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ARTICLE OPEN

Maternal educational attainment in pregnancy and epigenome-
wide DNA methylation changes in the offspring from birth until
adolescence
Priyanka Choudhary 1,74✉, Giulietta S. Monasso2,3,74, Ville Karhunen 1,4, Justiina Ronkainen1, Giulia Mancano5,6, Caitlin G. Howe 7,
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Maternal educational attainment (MEA) shapes offspring health through multiple potential pathways. Differential DNA
methylation may provide a mechanistic understanding of these long-term associations. We aimed to quantify the associations of
MEA with offspring DNA methylation levels at birth, in childhood and in adolescence. Using 37 studies from high-income
countries, we performed meta-analysis of epigenome-wide association studies (EWAS) to quantify the associations of completed
years of MEA at the time of pregnancy with offspring DNA methylation levels at birth (n= 9 881), in childhood (n= 2 017), and
adolescence (n= 2 740), adjusting for relevant covariates. MEA was found to be associated with DNA methylation at 473
cytosine-phosphate-guanine sites at birth, one in childhood, and four in adolescence. We observed enrichment for findings from
previous EWAS on maternal folate, vitamin-B12 concentrations, maternal smoking, and pre-pregnancy BMI. The associations were
directionally consistent with MEA being inversely associated with behaviours including smoking and BMI. Our findings form a
bridge between socio-economic factors and biology and highlight potential pathways underlying effects of maternal education.
The results broaden our understanding of bio-social associations linked to differential DNA methylation in multiple early stages
of life. The data generated also offers an important resource to help a more precise understanding of the social determinants
of health.

Molecular Psychiatry (2024) 29:348–358; https://doi.org/10.1038/s41380-023-02331-5

INTRODUCTION
Maternal educational attainment (MEA) is a multidimensional
construct that influences child health and wellbeing via myriad
social and biological pathways [1]. Among the core components
of socio-economic position (SEP) i.e. employment, income, and
education, MEA shows the strongest association with child neuro-
cognitive development. It determines access to important
resources, such as financial security, family circumstances, and

material resources, that affect child birthweight, growth and
development and cardio-metabolic health in later life [2].
MEA has been shown to influence other relevant intrauterine

exposures such as nutrition, maternal smoking, body mass index
etc. that are related to child health outcomes. Part of the
downstream impact of intrauterine exposures on offspring health
has been found to be through altered DNA methylation. Despite
widespread recognition of social factors in health, prospective
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evidence for underlying mechanisms of this ‘biological embedding’
from an early time point is limited, and causal mechanisms are
unknown. Recent research has revealed epigenetic variation
associated with SEP and discovered that, when compared to
other markers of SEP [3] education (either one’s own or one’s
mother’s) has the largest influence. Similarly, only maternal
education was related with four cytosine-phosphate-guanine
(CpG) sites at birth and twenty in adolescence, according to a
longitudinal analysis of 974 participants from the ALSPAC birth
cohort (United Kingdom) [4]. With respect to own education,
Linner et al. in a study including 10 767 participants from 27
cohorts within Social Science Genetics Association Consortium
(SSGAC) identified nine CpGs related to educational attainment in
adults aged 26.6–79.1 years, overlapping with findings from
previous studies on adult smoking and maternal smoking during
pregnancy [5].
A low level of maternal education is not a sufficient cause of

offspring health per se, but it may mediate a vulnerability
increasing the risk to be exposed to other prenatal exposures
with direct effects on DNA methylation (Fig. 1). We aimed to
quantify the associations of MEA with DNA methylation levels at
birth, in childhood and in adolescence. Here we present meta-
analyses of multiple EWASs in 37 studies from high income
countries, with sample size of up-to 9881 individuals. We explored
(i) if findings are enriched with those from EWASs of intrauterine
exposures with clear impacts on offspring methylation, thereby
indicating that MEA may serve as a proxy for better health
behaviours; and (ii) association of implicated sites with gene
expression in cells and tissues.

