these plots. From |ν| = 0 to 0.15 cpd, the

cross-spectra depend on the mean sea surface height product used. The influence of

the mean field on non-zero frequencies is explained by the Lagrangian nature of the

drifters, because advection by the mean field produces a low-frequency component in

the velocity time series.

2.3.1 Coherence squared

Values of γ2 shown in Fig. 2.6a are generally low (≤ 0.3) but well above the

95% confidence level for all frequencies except for the higher end of the inertial band.

For all anticyclonic frequencies, γ2 is significantly higher than for the corresponding

cyclonic frequencies; since γ2 is a normalized quantity, this means that the ocean sur-

face responds preferentially to anticyclonic forcing. This polarized response was noted

in previous studies but its statistical significance was not assessed (e.g. Gonella, 1972;

Rio and Hernandez, 2003). A strict anticyclonic response is a classic result at near-

inertial frequencies in the oceanic mixed layer (e.g. Gill, 1982, p.322); but a stronger

anticyclonic response is predicted at all frequencies by extensions of the Ekman model

developed by Gonella (1972). In these extended models, the response is largest at the

inertial frequency located in the anticyclonic domain and decreases monotonically as

the frequency is further away from the inertial frequency, resulting in a stronger anticy-

clonic response. The comparison between theoretical and observed transfer functions is

discussed in details in Chapter 4.

The maximum value of γ2 in the anticyclonic domain is 0.30 for ν = (2)−1

cpd. Since γ2 measures the fraction of drifter variance explained by linear forcing of the
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wind stress, the results indicate that at this frequency the wind-driven currents explain

roughly 30% of the anticyclonic variance of total drifter velocity in the ACC. For the

corresponding cyclonic frequency ν = −(2)−1 cpd, γ2 is much lower, at 0.09.

For frequencies higher and lower than this anticyclonic peak, γ2 drops rapidly

in both the cyclonic and anticyclonic domains. Niiler and Paduan (1995) interpreted

the coherence peak as a trough in the noise spectrum. For the purposes of this study,

any velocity component that is not linearly driven by local wind stress is assumed to be

noise. Thus noise may include instrumental and nonlinear wind stress forcing effects, as

well as other non wind-driven or turbulent velocities, all of which contribute to reduce

γ2.

2.3.1.1 Low frequencies: coherence squared between drifter and altimetric veloc-

ities

In order to evaluate the geostrophic velocities interpolated along the drifter

trajectories, γ2 was computed between the drifter velocities ud and the geostrophic ve-

locities from AVISO and GRACEmeasurements (u′
g+ūg) (see Eq. 2.1) and is plotted in

(Fig. 2.7). The value of γ2 is approximately 0.64 for cyclonic and anticyclonic frequen-

cies that are resolved by both the drifter and altimeter datasets, i.e. |ν| < (14)−1 cpd.

Interestingly, γ2 remains high until about |ν| = (10)−1 cpd, and then drops abruptly but

is still about 0.15 at |ν| = (3)−1 cpd with a higher cyclonic γ2. This suggests that some

of the higher frequency geostrophic energy is either aliased in the maps or created by

the spatio-temporal interpolation along the drifter trajectories. The higher cyclonic co-

herence may be due to a higher sampling of cyclones by the drifters (e.g. Middleton and

Garrett, 1986). The phase (not shown) is found to be zero on average. ECMWF wind

stresses showed no coherence with the geostrophic velocities (not shown) demonstrating

the lack of linear relationship between wind stresses and geostrophic velocities at the lo-

cal scale. Since geostrophic velocities dominate at low frequencies, this may explain the

drop in γ2 between total drifter velocities and wind stresses at low frequencies. These
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results imply that about 64% of the total drifter velocity variance is geostrophic and un-

correlated to local wind stress for the frequencies resolved by altimetry. Low-frequency

geostrophic motions are likely to be manifestations of Rossby waves or of global scale

ACC transport variations, which have been shown to be correlated to global scale wind

variations (e.g. Gille et al., 2001). Since the geostrophic velocity is not coherent with the

local wind stress, it can be interpreted as noise, and as such, was subtracted as described

in section 2.1 in order to obtain the drifter ageostrophic velocities.

In Fig. 2.7, the coherence squared γ2 between the local wind stress and the

ageostrophic velocities differs from the results for the drifter velocities only for fre-

quencies lower than 0.4 cpd in both anticyclonic and cyclonic domains. On average γ 2

is increased by 0.035 for the ageostrophic velocities compared to the drifter velocities.

Although the difference is small, it is nonetheless statistically significant. This increase

in coherence was also observed by Rio and Hernandez (2003).
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2.3.1.2 High frequencies

At ν approaches ±2 cpd, γ2 from the drifter or ageostrophic velocities de-

creases to zero. We hypothesize three reasons for this. The first reason pertains to

uncertainty in the accuracy of ECMWF re-analyses at high frequencies. The Nyquist

frequency of the 6-hourly wind stress fields is theoretically 2 cpd but the highest fre-

quency resolved may in reality be lower. Alford (2001) reported that the coherence

between the NCEP analysis surface winds and moored buoy wind observations dropped

at about 1.5 cpd. For latitudes poleward of 50◦, the inertial frequency exceeds 1.5 cpd

which led Alford to conclude that NCEP surface winds were not adequate to study iner-

tial oscillations at these latitudes. ECMWF re-analyses are likely to suffer from similar

problems, and their use to study high-frequency wind-driven currents may not be opti-

mal. This issue may be even more important in the Southern Ocean, where the in-situ

data assimilated in these atmospheric numerical models are relatively sparse.

The second reason is the mixed nature of the energetic inertial oscillations,

which are manifested in Fig. 2.5 by the inertial peak in the ocean velocity spectra.

Oceanic inertial oscillations were shown to be well represented by a slab-layer model

which is linearly forced by the wind stress (e.g. Pollard, 1970; D’Asaro, 1985b). Trig-

gered by relatively rapid atmospheric fluctuations like traveling storms, inertial oscil-

lations can be resonant under certain circumstances (e.g. Crawford and Large, 1996;

Skyllingstad et al., 2000), but they are transient phenomena. They decay relatively

slowly over several inertial periods (e.g. Pollard, 1970; Lewis and Belcher, 2004) and

as a consequence can interfere destructively with newly generated oscillations, causing

incoherence with the local wind stress.

Thirdly, another type of high frequency motion of concern in the Southern

Ocean is associated with the Stokes drift, which may be aliased in the high-frequency

end of the drifter spectra, adding even more noise in the inertial frequency bands. Lewis

and Belcher (2004) showed that the Stokes drift can reduce the deflection of Ekman flow

relative to the wind stress direction. However, they also stated that the time-dependent



32

Ekman currents are unaffected by the Stokes drift. The exact effect of the Stokes drift

on the frequency-dependent Ekman currents evidenced here remains unclear.

2.3.2 Coherence phase

At zero frequency (not shown), the phase of the cross-spectrum computed

when the mean of the signal is retaained, indicates that the time-mean wind-driven ve-

locity is 31.75◦± 0.05◦ to the left of the wind stress when the mean geostrophic ve-

locities from GRACE data are used, in qualitative agreement with the Ekman theory.

This angle is reduced to 27◦± 0.05◦ when velocities from atlas data are used. Fig. 2.6b

shows the results for the anticyclonic and cylonic phase, χ+ and χ− respectively, for

|ν| = 0.025 to 2 cpd, for the cross-spectrum computed by removing the mean of the

signal. The curves are noisy for frequencies higher than the average inertial frequency

of the ACC dataset (1.46 cpd), where γ2 decays almost to zero and the phase signifi-

cance becomes dubious. For |ν| < 1 cpd, the phase differs by less than 3◦ between the

drifter velocities and the ageostrophic velocities, and subsequently we discuss only the

ageostrophic curves. In Fig. 2.6b, the anticyclonic phase χ+ increases with increasing

anticyclonic frequencies, from 32.30◦ at (40)−1 cpd to 70.30◦ at 1.225 cpd. In contrast,

the cyclonic phase χ− is almost constant with an average value of 29.45◦ between -

(40)−1 and -1.225 cpd. At the inertial frequency, χ+ is approximately zero, meaning

that the coherent rotary currents at 15 m are aligned with the wind stress direction.

As ν becomes greater than the inertial frequency, χ+ changes sign, indicating

that the ocean velocity jumps from the left to the right of the wind stress vector. This

phase behavior is in very good agreement with Gonella’s (1972) models, which predict

such a phase jump. A slab-layer model for wind-driven motions (Pollard and Millard,

1970) is also consistent with a phase jump at the local inertial frequency but predicts

a near 90◦ phase between wind stresses and wind-driven ocean velocities at all depths,

which is not observed here. Since χ is less than 90◦ at zero and at low sub-inertial

frequencies, the wind stress-coherent ocean velocities captured by the cross-spectral
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analysis appear to be manifestations of Ekman motions and this is discussed in Chapter

4. On the basis of this interpretation, estimates of the wind energy input to the Ekman

layer are provided in Chapter 3.

For a given frequency band, the fraction of the phase due to angle separation

and the fraction due to a potential time separation or lag are indistinguishable when

considering rotary circular components (as illustrated in Fig. 2.4). However, in the an-

ticyclonic domain, where γ2 is the highest and the phase information is therefore more

reliable, χ+ appears to depend linearly on frequency, as would be the result of a constant

time lag; a least-square fit between 0 and 1 cpd for χ+ gives a linear slope of 28.07◦ per

cpd, corresponding to a 1.87 hour lag of wind stresses relative to drifters.

For the data in the ACC, correcting for this time lag increased the energy in-

put rate estimation only slightly by 3.5%. The energy input estimation is the focus

of Chapter 3. However, this time lag is more problematic in Chapter 4 because it ap-

pears to distort significantly the shape of the observed transfer function in a way that

is incompatible with the Ekman models considered. Several other types of wind prod-

ucts from the ERA-40 ECMWF Project re-analyses and the NCEP/NCAR Reanalysis

Project (Kalnay et al., 1996) were tested in order to investigate further this frequency

dependency. The phases of the cross-spectra for data in the 52◦- 54◦S latitudinal band

are plotted in Fig. 2.8, on a linear frequency scale. From this figure, it appears that the

time stamp of the data must be interpreted with care. In particular, both for 10-m wind

or wind stress fields it must be considered whether winds are nowcast or forecast and

whether the winds are intended to be valid instantaneously or if they represent average

values valid over the length of the model time step. As an example, the NCEP wind

stress, which is an average value valid over the 6 hours following the drifter time, shows

a constant time lag of 3 hours with respect to the instantaneous ECMWF wind stress

value valid at the drifter time. In the end, we decided to use the instantaneous ECMWF

wind stress valid at the drifter time and to correct in each latitudinal band for a constant

time lag estimated by a least-square linear fit for χ+ between 0 and 1 cpd. The constant

time lags for each of the 2◦ latitudinal bands are listed in Table 2.1.
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Figure 2.8: Phase of the cross-spectrum between the drifter ageostrophic velocities and
various wind and wind stress data for the data in the 52◦- 54◦S latitudinal band. ECMWF
stress, ECMWF 10-m wind and NCEP 10-m wind are instantaneous values valid at the
drifter time. NCEP stress -6h is the average value valid over the previous 6 hours before
the drifter time. NCEP stress is the average value valid over the next 6 hours starting
from the drifter time. Average NCEP stress is the arithmetic average of these last two
values. ECMWF stress -6h is the instantaneous stress value valid 6 hours before the
drifter time. A positive phase means that the ocean velocity is to the left of the wind.
A positive linear slope of the phase indicates that the wind lags the ocean velocities. In
the order of the legend, the linear dependency of the phase on frequency between 0 and
1 cpd converted to a constant time lag in hours of the wind product with respect to the
ocean velocity are: 1.62, 4.69, -1.36, 1.68, 1.77, 1.26, 7.64.
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2.4 Summary

Frequency rotary spectra of wind stress and 15-m Lagrangian velocity were es-

timated in the Southern Ocean, based on SVP drifter trajectories in the Southern Ocean

during the decade 1992-2002. The rotary spectrum of ECMWF re-analyses wind stress

interpolated on the drifter positions was found to be red and polarized anticyclonically.

The rotary spectrum of drifter velocities was also found red but with steeper slope in the

lower frequency range. This spectrum was also found to be polarized anticyclonically

expect for |ν| = 0.25 cpd, where it was found cyclonic. It also clearly displayed an

inertial peak in the anticyclonic domain. The ageostrophic component of the drifter ve-

locities was obtained by subtracting geostrophic velocities derived from altimetry. The

ageostrophic rotary spectra was computed and found to be anticyclonic. Spectral slopes

of the drifter and of the ageostrophic spectra did not reveal a straightforward relationship

with the wind stress forcing spectrum but rather showed that a combination of intrinsic

variability and wind stress forcing shaped the oceanic spectra. Cross-spectral analysis

elucidated the linear relationship as a function of frequency. The coherence squared

between wind stress and ocean velocity was found to be statistically significant at the

95% confidence level at all frequencies except close to the Nyquist frequency of 2 cpd.

The coherence squared was found greater for anticyclonic frequencies, meaning that the

upper ocean responds preferentially to anticyclonic forcing at inertial and sub-inertial

frequencies, as predicted by extensions of the Ekman theory in the spectral domain

first introduced by Gonella (1972). The study of these Ekman models is conducted in

Chapter 4. The combination of stronger anticyclonic forcing and response of the ocean

certainly is responsible for the observed anticyclonic polarization of the ageostrophic

rotary spectrum.



Chapter 3

A spectral view of the wind energy

input to the Ekman layer in the

Southern Ocean

The cross-spectral analysis in Chapter 2 indicates that a statistically significant

fraction of the ageostrophic velocity is coherent with the local wind stress. Statistically

significant coherence does not imply causality; however, the agreement of the phase re-

sults with extensions of the Ekman theory (Gonella, 1972) suggest a causal relation. In

this chapter we go back to the power cross-spectrum between wind stresses and ocean

surface velocities and derive its meaning starting from the horizontal momentum bal-

ance. The derivation of a spectral energy equation will show that the real-part of the

cross-spectrum, the co-spectrum, gives an estimate of the power spectral density, or

frequency partition, of the rate at which kinetic energy is dissipated in the Ekman layer.

36
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3.1 Spectral energy equation: the balance of spectra

The linearized horizontal momentum balance for the ocean in the absence of

horizontal pressure gradients is:

∂u(t, z)

∂t
+ ifu(t, z) =

1

ρ

∂τ (t, z)

∂z
, (3.1)

where here τ is the turbulent Reynolds stress. The finite Fourier transform of Eq. (3.1)

is:

i(2πνk + f)Uk(ν, z) =
1

ρ

∂Tk(νk, z)

∂z
, (3.2)

where Tk is the Fourier transform of τ . Multiplying Eq. (3.2) by Uk
∗ and integrating

from z < 0 to the surface z = 0 gives:

iρ(2πνk + f)

∫ 0

z

|Uk|2 dz =

∫ 0

z

∂Tk

∂z
Uk

∗dz. (3.3)

Integrating by parts the right hand side yields:

iρ(2πνk + f)

∫ 0

z

|Uk|2 dz = TkUk
∗
∣∣∣∣
z=0

− TkUk
∗
∣∣∣∣
z

−
∫ 0

z

Tk

(
∂Uk

∂z

)∗

dz. (3.4)

The first term on the right-hand side of Eq. (3.4) corresponds to the wind stress boundary

condition at the surface. The second term vanishes when we let z go to−∞ to represent

the base of the wind-driven layer where velocities and/or turbulent stresses vanish, and

hence their Fourier transforms go to zero. Next, we apply to this equation the expected

value operator and divide by the length of the observation T to form a spectral energy

equation:

i(2πνk + f)E + D = Sτu, (3.5)

where

E = ρ

∫ 0

−∞

〈
|Uk|2

〉

T dz, (3.6)

D =

∫ 0

−∞

〈
Tk

(
∂Uk
∂z

)∗〉

T dz, and (3.7)

Sτu =

〈
Tk Uk

∗
∣∣∣∣
z=0

〉

T
(3.8)
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are estimates of the vertically integrated kinetic power spectral density of the Ekman

layer, the vertically integrated dissipated power spectral density in the Ekman layer, and

the power cross-spectrum between the wind stress and the ocean surface velocity. This

equation does not give the rate of change of energy but rather the average balance among

various power spectral quantities.

