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Contributed by Susan S. Taylor; received September 8, 2022; accepted October 12, 2022; reviewed by Alessandro Giuliani, Raji Joseph,
and Ruth Nussinov

Topological analysis of protein residue networks (PRNs) is a common method that can
help to understand the roles of individual residues. Here, we used protein kinase A as a
study object and asked what already known functionally important residues can be
detected by network analysis. Along several traditional approaches to weight edges in
PRNs we used local spatial pattern (LSP) alignment that assigns high weights to edges
only if CαCβ vectors for the corresponding residues retain their mutual positions and
orientation. Our results show that even short molecular dynamic simulations of 10 to
20 ns can give convergent values for betweenness and degree centralities calculated
from the LSP-based PRNs. Using these centralities, we were able to clearly distinguish
a group of residues that are highly conserved in protein kinases and play important
functional and regulatory roles. In comparison, traditional methods based on cross-
correlation and linear mutual information were much less efficient for this particular
task. These results call for reevaluation of the current methods to generate PRNs.

protein kinases j network analysis j allostery

Complex networks are ubiquitous and are studied by diverse fields of science, from
physics and biology to sociology and cosmology. Complex networks, unlike random
networks or regular lattices, have a modular distribution of their elements (1). Such
structural heterogeneity implies that different elements of complex networks have dif-
ferent “importance”. That brings up a graph theoretical problem of network central-
ity, that is, metrics that can quantify this importance. Obviously, the definition of
“important” elements depends on the context. It can be super spreaders in a pan-
demic (2), vulnerability points of transportation networks (3), or essential proteins in
a metabolic pathway map (4). First attempts to analyze connectivity in social net-
works were made as early as the 1950s and 1960s (5, 6), but the concept of centrality
was clarified and formalized in a set of influential papers by Freeman and coworkers
in the 1980s (7–9). Since then, multiple centrality measures have been introduced
and analyzed in different networks; however, there is no consensus on what centrali-
ties should be used for different networks (10). For example, it was shown that cen-
trality measures can be correlated or not correlated depending on the nature of the
network (10, 11). It is, therefore, important to study networks on a case-by-case basis
with proper benchmark data that can serve as a guide for the selection of efficient
centrality metrics.
Protein structures can be represented as graphs in many different ways (12). Nodes

are usually associated with residues, and links between them are created if the residues
are within a predefined distance. Such protein residue networks (PRNs) can be created
from a single structure (SS) or from multiple structures generated by molecular dynam-
ics (MD) simulation. Links in the networks can be weighted using different approaches,
such as estimated energy of interaction (13), average number of contacts (14), their fre-
quency (15), or the absolute value of cross-correlation (CC) between α carbon coordi-
nates (16–18). Treating anticorrelation as correlation is usually justified by the argument
that the sign of interaction between residues is not important if information is transmit-
ted between them. A similar argument was made when mutual information was intro-
duced as a measure for interaction between residues in proteins (19). Mutual information
is currently widely used in protein network studies (20–22).
Different centralities have been reported to be useful for the analysis of different pro-

tein properties. It was shown that closeness centrality (CL) can detect residues that are
critical for folding of chymotrypsin inhibitor 2 and the SH3 domain of C-Src kinase
(23). A study of 178 protein structures, including ERK2 MAP protein kinase, showed
that active-site residues have higher CL but not degree centrality (DC) (24). Another
work, confirming a high level of CL of active-site residues was done using structures of
46 different families of proteins (25). A study of voltage-gated sodium channel NaV1.7
showed that residues related to gain-of-function mutations are associated with significant
changes of their betweenness centrality (BC) but not their CL, DC, or eccentricity (26).
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A computational study of the Hsp90 chaperone found that resi-
dues with high BC are implicated in allosteric communication
within the molecule (27). Similar results were reported for G
protein–coupled receptor A2AAR (28). The authors found that
BC was significantly more effective in detecting functionally
important residues than degree or CLs. Several other works con-
cluded that BC was a good metric to study allosteric signaling
(16, 29–31). A study of allostery in imidazole glycerol phosphate
synthase showed that eigenvector centrality (EG) can detect
regions responsible for allosteric communication (22).
In this paper, we studied PRNs of protein kinase A (PKA)