METHODS
Participating cohorts
The study included 37 studies from high income countries in Europe, the
USA and Australia within the Pregnancy And Childhood Epigenetics (PACE)
Consortium [6]. The total sample across the three time points included
14,638 individuals comprising 96.3% European, 1.8% Hispanic, and 1.7%
African ethnicity. Ethnicity was self-reported unless stated otherwise in the
cohort specific methods (Supplementary File). DNA methylation was
measured in offspring at three time points: birth (27 studies, n= 9 881),
childhood (6 studies, n= 2 017), and adolescence (4 studies, n= 2 740).
Participants had complete information on MEA, DNA methylation in cord
blood or peripheral blood, and the covariates described below (complete
case analysis). We excluded all twins and in case of non-twin siblings, one
sibling was excluded by selecting based on completeness of data or, if
equal, randomly.

Written informed consent was obtained for all participants, and studies
were approved by the local ethics boards in accordance with the principles
of the Declaration of Helsinki. Supplementary methods provide cohort-
specific detailed information, and their ethics approval statements
(Supplementary File).

Maternal education measures
MEA at the time of pregnancy was defined in accordance with the
International Standard Classification of Education (ISCED) 1997 classifica-
tion (UNESCO) [7] and was harmonized across the cohorts. MEA was
categorized into seven categories (coded 0 to 6) of educational attainment,
which was then translated into years of schooling equivalents (0 to 22
years of schooling) as: Level 0= 1 year, Level 1= 7 years, Level 2= 10
years, Level 3= 13 years, Level 4= 15 years, Level 5= 19 years and Level
6= 22 years of schooling (Supplementary Table 1).

DNA methylation measurement
All cohorts extracted DNA from cord blood and/or peripheral blood
samples. Samples were processed with the Infinium HumanMethyla-
tion450 or EPIC BeadChip assays [8]. Quality control and normalization
were performed independently by the individual cohorts (Supplementary
File). Untransformed beta-values were used as the outcome measure (DNA
methylation beta-values 0-1). Methylation value outliers were excluded
using the Tukey method: values < (25th percentile- 3IQR) and values > (75th

percentile +3IQR) were removed [9]. CpGs located on the sex chromo-
somes were also removed.

Covariates
The analysis included three models. In Model 1, associations were adjusted
for sex, technical batch (cohort-specific variable) and estimated cell type
proportions at birth, and additionally for child age in childhood and
adolescence. The cell type proportions included CD8+ T-cells, CD4+ T-
cells, natural killer cells, B cells, monocytes, granulocytes, and nucleated
red blood cells at birth, estimated by using a cord blood-specific reference
[10] and using the ‘Houseman method’ [11] using the Reinius reference set
in peripheral blood [12]. Model 2 was additionally adjusted for maternal
age, pre-pregnancy BMI, smoking (sustained smoking vs no smoking or
stopping in early pregnancy), and gestational age at birth, to account for
maternal prenatal factors. Model 3 additionally included offspring BMI and
smoking (yes vs no). Models 1 and 2 were run at all three time points (birth,
childhood, and adolescence) and model 3 in childhood and adolescence
only, to account for offspring-specific covariates.

Statistical analysis
Cohort-specific epigenome-wide association analyses. The flow chart of the
study design is given in Supplementary File Fig. 1, and analyses were
described in a pre-specified analysis plan (Supplementary File). Cohorts

Fig. 1 Conceptual framework showing association analysed in this study between maternal education attainment (MEA) in pregnancy
and DNA methylation denoted by black arrow. Gray dotted arrows denote plausible measures that may be linked with MEA and DNA
methylation.
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used a common script to perform independent epigenome-wide linear
regression analyses with robust standard errors in R.

Meta-analysis. To minimize human error, researchers from two centres
independently performed quality control of the cohort-level results and
fixed-effects inverse-variance weighted meta-analyses and verified the
results. Single cohort CpGs and 44,960 cross-reactive CpGs were removed
[13, 14]. The final results included 429 959 (birth), 429 233 (childhood), and
427 349 (adolescence) CpGs. Multiple testing burden was accounted for
using the method of Benjamini and Hochberg [15] and setting FDR to 5%.
We also assessed CpGs associations with a more stringent Bonferroni
correction (P < 1 × 10−7). The nearest gene for all CpGs were annotated
based on the Illumina annotation file. We assessed inter-study hetero-
geneity by the I2 statistic, and constructed forest plots to visualize the
results for CpGs with I2 > 50%.