Next, we assume that the turbulent stress τ is proportional to the vertical shear

(following a classical diffusion model),

τ (t, z)

ρ
= K(z)

∂u(t, z)

∂z
. (3.9)

The stress is aligned with the velocity vertical shear, implying that the vertical eddy

viscosity K is real and independent of time. No additional assumptions are applied to

K. The finite Fourier transform of Eq. (3.9) is:

Tk

ρ
= K

∂Uk

∂z
. (3.10)

As a consequence,

D =

∫ 0

−∞
ρK

〈∣∣∂Uk
∂z

∣∣2
〉

T dz (3.11)

is a real and positive quantity. The power cross-spectrum can be decomposed classically

into real and imaginary parts:

Sτu = Cτu − i Qτu, (3.12)

where Cτu is the coincident spectrum (co-spectrum) and Qτu is the quadrature spec-

trum (quad-spectrum). Thus, Eq. (3.5) gives two equalities, which can be interpreted

physically:

D = Cτu, (3.13a)

−(2πν + f)E = Qτu. (3.13b)

In terms of dynamics, Eq. (3.13a) describes the throughput of energy in each frequency

band: the dissipated energy in the Ekman layer or energy sink equals the energy source
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given by the co-spectrum of the Ekman velocity at the surface and the wind stress.

Eq. (3.13b) states that the kinetic energy of the Ekman layer can be obtained from the

quad-spectrum. These equations resemble the spectral equations for atmospheric mo-

tions derived in the time domain by Chiu (1970) who found that the spectral density

of the kinetic energy is shaped by quadrature spectral quantities and that the Coriolis

parameter plays a role, as is apparent in Eq. (3.13b).

Ideally, one would want to obtain the cross-spectrum using ocean surface ve-

locities but here we have at our disposal a proxy for these, the drifter velocities, which

are representative of the average velocities across the 6.1 meter length of the drogue,

centered at 15 m depth. Chapter 4 contains the study of the transfer function from the

wind stress to the ocean velocity as a function of frequency and depth. By comparing

the observed transfer functions to the transfer functions derived from theoretical models

of the Ekman layer, the vertical structure of the wind-driven velocities can be obtained.

From this, the cross-spectrum with ocean surface velocities can be estimated from the

cross-spectrumwith the 15 m depth ageostrophic velocities as explained in section 3.2.2.

First we describe the co- and quad-spectra, Cτu and Qτu, between the wind

stresses and the ageostrophic velocities from the time series segments located in the

ACC, which are shown in Fig. 3.1. Note that for this plot, the cross-spectrum has been

corrected for the spurious time lag discussed in section 2.3.2. Also, the time series seg-

ments were de-meaned following the standard procedure of spectral estimation. Fig 3.1

indicates that the anticyclonic Cτu and Qτu (dashed curves) both decrease by an order

of magnitude and their cyclonic counterparts (solid lines) by two orders of magnitude,

as frequency increases from |ν| = (40)−1 to 1 cpd. This shows the stronger relative

importance of the low frequencies.

Cτu and Qτu are greater for anticyclonic than for cyclonic frequencies with

a ratio that increases from 1.3 at |ν| =(40)−1 cpd to about 6 at |ν| = 1 cpd for Cτu.

The combination of a greater anticyclonic forcing spectra (Fig. 2.5) and of a preferen-

tial anticylonic ocean response results in a greater dissipation D of anticyclonic energy

(Eq. (3.13a)). The polarization of E, the kinetic power of the Ekman currents, is also
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anticyclonic, given by the polarization ofQτu, and implies that more anticylonic energy

is present in the Ekman layer.

The inset in Fig. 3.1 shows the 1 to 2 cpd frequency range. In agreement with

Eq. (3.13b), Qτu approximately goes to zero and changes sign at ν = −f/2π (with f

in radians day−1). At this frequency, the study of Ekman models in chapter 4 shows that

Ekman velocities are undefined and consequently the energy content E is undefined as

well; A number of Ekman models that best explain the observations, however, predict

the existence of a limit behavior of the Ekman velocities at the inertial frequency. These

will be at all depths aligned with the wind stress direction, and the dissipation D in the

Ekman layer will be theoretically maximized.

3.2 Energy input rate to the Ekman layer

3.2.1 The integral of the co-spectrum

The Wiener-Khinchine theorem states that the frequency integral of the

cross-spectrum is equal to the complex cross-correlation function at zero time lag

Rτu(0) (e.g. Bendat and Piersol, 1986):
∫ +∞

−∞
Sτu(ν) dν = Rτu(0) (3.14)

= 〈(τ − 〈τ 〉)(u− 〈u〉)∗〉 + 〈τ 〉 〈u∗〉 . (3.15)

For the real part this gives:
∫ +∞

−∞
Cτu(ν) dν = R (〈(τ − 〈τ 〉)(u − 〈u〉)∗〉) + R (〈τ 〉 〈u∗〉) , (3.16)

which mathematically states that the integrated co-spectrum equals the sum of the real

parts of the complex covariance of τ and u and of the product of their time means. In no

way does this imply that the co-spectrum is the frequency distribution of the total work

done on the ocean by the wind stress.
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The spectral analysis of the latter quantity would include the work on

geostrophic currents and other processes including nonlinear forcings and interactions

between frequencies. Nonlinear processes are not truly captured by the cross-spectral

analysis because the cross-spectrum is a measure of the linear relationship between two

signals as a function of frequency. As mentioned earlier in section 2.3, on average γ2

between the wind stresses and the geostrophic velocity anomalies interpolated along a

40-day drifter trajectory segment is negligible. Only in a few frequency bands does it

ever marginally exceed the 95% confidence level. The wind stress work on geostrophic

currents at non-zero frequencies is consequently negligible in this analysis of drifter

data.

This is not the case for the contribution from the mean. Indeed, for the purpose

of estimating the wind energy input to the Ekman layer, the second term on the right-

hand side of Eq. (3.16) indicates that a mean wind-driven current and a mean stress

should be retained in order to represent the zero-frequency contribution to the wind en-

ergy input. As a consequence, the common procedure in spectral analysis of subtracting

the mean from each time series segments should not be applied here. As such, it is

clear that the zero frequency contribution will be contaminated if 〈u∗〉 is not the true

mean wind-driven velocity on average along a 40-day drifter trajectory segment. In or-

der to best estimate the mean wind-driven velocity, one needs at least to subtract the

best mean geostrophic velocity available, so the mean geostrophic velocity field derived

from GRACE (Tapley et al., 2005) is used. Other available mean velocity fields derived

from a combination of surface drifter data and other datasets (e.g. Rio and Hernandez,

2004; Niiler et al., 2003) were not considered because they are not independent of the

drifter dataset used for this study. The influence of the mean geostrophic field goes

beyond the zero-frequency and affects the cross-spectrum up to the ±(20)−1 cpd fre-

quency bands, the lowest non-zero frequencies resolved in this analysis. This can be

understood as a byproduct of the Lagrangian nature of the data, because the interpola-

tion of a time-mean spatially-varying field along a drifter’s spatial displacement causes

a low-frequency component in the velocity signal.
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In general, GRACE data lead to larger mean geostrophic velocities than at-

las hydrographic data, especially south of 42◦S; a consequence is that in the ACC, the

contribution from the low-frequency components less than or equal to (40)−1 cpd to

the wind energy input using GRACE data is about 22% smaller than when atlas hy-

drographic data are used. This difference is however not constant across the Southern

Ocean when the data are further sorted in 2◦ latitudinal bands. It is reduced by 17% on

average south of 42◦S but is increased on average by 1.9% north of 42◦S. When the total

wind energy input is considered, the influence of the mean field is somewhat less; the

energy input is reduced by 8% south of 42◦S and this influence is approximately zero

north of 42◦S.

3.2.2 The shear bias

In this section, some results that are presented in chapter 4 are anticipated for

the purpose of estimating the wind energy input rate. The transfer function theoretically

links the auto-spectrum of the wind stress to the cross-spectrum of the wind stress and

the velocity at depth z (e.g. Bendat and Piersol, 1986, p. 190):

Sτu(ν, z) = H(ν, z)Sττ(ν). (3.17)

Since Sττ is a real quantity, the co-spectrum is obtained by taking the real part of the

previous expression:

Cτu(ν, z) = R [H(ν, z)] Sττ(ν) (3.18)

Applying this equation for z = 0 and z = −15, the co-spectrum of the wind stresses

and the ocean velocities at the surface is obtained by:

Cτu(ν, 0) =
R [H(ν, 0)]

R [H(ν,−15)]
Cτu(ν,−15) (3.19)

= R−1Cτu(ν,−15). (3.20)

In order to obtain the shear correction coefficient R−1, the transfer function

H needs to be known as a function of frequency and depth. In order to do this, as
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Figure 3.2: Ratio of the co-spectrum at 15 m to the co-spectrum at the surface.

explained in greater detail in Chapter 4, the observed transfer function is estimated from

the drifter and stress data. Then, theoretical models of the oceanic boundary layer are

considered to derive 9 analytical expressions for the transfer function, which are fitted

to the observations by finding the best set of parameters that minimizes a cost function.

Once the best model is assessed and the optimum parameters are estimated, the full

theoretical transfer function as a function of depth and frequency is known. As such,

the ratio R can be explicitly computed and used in expression (3.19) to obtain the co-

spectrum at the surface.

The overall best model (model (1b), see Chapter 4) across the Southern Ocean

is a 1-layer model with a constant viscosity O(0.01-0.1) m2 s−1 and a boundary layer

depth O(30-50) m.

The inverse of the shear correction coefficientR, which is less than 1 and more

convenient to display, is plotted in Fig. 3.2 as a function of latitude and frequency. These

correction coefficients are applied throughout the rest of this dissertation whenever the

surface co-spectrum is discussed.
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3.2.3 The bias from the slip

Surface drifters are excellent but not perfect water-followers and their veloc-

ities contain an erroneous slip velocity thought to be caused by two phenomena. First,

the direct action of the wind on the surface flotation buoy, and second the vertical shear

of the horizontal velocity across the vertical extend of the drogue. Niiler et al. (1995)

estimated the slip us as the arithmetical average of the water velocities past the drifter’s

drogue, measured by two vector measuring current meters mounted at the top and bot-

tom of the drogue of drifters released in the tropical and northeastern Pacific. They

modeled the slip as:

us =
a

R
w10 +

b

R
∆u, (3.21)

where w10 is the 10-m wind velocity, R is the drag area ratio of the drogue to the other

constituents of a drifter (40 for a SVP-type drifter) and ∆u is the velocity difference

measured between the top and bottom of the drogue. The coefficients a and b were

obtained by regressing the downwind component of us against w10 and ∆u. Since no

measurements in the field were obtained for winds stronger than 10 m s−1, this model

has only been validated for winds of magnitude less than 10 m s−1. This is problematic

in the Southern Ocean where intense winds are encountered. In fact, the mean quarter-

daily ECMWF ERA-40 reanalysis 10-m winds interpolated onto the drifter locations are

found to be greater than 10 m s−1 between 48◦S and 58◦S, and the wind slip at these

latitudes could be largely underestimated (Niiler et al., 2003).

Since∆u cannot be determined from drifter data alone, only the impact of the

wind-produced slip, the first term on the right-hand side of Eq. (3.21), can be evaluated

for this study. This wind slip is computed using ECMWF 10-m winds interpolated in

time and space, and is subtracted from the drifter velocities in order to obtain the wind

slip-corrected velocities. Niiler et al. (1995) found that the best-fit values of a for either

of two different types of drifter, TRISTAR or Holey-Sock (the SVP kind) were not

statistically different. As a consequence, the best estimated from the combined drifter

datasets, a = 4.63 × 10−2 is used here.
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For this study, the basic impact of this slip correction is to modify the estimates

of the cross-spectrum, but it potentially acts at two steps of the wind energy input com-

putation. First, in the fitting procedure in Chapter 4, it is found that applying the wind

slip correction increases the magnitude of the vertical viscosity and of the boundary

layer depth for the best model. A deeper boundary layer and larger viscosity coefficient

means that the shear from the surface to 15 m depth is not as large. Second, the wind slip

correction also modifies the cross-spectrum of the wind stress and the 15 m velocity by

reducing the magnitude of its real part, the co-spectrum. Correspondingly, this reduces

the inferred co-spectrum of the wind stress and the surface ocean velocity. The estimates

for the energy input rate D are accordingly reduced. We find that these are decreased

by 39% for the data specifically in the ACC. North of 54◦S, the reduction averages 32%

but it is only 13% south of this latitude. In terms of absolute energy input rates, this

amounts to approximately 13 × 10−3 Wm−2 for the data in the ACC, and to between 3

and 17 × 10−3 Wm−2 across the Southern Ocean, averaging to 8.6 × 10−3 Wm−2.

3.3 Results in the ACC and across the Southern Ocean

3.3.1 ACC

Fig. 3.3 shows the cumulative integration from |ν| = 0 to 2 cpd of the surface

co-spectrum from data in the ACC region for anticyclonic frequencies (dashed curves),

cyclonic frequencies (thin solid curve) and both frequencies (heavy solid curve). Fig. 3.3

also shows frequency limits used in previous published estimates of wind energy inputs

to the ocean (see Section 1.1).

The anticyclonic energy input contributes 59% of the total input and is 46%

greater than the cyclonic input due to a combination of stronger anticyclonic wind stress

and polarized ocean response.

On average in the ACC, the energy input rate totals 34.2± 0.4× 10−3 Wm−2

for all frequencies resolved. The zero frequency contribution alone is 8.4 ± 0.3 ×
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10−3 W m−2, or about 25%. The predominance of the time-varying components is

actually seen all across the Southern Ocean in Fig. 3.4 (panel a), as it is always greater

than the contribution from the zero frequency. This is in contrast with the time scales

at which potential energy is thought to increase: Wunsch (1998) found in his estimate

of Eq. (1.1) that the contribution from the time mean accounted for about 94% of the

global average value. However, the time-varying components were resolved up to ap-

proximately (20)−1 cpd only, the Nyquist frequency for T/P orbit repeat period, and

contributions from higher frequencies, especially arising from wind fluctuations, were

believed to be very small. For the wind energy input rate to the Ekman layer, motions at

frequencies higher than (20)−1 cpd actually contribute 53% of the total, in the ACC.

Up to |ν| = 1/2 cpd (indicated by a vertical gray line in Fig. 3.3), the energy

input rate sums to 30.5 ± 0.4×10−3 W m−2. This is larger than Wang and Huang’s

(2004) estimates, which varied between about 12 and 20 × 10 −3 W m−2 in the ACC

region (see their Fig. 3). For their estimates, they used a theoretical model to compute

the Ekman velocities at the surface. Their model assumes an infinitely deep ocean and a

constant vertical viscosity , and is shown in Chapter 4 to be the worst model among the

ten models tried. For the purpose of the wind energy input, this model underestimates

the co-spectrum because it imposes the velocities at the surface to be at 45◦ from the

wind stress direction. Moreover, we find that higher frequencies from |ν| = 0.525 to

2 cpd, neglected by Wang and Huang (2004), add a non-negligeable 11% contribution

of 3.8 ± 0.6 × 10−3 W m−2. In fact, the variance of the wind stress from numerical

weather reanalyses like ECMWF may be too low at high latitudes (Gille, 2005), and

consequently the contribution from these frequencies may be underestimated.

In the “near-inertial” frequency range, here taken from ν = −f/2π/2 to 2

cpd, the anticyclonic frequencies input 1.52 ± 0.01 × 10−3 W m−2. This represents a

4.4% contribution to the total, and is of the same order of magnitude as the energy flux

into wind-forced near-inertial mixed-layer motions, over broad oceanic regions, that

can be estimated from a slab-layer model (e.g Alford, 2001). This suggests that time-

dependent Ekman velocities need to be considered when estimating the wind energy
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input around the inertial frequency. Also, this shows that, at least for the ACC region,

the wind energy input to the Ekman layer is a process which takes place dominantly at

subinertial frequencies and not in the inertial band.

3.3.2 Southern Ocean: latitudinal and seasonal variabilities

The total drifter dataset is divided in 2◦ latitudinal bands, without regard for

dynamic height contours, to study latitudinal and seasonal variability. The co-spectra

were estimated in each of these bands, and in order to analyze the frequency distribution

of the energy input rate, they were integrated over specific frequency ranges. The results

for the whole dataset are plotted in Fig 3.4 and the results for the austral winter and

summer subdatasets are plotted in Fig. 3.5. The detailed caption of Fig. 3.4 applies for

Fig. 3.5 with the difference that the series of red-shaded curves correspond to the austral

summer and the blue-shaded series to the austral winter.