generated by several popular methods and evaluated the ability
of different centrality measures to detect residues that are
known to be important for protein kinase function and its reg-
ulation. The selection of PKA as an object for this study was
dictated by three reasons. First, protein kinases represent one of
the largest and crucially important protein families (32) that
makes kinases attractive therapeutic targets (33). Understanding
the mechanism of their function and regulation is essential for
the rational design of protein kinase inhibitors. Second, protein
kinases are dynamic molecules that switch between active and
inactive conformations in response to extracellular signals (34).
Often, their function can be modified by distant effects when a
small inhibitor or another protein binds far from the active site
(35–37). Such long-distance signaling, known as allostery, is a
universal feature in molecular biology (38, 39). Understanding
regulatory mechanisms in protein kinases can also be beneficial
for studies of other allosteric enzymes. Third, PKA is, arguably,
the most studied protein kinase with a large volume of experi-
mental data accumulated in the past 30 years (40, 41). There-
fore, it is easy to create a benchmark for this study, as a large
set of key residues that play important functional and regula-
tory roles are well known.
We compared nonweighted PRNs created from a single pro-

tein structure (SS) and PRNs generated from MD simulations
(NW). Three different weighting methods were also used for
MD simulation–based PRNs: the absolute value of CC, linear
mutual information (LMI), and local spatial patterns (LSP) align-
ment. The latter is a method we developed earlier to discover
nonsequential structural motifs conserved in all eukaryotic pro-
tein kinases (42, 43). These motifs known as “hydrophobic
spines” have been shown to serve as major connectors in protein
kinases that are important for their function and regulation (35,
41, 44, 45). Our results indicate that BC was the most efficient
metric to detect critical connections in PKA. Unexpectedly, CC-
and LMI-based PRNs were less effective than binary (NW)
PRNs or even PRNs based on a SS. At the same time, LSP-based
PRNs proved to be significantly more informative. Possible
explanations and further recommendations for the network analy-
sis of protein kinases and proteins in general are discussed.

Results

Selection of Key Residues. To estimate the efficiency of differ-
ent metrics in detecting the essential residues of PKA, we
selected 26 key residues that are highly conserved in the protein
kinase family and are known to be involved in different cata-
lytic and regulatory functions (Fig. 1 and Table 1). Twelve out
of 26 residues are known as hydrophobic spine residues (shown
on Fig. 1 as transparent surfaces). These nonsequential motifs
connect two lobes of the protein kinase molecule, spanning it
from the αF-helix in the center of the C-lobe to the rigid sheet
in its N-lobe. It is well known that their assembly and stability
are vital for protein kinase dynamics, function, and allosteric

communication (46–53). As the spines are important connec-
tors, we expected them to be detected by topological analysis of
PRNs. Two other residues, K72 and E91, are known to be crit-
ical connectors between the sheet of the N-lobe and mobile
αC-helix. Universal conservation of these residues was discov-
ered very early (54), and the salt bridge formed by them is
considered to be a signature of an active protein kinase confor-
mation (41). Other, highly conserved residues were included in
the set to test if they can be detected by the topological analy-
sis. These residues include the Asp-Phe-Gly (DFG) motif in
the activation segment and the His-Arg-Asp (HRD) motif,
K168, and N171 in the catalytic loop (Fig. 1). These residues
are known to be indispensable for catalysis, and their mutations
impair protein kinase function (55–57). Another universally
conserved motif, Ala-Pro-Glu (APE), is positioned at the end
of the activation segment (54). A206 and P207 bind to the
αF-helix and serve as an anchor for the substrate binding loop
(58). E208 is bound to another universally conserved arginine
R280 in the αH-αI loop. The E208–R280 salt bridge was
shown to be an important part of the C-lobe that determines
its stability (59) and can alter protein–protein interactions (60).
R280 was also included in the key residues set.

Scoring of Key Residues. We used four popular centrality meas-
ures: DC, BC, CL, and EG to analyze a set of PRNs created
from a SS of PKA and multiple structures generated by MD
simulations of different lengths. Key scores were a sum of the
corresponding centrality values for the 26 key residues as a

Fig. 1. Conserved core of the eukaryotic protein kinases with the 26 pre-
selected key residues (black spheres). The core consists of two lobes:
N-lobe and C-lobe. ATP (shown as black sticks) is sandwiched between the
lobes bound to two magnesium ions (teal spheres). Two hydrophobic
ensembles C-spine (yellow surface) and R-spine (red surface) span the core,
providing global connectivity within the molecule. The DFG motif and APE
motif are flanking the activation segment (red ribbon). The HRD motif is a
part of the catalytic loop (olive ribbon). Both spines are anchored to the αF-
helix (dark red) that spans the C-lobe and serves as a foundation for the
catalytic machinery of the kinase. Additional description of the selected key
residues is provided in the Table 1.
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percentage of the centrality values sum for the molecule. We
did not expect all 26 residues to be detected by the protein
topology analysis, as their strict conservation in kinases can be
dictated by different reasons related to the kinase topology or
not. However, we anticipated that this approach can be helpful
for comparative purposes between different topological metrics.
If a metric would score residues randomly, the accumulated
score for 26 residues should be ∼8% of the total score for the
kinase molecule with 336 residues. We, thus, suggested that
metrics that can detect important residues should score the
selected key residues higher than 8%.
Our first goal was to test how key scores calculated from