Sensitivity analyses. To investigate the robustness of our findings, several
sensitivity analyses were performed for model 1 results. First, we ran a
leave-one-study-out analysis for the CpGs with PFDR < 0.05 of each of the
three age groups. Second, we re-ran the maternal meta-analyses for birth
cohorts restricted to cohorts with participants of European ancestry only,
which was the largest ancestry group (n= 9 501). Data in childhood and
adolescence were only available for European ancestries. We examined
overlap in the associated CpGs (PFDR < 0.05) of the three meta-analyses at
birth, childhood, and adolescence to explore temporal persistence of
differential methylation.

Enrichment analyses. We examined whether CpGs with I2 < 50% were
enriched for CpGs previously identified at FDR-significance in the meta-
analyses of EWASs of maternal folate concentrations [16], vitamin B12
concentrations, smoking [17], and pre-pregnancy BMI [18] using a
hypergeometric test.

Functional analyses. To assess potential mechanisms linking MEA to
offspring DNA methylation, we explored associations with gene expres-
sion, by comparing the associated CpGs at birth (at PFDR < 0.05) from model
1 with a catalogue containing 63 831 child-specific blood autosomal cis-
expression quantitative trait methylation sites (cis-eQTMs, 1 Mb window)
[19]. The GTEx gene-expression level of the identified nearest genes to the
CpG sites were further assessed with the help of the webtool ‘Functional
mapping and annotation of genetic associations’ (FUMA) [20]. We also
explored whether the CpGs (PFDR < 0.05) were enriched in DNase I
hypersensitive sites, commonly associated with regulatory regions, using
eFORGE v2.0. with its default settings [21].

RESULTS
Descriptive statistics
Descriptive statistics for the 37 datasets are shown in Table 1. The
meta-analysis sample included 49.2% females. The mean number
of years of MEA at the time of pregnancy ranged from 12.3 to 19
years. Cohort-specific distributions of MEA are shown in Supple-
mentary Table 1. Mean maternal age ranged from 27.4 to 33.8
years. Maternal smoking during pregnancy prevalence ranged
from 2% to 48%. Mean maternal pre-pregnancy BMI ranged from
22.3 to 28.0 kg/m2 and mean gestational age at birth from 38.5 to
40.2 weeks.

Meta-analyses of epigenome-wide association studies
Genomic inflation factors (λgc) for the models are shown in
Supplementary Table 2. Figure 2 shows the Manhattan plots of
model 1 at the three time points and Table 2 shows the top 20
significant hits (PFDR < 0.05) at birth and all hits for childhood and
in adolescence. QQ plots of all the meta-analysis Manhattan plots
for models 2 and 3 are reported in Supplementary File, Figs. 2 and
3. In model 1, MEA was associated with DNA methylation at 473
CpGs at birth, one CpG in childhood and four CpGs in adolescence
at PFDR < 0.05 (Fig. 2, Table 2, and Supplementary Table 2 and 3).
Using a more stringent Bonferroni-corrected p-value cut-off of
P < 1 × 10−7, 182 CpGs at birth were associated, as well as all CpGs
in childhood and in adolescence. cg25949550 (CNTNAP2) was the

only CpG associated with MEA at all three time points. For each
year increase in MEA, DNA methylation was higher by 0.05%
(SE= 0.006, P ≤ 3.5 x 10−8, I2= 41.5) at birth, 0.06% (SE= 0.006,
P ≤ 7.6x10−8, I2= 1.1) in childhood, and 0.08% (SE= 0.006,
P ≤ 4.1 × 10−10, I2= 37.7) in adolescence.
In the fully adjusted model 2 and 3 (Supplementary Table 4, 5

and Supplementary File, Fig. 2), MEA was associated with DNA
methylation at two CpGs at birth, two in childhood and three in
adolescence at PFDR < 0.05. These overlapped with CpGs found in
model 1. Using a Bonferroni-corrected p-value cut-off of
P < 1 × 10−7, DNA methylation at one CpG remained associated
at birth, two in childhood and three in adolescence. Twenty-four
CpGs had I2 > 50 at birth.