The frequency band-limited energy input rates are plotted in the first columns

of Figs. 3.4 and 3.5; the second columns show the relative contribution of these integrals

as a function of latitude, and the third columns show the corresponding integrals of the

wind stress spectral density function. The zero frequency corresponds to the mean value

squared, the integral for all non-zero frequencies is the wind stress variance, and an

integral over a frequency range that includes the zero frequency is a mean square value.

3.3.2.1 All data

First, our attention is turned to the results obtained from all data. For the en-

ergy input rates in Fig. 3.4a, the contribution from the zero frequency (light gray line)

increases by approximately a factor of 12 from (1.1 ± 0.1) ×10−3 W m−2 at 31◦ S to a

maximum of (13± 2)×10−3 Wm−2 at 53◦ S. The increase in its relative contribution is

not so dramatic, from 11.5% at 31◦S to 28% of the total input at 51◦S (Fig. 3.4b). South

of 53◦S, both the absolute and relative contributions of the zero frequency decrease. In

contrast, the contribution from the non-zero frequencies (Fig. 3.4a, dark gray line) in-
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creases further south from (8.6± 0.2)×10−3 Wm−2 at 31◦S to (40± 2)×10−3 Wm−2

at 57◦S, an increase by a factor larger than 4. The total energy input rate (Fig. 3.4a,

black line) is minimum at (9.8 ± 0.3) ×10−3 W m−2 at 31◦S and maximum at (53 ±

3) ×10−3 W m−2 at 57◦S, an increase by more than a factor of 5. In Fig. 3.4c, the

wind stress mean value squared (light gray line), variance (dark gray line) and the mean

squared value (black line) show similar behaviors with latitude: all three increase south-

wards from 31◦S to maxima at 53◦S, and then decrease again south of 53◦S.

As was already pointed out in the detailed study of the co-spectrum estimated

from the data in the ACC, the energy input to the Ekman layer is predominantly anti-

cyclonic and, as shown in Fig. 3.4d, this is observed almost throughout the Southern

Ocean, except southwards of 57◦S where about an equal amount of energy is input

through cyclonic and anticyclonic frequencies. The relative contributions of the anti-

cyclonic and cyclonic frequencies (for which the contribution of the mean is divided

equally between the two frequency domains) are plotted in Fig. 3.4e. The anticyclonic

contribution decreases from 72% at 31◦S to 50% at 59◦S. This is a consequence of two

factors. First, as indicated in Fig. 3.4f, the wind stress forcing has a larger mean square

value for anticyclonic frequencies (dashed lines) than for cyclonic frequencies (solid

lines) across the Southern Ocean. The relative contribution of the anticyclonic frequen-

cies for the mean square value of the wind stress (not shown) is approximately 70% at

31◦S and decreases to about 53% at 59◦S (not shown). If the oceanic response were flat,

the exact same contribution of the anticyclonic frequencies for the energy input should

be observed. Here, it is found that it is greater, because of the second factor, which is

the preferential anticyclonic response of the ocean, as predicted by theoretical Ekman

models, explicitly studied in Chapter 4.

Fig. 3.4g,h,i show (with gray lines) the contribution of the near inertial fre-

quencies from ν = −f/2π/2 to 2 cpd. In panel i, the variance of the wind stress

contained in this near-inertial range is isolated (multiplied by 10 for legibility): it in-

creases from 31◦S to 45◦S, then stays almost constant to 53◦S, and finally decreases

towards 59◦S. Similarly, the energy input rate in this frequency range (multiplied by
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10 for legibility in panel g) increases with latitude, peaks at 45◦S and decreases further

south. The contribution from the remaining (non inertial) frequencies (panel g) is almost

identical to the total frequency range (panel a) because the near-inertial relative contri-

bution is quite modest, from 6.6% at 31◦S, decreasing almost monotonically to 1.5% at

59◦S (panel h). This decrease may be due to the fact that as we progress southward, less

and less supra-inertial energy is captured by the 6-hour sampling, because the inertial

frequency is closer to the Nyquist frequency of 2 cpd.

3.3.2.2 Seasonal variability

The wind energy input estimates in Fig. 3.4 were recomputed after sorting

the data between a summer season and a winter season. All the curves in Fig. 3.4

fall in between their seasonal counterparts in Fig. 3.5. Broadly speaking, the seasonal

variability manifests itself latitudinally and also as a function of the frequency range

considered. From summer to winter, south of 48◦S, the energy input rates due to the

mean (light blue and red lines in Fig.3.5) are not distinguishable within the error bars and

only north of this latitude are the differences statistically significant with modifications

by factors between 0.5 and 3.1.

However, on average, the energy input rates from the non-zero frequencies

are increased by 69%. This increase also varies latitudinally, roughly decreasing from

north to south, with almost twice the fractional seasonal difference at 39◦S as at 55◦S.

As a consequence, since the total energy input (red and dark blue lines in Fig. 3.5)

is dominated by the non-zero frequencies, from summer to winter, the total input is

increased on average by 67%, but this seasonal increase varies greatly: south of 42◦S it

averages to 42% but north of 42◦S it averages to 105%.

Figs. 3.5d, e and f indicate that the partition of the input between anticyclonic

and cyclonic frequencies does not show qualitative differences as a function of seasons.

The wind energy input in the near-inertial range (Fig. 3.5g) does show an

increase from summer to winter, between 5% and 122% across the Southern Ocean.
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This pattern follows the trend of increased wind stress variance in winter in the near-

inertial band, but it is less dramatic since the near-inertial variance of the wind stress

can be multiplied by a factor up to 2.5. This surprising defect in the seasonal variability

of the near-inertial energy (directly forced by the wind) could come, like the observed

decrease in Fig. 3.4 g, from the fact that drifters may not capture all the high frequency

energy of the ocean currents.
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Figure 3.4: Energy input rates across the Southern Ocean. (a) Contribution from the
mean (light gray line), contribution from the non zero frequencies (gray line) and total
(black line) within each latitudinal band. (b) Relative contributions of the zero frequency
(light gray line) and of the non zero frequencies (gray line) in the total energy input rate.
(c) Mean value square (light gray line), variance (gray line) and mean square value
(black line) of the wind stresses interpolated on the drifter positions. (d) Energy input
rate contributions from the anticyclonic (dashed line) and the cyclonic frequencies (solid
line). (e) Relative contribution of the anticyclonic (dashed line) and cyclonic (solid line)
frequencies for the total energy input rate. (f) Mean square value (variance plus half of
the mean) of the wind stresses for anticyclonic (dashed line) and cyclonic frequencies
(solid line). (g) Contribution from the near-inertial frequencies multiplied by 10 for
legibility (gray line) and contribution from the remaining frequencies (black line). (h)
Relative contribution of the near inertial frequencies for the total energy input rate. Note
the change of scale for the abscissa compared to panels b and e. (i) Wind stress variance
for the near-inertial frequencies multiplied by 10 for legibility (gray line) and mean
square value for the remaining frequencies (black line). Error bars for the energy input
rate are derived from the standard errors for the co-spectra. Error bars for the wind
stress variance are derived from the formal 95% confidence intervals of the wind stress
spectra.
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3.4 Summary

On the basis of the cross-spectral analysis conducted in Chapter 2, the frac-

tion of the ageostrophic velocities that was coherent with the wind stress was identified

as Ekman velocities. From there, it was assumed that Ekman dynamics took place on

average at a local scale along a drifter trajectory segment and that a classical diffu-

sion model applied, where the turbulent stress is proportional to the vertical velocity

shear. In this framework, the real part of the cross-spectrum, the co-spectrum, between

the ageostrophic velocity at the surface and the wind stress is a measure of the en-

ergy source for the Ekman balance, as a function of frequency. This energy goes into

turbulent kinetic energy available for dissipation throughout the Ekman layer. Antic-

ipating results presented in Chapter 4 about the vertical structure of the Ekman layer,

drifter ageostrophic velocities were used to estimate the surface cross-spectrum with the

wind stress, and the total energy input rate was obtained by integrating the surface co-

spectrum over the cyclonic and anticyclonic frequencies from |ν| = 0 to 2 cpd. In the

ACC, the average wind energy input rate was found to be (34.2 ± 0.4) × 10−3 W m−2.

Of this input rate, 75% comes from the non-zero frequencies, and 59% comes from the

anticyclonic frequencies. On average in the Southern Ocean, the zonally averaged rate

of wind energy input has a mimimum value of (9.7 ± 0.2) ×10−3 W m−2 at 31◦S, and

reaches a maximum of (53± 2)× 10−3 Wm−2 at 57◦S. In all latitudinal bands, the con-

tribution from the non-zero frequencies dominates over the mean. Moreover, for these

frequencies, the anticylonic frequencies contribute more than the cyclonic frequencies.

This is a consequence of the anticyclonic polarization of the wind stress forcing and

of the preferential anticyclonic response of the upper ocean. Not only the wind energy

input to the Ekman layer follows the latitudinal variations of the wind stress but also

its seasonal variations. Seasonal variability of the energy input is found for the zero-

frequency component only north of 48◦S, and is found at all latitudes for the non-zero

frequency components, in close accordance with the variability of the wind stress.

The spectral partition of the energy input to the Ekman layer in the Southern
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Figure 3.5: Energy input rates across the Southern Ocean as a function of season. Blue
shading: austral winter, red shading: austral summer. For the description of each panel
see the caption of Fig. 3.4.
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Ocean clearly relate the energy input to the amount of energy contained in the wind

stress, interpolated from ECMWF reanalyses data on the drifter positions. Overall, the

large energy input found here is available for dissipation and mixing and is likely im-

portant for sustaining the thermohaline circulation.



Chapter 4

Ekman layer depth and vertical

viscosity in the Southern Ocean

4.1 Introduction

In this chapter, we are interested in the near-surface vertical mixing of hori-

zontal momentum that has been injected at the surface by the wind stress in the Southern

Ocean, and which was estimated in Chapter 3. This mixing is equivalent to the vertical

flux per unit mass 〈u′w′〉, where angular brackets (〈·〉) represent the “fast” time average

and primes the turbulent fluctuations that are not resolved by slowly varying large-scale

observations, and where u is the horizontal component of the oceanic velocity. This flux

defines a turbulent or Reynolds stress (per unit mass) acting on the large-scale circula-

tion (e.g. Pedlosky, 1979):

〈u′w′〉 ≡ τ

ρ
, (4.1)

with w the vertical component of ocean velocity, chosen here positive if downward, and

ρ the density of seawater. Following the concept of Eq. (1.2), this turbulent stress is

written as an eddy coefficient times the vertical gradient of horizontal velocity:

τ

ρ
= −K

∂〈u〉
∂z

, (4.2)

58
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where K is the symbol used from now on for the vertical viscosity. Eq. (4.2) provides

a first order turbulence closure scheme of the Reynolds equations for the ocean velocity

in the OBL. This parameterization yields equations of motion conveniently in terms of

u only. In section 4.3 of this chapter, by Fourier transforming the linearized version

of the equations of motion, we show that the theoretical linear transfer functions from

the wind stress to the ocean wind-driven velocity can be obtained, as a function of

frequency. These transfer functions are dependent on the assumptions made for the

shape of vertical profile forK, as well as on the lower boundary condition for the OBL.

As such, simultaneous observations of ocean velocity and wind stress allow to estimate

the transfer function, which can be compared to theoretical models and, since these

depend on the viscosity, the latter can be estimated.

Oceanic observations at sub-inertial frequencies (Weller and Plueddemann,

1996) indicate that turbulence closure models can lead to better predictions of wind-

driven velocities than slab-like models. For prediction of wind-driven velocities, an

alternate approach consists in using mixed-layer models that assume that the momentum

injected by the wind is instantaneously (i.e. within one model time step) and uniformly

distributed over the depth of the OBL, implying that the viscosity is infinite. Mixed-layer

models have been successful at modeling oceanic oscillations around the local inertial

frequency but do not provide information about the way the momentum is mixed, nor

about parameterization of the momentum flux in the OBL.

The simplest model which assumes a finite viscosity is the steady Ekman

(1905) model. In terms of the transfer function, it corresponds to the zero frequency

component, that is when the wind stress is steady and unidirectional. In this model,

K is constant and the ocean is assumed to be homogeneous and of infinite depth. It is

unlikely that these conditions can be achieved in the real ocean and, as a consequence,

the modeled vertical structure of the current, the famous Ekman spiral has been very

difficult to observe and only through extensive spatial and temporal averaging was it

demonstrated to some degree (e.g. Price et al., 1987; Wijffels et al., 1994; Chereskin,

1995). For this model, an analytical solution for the transient motions from an ocean
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initially at rest to a fully developed spiral can also be predicted (see also Lewis and

Belcher, 2004) but the noisy nature of ocean velocity observations makes the compari-

son to data a very difficult task so that the spatial average or temporal mean is usually

considered.

Time domain observations can equivalently be analyzed in the frequency do-

main. Gonella (1972) Fourier transformed the equations of motion in order to obtain

theoretical expressions for the transfer function and compared these to observations ob-

tained frommooring data. Weller (1981) tested Gonella’s theory by studying the transfer

function for the vertical shear but not the absolute velocity because his observationswere

relative to the slow but significant drift of the FLIP observation platform. Daniault et al.

(1985) pioneered the use of surface velocity estimates, derived from the displacements

of a free-drifting meteorological buoy, in order to estimate the phase of the transfer

function between the wind and the buoy velocity. This is the approach chosen here:

we use surface drifter data to estimate the zonally-averaged transfer function from the

wind stress to the ocean velocity as a function of latitude in the Southern Ocean. The

equation of horizontal motion, from which the transfer function is derived, is written

in the Eulerian framework, and one may argue that Lagrangian velocity time series are

inadequate. Despite their Lagrangian nature, surface drifter data have nevertheless been

successfully used to obtain either mean geostrophic (Niiler et al., 2003) or Ekman (Rio

and Hernandez, 2003) velocity fields on a global scale, by spatially averaging velocities

derived from drifter displacements. For the purpose of estimating the transfer function,

horizontal uniformity is assumed, and only the time dimension of the velocity time se-

ries is considered. Several results from Chapter 3 justify the use of surface drifter data.

Drifter velocities are found to be significantly coherent over a wide range of frequencies

with a coherence phase (equivalent to the phase of the transfer function), interpreted

as evidence for wind-driven Ekman-type currents in Chapter 3 and, as will be seen in

this chapter, comparable to the ones predicted from the models presented in this chap-

ter. This demonstrate that Lagrangian velocities can be utilized and that the nonlinear

advective terms are comparatively small and can be treated as noise in this analysis.
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This chapter is organized as follows: section 4.2 explains the concept of trans-

fer function from the wind stress to the ocean velocity, section 4.3 gives the theoretical

transfer functions from Ekman layer models arising from different vertical profiles for

the vertical viscosity (these different models constitute a hierarchy), section 4.5 presents

the results of fitting our observed transfer functions to these theoretical models, and

finally section 4.6 provides a summary.

4.2 The transfer function

4.2.1 Theory of the transfer function for vectors

We start from the concept of the local wind stress τ (t) being the input of a

causal linear system (the atmosphere-ocean interface) for which the output is the ocean

velocity u(t, z). As such, the velocity u(t, z) at time t is a convolution of the wind stress

with the impulse response function h(t′, z), which is a function of the time lag t′ and

depth z (e.g. Bendat and Piersol, 1986, p. 189):

u(t, z) =

∫ ∞

0

h(t′, z)τ (t − t′)dt′. (4.3)

Taking the Fourier transform
∫ +∞
−∞ (·) exp(−i2πνt)dt of Eq. (4.3), the convolution the-

orem gives

U(ν, z) = H(ν, z)T(ν). (4.4)

This linearizes the relationship: the Fourier transform of the ocean velocity U, at fre-

quency ν is simply obtained by multiplying the Fourier transform of the wind stress T

at the same frequency by the transfer function H, which is the Fourier transform of h.

Here,H is estimated from ocean data and compared to theoretical models.

How can one interpret the complex-valued transfer function? Let’s assume the

wind stress forcing is monochromatic of magnitude unity τ (t) = 1× exp(+i2πν0t) (in

units of N m−2), rotating with frequency ν0 > 0. The hodograph of such a wind stress is

a circle traced in a counterclockwise fashion. The Fourier transform of such a signal can
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be defined with the help of the delta function, i.e. T(ν) = 1 × δ(ν − ν0) (in units of N

m−2 s). The resulting ocean velocity u(t, z) is the inverse Fourier transform ofU(ν, z):

u(t, z) =

∫ +∞

−∞
U(ν, z) exp(+i2πνt)dν

=

∫ +∞

−∞
H(ν, z)T(ν) exp(+i2πνt)dν

=

∫ +∞

−∞
H(ν, z)δ(ν − ν0) exp(+i2πνt)dν

= H(ν0, z) exp(+i2πν0t).