MD-based PRNs are different from key scores from an SS
PRN and if there is a computationally feasible time scale when
key scores for different centralities converge to stable values. It
should be noted that due to the high computational cost of the
LSP-based method, the corresponding trajectories were limited
to 16 ns. Almost all PRNs and metrics appear to give stable
and convergent key scores in a wide range of trajectory lengths,

from 1 ns to 256 ns. In several cases, however, trajectories
shorter than 10 ns showed certain drift and increased noise of
the key scores. We, thus, concluded that MD trajectories of
about 10 ns in length can give reliable values of the key scores,
and longer simulations do not provide any significant advan-
tages for our purpose. Surprisingly, PRNs with edges weighted
by traditional CC and LMI methods performed, almost univer-
sally, worse than NW PRNs or even SS-based PRNs (Fig. 2).
Interestingly, the latter was nearly as efficient as NW PRNs in
all studied time scales. LSP-based PRNs proved to be signifi-
cantly more efficient especially for BC and DC metrics.

Comparison of different metrics showed that CL was the
least effective in separating 26 key residues from the rest of the
molecule. All PRNs and all MD simulation durations, includ-
ing SS-based PRN, gave CL key scores between 8 and 9%, sug-
gesting that random selection of 26 residues from PKA would
be equally efficient. As the LSP-based PRNs were constructed
using a larger ΔCαα cutoff level (12 Å; Materials and Methods
and SI Appendix, Fig. S1) than the rest of the PRNs (8 Å),

Table 1. Description of the 26 key residues selected for centrality scoring presented in Fig. 1

Residue Motif Function

V57 Catalytic spine Serves as a terminal residue in the catalytic spine (42). Binding ATP to this residue leads
to global allosteric effects (96).

A70 Catalytic spine Serves as a terminal residue in the catalytic spine (42). Binding ATP to this residue leads
to global allosteric effects (96).

K72 Lys-Glu bridge Positions α- and β-phosphates of ATP, binds to the conserved E91 providing critical
connectivity in the kinase (97).

E91 Lys-Glu bridge Binds to the conserved K72 providing critical connectivity in the kinase (97).
L95 Regulatory spine Serves as an intermediate residue in the regulatory spine, a hallmark of active kinases

(41, 42).
L106 Regulatory spine Serves as a terminal residue in the regulatory spine, a hallmark of active kinases (41, 42).
M120 The gatekeeper A part of ATP-binding pocket. Its mutation can lead to a major change in connectivity in

kinases and causes their constitutive activity (45).
M128 Catalytic spine Provides connectivity between two lobes of the kinase (42).
Y164 H/YRD motif,

regulatory spine
Serves as a terminal residue in the regulatory spine, a hallmark of active kinases (41, 42).

R165 H/YRD motif Binds to the primary phosphate in kinase activation loop stabilizing active conformation
(98). Harbors multiple disease-related mutations (99).

D166 H/YRD motif The catalytic residue plays a critical role in phosphotransfer (100). Harbors multiple
disease-related mutations (99).

K168 Catalytic loop The catalytic residue plays a critical role in phosphotransfer (100). Binds to the
γ-phosphate of ATP and performs multiple function (101).

N171 Catalytic loop Coordinates catalytically important atom of magnesium. Harbors multiple disease-related
mutations (99).

L172 Catalytic spine Serves as an intermediate residue in the catalytic spine (42, 99).
L173 Catalytic spine Serves as an intermediate residue in the catalytic spine (42). Binding ATP to this residue

leads to global allosteric effects (96).
L174 Catalytic spine Serves as an intermediate residue in the catalytic spine (42).
D184 DFG motif Coordinates catalytically important atom of magnesium.
F185 DFG motif,

regulatory spine
Serves as an intermediate residue in the regulatory spine, a hallmark of active kinases