Sensitivity meta-analyses
The leave-one-out analyses on the 24 CpGs with I2 > 50 at birth
showed for some of these (e.g., cg01952185, cg05383657), the
meta-analysis results were influenced by the Generation R Study.
However, removing this study resulted in larger absolute effect
sizes, therefore any potential influence of Generation R would be
towards the null (Supplementary File, Figures 4,5). Findings were
consistent with our results at birth when only studies of European
ethnicity were assessed (r= 0.97) (Supplementary Table 6).

Enrichment analysis
At birth, we observed enrichment (P < 1 × 10-5) for findings from
previous EWASs of other prenatal exposures, namely maternal
folate, vitamin B12 concentrations, smoking and pre-pregnancy
BMI (Penrichment< range = 1.9 x 10−04 to 2.4 x 10−138) (Table 3). The
directions of the effects were concordant for all the overlapping
CpGs for maternal folate and vitamin B12 concentrations and were
in the expected opposite direction for all the overlapping CpGs
between MEA and maternal smoking (except for cg23989336,
which was in the same direction) and pre-pregnancy BMI. For
childhood and adolescence there was enrichment only for
maternal smoking during pregnancy (Penrichment < 0.02 and 0.001).

Functional analyses
Using the CpGs suggestively associated with MEA at birth (at
P < 1 × 10−5) from model 1, we found 89 unique CpG-gene
expression pairs (cis-eQTMs) (P < 1 × 10−5) in an eQTM atlas based
on blood samples collected in childhood (6–11 years). These cis-
eQTMs involved 74 unique CpGs and 68 unique transcript clusters,
which can be interpreted as putative genes (Supplementary
Table 7). Increased DNA methylation was associated with
decreased expression in 43 of these eQTMs, with increased
expression in 46. Seventeen CpGs were associated with expression
of HOTAIRM1 and six CpGs with expression of FRG1BP. We further
assessed the tissue expression related to the genes of the
identified 68 unique transcript clusters using GTEx gene-
expression level in FUMA. The genes were found to be expressed
across multiple tissues; however, multiple clusters of genes were
observed in the brain and heart tissues (Supplementary File,
Fig. 6). Using eFORGE (at P < 1 × 10−5) we found enrichment of
DNAase I hypersensitive sites and of specific transcription factor
motifs in adolescent blood (Supplementary File, Fig. 7).

DISCUSSION
Our well-powered meta-analysis combining results from 37
studies from high income countries showed that MEA is
associated with DNA methylation in the offspring at birth, in
childhood, and in adolescence. Robust associations with MEA
were found for 473 CpG sites at birth, one in childhood, and four
in adolescence. At all ages, there was enrichment for findings from
previous EWAS on maternal folate concentrations, vitamin B12
concentrations, smoking, and pre-pregnancy BMI.
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Meta-analysis
DNA methylation at cg25949550 was consistently positively
associated with MEA across all models and time points. A 1-year
increase in MEA was associated with an increase of 0.05–0.08% in
blood DNA methylation at cg25949550. This CpG is located at
intron 1 of CNTNAP2, and overlaps with binding sites of

transcription repressors SIN3A, CTBP2, CTCF and REST. CNTNAP2
genetic variations have been implicated in multiple neurodeve-
lopmental disorders including schizophrenia, epilepsy, autism
spectrum disorder, attention-deficit/hyperactivity disorder, and
mental retardation [22]. Notably, in our study the associations of
cg25949550 with MEA in pregnancy after adjusting for sustained