(4.5)

Thus, u(t, z) is a vector rotating with the wind stress at the same frequency ν0 in the

same angular direction. The velocity vector has a constant deflection angle with respect

to the stress vector, which is given by the phase of the complex number H(ν0, z) (in

units of kg−1 m2 s). The absolute value ofH also corresponds to the current speed for a

stationary rotating wind stress magnitude of 1 N m−2, which corresponds approximately

to a 10-m wind speed of 20 m s−1(e.g. Wu, 1980; Large and Pond, 1981; Smith, 1980;

Yelland and Taylor, 1996). From the ECMWF winds and wind stresses interpolated

onto the drifter positions, a similar correspondence is found (not shown). The Smith

(1980) formula gives a stress of 0.124 N m−2 for a wind speed of 10 m s−1 so a good

approximation to obtain the wind-driven velocity in 10 m s−1wind speed from the mod-

els presented here is to divide the transfer function by a factor 10. In the remainder

of this chapter, observed and theoretical transfer functions will be plotted in the com-

plex plane. The axes are fixed in a reference frame rotating with the wind stress vector,

with the x-axis aligned with the wind stress. This cross-spectral analysis is therefore

independent of the coordinate system and, it is particularly appropriate for studying the

angular relationship between the wind-driven ocean velocity and the wind stress. This is

reminiscent of the wind coherent ensemble averaging method developed by Price et al.

(1987), where the signal-to-noise ratio of the wind-driven velocities is improved by pro-

jecting them into time-averaged along- and cross-wind directions.
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4.2.2 Observed transfer functions and fitting procedure

Theoretically, the transfer function also satisfies (Bendat and Piersol, 1986):

Sτu(ν, z) = H(ν, z) Sττ(ν), (4.6)

where Sτu is the cross-spectral density function between the wind stress τ (t) and the

ocean velocity u(t, z), and Sττ is the autospectral density function of the wind stress,

which is analyzed in detail for the drifter data within the ACC in chapter 2. The transfer

function from τ to u at 15 m depth was therefore estimated using the previous expres-

sion as:

Ĥ(νk, z) =
Ŝτu(ν, z)

Ŝττ(ν)
=

〈Tk Uk
∗〉

〈Tk Tk
∗〉

, (4.7)

using the drifter ageostrophic velocity and wind stress data sorted in 2◦ latitudinal bands.

The observed transfer functions from the data in each 2◦ latitudinal band are

compared to the ten theoretical transfer functions presented in the next section. These

comparisons consist in finding the optimum parameter or set of parameters that min-

imize the cost function L, which is a measure of the misfit between the observed and

theoretical transfer functions:

L =
∑

νk

|Hm(νk, z) − Ĥ(νk)| × w(νk), (4.8)

where | · | designates the absolute value. Hm is the model transfer function, Ĥ is the

transfer function estimate from the data and w(νk) is a weight which is a function of

frequency. This L1-norm was chosen over a L2-norm because it performed better in the

optimization procedure. An optimization algorithm looked for the minimum of L within

the space of free parameters for Hm. Depending on the model considered, different

algorithm were utilized. The parameters for the optimization of each model are summa-

rized in Table A.1. In the evaluation of the theoretical transfer functions, ρ was taken

equal to 1027 kg m-3 and the depth z equal to 15 m. The value for f corresponds to the

center latitude of the 2◦ latitudinal bands. The analysis of the coherence squared γ2 in

Chapter 2 shows that the strongest observed oceanic response takes place at sub-inertial
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anticyclonic frequencies. Moreover, theory of spectral estimation predicts that the nor-

malized standard error of the cross-spectrum is inversely proportional to (γ 2)1/2 (Bendat

and Piersol, 1986). It is also noted (but not shown here) that the variance of the peri-

odogram from the bootstrap samples is smaller in the same frequency bands than where

γ2 is the highest. As a consequence, the best estimates of the cross-spectrum and of the

transfer function are found at subinertial anticyclonic frequencies. As a consequence,

we choose w = γ̂2 for the weight function (see Eq. 2.7).

4.3 Ekman layer models

4.3.1 Equation of motion

In this section, we present the theoretical transfer functions against which our

observed transfer functions are compared. For consistency and convenience all through

the derivations the vertical coordinate z is taken positive downwards and z = 0 is the

mean ocean-atmosphere interface. The linearized horizontal momentum balance for the

large-scale circulation (dropping the angle brackets for clarity) in the absence of pressure

gradients is:
∂u(t, z)

∂t
+ ifu(t, z) = −1

ρ

∂τ (t, z)

∂z
, (4.9)

where u(t, z) is the horizontal velocity forced solely by the wind stress τ (t, 0), and f

the Coriolis parameter. Csanady and Shaw (1980) concluded that “ ‘first-order’ closure

of the Reynolds equations; i.e., the classical idea that the action of turbulence on mo-

mentum transport is viscosity-like, can be made to work at least as well as more complex

second-order closure schemes in describing the steady or time-dependent structure of

a turbulent Ekman layer or of a surface mixed layer without vertical heat flux.” Using

this approach, it is possible to model dynamically from Eq. (4.9) a linear relationship

between the wind stress and the wind-stress driven ocean velocity at depth z. Using
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Eq. (4.2), the momentum equation becomes:

∂u(t, z)

∂t
+ ifu(t, z) − ∂

∂z

(
K(z)

∂u(t, z)

∂z

)
= 0, (4.10)

where the turbulent viscosityK is chosen to be dependent on depth only. In essence, the

consideration of different physics for the Ekman layer is reflected in the choice of the

vertical dependence for K. Notably, Ekman (1905), Thomas (1975), Madsen (1977),

Jordan and Baker (1980) and Lewis and Belcher (2004) all solved Eq. (4.10) explicitly

for u(t, z) using a variety of vertical profiles for K(z) and applying several types of

boundary conditions. Lewis and Belcher’s 2004 derivations of the time-dependent solu-

tions show that if a constant wind-stress boundary condition is employed, then the lower

boundary condition controls the damping scale, viscous or inertial, of the transient terms

(in the form of inertial oscillations). Here, the analytical forms of the transfer functions

for a given vertical profile of K(z) are also controlled by the bottom boundary condi-

tion. Here, we have sought solutions of Eq. (4.10) in the spectral domain for stationary

rotating wind stress. For common cases, the spectral solutions presented here are mod-

ified versions of the time-mean terms of the solutions presented by the aforementioned

authors.

The principle to obtain H for each of the theoretical models is the following:

Eq. (4.10) is Fourier transformed to obtain an ordinary differential equation in z for

U(ν, z):

i(2πν + f)U(ν, z) − d

dz

[
K(z)

dU(ν, z)

dz

]
= 0. (4.11)

Then, using the Fourier transformed boundary conditions, a solution forU(ν, z) is found

in the form:

U(ν, z) = H(ν, z)T(ν), (4.12)

where T(ν) is the Fourier transform of the wind stress. The mathematical details of

deriving the transfer functions for models (1-a,b,c) and (2-a,b,c) are omitted here be-

cause similar derivations have been published previously (e.g. Gonella, 1972; Thomas,

1975; Madsen, 1977; Weller, 1981; Lewis and Belcher, 2004). The transfer functions



66

for models (3-a,b,c), to the best of our knowledge, is a new result but their derivations

is trivial1.

4.3.2 Parameterization of the vertical viscosity

We consider nine models arising from three different vertical profiles

for K(z), and three different bottom boundary conditions. These models are sketched

in Fig. 4.1. The model number (1,2 and 3) designates the vertical profile of K and the

letters (a,b and c) indicate the bottom boundary condition.

Models (1-a,b,c) have a constant viscosityK = K0, as shown in the top row of

Fig. 4.1. This simple choice was proposed by Ekman (1905). He realized that the value

forK0 could not be the molecular one of water, but a much larger one and that it should

depend on the strength of the wind. A remarkable consequence of a constant viscosity

in an infinite depth ocean is that the modeled velocity at the surface is always deflected

45◦ from the wind stress direction, independently of the frequency of the motion.

Models (2-a,b,c) have a viscosity that increases linearly with depth and that

vanishes at the surface since K(z) = K1z. One physical argument in favor of a linear

increase from zero at the surface is the concept of turbulent mixing length. Deeper

in the water column, turbulent eddies caused by the wind are larger, and hence the

turbulent viscosity is larger (e.g. Prandtl, 1952). For small z, it will be seen that this

implies that the velocity should follow a logarithmic profile as for a wall-bounded shear

flow (e.g. Kundu and Cohen, 2002, p. 528). Tennekes (1973) pointed out that for the

atmospheric boundary layer, a logarithm law for the wind profile arises from matching

asymptotically a surface-layer and a planetary boundary layer and that a linear profile

for K can be derived from it. This type of profile is observed in the atmosphere and

it seems sensible to think that this could apply to the oceanic boundary layer. It was

theoretically investigated for an infinite depth ocean first byMadsen (1977) and is part of
1Lewis and Belcher (2004) did consider the case of a non vanishingK at the surface by equivalently

considering a water-side surface roughness. However, they considered a coupled oceanic-atmosphere
Ekman log-layer which is one step further in complexity for the analytical solution.
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Figure 4.1: Schematics of the models. Black curves: velocity profiles. Gray curves: K
profiles. K = K0: models (1a,b,c);K = K1z, models (2a,b,c);K = K0 +K1z, models
(3a,b,c); K = K0 + K1z + K12z2 + K3z3, model (kpp).
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the many parameterizations also studied theoretically by Jordan and Baker (1980). For a

linearly increasing K(z), the dependence on the atmospheric forcing can be accounted

for, and Madsen (1977) suggested that K1 = κu∗ where u∗ =
√

τ (0)/ρ is the shear

or friction velocity and κ ≈ 0.4 is the Von Kàrmàn constant (e.g. Kundu and Cohen,

2002). Thomas (1975) considered an upside-down version of this model and suggested

that in the shallow water case, since turbulent eddies are inhibited at the bottom, K is

zero there and should increase linearly towards a maximum at the top where the wind

stress is driving turbulence. Craig et al. (1993) combined these two approaches by

investigating numerically a bilinear profile withK increasing linearly both from top and

bottom. In these last two studies, the relevance of the depth of frictional influence of the

wind stress with respect to the water depth was noted for the resulting velocity profile

with depth.

Models (3-a,b,c) have a viscosity that is finite at the surface and that increases

with depth: K(z) = K0 + K1z, as shown in the third row of Fig. 4.1. The models and

transfer functions bear the same general characteristics as models (2-a,b,c). However,

these models allow the top boundary condition to be satisfied exactly without requiring

approximations of the general solutions close to the surface. Moreover, the separation

of K into a constant and a linear part potentially allows us to model other physical

processes. As previous and current results both show, the coefficients K0 and K1 can

be related to different external environmental parameters. In the case of a constant

vertical viscosity, one can imagine that the influences of different factors (e.g. wind

stress magnitude, latitude, wave heights) will combine into a single value for K which

then could be characterized as an effective viscosity. As will be seen, in the derivation

of the transfer function for these models, the ratio z0 = K0/K1 appears naturally, and

can be interpreted as the height of a sub-layer just below the surface that is affected by

wave-related processes (e.g. Craig, 1996; Stips et al., 2005).

For the 9 models, the analytical solutions of Eq. (4.11) are available and the

subsequent theoretical transfer functions are given. The tenth model derives from a

third-order polynomial in z for the vertical viscosityK(z) = K0 +K1z +K2z2 +K3z3,
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akin to the one implemented in the oceanic KPP of Large et al. (1994). This profile

was proposed by O’Brien (1970) for the Ekman layer in the top part of the atmospheric

boundary layer, on the dynamical ground of having a continuous and smooth viscosity

profile across the atmospheric boundary layer. As such, specific bottom boundary con-

ditions are applied for K itself as described below. No analytical solution was sought

for this case and the solutions were obtained by numerical integration.

4.3.3 Boundary conditions

For all models, the boundary condition at the surface and its corresponding

Fourier transform are:

−K(z)
∂u(t, z)

∂z
=

τ (t)

ρ
↔ −K(z)

dU(ν, z)

dz
=

T(ν)

ρ
, z = 0. (4.13)

This condition cannot be satisfied exactly when K vanishes at z = 0 (models (2-a,b,c))

and is taken as a limit.

For the bottom boundary condition, the three cases considered are:

1. Models (1,2,3-a) are for a homogeneous ocean of infinite depth and the corre-

sponding bottom boundary condition is that the wind-driven velocity tends to zero

as z → +∞:

u(t, z) −−−−−→
z−→+∞

0 ↔ U(ν, z) −−−−−→
z−→+∞

0. (4.14)

2. Models (1,2,3-b) and model (kpp) are 1-layer models, with a homogeneous wind-

driven finite layer of thickness h, at the bottom of which the velocity goes to zero.

u(t, z) −−−→
z−→h

0 ↔ U(ν, z) −−−→
z−→h

0 (4.15)

3. Models (1,2,3-c) are 1 and 1/2-layer models, consisting of a homogeneous wind-

driven layer of thickness h, at the bottom of which the stress and hence the velocity

shear go to zero, but non-zero velocity is still possible. Price and Sundermeyer
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(1999) used this bottom boundary condition to study the influence of stratification

on Ekman layers.

∂u(t, z)

∂z
−−−→
z−→h

0 ↔ dU(ν, z)

dz
−−−→
z−→h

0. (4.16)

4.3.4 Constant eddy viscosity models

For K = K0, the general solution of Eq. (4.11) is

U(ν, z) = A(ν)e−αz + B(ν)e+αz with α =

√

i

(
2πν + f

K0

)
,

whereA(ν) and B(ν) are determined by the boundary conditions.

4.3.4.1 Infinite depth ocean: model (1a)

Applying the boundary conditions (4.13) and (4.14), the solution for U for

model (1a) is:

U(ν, z) =
T(ν)

ρK0α
e−αz.

Note that Ekman’s steady case is recovered for ν = 0, which gives, for f > 0 in the

Northern Hemisphere:

U(0, z) =
T(0)

ρ
√

K0f
e−iπ/4e

−z(1 + i)

√
f

2K0 .

The inverse Fourier transform of U(0, z) gives the Ekman spiral solution, independent

of time:

u(z) =
τ (0)

ρ
√

K0f
e−iπ/4e−z(1 + i)/δe ,

where

δe =

√
2K0

f
, (4.17)

is the exponential decay scale. It is related to the “Depth of Wind-currents” DE =

π|δe| defined by Ekman (1905), which is the depth at which the velocity is opposite in

direction to the velocity at the surface.
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At non-zero frequencies, this depth scale is modified and we define:

δ1(ν) =

√
2K0

2πν + f
, (4.18)

and δ1(0) = δe. Here, δ1 and δe are formally complex numbers and are either pure real

or pure imaginary numbers depending on the signs of 2πν + f and f . This means that

H(ν, 0) is located in the first or fourth quadrant of the complex plane. As explained in

section 4.2, the phase and magnitude of H can readily be interpreted as the deflection

from the wind stress direction and the speed of the currents, and this implies that the sur-

face velocity should be either to the left or the right of the wind stress vector. From now

on, when discussing these variables as depth scales, we actually refer to their absolute

values.

The transfer function for model (1a) can therefore be written:

H1a(ν, z) =
U(ν, z)

T(ν)
=

e−iπ/4e−z(1 + i)/δ1

ρ
√

(2πν + f)K0

. (4.19)

This expression shows the dependence of the ocean response on the frequency ν of the

forcing, the depth z and the parameters f , ρ, and especially K0. This transfer function

was first derived by Gonella (1972).

The frequency dependence is best illustrated graphically. Fig. 4.2 shows the

transfer functions for models (1-a,b,c), Fig. 4.3 for models (2-a,b,c), Fig. 4.4 for models

(3-a,b,c) and Fig. 4.5 for model (kpp). These transfer functions are plotted both as a

function of frequency and of depth, evaluated with the optimum parameter values found

to fit the observations. For legibility we do not plot all the frequency bands resolved

in our spectral analysis but only those from -1.95 to 1.95 cpd at 0.075 cpd intervals.