(41, 42).
G186 DFG motif Provides flexibility of the DFG motif during the transition between active and inactive

states (41).
A206 APE motif Serves as a connector in the C-terminal lobe of the kinase molecule.
P207 APE motif Serves as a connector in the C-terminal lobe of the kinase molecule.
E208 APE motif Serves as a connector in the C-terminal lobe of the kinase molecule. Its mutation leads

to a decrease in PKA catalytic efficiency (58).
D220 αF-helix/regulatory

spine
Anchors the regulatory spine to the αF-helix that serves as a scaffold for the kinase

molecule (42).
L227 Catalytic spine Serves as a terminal residue in the catalytic spine (42).
M231 Catalytic spine Serves as a terminal residue in the catalytic spine (42).
R280 APE motif binding

partner
Conserved binding partner for E208 from the APE motif. Its mutation causes long

distance destabilization of the kinase (58).
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we questioned if the other PRNs could benefit from the
increased ΔCαα. Our results, however, showed that the increase
of the key score levels for ΔCαα = 12 Å was either incremental
or had a negative effect (SI Appendix, Fig. S2).

Analyzing Centralities for the Whole Protein. So far, our evalu-
ation of the different centralities and methods to generate
PRNs was based on a hypothesis that efficient metrics should
distinguish at least some of the 26 key residues from the rest of
the molecule. Obviously, not all of them are conserved or
known for their functional roles due to their central positions
in graph-theoretical sense. Equally, there may be residues that
play important topological roles but are still unknown. To eval-
uate the efficiency of our approach, we analyzed different cen-
tralities for the whole PKA molecule.
First, we wanted to know how convergent the centrality val-

ues generated by different metrics are. Fig. 3 shows average cor-
relation coefficients between centralities calculated from five
consecutive intervals of varying length. DCs and CLs had a
rather high level of convergence for all types of PRNs, particu-
larly with trajectory length of around 10 ns and longer. BC for
NW PRNs had very high convergence for all time scales.
Weighted PRNs showed low consistency at short intervals that
increased rapidly and plateaued after 10 ns. LSP-based PRNs
showed a significantly higher level of consistency and reached
the level for NW-based PRNs at the 16-ns point. CC and
LMI-based PRNs gave lower convergent values of BC. EG

provided the least consistent values with an exception for LMI-
based PRNs.

Second, we questioned how similar are the centrality values
calculated from different PRNs for the whole molecule? We cal-
culated correlation coefficients between four different centralities
in an SS PRN and four MD-based PRNs taken at 16 ns. Earlier,
we observed that key scores for a single PKA structure and for
NW PRNs were very close (Fig. 2). Consistently, correlations
for these PRNs that included all 366 residues were very high for
all four centralities (Table 2). Similarly, whole-molecule CLs for
all PRNs were roughly identical. DC correlations were rather
high for all PRNs, with the LSP-based PRN being the most dis-
tinctive. A similar trend was observed for the BC; the LSP-based
PRN had the most distinctive values of DC. EG values for SS,
NW, and LSP-based PRNs were rather similar to the CC and
LMI-based PRNs and were mostly uncorrelated, with a surpris-
ingly high correlation between CC and LMI-based PRNs.

Third, to evaluate the validity of the key score–based method
for different PRNs, we visualized the data on scatter plots
showing BC versus DC. This choice was dictated by several
reasons. First, these centralities are the most fundamental met-
rics that reflect qualitatively different features of a network; DC
is a local characteristic, and nodes with high DC values are
local “hubs”, while BC is a global network parameter, and high
BC characterizes global “bottlenecks”. This approach is similar
to the so-called “functional cartography” approach proposed by
Guimer�a and Amaral for classification of nodes in complex

Fig. 2. Key scores calculated using four different centrality metrics, DC, BC, CL, and EG, for different types of PRNs, binary PRNs with no weights assigned
to the edges (NW), and three different weighting methods, CC, LMI, and LSP alignment. Calculations were repeated five times using consecutive intervals of
MD trajectory of varying length (x axis). SE values are shown. Key scores calculated from an SS are shown as red arrows.
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networks (61). This method was successfully used for protein
molecules to identify residues important for allosteric signaling
(62–64). The cartography method also characterizes network
nodes with respect to their hub and bottleneck characteristics.
However, instead of using DC and BC values directly, it separates
the network into modules and evaluates the nodes with respect to
their role in the correspondent modules: module component (par-
tition coefficient) or a connector between modules (intercluster
connectivity). Our preliminary analysis showed that in our case,
almost all residues fell into categories of “nonconnectors” and
“nonhubs”, although several key residues scored relatively high
with respect to the rest of the molecule (SI Appendix, Fig. S3).
Similar concepts were used in protein interaction networks in
yeast where concepts of “date-hubs” and “party-hubs” were intro-
duced (65). The former are nodes with high BC and high DC
levels, while the latter are nodes with low BC but high DC values.
Such distinction proved to be useful in the characterization of
protein essentiality and expression dynamics (4, 66).
Recently, EG was proposed as an alternative that can com-