a) Cord blood 

b) Childhood c) Adolescent 

Fig. 2 Manhattan plots of the maternal education attainment EWAS model 1 in the offspring at three time points. The x axis is the
chromosomal position, and the y axis is the P-value on a -log10 scale. The blue line corresponds to the first CpG site for which PFDR < 0.05 and
red line indicates suggestive significance P= 1 × 10−7. The Manhattan plot of the fully adjusted models are presented in Supplementary Fig. 2.
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maternal smoking during pregnancy disappeared in birth and
childhood studies but remained in adolescents. DNA methylation
at cg25949550 has been repeatedly found to be strongly
associated with maternal smoking during pregnancy as well as
with personal smoking in adults [23]. Among the MEA related CpG
sites at birth, four CpGs, cg05575921 (AHRR), cg12803068
(MYO1G), cg22132788 (MYO1G) and cg21161138 (AHRR) over-
lapped with the findings from a previous large EWAS on own
educational attainment by Linner et al. among adults. All these
CpGs are strongly related to personal smoking and cg05575921 is
one of the top CpGs related to smoking, was the strongest
associated CpG site in both studies (P < 1 × 10−17). Linner et al.
also found that all nine CpGs associated with the participant’s own
educational attainment overlapped with those from the EWAS of
maternal smoking, which is concordant with our study. Similarly,
Van Dongen et al. identified that educational attainment CpGs
overlapped with smoking signatures in a meta-analysis of four
cohorts [24].
Consistent with previous studies assessing associations of socio-

economic status with DNA methylation [4, 25], MEA associated
CpGs at birth persisted only minimally in childhood and
adolescence. Persistence of differential DNA methylation in
offspring may not be a pre-requisite for long-term impacts of
MEA on offspring health, as transient differential DNA methylation
in utero can cause lasting functional changes predisposing

offspring to later adverse outcomes [26–28]. We observed
attenuation in the associations (models 2 and model 3) after
adjusting for prenatal covariates such as maternal BMI, smoking,
age, and gestational age. This was expected and emphasizes that
the in-utero environment represents the combined effect of
multiple prenatal factors. We are aware that there are other
covariates that we were unable to adjust for in this study and
which may affect the identified associations. However, we believe
the covariates used were representative of several important
aspects of the social dynamics of health.

Enrichment analysis
In the enrichment analysis, we observed that 85 of 473 CpGs
overlapped with CpGs identified in relation to maternal smoking
during pregnancy and had the expected opposite direction of
effect for all the CpGs (except for cg23989336). Maternal smoking
has repeatedly been found to be negatively associated with
educational attainment: mothers with lower education are more
likely to continue smoking in pregnancy compared to mothers
with higher education [29]. A systematic review of 63 studies using
Mendelian randomization identified robust evidence that higher
educational attainment decreases smoking [30]. Gilman et al.
evaluated a potential causal effect of educational attainment on
smoking and observed that adjusting for a wide range of social
factors had little impact on the association between the two [31].

Table 2. Epigenome-wide associations of maternal educational attainment in the offspring from model 1 of top 20 CpG’s at the birth and all the
CpGs at childhood and adolescence.