Each of these frequencies is colored coded, and plotted as a line showing the variation

of H with depth. This is analogous to the velocity hodograph as a function of depth,

and indicates the vertical shear. Gray dots show the theoretical transfer function at 15

m, and these can be compared to the observed transfer function obtained from drifter

data plotted in the lower-right panel of each of these figures. For models (1-a,b,c), the

transfer functions at the surface for continuous frequencies from -2 cpd to 2 cpd are
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drawn with thick dashed curves. For model (1c), the transfer function at the bottom of

the boundary layer is also drawn. Since this study focuses on the Southern Ocean, we

considered cases with f < 0 and where the mean Ekman current is to the left of the

wind.

The top left panel of Fig. 4.2 shows the transfer functionH1a fitted at 53◦S. At

this latitude, the optimization indicates a best estimate ofK0 = 1.35m2 s−1. This value

is large and, as a consequence the velocity shear is relatively small, and the velocity

hodograph is a spiral that extends very deep. In general, the velocity spirals smoothly

from the surface and vanishes at infinite depth for all frequencies. For cyclonic (ν < 0)

and sub-inertial anticyclonic frequencies (0 < ν < −f/2π, recall f < 0), the velocity

starts to the left of the wind stress and spirals anticylonically, while for supra-inertial

anticyclonic frequencies (ν > −f/2π), the spiral starts to the right of the wind and

spirals cyclonically.

The exponential decay depth δ1(ν), where the current speed is 1/e (about

37%) of its surface value and the current vector has rotated by 1 radian (≈ 57.3◦),

is about 157 m at zero frequency, 25 m at 1 cpd in the cyclonic domain but 250 m

in the anticyclonic domain, and goes to infinity as ν → −f/2π. At the surface, as

ν → −f/2π,

H1a ∼
e−iπ/4

ρ
√

(2πν + f)K0

,

implying that the transfer function exhibits a singularity, its phase tends to 45◦, and its

magnitude goes to infinity, typical of the resonance of an oscillator at its natural fre-

quency. Since this resonance peak is located in the anticyclonic frequency domain, this

model, like the others, predicts a stronger response of the ocean to wind stress forcing

for all anticyclonic frequencies compared to the corresponding cyclonic frequencies.

Indeed, model (1a) imposes the angle at the surface to be 45◦ for all frequen-

cies and requires it to increase with depth. This is in disagreement with the angle for the

observed transfer function at 15 m, which for the data at 53◦S is plotted in the lower-

right panel of Fig. 4.2. This shows that model (1a) is incapable of accommodating such
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Figure 4.2: Transfer functions for model (1a) with K0 = 1.3 m2 s−1; model (1b) with
K0 = 698 cm2 s−1 and h = 32 m; model (1c) with K0 = 1.24 m2 s−1 and h = 4297
m; f = −1.16 × 10−4 s−1 corresponding to the 52-54◦S latitudinal band. Each curve
is the transfer function as a function of depth for frequencies ν = −1.95 . . . 1.95 cpd
at 0.05 cpd interval. The color of each curve corresponds to the frequency indicated
by the colorscale on the colorbar. For these three models, the solid black curve is for
ν = 0. The transfer function at 15 m is indicated by a black dot on each curve for
each model. In addition, the transfer function at the depth scale δ1 is indicated also by
a black dot for models (1a) and (1c). The heavy dashed curve joins the z = 0 m points
for all frequencies for models (1a), (1b) and (1c). For model (1c) a heavy dashed curve
also joins the z = h points. The dotted lines indicate the x and y axes and the ± 45◦
directions. The observed transfer function at 53◦S is plotted in the lower-left panel for
all the frequencies resolved (ν = −1.95 . . . 1.95 cpd at 0.025 cpd interval).
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small angles and predicts very large viscosityK0 to minimize the shear from the surface

to 15 m. It performs therefore poorly, and it actually returns the largest cost function

values at all latitudes (see panel d) of Fig. 4.7), making it the worst model considered

here.

4.3.4.2 1 layer model: model (1b)

Applying the boundary conditions (4.13) and (4.15), the transfer function for

model (1b) is:

H1b(ν, z) =
1

ρK0α

sinh[α(h − z)]

cosh[αh]

=
e−iπ/4

ρ
√

(2πν + f)K0

sinh [(1 + i)(h − z)/δ1]

cosh [(1 + i)h/δ1]
.

(4.20)

H1b is plotted in the top-right panel of Fig. 4.2 using the results of the fit at 53◦S, which

areK0 = 698 cm2 s−1 and h = 32m. For this model, the boundary layer depth h allows

the velocity deflection at the surface and below to be less than 45◦, which is in better

agreement with the observations.

Compared to model (1a),K0 is two orders of magnitude smaller, and the wind-

driven layer is quite shallow. The depth scale δ1(ν) is of the same order of magnitude as

h, which allows the model to respond to the bottom. For the time-mean, δ1(0) is slightly

larger than h which causes an angle smaller than 45◦. As ν → −f/2π, δ1 → +∞ so

that

H1b ∼
h − z

ρK0
,

which is a finite real number, meaning that at the inertial frequency the Ekman veloc-

ities are aligned with the wind stress at all depths and decrease linearly with depth. In

this configuration the “wind rotation” (Crawford and Large, 1996) is tuned to the iner-

tial frequency, and the input of kinetic energy can be maximized. Since this resonant

response is finite, the polarization of the response is smaller than for models with an

infinite resonance. As an example, the diurnal polarization is predicted to be 1.44 at

53◦, in much better agreement with the observations.
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The vertical structure of the transfer function at 53◦S shows very little resem-

blance to a spiral, and for ν > 0.3 cpd, the shear is mostly downwind. Only for cyclonic

frequencies ν < −0.3 cpd are the cross- and downwind components approximately of

similar magnitude.

At the surface, angular deflections of surface currents relative to the wind

stress are less than 45◦ at all frequencies, in contrast to the classic Ekman model (1a).

For the timemean velocity profile, the velocity deflection is 27◦ at the surface and rotates

only by about 16◦ over the depth h.

This model is a substantial improvement over model (1a) described previously

and is actually on average the best model to explain our observed transfer functions in

the Southern Ocean, as will be discussed in the next section.

4.3.4.3 1 and 1/2 layer model: model (1c)

Applying the boundary conditions (4.13) and (4.16), the transfer function for

model (1c) is:

H1c(ν, z) =
1

ρK0α

cosh[α(h − z)]

sinh[αh]

=
e−iπ/4

ρ
√

(2πν + f)K0

cosh [(1 + i)(h − z)/δ1]

sinh [(1 + i)h/δ1]
.

(4.21)

Gonella (1972) derived the transfer function for this model but in a different

form, using image theory and writing the equations in the sense of distributions. Several

typographic errors were found in Gonella’s paper and the correct expression (with our

convention z > 0) is:

H(ν, z) =
1

ihρ(2πν + f)

+∞∑

n=−∞
e−inπz/h



1 − i
n2π2

h2

(
2πν + f

K0

)





−1

.

The equality between these two mathematical expressions is demonstrated in Appendix

B.
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In the limit ν → −f/2π,

H1c ∼
e−iπ/2

ρh(2πν + f)
,

independent of K0, which implies that wind-driven velocities tend toward infinity at

90◦ to the left of the wind stress for sub-inertial frequencies and to the right for supra-

inertial frequencies. Similarly, Lewis and Belcher (2004) found in the time dependent

solution for this model that an undamped mode oscillating at the inertial frequency is

excited when an impulsive stress is imposed on an ocean originally at rest, and they

consequently abandoned this model as being unphysical. Here, across the Southern

Ocean, we find that the optimum values for K0 are indistinguishable from the ones

for model (1a), within error bars. Moreover, the optimum values for h are O(103 m),

which seems unlikely at the local scale even in neutral buoyancy conditions, and as a

consequence H1c ≈ H1a. In the end, this model performs only marginally better than

model (1a) (see panel d of Fig. 4.7) even though it introduces a new degree of freedom.

Therefore, we will not further discuss the results of this model.

4.3.5 Linear viscosity models

For K = K1z, the general solution of Eq. (4.11) is:

U(ν, z) = A(ν)I0

(
2

√
iz

δ2

)
+ B(ν)K0

(
2

√
iz

δ2

)
,

where In and Kn are the nth-order modified Bessel functions of the first and second

kind, respectively, and

δ2(ν) =
K1

2πν + f
,

is the depth scale for models (2a,b,c). The limiting behaviors for small arguments of

the zeroth and first order modified Bessel functions are summarized in Table 4.1 as a

reference to aid interpreting the approximations discussed in the next subsections for

models (2a,b,c) and (3a,b,c).
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Table 4.1: Limiting behaviors for small argument of the zeroth and first orders modified
Bessel functions of the first and second kinds. γ is the Euler constant.

I0(ξ) K0(ξ) I1(ξ) K1(ξ)

|ξ| → 0 1 − ln
(

ξ
2

)
− γ ξ/2 ξ−1

4.3.5.1 Infinite depth ocean: model (2a)

The boundary condition (4.14) imposesA(ν) = 0 for model (2a). The bound-

ary conditions (4.13) is taken in the limit z → 0, and using a first-order approximation

for the derivative of the Bessel functions one finds that B(ν) = 2T(ν)/(ρK1), and

consequently the transfer function for model (2a) is:

H2a(ν, z) =
2

ρK1
K0

(
2

√
iz

δ2

)
. (4.22)

H2a is plotted in the top left panel of Fig. 4.3, fitted to the data at 53◦S with K1 = 1.23

cm s−1. The predicted polarization at 53◦S for diurnal forcing is r−1 =1.93, in better

agreement with the observations.

Madsen (1977) and Lewis and Belcher (2004) both derived this transfer func-

tion in Laplace transform form and inverted it to obtain the time dependent solution in

the oceanic boundary layer. The frequency dependence forH2a is embedded in the non-

dimensional depth z/δ2(ν) so that the velocity hodographs all collapse onto one curve

spiraling slowly towards zero at infinite depth. As z/δ2(ν) → 0, for either z → 0 or

ν → −f/2π, retaining the first term of a series expansion for K0 around 0, one can

approximate the transfer function (Bender and Orszag, 1999):

H2a(ν, z) ∼ 2

ρK1

[
− ln

(√
iz

δ2

)
− γ

]
, (4.23)

where γ ≈ 0.5772 · · · is the Euler constant. For ν < −f/2π one can write δ2 = −|δ2|

and

H2a(ν, z) ∼ 1

ρK1

[
i
π

2
− ln

(
z

|δ2|

)
− γ

]
,

z

δ2
→ 0. (4.24)

This expression shows that for small z/δ2, the imaginary part of the transfer function

tends to a constant while the downwind component is logarithmic and eventually goes
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Figure 4.3: Transfer functions for model (2a) with K1 = 1.23 × 10−2 m s−1; model
(2b) with K1 = 0.57 × 10−2 m s−1and h = 51 m; model (2c) with K0 = 1.20 × 10−2

m s−1and h = 10000m; f = −1.16×10−4 s−1 corresponding to the 52◦-54◦ latitudinal
band. See also the caption for Fig. 4.2. The theoretical transfer functions at 15 m depth
are projected on the plane coinciding with the bottom of the axes. The real part of the
transfer functions at ν = 0 is projected on the (x,z) plane and the imaginary part on the
(y,z) plane and these curves are drawn in black. Since these transfer functions are not
defined at the surface, the curves curves start at the depth z− = 0.1 m.
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to infinity. This behavior applies for z/δ2(ν) / 1 and its validity therefore depends on

the frequency of the forcing. At zero frequency, at 53◦S, we find δ2(0) = 108 m so that

the logarithmic behavior for the downwind component is predicted to extend to within

ten meter of the mean sea surface, whereas in the anticyclonic domain at the diurnal

frequency, δ2(1) ≈ 280 m which implies that a log-layer would be applicable to the

upper 28 m of the water column.

The singularity at the inertial frequency, also found in models (2b) and (2c), is

inconvenient because the subsequent surface velocity is not defined. In order to obtain

the surface “drift”, that is the velocity at the surface, Madsen (1977) evaluated the ve-

locity at a distance z0 from the theoretical surface. This distance is called the roughness

length and for the case of an oceanic boundary layer should correspond to an unresolved

sub-layer just beneath the surface where turbulence caused by waves (breaking or not)

occurs. The value that this length should take is subject to much debate (e.g. Stips et al.,

2005). Reviewing field and laboratory experiments, Madsen (1977) used a roughness

length of O(1 cm) and found that only the order of magnitude was relevant since a mul-

tiplicative factor of 2 for z0 changed the surface drift magnitude and angle by only 10%.

In the present case, our optimum values for the linear coefficient K1 are one to two

orders of magnitude larger than what was used by Madsen (1977), so that our surface

drift is much more sensitive to the choice of z0. Also, selecting the surface roughness a

posteriori can be seen to be inconsistent (Lewis and Belcher, 2004), because in this case

the roughness is no longer compatible with the surface boundary condition for the stress

(4.13).
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4.3.5.2 1 layer model: model (2b)

Applying the boundary conditions (4.13) and (4.15), the transfer function for

model 2b is:

H2b(ν, z) =
2

ρK1
×




K0

(
2

√
iz

δ2

)
−

K0

(
2

√
ih

δ2

)
I0

(
2

√
iz

δ2

)

I0

(
2

√
ih

δ2

)




. (4.25)

H2b is plotted in the top right panel of Fig. 4.3, for the results of the fit at 53◦S, which

are K1 = 5.7 × 10−3 cm s−1 and h = 51 m.

From expression (4.25), it can be seen that as z → 0, I0

(
2

√
iz

δ2

)
→ 1 so

that, near the surface, model (2b) is like model (2a) plus a complex constant function of

h and δ2(ν), which is hence a function of frequency.

Near the inertial frequency, i.e as ν → −f/2π and δ2 → +∞,

−
K0

(
2

√
ih

δ2

)
I0

(
2

√
iz

δ2

)

I0

(
2

√
ih

δ2

) ∼ −i
π

2
+ ln

(
h

δ2

)
+ γ. (4.26)

This limit can be combined with the limit of the first term in the square brackets in the

right-hand side of Eq. (4.25) and it is found that

H2b ∼ − 1

ρK1
ln

(z

h

)
, ν → − f

2π
. (4.27)

For this model, near the inertial frequency, the oceanic boundary layer behaves like a

logarithmic layer and there is no cross-wind component. Since the depth scale is much

larger than h, h determines the magnitude of the response.

4.3.5.3 1 and 1/2 layer model - model (2c)

Applying the boundary conditions (4.13) and (4.16), the transfer function for

model (2c) is:

H2c(ν, z) =
2

ρK1
×




K0

(
2

√
iz

δ2

)
+

K1

(
2

√
ih

δ2

)
I0

(
2

√
iz

δ2

)

I1

(
2

√
ih

δ2

)




. (4.28)
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H2c is plotted in the lower left panel of Fig. 4.3 for the fit at 53◦S with K1 = 1.20

cm2 s−1 and h = 104 m.

For this model since the optimum values for h are O(104 m), at all frequencies,

K1

(
2

√
ih

δ2

)
I0

(
2

√
iz

δ2

)

I1

(
2

√
ih

δ2

) ≈ 0, (4.29)

andH2c ≈ H2a.

There is no significant difference in the optimum values found forK1 between

model (2a) and (2c). Moreover, this model fails in the sense that the optimum values

for h are found on the border of the parameter space and the return values for the cost

function are slightly larger than for model (2a). As a consequence, we will not further

discuss the results for this model.

4.3.6 Linear viscosity models with finite surface value

When the viscosity profile is

K = K0 + K1z = K1(
K0

K1
+ z) = K1(z0 + z),

the general solution to Eq. (4.11) is:

U(ν, z) = A(ν) I0



2

√
i(z0 + z)

δ2



 + B(ν)K0



2

√
i(z0 + z)

δ2



 .

For models (3-a,b,c),K0 takes on a different meaning than for models (1-a,b,c). Here the

ratioK0/K1 is interpreted as the surface roughness length z0. First, z0 is a vertical scale

which eliminates the singularity that appeared in models (2-a,b,c) and it consequently

reduces the surface velocity and surface gradient to finite quantities. Second, it is sus-

pected to be related to the properties of surface gravity waves, e.g. to be representative

of the penetration depth of turbulence bursts input by waves (Csanady, 1997). As will

be seen in the results for models (3-a,b,c), we are able to estimate this length scale z0
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on large scales. Further study (beyond the scope of this present work) could relate these

estimates to exterior parameters like significant wave height of surface gravity waves,

or wavelengths.