bine local and global characteristics and serve as an efficient
predictor of residues that are involved in allosteric signaling
(22). In our case, EG key scores for the LSP-based PRNs were
higher than the DC scores (Fig. 2). However, overall conver-
gence of EG values for the whole molecule was erratic, espe-
cially at shorter time intervals (Fig. 3). We compared EG and
DC values for the LSP-based PRN and found that for the
highly scored residues, these values are almost linearly corre-
lated with the notable exception of a few residues from the
N-lobe (V57, A70, K72, and M120) (Fig. 4A). These residues

had high DC but low EG values. This can be explained by the
basic feature of EG that is bound to the largest eigenvalue of
the adjacency matrix that, in its turn, is associated with the
largest clique of the network (67). In our case, the first and the
second largest eigenvalues were very close (Fig. 4B), which cor-
responds to the bilobal structure of protein kinases (Fig. 1).
Our analysis showed that the largest eigenvalue was mostly
associated with the larger C-lobe; however, in certain cases, the
first and second eigenvalues would swap, leading to underesti-
mation of the C-lobe residues and elevated EG values for
N-lobe residues (SI Appendix, Fig. S4). Due to these limita-
tions, we continued our analysis using BC and DC as the main
PRN characteristics.

As the LSP-based PRNs were so much more efficient in
detecting the key residues, especially by the BC-based scores
(Fig. 2), we wanted to understand if this advantage was associ-
ated with this particular set of 26 residues (Table 1). In other
words, are there other residues that are important in a topologi-
cal sense but were not included in the set of the key residues? If
this is the case and other PRNs were capable of detecting them
while the LSP-based PRNs failed to do so, then the advantage
of the LSP-based PRNs should be reevaluated.

SS PRN provided a densely packed set of points with the
key residues at the core of it (Fig. 5A). Out of the six residues
with the highest BC values, only F187 and V104 were reported
to play certain roles in protein kinases. F187 is positioned right
after the DFG motif and defines substrate specificity (68).
V104 occupies an important position contacting the regulatory
spine; residues in this position are predominantly hydrophobic,

Fig. 3. Average correlation coefficients between centralities calculated for 336 residues of PKA from five consecutive intervals of varying length. DC, BC, CL,
and EG are based on the first eigenvector for different types of PRNs, NW weighted by CC, LMI, and LSP alignment. SE values are shown.
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and its mutations can lead to inactivation of the kinase (69).
Residues that had distinctively high BC values in NW PRN
included F187 and V104 and also three other residues that are
known for their functions, H87, M118, and L167. H87 was
shown to be important for PKA substrate recognition and sta-
bilization of the catalytically competent conformation (70),
M118 is an important part of hydrophobic core of the N-lobe
(69), and L167 is a critical anchor for the catalytic loop that
binds it to the αF-helix (43) (Fig. 5B).
Distributions of points on both CC and LMI-based PRNs

(Fig. 5 C and D) were rather dense, similar to the SS PRN,
with a few residues having high BC values. CC-based PRN
again detected H87, V104, and F187. LMI-based PRN also
scored these three residues relatively high. Three other residues
from the activation segment (C199, T201, and P202) had high
BC values. C199 was shown to be important for preserving the

PKA active state (71). T201 and P202 are known to be impor-
tant for proper substrate binding (72).

LSP-based PRN had a distinctively different distribution of
points, with a group of five residues clearly separated from the
rest of the molecule by their high BC values (Fig. 5E). Four of
them were a part of the key set, and the fifth was L167 and was
also detected by the NW PRN and, notably, was the only
“connector” identified by the Guimer�a-Amaral cartography (SI
Appendix, Fig. S3). Almost every residue in the αF-helix (residues
219 to 231) had very high DC values with relatively low BC val-
ues. This characterizes them as important hubs, which is consis-
tent with the well-accepted view of this helix as a major scaffold
for the protein kinase core (43). H87, which had high BC values
in NW, CC, and LMI-based PRNs, also had high BC and DC
in the LSP PRN. V104 and F187 that had high BC levels in all
other PRNs had very low BC and DC levels in the LSP-based
PRN. There is a chance that these two residues represent a
“false-negative” result of the LSP-based PRN, V104 in particu-
lar; but in general, we concluded that the key residue score
approach that we used to evaluate efficiency of different PRNs
was well justified.

Discussion

In this work, we performed systematic analysis of several meth-
ods to create PRNs for the well-studied PKA to understand
what methods can reliably identify residues that have important
functional and regulatory roles. As proteins are dynamic objects,
it is logical to suggest that using MD simulation and averaging
multiple protein conformations should be beneficial in compari-
son to PRN based on an SS. Another reasonable suggestion is
that favoring consistent, stable contacts over transient contacts
should provide more relevant results. This explains the popular
use of MD simulation and several weighting methods to create
PRNs, although it was shown that binary PRNs based on an SS
can be very informative (12). Using MD simulations for PRN
creation poses a question—how long should the simulation be?
Again, it is reasonable to suggest that the longer the MD simula-
tion is, the more precise and biologically relevant results can be
deduced from the PRNs. We decided to test these suggestions
for the PKA case and obtained several surprising results.

First, our results show that to get convergent numbers for dif-
ferent centralities, 10-ns MD simulations can be sufficient (Figs.
2 and 4). This does not suggest that centralities calculated from

Table 2. Correlation coefficients between four different
centralities for 336 residues of PKA calculated in PRNs
based on an SS, NW PRN (NW), and PRNs weighted
using CC, LMI, and LSP alignment (LSP)

SS NW CC LMI

DC
NW 0.91
CC 0.72 0.85
LMI 0.80 0.93 0.97
LSP 0.67 0.75 0.66 0.65

BC
NW 0.84
CC 0.58 0.71
LMI 0.43 0.50 0.68
LSP 0.38 0.47 0.48 0.18

CL
NW 0.97
CC 0.88 0.91
LMI 0.82 0.84 0.94
LSP 0.84 0.89 0.87 0.73

EG
NW 0.75
CC �0.25 0.27
LMI �0.25 0.29 0.98
LSP 0.78 0.55 �0.21 �0.21

Sixteen-ns trajectories were used for the MD simulation–based PRNs.

Fig. 4. EG and eigenvalues in the LSP-based PRNs. (A) Scatter plot of EG versus DC with 26 key residues shown as red dots. Calculations were made on five
16-ns consecutive intervals. SE bars are shown. (B) The top ten eigenvalues of a typical adjacency matrix taken from LSP-based PRN.
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the 10-ns simulations provide a complete picture of residues con-
nectivity. In fact, a distinctive decrease of convergence level for
some centralities at 100- to 200-ns timescales (Fig. 3) can be
interpreted as a reflection of slower dynamics that slightly changes
the PKA molecular topology. Highly convergent numbers for the
LSP-based PRNs, however, indicate that it is possible to obtain
reliable graph theoretical parameters for PRNs at a short time
scale. Analysis of these values using longer trajectories can provide
important information about the dynamic behavior of the protein
molecule and to analyze its slow motions in a reliable way.

Second, a very surprising result was that traditional methods
to weight PRN edges; CC and LMI performed very poorly.
Although they are widely accepted and proven to be efficient
methods to study collective motions in proteins (16, 17,
20–22), they could not differentiate functionally important res-
idues from the rest of the molecule. In fact, in our key score
test, they showed significantly worse numbers that NW binary
PRNs or even PRNs based on an SS (Fig. 2). Different central-
ity values from these PRNs were also much less convergent in
the tested timescales (Fig. 3). General distributions of BC and

Fig. 5. BC and DC distribution of 336 PKA residues in five different PRNs based on an SS (A) and NW (B) weighted by CC (C), LMI (D), and LSP alignment (E).
For the MD simulation–based PRNs, 6-ns long trajectories were used; 26 key residues are shown in red. SEs for five replications values are shown.
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DC for these PRNs were very dense with no clear distinction
between functionally important residues and the rest of the
molecule (Fig. 5 C and D). By contrast, the LSP-based PRNs
provided highly reproducible centrality values and were capable
of separating a group of 20 to 30 residues, with most of them
already being known as important elements of PKA structure
or function (Figs. 4 and 5E).
LSP alignment was clearly the most efficient way to weight

edges in our PRNs. Analysis of the BC versus DC scatter plot
allowed us to make several conclusions (Fig. 5E). First, our key
residues score method was based on a suggestion that the
hydrophobic spines residues should be detected as important
connectors, that is, having high levels of BC. It was true only
partially. Only one residue from the C-spine (L227) had a very
high BC value. The rest of the spine residues had, however,
medium levels of BC and were clearly separated from the bulk
of the molecule. Two universally conserved motifs, DFG and
HRD, had high BC and DC values, with the catalytically
important D184 having the highest BC value in the molecule.
R165 from the HRD motif is known to be a major link
between the activation loop and DFG motif (42), and it had
the third highest BC. Both residues from the universally con-
served salt bridge E91–K72 were also well separated from the
rest of the molecule. Although the APE motif is conserved in
all eukaryotic kinases and was included in our 26–key residue
set, these residues had low values of both BC and DC. How-
ever, W222, another highly conserved residue that binds to the
A206 and P207 (43), had a very high DC value. In general, the
results provided by the LSP-based PRNs were very consistent
with our current knowledge of PKA structure and function.
The reason for the bad performance of CC and LMI-based