4.3.6.1 Infinite depth ocean - model (3a)

Applying the boundary conditions (4.13) and (4.14), the transfer function for

model (3a) is

H3a(ν, z) =
1

ρ
√

i(2πν + f)K0

K0

[
2

√
i(z0 + z)

δ2

]

K1

[
2

√
iz0

δ2

] . (4.30)

H3a is plotted for the first 500 m from the surface in the top left panel of Fig. 4.4, for

the results of the fit at 53◦S, which are K0 = 99 × 10−4 m2 s−1 and K1 = 1.18 × 10−2

m s−1. The corresponding roughness length is z0 = 0.83 m.

At the surface, the transfer function is defined and takes on a finite value, in

contrast to model (2a). Moreover, as ν → −f/2π

K1

[
2

√
iz0

δ2

]
∼

(
2

√
iz0

δ2

)−1

=
K1

2
√

i(2πν + f)K0

, (4.31)

so that

H3a ∼
1

ρK1

[
i
π

2
− ln

(
z0

|δ2|

)
− γ

]
, ν → − f

2π
. (4.32)

It can be seen that this corresponds to the approximate expression for model (2a) evalu-

ated at the depth z0.
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Figure 4.4: Transfer functions for model (3a) with K0 = 99 × 10−4 m2 s−1, K1 =
1.18×10−2 m s−1; model (3b) withK0 = 722×10−4 m2 s−1,K1 ≈ 0m s−1and h = 32
m; model (3c) with K0 = 123 × 10−4 m2 s−1, K1 = 1.17 × 10−2 m s−1and h = 9542
m; f = −1.16 × 10−4 s−1 corresponding to the 52◦-54◦latitudinal band. Model (3b) is
also plotted for the results at 41◦S with K0 = 203 × 10−4 m2 s−1, K1 = 0.72 × 10−2

m s−1and h = 2981 m; The transfer function at the surface is plotted with gray dots
projected on the plane coinciding with the bottom of the axes. See also the captions of
Fig. 4.2 and 4.3.
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4.3.6.2 1 layer model - model (3b)

Applying the boundary conditions (4.13) and (4.15), the transfer function for

model (3b) is

H3b(ν, z) =
1

ρ
√

i(2πν + f)K0

×

I0

[
2

√
i(z0 + h)

δ2

]
K0

[
2

√
i(z0 + z)

δ2

]
−K0

[
2

√
i(z0 + h)

δ2

]
I0

[
2

√
i(z0 + z)

δ2

]

I1

[
2

√
iz0

δ2

]
K0

[
2

√
i(z0 + h)

δ2

]
+ K1

[
2

√
iz0

δ2

]
I0

[
2

√
i(z0 + h)

δ2

] .

(4.33)

H3b is plotted in the top right panel of Fig. 4.4, for the results of the fit at

53◦S, which are K0 = 722 × 10−4 m2 s−1, K1 = 1.13 × 10−5 m s−1, and h = 32 m.

At this latitude, as at all latitudes south of 50◦S, the optimization returns values for K1

that are barely significantly different from zero, given our tolerance value (10−5) for the

parameter space search in the optimization procedure (see Appendix A.3). Moreover,

for these latitudes, the optimum values forK0 and h do not differ statistically for models

(1b) and (3b). This is physically consistent with the fact that model (3b) is equivalent to

model (1b) if K1 → 0.

To the north of 50◦S, model (3b) shows a very different behavior, as the values

of K1 are commensurate with the optimum values of model (3a) or (3c) (see next sec-

tions) but with an physically questionable average value for h of approximately 3000m.

In order to illustrate the different behavior of this model according to the latitude,H3b is

also plotted in the middle right panel of Fig. 4.4, for the results of the fit at 41◦S, which

are K0 = 203 × 10−4 m2 s−1, K1 = 0.72 × 10−2 m s−1, and h = 2981 m, and the

corresponding roughness length is z0 = 2.8 m.

The transfer function for model (3b) is defined at the surface and takes on a

finite value which can be evaluated. Also, at the surface, as ν → −f/2π

H3b ∼ − 1

ρK1
ln

(
z0

z0 + h

)
. (4.34)
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This asymptotic behavior is hardly justifiable or applicable here considering that little

weight is given to the observed frequency response close to the inertial frequency. Also,

evaluating the roughness length at 53◦S gives z0 = 6362 m, a numerical value that

clearly has no relationship to the thickness of a surface layer influenced by waves.

4.3.6.3 1 and 1/2 layer model - model (3c)

Applying the boundary conditions (4.13) and (4.16), the transfer function for

model (3c) is

H3c(ν, z) =
1

ρ
√

i(2πν + f)K0

×
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[
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√
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(4.35)

H3c is plotted for the upper 500m in the lower left panel of Fig. 4.4, using the results of

the fit at 53◦S, which are K0 = (120 ± 90) × 10−4 m2 s−1, K1 = (1.17 ± 0.07) × 10−2

m s−1, and h = (9500± 800)m. These values should be interpreted with care given the

size of the statistical error bars forK0 and h.

Since the optimum values for h across the Southern Ocean are generally

O(104m), for all frequencies

H3c ∼ H3a.

As such, there is no significant difference in the optimum K0 and K1 between models

(3c) and (3a). As for all models with the zero-shear bottom boundary condition (4.15),

model (3c) fails to improve on model (3a).
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4.3.7 Cubic profile model

We consider now the transfer function obtained when the vertical profile for

K is a cubic polynomial “shape” function (O’Brien, 1970):

K(z) = K0 + K1z + K2z
2 + K3z

3, (4.36)

which is applied over a layer of thickness h, with the conditions for the viscosity at the

bottom of the boundary layer:

K(h) = 0,
∂K

∂z
(h) = 0,

which give:

K2 = −3
K0

h2
− K1

h
, K3 = 2

K0

h3
+

K1

h2
.

These expressions for K2 and K3 are used in (4.36) so that the three parameters K0,

K1 and h completely determine the vertical profile. In addition, the boundary condi-

tions (4.13) and (4.15) are applied. We did not seek an analytic solution to Eq. (4.11)

for this profile but instead solved numerically for U(ν, z) using standard techniques,

with a centered-difference discretization scheme of the differential Eq. 4.11. By setting

the magnitude of the wind stress to unity for each frequency band, U(ν, z) is equal to

the transfer function Hkpp(ν, z). In order to ensure sufficient numerical accuracy, the

numerical algorithm was tested for model (3b) for which an analytical solution for the

transfer function is available. This showed that with a 20 cm resolution, the difference

between the numerical and analytical solutions was less than the uncertainty in L (see

appendix A).

Hkpp is plotted in Fig. 4.5 for the results of the fit at 53◦S, which are K0 =

183 × 10−4 m2 s−1, K1 = 1.20 × 10−2 m s−1, and h = 10000 m. The optimum values

found across the Southern Ocean for this model are all O(104 m) and as a consequence

K(z) ≈ K0 + K1z and this model behaves similarly to models (3a) and (3c).

This is the profile implemented in the KPP model of Large et al. (1994). How-

ever, we are not considering the complete KPP model since no freshwater, heat or radia-

tive fluxes, or convection processes are considered. Moreover, we let the boundary layer
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Figure 4.5: Transfer function for model (kpp) with K0 = 183 × 10−4 m2 s−1, K1 =
1.20 × 10−3 m s−1, and h = 104 m corresponding to the 52◦-54◦latitudinal band. See
also the caption for Fig. 4.2. The real part of the transfer functions at ν = 0 is projected
on the (x,z) plane and the imaginary part on the (y,z) plane.

depth h, over which the profile (4.36) is stretched, be a free parameter. This is different

from an usual implementation of KPP, where h is diagnosed as the depth at which a

bulk Richardson number takes on a critical value representative of the fact that the local

stratification inhibits further penetration of the turbulent eddies. Also, in KPP, for stable

forcing, h is required to be less than or equal to 0.7u∗/f , which is not specified here.

4.4 Polarization of the ocean’s response

A major characteristic of the observed transfer function, as well as the the-

oretical transfer functions derived in the previous section is the stronger response for

anticyclonic forcing than for cyclonic forcing by the wind stress.

Fig. 4.6 shows, for each of the models presented in section 4.3, the ratio r

of the absolute value of the transfer function at 15 m for cyclonic frequencies to the

absolute value of the transfer function at the corresponding anticyclonic frequencies:

r(|ν|) =
|H(ν < 0)|
|H(ν > 0)|

. (4.37)

If the spectrum of the wind stress forcing were white, then r would be the ratio of

the ocean cyclonic current speeds to the corresponding anticyclonic current speeds. As
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Figure 4.6: Polarization of the transfer function: ratio of the absolute value of the trans-
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cyclonic frequencies r = |H(ν < 0)|/|H(ν > 0)|. The modeled or observed transfer
function is indicated by the title above each the plots. The abscissa in each plot is the
absolute frequency |ν| from 0.025 to 1.975 cpd. By definition the ratio r is 1 at the zero
frequency.
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such, the ratio r predicts the polarization of the ocean response as a function of absolute

frequency |ν|. The polarization is by definition 1 at zero frequency.

Fig. 4.6 shows r for each model (the display of this figure mirrors the display

of Fig. 4.1), as a function of latitude and as a function of absolute frequency |ν|. The

value of r was computed using the optimum parameters of each model, obtained for

each latitudinal band (see section 4.5). In this figure, the lower right panel shows r

for the observed transfer functions at 15 m. The polarization of the observed transfer

function is noisy due to the random errors of the spectral estimation. The colorscale for

r spans values between 0 and 1 because all the theoretical models predict r to be less

than or equal to unity. In fact, r from the observed transfer functions is almost always

less than 1 except in a few frequency bands, at low frequencies at high latitudes and at

some supra-inertial bands where the spectral estimates are the most noisy.

Most of the models replicate the dominant characteristic of the observed po-

larization, which is a dramatically greater anticyclonic response at |ν| = |f |/2π. This

response is illustrated by the band of low values for r that follows closely the local iner-

tial absolute frequency as a function of latitude from 1 cpd at 30◦S to 1.73 cpd at 60◦S.

A typical example is model (1a) (top-left panel of Fig. 4.6), for which r decreases from

1 at |ν| = 0 to 0 as |ν| → |f |/2π, and increases again for supra-inertial frequencies. For

this model, r formally goes to zero because the transfer function in the anticyclonic do-

main (ν > 0) presents a singularity at the inertial frequency. Fig. 4.6 shows r for z = 15

m, but for model (1a), it can be shown that it varies with depth and from the theoretical

expressionH1a, it can be inferred that r it is maximum at the surface and decreases with

depth. It is also a decreasing function of K0, except at the surface. As an example, at

53◦S with K0 = 1.3 m2 s−1, the response to a diurnally rotating cyclonic wind stress

(ν = −1 cpd) is theoretically r =0.45 times less than for a diurnally rotating cyclonic

wind stress (ν = 1 cpd) of the same magnitude. However, the observed transfer function

indicates a greater ratio of 0.73, meaning that model (1a) overestimates the anticyclonic

relative response. This discrepancy is due to the fact that, first the observed transfer

function is finite because it is computed from real data and does not show a singularity
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as |ν| → |f |/2π, and second it is also likely due to the fact that model (1a) is the model

that performs the most poorly to explain the observed transfer function in general, as

will be seen in the next section.

In contrast, it will be seen that the two best models to explain the observed

transfer function, models (1b) and (2b), do not strongly overestimate the anticyclonic

relative response at |ν| = 1 cpd since they both predict r = 0.69 at 53◦S, in closer

agreement with 0.73 for the observations.

4.5 Viscosity estimates and discussion

Using the results of the optimization, this section discusses which of the mod-

els are best able to explain the Southern Ocean drifter observations. The dynamical

links between the latitudinal and seasonal variations of the parameter estimates and the

environmental conditions are also explored.

4.5.1 The vertical structure of the Ekman layer

Numerous studies have compared observed oceanic velocities and theoretical

predictions from Ekman models, and they have led to a range of different parameteriza-

tions and actual numerical values forK. An extensive review of earlier studies was done

by Huang (1979). More recent studies are reviewed by Santiago-Mandujano and Firing

(1990). The magnitude and direction of the predicted Ekman transports from wind

data (|τ | /ρf ) are generally in very good agreement with observations, whether esti-

mated from shipboard Acoustic Doppler Current Profiler observations along an oceanic

transect (e.g. Chereskin and Roemmich, 1991; Wijffels et al., 1994), or from localized

moorings observations on the time mean (e.g. Price et al., 1987; Schudlich and Price,

1998) or even on daily time scales (e.g. Chereskin, 1995). On the other hand, theo-

retical predictions for the detailed vertical structure of the wind-driven velocities have

not been as satisfactory in the sense that no unifying model seems to be applicable for
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both the magnitude and the rotation of the velocity. In general, an Ekman-type spiral

is observed, but it appears more “flat” than the theoretical one that is derived from the

“classic” steady model with a constant K and an infinite ocean, which is model (1a) at

zero frequency according to the nomenclature in this work. This means that the velocity

magnitude decays with depth more rapidly than the velocity vector rotates away from

the wind stress direction (Schudlich and Price, 1998; Price and Sundermeyer, 1999). In

other words, the shear near the surface is predominantly downwind. Here, we argue that

model (3b) is better at representing a predominant downwind shear close to the surface

than is the classic model. Fitting model (1a) to observations for either the speed de-

cay or the velocity rotation with depth leads to values for K which are inconsistent and

which differ by one order of magnitude. As examples, in an analysis of observations

of vertical shear off the coast of California, Weller (1981) gave the qualitative estimates

for the constant vertical viscosity of 50× 10−4 m2 s−1 from the amplitude decay and of

500 × 10−4 m2 s−1 from the rotation. Using velocity observations from the LOTUS3

mooring site in the Sargasso Sea, Price et al. (1987) estimated the vertical viscosity to

be 60×10−4 m2 s−1 from the amplitude decay but 540×10−4 m2 s−1 from the rotation.

Chereskin (1995) estimated these values as 274 × 10−4 and 1011 × 10−4 m2 s−1 from

the Eastern Boundary Current (EBC) mooring observations off the coast of Northern

California. From shipboard ADCP data in the Drake Passage, Lenn (2006) estimated

these values as 220 × 10−4 m2 s−1 and 1390 × 10−4 m2 s−1.

The theoretical study of the transfer functions of the different models pre-

sented in section 4.3 indicates that the vertical structure of wind-driven currents de-

pends on the frequency of the forcing. As such, it can be expected that observations

of near-surface wind-driven ocean velocity as a function of time will be representative

of the superposition of various spectral components. The frequency spectrum of the

wind forcing has been shown in the Southern Ocean to exhibit a red character. As a

consequence, the structure of the Ekman layer should resemble what is predicted by the

transfer functions at low frequencies. However, the wind stress can also exhibit spec-

tral peaks at high frequencies, notably at the inertial frequency (Stockwell et al., 2004).
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Most models presented before predicted a resonance or a stronger response at the iner-

tial frequency so that at least for several inertial periods, the inertial response is going

to dominate the wind-driven velocities (Crawford and Large, 1996). The point is that

the response in general and the vertical structure of wind-coherent currents in particular

will differ according to the time scales of the forcing. Also, the ability to observe these

different responses will depend on the filtering of the observation. This point was made

clearly by Weller and Plueddemann (1996) who observed that the oceanic boundary

layer behaved more like a slab near the inertial frequency but was sheared vertically at

sub-inertial frequencies.

4.5.2 What is the best model?

Figure 4.7 shows the results for each 2◦ latitudinal band of the optimization for

all the models presented in section 4.3. The results for models (1-a,b,c) are plotted with

blue symbols, the results for models (2-a,b,c) with red symbols, the results for model (3-

a,b,c) with green symbols and finally the results for the cubic profile (model (kpp)) are

plotted with black symbols. Panel a shows the K0 coefficients on a logarithmic scale,

panel b shows the K1 coefficients on a linear scale, and panel c shows the boundary

layer depths h on a logarithmic scale. For the cost function L, defined in Eq. (4.8),

the values plotted in Fig. 4.7d correspond to the mean value of the cost function over

the selected optimum set of parameters from the bootstrap distributions (see Appendix

A.3). We assess which of the models is the best model according to the values of the

cost function L, taking into account its uncertainty δ[L], which is defined in Appendix

A.2. This analysis covers a large range of latitudes, as well as global longitudes, and

it encompasses various regimes of oceanic circulation like boundary currents, jets or

convergence zones. As a consequence, the uncertainties of the results could arise both

from random errors inherent to the data processing and also from the different physical

regimes captured by the drifter dataset.