PRNs in comparison to LSP PRNs is not obvious, and it is not
clear at this point if this is a universal feature or if it is only a
peculiar characteristic of PKA and the timescales used in this
work. A possible explanation can be inferred from the “violin”
model of allostery that we proposed earlier (35). This model is
based on a collective behavior of residues and can be viewed as
a self-organization phenomenon (73). According to the model,
residues act as oscillators that undergo synchronization and
form cohesive clusters/communities with decreased entropy.
The size of these clusters, their number, and their distribution
throughout the network is defined by intrinsic oscillator prop-
erties and coupling properties of the network. Binding of an
allosteric modulator causes a global change in the dynamic pat-
tern of the protein similar to changes of “Chladni figures”
observed on vibrating plates. Such redistribution of dynamic
properties in the protein molecule can lead to changes in the
active site and, hence, its function. This model does not require
the existence of contiguous “allosteric pathways” and relies on a
single suggestion that residues can be represented by oscillators,
similar to Coarse Grain models (74). Synchronization of cou-
pled oscillators is a well-known phenomenon observed in a
wide variety of processes (75–77). This model predicts the exis-
tence of semirigid clusters of residues similar to the communi-
ties detected by community analysis, widely used in protein
allostery studies (16–18, 21). The violin model approach, thus,
calls for detection of cohesive regions in proteins where residues
are moving in synch. From the violin model point of view
using absolute value of CC to weight edges in PRN is counter-
productive as it mixes up residues that move in synch and in
counterphase. The traditional model of allosteric signaling is
usually seen as a series of sequential interactions that start at the
allosteric site and propagate in a domino-like fashion to the
active site along a well-defined allosteric pathway (78–80).

From this point of view combining correlation and anticorrela-
tion for the PRN weighting procedure is perfectly justified, as
strong interactions remain strong irrespective of their sign. The
LMI approach goes even further and includes not only colinear
anticorrelations but all orientations of residue fluctuations (19).
However, if the violin model is correct, then considering the
sign of interactions in a network is critical. In social sciences,
this problem is well recognized, as in certain cases, social net-
works have to distinguish “friends” and “foes”, that is, networks
have to include negative links (81, 82). LSP analysis from this
point of view eliminates these problems as it has the opposite
characteristic; instead of being overinclusive like CC or LMI, it
is overrestrictive as it preserves connections only if both CαCα
distances and the orientation of CαCβ vectors remain the
same.

We, thus, suggest that two different types of PRNs should be
differentiated, based on correlated dynamics of residues and on
their spatial stability. The former are successfully used in meth-
ods like elastic network models (ENMs) where connections are
viewed as Hookean springs (83). Obviously, a spring connecting
two nodes does not suggest conservation of the distance between
the residues but implies interactions between them. ENMs are
very successful in predicting slow motions in proteins and are
widely used. The latter, on the contrary, does not suggest any
interactions between residues but creates a PRN link if and only
if they preserve their mutual positions in time. A similar
approach is used for analysis of rigid elements in proteins and
their role in protein function and allostery (84–86). This differ-
ence between the “interaction”-based PRNs and “stability”-
based PRNs requires reconsideration of the CαCα distance
cutoff that is imposed to reduce computational cost. In the
interaction-based PRNs, it is usually 4 to 8 Å (12) and can be
extended up to 12 Å to include long-distance electrostatic inter-
actions (87). As the stability-based PRNs disregard residue inter-
actions per se and reflect the presence of stable clusters in the
molecule, it is logical to use larger cutoff values comparable with
the size of the clusters. Indeed, our results show that larger cut-
off levels improve sensitivity of the method (SI Appendix, Fig.
S1). Our results indicate that while the interaction-based PRNs
can be very effective in predicting global motions of proteins,
the “structure”-based PRNs can efficiently predict individual res-
idues that play important functional and regulatory roles. To
validate these assumptions and to understand the underlying
causes of our observations, more studies are necessary. The LSP
alignment method, although being very efficient in detecting
functionally important residues, at this point is relatively slow in
comparison to traditional methods. However, parallelization of
the current algorithm is a straightforward task. Improving its
computational efficiency will facilitate analysis of longer trajecto-
ries and bigger protein complexes.

Materials and Methods

MD Simulations. The catalytic subunit of PKA was prepared for all atom MD
simulations using the crystal structure of wild-type PKA in a ternary complex
with Mn2+ ATP and inhibitor peptide PKI 6-25 (Protein Data Bank ID: 3FJQ). Mn
ions were replaced with Mg, and models were processed in Maestro (Schro-
dinger). Protein Preparation Wizard was used to build missing sidechains and
model charge states of ionizable residues at neutral pH. Hydrogens and counter
ions were added, and the model was solvated in a cubic box of TIP4P-EW (88)
and 150 mM KCl with a 10-Å buffer in AMBER tools (89). Parameters from the
Bryce AMBER Parameter Database were used for ATP (90), phosphothreonine
(91), and phosphoserine (91). AMBER16 was used for energy minimization,
heating, and equilibration steps. Systems were minimized by 1,000 steps of
hydrogen-only minimization, 2,000 steps of solvent minimization, 2,000 steps
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of ligand minimization, 2,000 steps of side chain minimization, and 5,000 steps
of all-atom minimization. Systems were heated from 0 °K to 300 °K linearly
over 250 ps with 2-fs time-steps and 10.0 kcal�mol�Å position restraints on pro-
tein. Temperature was maintained by the Langevin thermostat. Constant pres-
sure equilibration with a 10-Å nonbonded cutoff with particle mesh Ewald was
performed with 300 ps of protein and ligand restraints followed by 300 ps of
unrestrained equilibration. Hydrogen mass repartition was implemented to
achieve a 4-fs time-step for production runs (92). Production simulations were
performed on Graphic Processing Unit-enabled AMBER16 (93, 94) as above in
triplicate for an aggregate of 1.2 ms.

Network Creation.
LSP-based networks. LSP alignment was performed using previously created
software (42, 43) adapted for MD simulation. Graphs were generated, as
described earlier (42), using coordinates of Cα and C atoms for all residues with
the exception of glycine (Cα and N) and ATP molecule (N1,C8). In brief, protein
structure is represented by a graph with residues as nodes. Links are formed if
the distance between Cα atoms of the corresponding residues are within a pre-
defined cutoff level ΔCαα. Each link carries information about mutual orienta-
tion of the corresponding CαCβ vectors, three distances (Cα1-Cα2, Cα1-Cβ2,
and Cβ1-Cα2) and the dihedral angle θ (Cβ1-Cα1-Cα2-Cβ2). Comparison of two
protein structures is presented as a graph with residues as nodes and links created
only if all the three distances and the dihedral angles are similar, that is, within
predefined cutoff levels: ΔCα1α2 < 0.2 Å, ΔCα1β2 < 0.45 Å, Δθ < 10°.
Weights for the links are calculated using the following formula:

W =
1
4
� 1� δα1α2

ΔCα1α2

� �
+ 1� δα1β2

ΔCα1β2

� �
+ 1� δβ1α2

ΔCα1β2

� ��

+ 1� δθ

Δθ

� ��
,

where δα1α2, δα1β2, δβ1α2, and δθ are the corresponding differences between
two CαCβ vectors. Weights for the not-matching links are assigned zero values.

In our preliminary experiments, we showed that increasing ΔCαα cutoff
levels can be beneficial for the key scores of the LSP-based PRNs (SI Appendix,
Fig. S1). We thus used ΔCαα = 12 Å, which we found to be an acceptable com-
promise between increased sensitivity and lower computational costs that were
increasing significantly for ΔCαα levels higher than 12 Å. For LSP alignment of
multiple structures, comparisons were made in all-to-all way. The resulting adja-
cency matrices were averaged and used for the subsequent analysis.
NW, CC, and LMI-based networks. CC and LMI matrices were calculated using
the Bio3D R package (version 2.4) (95). Three production trajectories, 400 ns
each, were aligned by their Cα atoms and merged. Binary contact maps were
calculated with the requirement that the residues were in contact for at least
75% of the trajectory run and used as NW matrices. These matrices were subse-
quently weighted by absolute values of CC and LMI.

SS PRN was built using the first structure of PKA in the trajectory and function
‘cmap’ from the Bio3D R package.
Calculation of centralities. Normalized centralities were calculated using
igraph R library (version 1.2.5) (96). To calculate BC and CL weights were
converted to distances using the following formula: D =�log W. The “strength”
function was used to calculate weighted DC.

Guimer�a-Amaral cartography map was built using “rnetcarto” R library
(version 0.2.5) (97).

Data, Materials, and Software Availability. All study data are included in
the main text and/or the SI Appendix.
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