It is not straightforward to conclude that one model performs better in all lat-
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Figure 4.7: Optimum parameters and cost function for all models in 2◦ latitudinal bands.
For model (3b) and for latitudes between 59◦S and 51◦S, the optimum values of K1 are
not significantly different from 0. Each data point is for data in a single 2◦ latitudinal
band, but each model is offset from the others to improve legibility.
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the latitudinally averaged standard error for the cost function as derived in appendix A.

itudinal bands according to the results presented in Fig. 4.7d. However, by computing

an average of L over the data between 30◦S and 60◦S (left panel of Fig. 4.8), the mod-

els with a finite layer at the base of which the velocity goes to zero (models (1,2,3-b)

perform significantly better than their counterparts with the same parameterization for

K but with a different bottom boundary conditions. In contrast, several other models

fail in the sense that the optimum parameters are found on the border of the parameter

space explored by the optimization algorithms. For instance, even if models (2c) and

(3c) return low values of L, they return values of h so large and unphysical that they

are reduced to the associated infinite depth ocean models (2a) and (3a), respectively.

Model (kpp) is also degenerate here since the optimum values of h are also physically

too large. The cubic profile for the viscosity is consequently approximately reduced to a

linear profileK0+K1z near the surface and the optimum values forK0 andK1 are close

to the optimum values returned for models (3a) and (3c). The results for these “failing”

models are nevertheless reported in this work for completeness. In summary, for all

data, disregarding the failing models (kpp), (2c) and (3c), the model performances are

from best to worst: model (1b), model (3b), model (2b), model (3a), model (2a), model
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(1a). It is important to point out here that model (1a), the model with a constant viscos-

ity in an infinite depth homogeneous ocean, which is the model that many studies have

compared with observations, is actually the worst model to explain the present observa-

tions of frequency-dependent Ekman currents in the Southern Ocean. Our attention is

turned now to the two best models, and the vertical viscosity estimates they produce. It

was seen in Chapter 3 that the wind energy input to the Ekman layer varied seasonally.

Since the vertical viscosity and the boundary layer depth define the vertical structure of

the Ekman layer energized by this wind energy input, their seasonal variations are also

examined.

4.5.2.1 model (1b)

Fig. 4.9 again shows the results for all data for model (1b), and also for the

data sorted by seasons. Across the Southern Ocean, model (1b) returns values for K0

between 400×10−4 m2 s−1 and 1180×10−4 m2 s−1 (right panel of Fig. 4.9). The largest

values, which also have the largest uncertainties, are found between 40◦S and 50◦S. The

boundary layer depth h (left panel of Fig. 4.9) takes values between 30 and 50 m, with

larger values in the same latitudinal band than where K0 is the largest. In fact, h and

K0 are not independent. The boundary layer depth h, plotted in Fig. 4.9, is found to be

within a fewmeters of δ1(0), the exponential decay scale of this model at zero frequency,

which is plotted in Fig. 4.13a. Through the definition of δ1(0) (Eq. 4.17), this implies

that

h ≈

√
2K0

f
= DE/π. (4.38)

This expression simply shows that, in this case, the depth of the boundary layer takes

on the value of the Ekman depth divided by π. The relationship between K0 and h was

tested by regressing h against K0, using all the estimates from the bootstrap samples

(see Appendix A.1) in each latitudinal band. The results from the simple linear model

h = aK0 + d are plotted in Fig. 4.10. In this figure, each panel displays for a given

latitudinal band all the optimum parameter pairs, the overall mean and the regression
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Figure 4.9: Seasonal variability of the boundary layer depth h and vertical viscosityK0

for model (1b). The results for all data plotted in Fig. 4.7 are plotted once again for
comparison. Error bars are the mean absolute difference from the optimum value.

curves for all the points. The slope and intercept of the regression curve are given in

the lower right corner of each panel. In most of the latitudinal bands (except at 59◦S,

55◦S and 33◦S), the results are well behaved and the intercept of the regression curve

is close to 15 m. In some sense this is to be expected from the optimization algorithms

which try to enforce the 15 m depth observations to be within the boundary layer. The

regression coefficient of the fit is high, averaging 0.981 for the same bands, confirming

the strong relationship between the depth of the boundary layer and the vertical viscosity.

The linear coefficient a is found to decrease roughly with latitude, which implies that

the Ekman layer reaches deeper at low latitudes. Given the numerical range of K0

and h for model (1b), the correlation coefficient (0.976) of another model of the form

h = α
√

2K0/f + β and the simple correlation coefficient between h and K0 (0.976)

show that any of these three relationships between h and K0 is equally valid.

For the data sorted by seasons, the results in Fig. 4.9 become more noisy at

mid-latitudes and it is unclear that any seasonal variability is captured by the model.
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Figure 4.10: Optimum parameter pairs for model (1b) from all the bootstrap samples in
each latitudinal band, plotted with gray dots. The labeling of the axes, h in m versus
K0 in m2 s−1, is indicated only for the lower left panel in order to improve the legibility
of the figure. The center latitude of each 2◦ latitudinal band is indicated at the top of
each panel. The overall optimum parameter pair is indicated by a black asterisk. For
each panel, the regression curve h = aK0 + d is plotted and the corresponding rounded
values of a and d are displayed in the lower right corner.
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The error bars become large to the point that some values of h appear indistinguishable

from 0. This is not the case. In fact, this occurs because the probability density func-

tions of the bootstrap estimates can present several modes. For these plots (as well as

for Fig. 4.11), the mean values of the distributions are plotted, and the error bars are

the mean absolute differences from these mean values. As, these error bars should be

interpreted as a range of excursion for the parameter considered, rather than the standard

deviation of a Gaussian statistical distribution. The much larger value of h at 171 m in

summer at 31◦S is an extreme case of this situation. In any case, for model (1b), the

cost function is larger for the summer data than for the winter data (not shown), which

makes this result less reliable. Only south of 52◦S and in a few latitudinal bands north

of 40◦S does the seasonal signal exist statistically with an increase of K0 from summer

to winter of about 24%. In contrast, at the same latitude, h does not vary with seasons.

4.5.2.2 model (3b)

The results for the second best model, model (3b), and its seasonal variations

are shown in Fig. 4.11. The error bars in this figure are large, for the same reasons as

for the results plotted in Fig 4.9. As mentioned previously, this model degenerates to

model (1b) south of 50◦S, since it returns values for K1 which are not distinguishable

from zero, and this is unchanged when the data are sorted by seasons. As such, the

optimum values for h and K0 are quasi identical to the values returned by model (1b).

North of 50◦S, the estimates of K0 vary little with latitude, and are smaller, averaging

to (240 ± 12) × 10−4 m2 s−1. In contrast, h which is plotted in the top left panel of

Fig. 4.11 on a logarithmic scale, varies greatly with latitude. Note that because of the

logarithmic scale, the lower error bars may not be plotted for h. For all data north of

50◦S, h is greater than 1000 m, actually ranging between about 1400 m and 6000 m. It

is smaller in summer compared to winter, and does show some latitudinal dependence,

which is more pronounced in summer. In summer, h changes order of magnitude from

north to south, increasing roughly from 350 m at 31◦ S to 1925 m at 49◦ S. In winter, h
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Figure 4.11: Boundary layer depth h and vertical viscosity coefficients for model (3b).
The results for all data plotted in Fig. 4.7 are plotted once again for comparison. Error
bars are the mean absolute difference from the optimum value.
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varies between about 2000 m and 6500 m, without clear latitudinal dependence.

The values for K1 (lower left panel of Fig. 4.11) to the north of 50◦S range

between 0.3 and 0.9 cm s−1 for all data. Two undeniable trends are noted for K1. It

increases towards the south by a factor of 2.5 for all the data. From summer to winter,

K1 increases by a factor 1.5 to the south and by 5.5 to the north. As discussed in the

next section, the parameterK1 is a friction velocity scale related to the wind stress.

North of 50◦S, the parameters K0 and K1 are found not to be independent.

The results from a regression to a simple linear model K0 = lK1 + K00 are plotted in

Fig. 4.12. In this figure, all the optimum parameter pairs (K1, K0) from the bootstrap

samples for the latitudinal bands north of 50◦S are plotted, along with the linear fits. In

each panel, the rounded slope l in meters and the interceptK00 in cm2 s−1 are written in

black in the lower left corner. The regression coefficient of the fit is almost constant as a

function of latitude and averages to 0.82. If the models were consistent with each other,

especially the best models with the bottom boundary condition (b), one could expect

that in the limitK1 → 0, the intercept would equal the constant vertical viscosity value

found for model (1b). For reference, constant vertical viscosity from model (1b) is also

written in each panel in blue. However, taking into consideration the error bars of K0,

the correspondence betweenK0 from model (1b) and K00 can be verified only in a few

latitudinal bands.

4.5.3 Relationships to external parameters

4.5.3.1 The relationship with the wind

The only explicit forcing mechanism considered in the Ekman models consid-

ered in this work is the action of the wind stress at the ocean surface. As such, one may

expect the estimates of the viscosity and the boundary layer depth to have a relationship

with the wind stress variability. For a stable or neutral planetary boundary layer, the rel-

evant planetary scale is u∗/f where u∗ =
√

|τ |/ρ is the friction velocity. The value of

u∗ is plotted in panel b and u∗/f in panel a of Fig. 4.13, for all data and for data sorted
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Figure 4.12: Optimum parameter pairs for model (3b) from all the bootstrap samples
in latitudinal bands north of 50◦S, plotted with gray dots. The labeling of the axes, K0

in cm2 s−1 versus K1 in m s−1, is indicated only for the lower left panel in order to
improve the legibility of the figure. The center latitude of each 2◦ latitudinal band is
indicated at the top of each panel. The overall optimum parameter pair is indicated by a
black asterisk. For each panel, the regression curve K0 = lK1 + K00 is plotted and the
corresponding values of l in meters and K00 in cm2 s−1are displayed in the lower right
corner. The value in blue font is the optimum value of the constant vertical viscosity for
model (1b) in cm2 s−1in the corresponding latitudinal band.
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by season, in each latitudinal band. Since these scales are evaluated by computing the

mean of the wind stress values interpolated in space and time at the drifter locations,

they reflect the same wind variability. The most noticeable feature in both these scales

is the fact that the seasonal variability disappears south of 48◦S. This is also the case for

the viscosity scale u2
∗/f (not shown).

While model (1b) is overall the best model for explaining the observed transfer

functions, its optimum parameters h and K0 do not show much of the latitudinal and

seasonal variability that appears in the wind stress and the scales derived from it. As

such, the information that model (1b) provides on the the Ekman layer dynamics of

the Southern Ocean is unclear. Also, attempts to relate h or K0, which in fact are not

independent for this model, to the mixed layer depth from climatological data were not

successful. Despite providing dynamical insights, the optimum h and K0 are within

expected range of values. As a reference, the latitudinally averaged ratio of h to u∗/f

for model (1b) is found to be 0.32 for all data, 0.27 in winter and 0.45 in summer, which

is to be compared to the range 0.25-0.4 from numerical simulation of neutral turbulent

Ekman layer by Coleman et al. (1990). Also for model (1b), the ratio of K0 to u2
∗/f is

0.05 on average for all data, 0.04 in winter and 0.05 in summer, which is to be compared

to the range 0.03-0.08 found in the same numerical study.

Our attention is now turned to some further characteristics of model (3b), the

second best model. As was seen in chapter 3, the variability of the wind energy input rate

to the Ekman layer is very much related to the characteristics of the wind stress. Here,

for model (3b), the linear coefficientK1, which has the units of a velocity, seems to show

a relationship to the wind stress. The optimum values ofK1 for model (3b) as a function

of latitude and season are plotted along with the value of u∗ in Fig. 4.13b. For models

with linear viscosity, the linear coefficient is usually written K1 = κu∗ (Thomas, 1975;

Madsen, 1977). Madsen (1977) took κ = 0.4 but it seems that this value in the ocean

or the atmosphere is variable (Tennekes, 1973). From the data points in Fig. 4.13b, for

all data, K1/u∗ = 0.52, and this ratio is 0.64 in winter and 0.33 in summer. In both

seasons, this ratio actually increases with latitude. This suggests that while K1 scales
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like u∗, a universal and constant value of 0.4 does not seem to be adequate.

4.5.3.2 The influence of the stratification

Fig. 4.11a shows h for model (3b) which indicates that deeper boundary lay-

ers are found at lower latitudes and in winter. Large et al. (1997) diagnosed monthly

averages of mixed layer depths (MLD) and boundary layer depths (BLD) established

by the KPP scheme in a run of a GCM. In the Southern Ocean, in the austral winter,

they found that these two depths were comparable, and only to the south of 60◦S did the

model show deeper values, of O(1000 m) with the range of instantaneous values (that is

values diagnosed within a single model time step) extending much deeper for h, down

to 2000 m. In the North Atlantic, in boreal winter, the BDL even reached the bottom of

the model. These deep boundary layers however occurred at known locations of deep

convections where buoyancy fluxes de-stabilize the water column and trigger free con-

vection. The models considered here assume a forced convection mechanism fed by the

the wind energy input at the surface and as such, do not consider any flux of buoyancy,

nor any stratification explicitly.

Nevertheless, one may hypothesize that buoyancy fluxes implicitly condition

the results returned by these Ekman models via the setting of stratification. In particular,

a strong density gradient like what is found in the oceanic thermocline could inhibit the

penetration of the wind momentum so that the stratification could be linked to the vari-

ous depth scales of the models. From observational data, the MLD is usually defined by

a temperature or density difference criteria from the surface so that the mixed layer can

really be more accurately an isothermal layer. Since temperature, buoyancy or momen-

tum do not “diffuse” down, or mix, at the same rate, the MLD and BLD h should not

be expected to be equal. As an example, some substantial shear can be observed within

an isothermal layer (e.g. Davis et al., 1981). The mean MLD interpolated in space on

the drifter positions, as well as in time according to the month of the year, is plotted in

Fig. 4.13a, as a function of latitude and season. The MLD data used here is from Dong
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et al. (2006), who based their climatology for the Southern Ocean on vertical density

profiles from ARGO float data. This climatological depth is based on a density crite-

rion of a 0.03 kg m−3 difference from the 0-20 m surface value. Despite the fact that the

MLD at the location of the drifters exhibits latitudinal and seasonal trends common with

h found for model (3b) (top left panel of Fig. 4.11), these two are of different orders of

magnitude, h being O(1000 m) and the MLD O(100 m).

The BLD is not the only depth scale entering the mathematical expression

of the transfer function for model (1b) or (3b). The depth scale δ1 at zero frequency

computed from the optimum values of K0 for model (3b) is plotted with open symbols

as a function of latitude in Fig. 4.13a. This scale actually does not appear naturally

in the mathematical expression of the transfer function H3b, and neither its value nor

latitudinal variations seem to have a relationship with the wind stress forcing or the

MLD. In contrast, the depth scale δ2 at zero frequency, plotted with filled symbols in

Fig. 4.13a, seems to correspond to the MLD. This correspondence is not only found

for all data but also for seasonally sorted data. Whereas δ1(0) for models (1-a,b,c)

is a familiar scale of exponential decay, δ2(0) appears in a complicated manner in the

expression of the transfer function for model (3b). We computed the ratio of the absolute

value of the transfer function at the depth z = δ2(0) to the surface value, evaluated using

the optimum parameters. This is also the ratio of the velocity magnitudes at the same

depths. At the depth z = δ2(0), the current speed is about 15% of its surface value at

50◦S, a percentage which increases almost monotonically to about 32% at 31◦S. Overall,

this suggests that according to model (3b), the wind-driven velocities penetrate deeper

than the depth of the mixed layer. At 31◦S, model (3b) indicates that the current speed

is 10% of its surface value at about 120 m depth, and this 90% decay level deepens to

145 m at 49◦S.
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Figure 4.13: a) Green curves are for model (3b), open symbols are δ1(0) and filled
symbols are δ2(0). The blue curve is δ1(0) for model (1b). The planetary scale, u∗/f ,
is computed from the mean of the wind stress interpolated on the drifter positions (see
text). The magenta curves are the MLD from Dong et al. (2006). b) K1 for model (3b)
and friction velocity u∗. Symbols for seasons are: 0 all data, 1 winter data, ◦ summer
data. The error bars for MLD, u∗ and u∗/f are the standard error of the mean. The error
bars for δ1(0) and δ2(0) are obtained by formally propagating the errors from K0 and
K1.
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4.5.3.3 The sea surface roughness

The ocean-atmosphere interface is a moving boundary, separating the atmo-

spheric boundary layer from the oceanic boundary layer. These two layers interact with

each other, notably by creating roughness along the interface. As an example, for the at-

mosphere, the oceanic surface gravity waves constitute the roughness element, and their

amplitude will provide the scaling for the air-side roughness length z0 (e.g. Melville,

1977). For the ocean, the waves seem to be also an important conditioning factor, and

z0 is expected to be representative of the thickness of an unresolved, wave-enhanced sub-

layer (Craig and Banner, 1994), just below the surface. Possible scalings for z0 found in

the literature include the significant wave height (e.g. Terray et al., 1996), some multiple

of u2
∗/g where g is the gravitational acceleration, or the wavelength of the waves (Craig

and Banner, 1994).

The roughness length is an important parameter in boundary layer theory and

it needs to be considered in order to model correctly the vertical velocity profile as one

approaches the boundary. This is illustrated in the present case: whereas it was found

that models (2-a,b,c) have kinematic features that can explain the frequency-dependent

vertical structure of the Ekman layer, they presented a deceptive singularity at the sur-

face. Resolving this has led to the development of models (3-a,b,c) by introducing

the roughness length z0, or equivalently assuming that a finite value of the viscosity

K0 = z0 × K1 existed at the surface.

For models (3-a,b,c), the optimization procedure was set up to conduct a

search of the two parameters K0 and K1, which are assumed a priori to be indepen-

dent. They were found however to covary. The estimates of z0 = K0/K1, computed

from the estimates of K0 and K1 for models (3-a,b,c) and model (kpp), are plotted in

Fig. 4.14. It was shown previously that for model (3b), the parameters K0 and K1 are

not independent and that their relationship could be well modeled byK0 = K00 − K1l,

according to a regression applied on the estimates from the bootstrap samples. The

same type of relationship actually holds for models (3a) and (3c) (not shown). In fact,
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Figure 4.14: Sea surface roughness estimates z0 = K0/K1 in 2◦ latitudinal bands for
models (3-a,b,c) and model (kpp). Error bars are derived from the error bars for K0

and K1. Note that no estimates can be obtained for model (3b) south of 50◦S since it is
found that K1 ≈ 0.
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the length scale l here does not correspond exactly to z0 and is actually up to 3 times

larger. However, their latitudinal variations roughly coincide, as well as their seasonal

variations (not shown). Interestingly, the roughness parameter is larger in the austral

summer than it is in the austral winter, which is mostly a consequence of the seasonal

variations of K1. An examination of Fig. 4.14 does not suggest a relationship to the

environmental variables considered so far like the MLD, the wind stress magnitude, or

the Coriolis parameter. It would be of great interest to relate these estimates to a cli-

matology of surface wave parameters in the Southern Ocean in order to see if observed

wave dependence could be detected with the drifter dataset.

4.6 Summary: a zonal view of the Ekman layer

The study of the transfer function from the wind stress to the ocean velocity

at 15 m depth, derived from drifter trajectories, helps to elucidate the structure of the

Ekman layer in the Southern Ocean, from 30◦S to 60◦S. The analysis consisted in first

estimating which of 10 vertical viscosity parameterizations are the best at explaining the

observed transfer functions, computed in 2◦ latitudinal bands. The second part of the

work presented in this chapter was to analyze the vertical viscosities and boundary layer

depths which were diagnosed from the Ekman layer models.

Fig. 4.15 shows the vertical structure of the Ekman layer, in two latitudinal

bands centered at 41◦S and 53◦S, in terms of the vertical profiles of viscosity and ve-

locities. The vertical profiles of velocities are shown for models (1b), (2b) and (3b) and

were computed by multiplying the modeled transfer function by 0.1 N m−2. As such, it

is a representation of what the Ekman layer structure would be if the forcing consisted

in a monochromatic wind stress of magnitude 0.1 N m−2, (about 9 m s−110-m wind

speed). Three frequency bands are represented, for ν = 0, 5 and -5 cpd. The 15 m

observed transfer function in each of these frequency bands, multiplied by 0.1 N m−2 is

also plotted. The ± 0.5 cpd frequencies are chosen here because it is at these frequen-

cies that the coherence squared presented in Chapter 2 is approximately the highest. As
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Figure 4.15: Zonally averaged vertical profiles of modeled viscosity and Ekman veloc-
ity at 41◦S (upper row) and 53◦S (lower row) The first column is the vertical viscosity
profile K(z). For the results at 41◦S the depth of the mixed layer is indicated by a hor-
izontal magenta line. The second column is the mean (ν = 0) velocity profiles from
model (1b) in blue, from model (2b) in red and from model (3b) in green, for the down-
wind components (solid lines) and the crosswind components (dashed lines). The third
and fourth columns are the velocity profiles at ν = 0.5 cpd and ν = −0.5 cpd, respec-
tively, with the colors referring to the same models than in the second column. In each
of the velocity plots, the observed 15 m transfer function at the corresponding frequency
times 0.1 N m2 is plotted with an asterisk for the real part (downwind component) and
with a circle for the imaginary part (crosswind component).
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such, they are the anticyclonic and cyclonic frequency bands for which the observed

oceanic response to the wind stress forcing is the strongest. The coherence is also the

frequency-dependent weight function for the optimization. A consequence is that, as

seen in Fig. 4.15, the models better match the observed transfer function at 0.5 and -0.5

cpd than they do for the mean. Model (2b) has not been discussed in this work but is

plotted nevertheless as a reference.

Overall, the results of the optimization indicate the following zonal view of

the Ekman layer in the Southern Ocean, from south to north. From 60◦S to 50◦S, the

Ekman layer is shallow, of O(30-45) m. In this layer, the viscosity is approximately

constant, averaging at 724 × 10−4 m2 s−1 and shows small seasonal variations of the

order of ± 15%. In the upper part of this layer, for the mean, the shear is predominantly

downwind and this character is accentuated as the frequency of the motion increases

towards the inertial frequency. This is illustrated at 53◦S in Fig. 4.15 by noticing that

the downwind component is even larger than the crosswind component at 0.5 cpd than

it is 0 cpd. Also, the downwind shear is approximately constant while the cross-wind

shear increases with depth. These latitudes correspond to the largest wind stress values

with little seasonal variations.

At mid-latitudes, the Ekman layer is best described by slightly deeper layer,

with associated increased constant vertical viscosity reaching over 1000 m2 s−1, how-

ever with very little seasonal variability. The vertical shear is not as strong as at higher

latitudes but the downwind shear still dominates over the crosswind shear in the upper

half of the layer.

An alternate and more dynamically consistent description of the Ekman layer

to the north of 50◦S is the one given by model (3b), the second best model, to explain the

drifter observations in the Southern Ocean. For this description, the vertical viscosity in

the Ekman layer is not constant but increases gradually with depth. A typical example

is given at 41◦S (upper row of Fig. 4.15) where K increases from 200 × 10−4 m2 s−1

at the surface to approximately 5300 × 10−4 m2 s−1 at the climatological depth of the

mixed-layer. At this depth, the wind-driven velocity is reduced by about 85% from its
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surface value. The Ekman layer is actually much deeper than the mixed layer, maybe

up to 3000 m, but the velocity decreases rapidly, and is 1% of its surface value around

600 m. The Ekman layer is much influenced by the seasonal cycle in the wind stress,

causing the boundary layer to be deeper in winter, and the linear increase with depth of

the viscosity to be greater, associated with stronger mean wind stress.



Appendix A

Optimization and error analysis

A.1 Bootstrapping

We implemented a bootstrap method (Efron and Gong, 1983) in order to infer

the sample variance of the transfer function estimates and to assign uncertainties to our

optimum parameters.

For each latitudinal band, the N segments (listed in Table 2.1) were randomly

re-sampled to obtain a bootstrap sample containingN segments but allowing for repeti-

tion. A total ofM = 500 bootstrap samples were drawn in this way and subsequentlyM

estimates Ĥk, k = 1 . . .M , of the transfer function were computed by the peridogram

method.

A.2 Error estimates for the transfer function

Estimates of the transfer function have random errors inherent to the spectral

estimation. Bendat and Piersol (1986) provide approximate formulae for the variances

and normalized random errors of the magnitude and phase of the transfer function. How-

ever, since we generated bootstrap samples, we can obtained unbiased estimates of the

112
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sample variance:

Var[|Ĥ|] =
1

M − 1

k=M∑

k=1

(Hk − Hk)(Hk − Hk)
∗,

where (·) = 1
M

∑k=M
k=1 (·)k is the sample mean estimate. This variance estimate is then

used to compute the standard error of the mean for the magnitude of the transfer function

as a function of frequency:

δ
[
|Ĥ(ν)|

]
=

√
Var[|Ĥ(ν)|]

Neff
,

where Neff is the effective number of degrees of freedom (DOF). Neff in each latitudinal

band is less than the number of segments N listed in Table 2.1 because of the 50%

overlap and the Hanning windowing of the time series segments, and is theoretically

asymptotically reduced by 25% as N → +∞ (Harris, 1978). This approximation is

expected to work well here, because the smallest number of segments used to compute

spectral estimates (at 59◦S in the summer) is still greater than 50.

A.3 Algorithms for the optimization procedure and un-

certainties for the optimum parameters

We selected parameter limits for the optimization procedure for each specific

model. These ones are listed in Table A.1. For h, the lower bound was taken as the phys-

ical limit of 0m for an oceanic boundary layer whereas it was taken as 15m for the KPP

model because we needed to have the depth of the drogue to be within the layer over

which the numerical integration was performed. For the upper bound, we chose the limit

104 m to be consistent with an expected order of magnitude of 103 m for a wind-driven

layer. For K0 and K1 we limited ourselves to the [0, 3] m s−1or m2 s−1intervals. Be-

cause the parameter space to explore was large and sometimes several local minima for

L existed, we implemented different optimization algorithms depending on the model.

In some cases, we used the multidimensional unconstrained nonlinear minimization or
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Nelder-Mead simplex method (Nelder and Mead, 1965), coded in the fminsearch

MATLAB function. In order to constrain this algorithm to the chosen parameter space,

we added a prohibitory penalization to L whenever the algorithm wandered outside of

the space limits. When several minima appeared, we used the Nelder-Mead algorithm

augmented by a simulated annealing procedure step (Press et al., 1988), using the func-

tion simannealingSB from the Systems Biology Toolbox for MATLAB (Schmidt

and Jirstrand, 2005). The parameters used for the simulated annealing algorithm are

listed in the caption of Table A.1. For model (1b), the optimization algorithm was

restarted from its first result set to ensure exhaustiveness in the space search.

The optimization procedure for each model was run for the estimate of the

transfer function Ĥ computed from the N segments in each latitudinal band, and then

run on each of theM Ĥk bootstrap samples. The distribution of theM optimum values

for each parameter was used to assess the uncertainty in the estimates. In some cases

listed in Table A.1 (see the “Results distribution” entry line), the joint probability den-

sity functions (pdf) showed several modes with approximately the same corresponding

cost function value. For these cases, the most probable mode was isolated. Then, the

uncertainties were derived from the distribution around these modes and we chose the

error bars for any of optimum parameter x in Fig. 4.7 to be plus or minus the mean

absolute value about the mean x:

error =
1

M∗

k=M∗∑

k=1

|xk − x| ,

where M∗ ≤ M is the actual number of optimum parameter values retained for the

errors estimation. In most cases, the overall optimum parameters obtained from Ĥ were

indistinguishable from the mean optimum parameters obtained from the bootstrap esti-

mates Ĥk. However, in a few cases, the overall optimum parameters obtained differed

from the mean parameters obtained from the bootstrap estimates by more than twice the

uncertainties. In these cases, the overall optimum parameters belonged to another less

probable mode of the joint pdf. The results presented here are the mean of the retained

optimum parameters obtained from the bootstrap samples.
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Because of computational constraints, we did not apply this bootstrap method

to the KPP model and only one optimization procedure was run with the transfer func-

tion estimated from the N segments in each latitudinal band.

A.4 On the influence of the variance of the spectral esti-

mator on the optimization procedure termination

The Nelder-Mead algorithm is a direct search method commonly employed

in non-linear optimization (Nelder and Mead, 1965) and well reviewed in the published

literature (e.g. Press et al., 1988). However, since this algorithm searches for a minimum

of the cost function L, it is legitimate to wonder how the variance of the transfer function

estimate Ĥ is taken into account. From the expression (4.8), we roughly propagate the

errors to obtain a standard error for the cost function L:

δ [L] =
∑

νk

δ
[
|Ĥ(νk)|

]
× γ̂2(νk), (1.1)

where the summation is over the frequency range. δ [L] was estimated across the South-

ern Ocean and we found it to be less than 2 × 10−2 for latitudes lower than 46◦S and to

increase monotonically polewards and to be maximum at 0.11 at 59◦S. This last value

should therefore be used as an upper bound value for the amount by which one can hope

to reduce the cost function (the function tolerance) when proceeding to the next step in

the optimization algorithm. The second criterion for the termination of the algorithm

however is that the diameter of an n-dimension simplex (where n is the number of di-

mension of the search space) be less than a tolerance value (10−5). We found that this

was the controlling criteria in terminating the optimizations and that setting the toler-

ance function to 2× 10−2 or less did not change our results significantly. In the end, we

selected 10−2 as the function tolerance.
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Table A.1: Characteristics of the cost function minimizations. Kn: vertical viscos-
ity polynomial coefficients; h: boundary layer depth in m; NM: Nelder-Mead simplex
method ; NMSA: Nelder-Mead simplex method plus Simulated Annealing with the fol-
lowing options: starting temperature 100◦, termination temperature 0.1◦, temperature
step factor 0.1. The result distribution line refers to the number of modes found in the
joint probability density functions of the optimum parameters, obtained from the boot-
strapping procedure.

Model (1a) (1b) (1c)

Parameters K0 K0,h K0,h

Limit constraints [0,3] [0,3],[0,104] [0,3],[0,104]

Initial guess 0.5 (0.1,50) (0.01,1000)

Algorithm NM NMSA×2 NMSA

Results distributiona 1 1 (2 at 31◦S) 2

Model (2a) (2b) (2c)

Parameters K1 K1, h K1, h

Limit constraints [0,3] [0,3],[0,104] [0,3],[0,104]

Initial guess 0.001 (10−3,200) (10−3,103)

Algorithm NM NMSA×2 NM×2

Results distribution 1 2 1

Model (3a) (3b) (3c)

Parameters K0, K1 K0, K1, h K0, K1, h

Limit constraints [0,3],[0,3] [0,3],[0,3],[0,104] [0,3],[0,3],[0,104]

Initial guess (0.01,0.1) (10−2,8×10−3,500) (10−2,8×10−3,500)

Algorithm NM NM NM

Results distribution 1 2 1

Model (kpp)

Parameters K0, K1, h

Limit constraints [0,3],[0,3],[15,104]

Initial guess (10−2,8×10−3,50)

Algorithm NMSA
a1:unimodal 2:bimodal



Appendix B

Equality to Gonella’s (1972) transfer

function

The transfer function H1c(z) from section 4.3 is defined between z = 0 and

z = −h (note the change of sign convention):

H1c(z) =
1

ρK0α

cosh [α(z + h)]

sinh [αh]
with α =

√

i

(
2πν + f

K0

)
.

we seek a Fourier series that coincides withH1c on the [−h, 0] interval. For this purpose,

it is imaged with respect to z = 0 and is now defined on the [h,−h] such thatH1c(z) =

H1c(−z). A Fourier series will then have the form:

H1c(z) =
+∞∑

n=−∞

cnein 2π
2h z,

with

cn =
1

2h

∫ h

−h

H1c(z)e−in 2π
2h zdz.

Let’s consider

g(z) = cosh[α(z + h)],

for which the dn Fourier coefficients are easily computed:

dn =
α sinh(αh)

h

(
α2 +

n2π2

h2

)−1
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Now, noticing that

H1c(z) =
1

ρK0α

g(z)

sinh(αh)
,

one obtains:

cn =
1

ρK0h

(
α2 +

n2π2

h2

)−1

.

A Fourier series representation ofH1c is then

H1c(z) =
+∞∑

n=−∞

1

ρK0h

(
α2 +

n2π2

h2

)−1

ein 2π
2h z

=
1

ρK0hα2

+∞∑

n=−∞

(
1 +

n2π2

α2h2

)−1

ein 2π
2h z.

Substituting for α, one obtains

H1c(z) =
1

iρh(2πν + f)

+∞∑

n=−∞



1 − i
n2π2

h2
(

2πν+f
K0

)




−1

ein 2π
2h z,

which is most likely the correct expressionGonella intended to have printed in his 1972’s

paper (see his table 2). Please note that in Gonella (1972), the symbol for viscosity is ν.
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