CpG Chr BETA SE P N I2 Nearest gene

Birth

cg05575921 5 0.0010 0.0001 4.70E-20 8903 56.1 AHRR

cg25949550 7 0.0005 6.0E-05 4.81E-17 8920 41.5 CNTNAP2

cg12101586 15 −0.0013 0.0002 8.21E-13 8922 51.8 CYP1A1

cg06338710 1 0.0009 0.0001 2.14E-12 8147 54.7 GFI1

cg11902777 5 0.0004 5.3E-05 2.39E-12 8903 0 AHRR

cg15971980 6 −0.0009 0.0001 2.43E-12 8926 0

cg05549655 15 −0.0009 0.0001 2.46E-12 8926 41.9 CYP1A1

cg09935388 1 0.0021 0.0003 3.20E-12 8910 62.6 GFI1

cg27093273 18 −0.0013 0.0002 3.82E-12 8549 0 TMEM200C

cg12803068 7 −0.0017 0.0003 4.17E-12 8680 48.0 MYO1G

cg19474546 14 −0.0012 0.0002 5.44E-12 8657 54.0

cg05282518 14 −0.0013 0.0002 8.50E-12 8548 40.1 OR4K2

cg22132788 7 −0.0007 0.0001 1.28E-11 7483 50.1 MYO1G

cg26438105 18 −0.0013 0.0002 1.63E-11 8549 0 TMEM200C

cg04180046 7 −0.0012 0.0002 1.93E-11 8926 47.7 MYO1G

cg10287786 11 0.0012 0.0002 6.07E-11 8928 30.2 DSCAML1

cg12876356 1 0.0018 0.0003 7.27E-11 8876 53.9 GFI1

cg06892868 12 −0.0009 0.0001 9.03E-11 8927 42.5 MGC14436

cg18092474 15 −0.0014 0.0002 1.03E-10 8926 36.4 CYP1A1

cg22549041 15 −0.0013 0.0002 2.02E-10 8909 55.5 CYP1A1

Childhood

cg25949550 7 0.0006 0.0001 5.60E-08 2015 1.1 CNTNAP2

Adolescence

cg25949550 7 0.0008 0.0001 4.13E-10 2484 0 CNTNAP2

cg13246497 1 −0.0014 0.0002 5.70E-09 2485 0

cg25376310 6 0.0010 0.0002 4.16E-08 2487 37.7 ZDHHC14

cg00253658 16 −0.0019 0.0004 4.64E-07 2479 0

DNA methylation beta values can be interpreted as unit change in methylation level for one year increase in MEA. CpG Cytosine Phosphate Guanine, MEA
maternal educational attainment, SE Standard Error.
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It is therefore likely that smoking is rather a consequence, acting
as mediator between educational attainment and health out-
comes. Similarly, we observed overlap of sites associated with
MEA with other prenatal exposures involved in in-utero program-
ming such as maternal folate and vitamin B12 concentrations
(with concordant directions of effect), and maternal pre-
pregnancy BMI. The overlap of CpGs between MEA and these
prenatal exposures may indicate a shared social molecular
architecture between them leading to common biosocial path-
ways that may influence health outcomes, as often observed in
observational studies.

Functional analyses
We found cis-eQTM involving the HOTAIRM1 and FRG1BP genes.
Genetic variations in HOTAIRM1 are known to be involved in the
neuronal differentiation and associated with waist-to-hip ratio
phenotype. CpGs annotated to this gene were differentially
methylated in newborns in relation to sustained maternal smoking
during pregnancy and to own smoking in adults [23]. The
HOTAIRM1gene also epigenetically controls the expression of the
proneural transcription factor NEUROGENIN 2 that is critical for
brain development [32]. FRG1BP (previously known as C20orf80,
FRG1B) has been found to be associated with body weight, body
height at birth and ocular sarcoidosis phenotypes [33]. Further-
more, we found enrichment of DNAase I hypersensitive sites and
of specific transcription factor motifs in adolescents at RAR, ESRRA,
V LXR and CTCF (Supplementary File, Fig. 7) regulating genes
which play roles in cell differentiation, proliferation, have
neuroprotective actions and regulate cholesterol metabolism,
inflammation, autoimmunity, and cancer [34, 35]. Overall, these
findings from our gene expression and tissue specific enrichment
may indicate a role of MEA in important biological processes and
pathways of the offspring, aligning with their multifaceted role
observed in epidemiological studies.
Due to the multidimensionality of MEA, it has remained a

challenge for researchers to disentangle the interrelationships
with its close correlates including income, employment, and socio-
economic status. These measures reflect different types of
resources that may differentially impact a child’s biological
development. Furthermore, our measure of educational attain-
ment is unable to capture differences in educational quality, type,
or other institutional or systemic factors that might independently
influence biological health. It also focuses on individual-level
aspects of education, leaving out the social context in which the
education and health processes are embedded [36]. This raises
several questions regarding the biological processes underlying
these associations and our study should be seen as a stepping-
stone in this regard. Our findings likely represent a myriad of
pathways related to MEA including adverse intrauterine (such as
nutrition or toxicants), as well as childhood and adolescent
exposures; thus, it is plausible that MEA is an upstream risk factor
for proximal health behaviours. More research is warranted to
understand the causality, to examine these associations in more
ethnically diverse cohorts, and to study these associations in larger

samples at later ages to gain in-depth insight into life-course
trajectories.

Strengths and limitations
The main strength of this study is that it uses a large sample size
and three critical time points of human development from birth
up to adolescence. We harmonized MEA to promote comparability
of results across all cohorts. The summary statistics from our study
should be a useful resource for future studies to further examine
the interplay of various social factors and their associations with
numerous biological pathways. MEA captures various biosocial
dimensions of health as highlighted by our enrichment analyses,
and our examination of potentially related factors, such as
maternal smoking, provides a platform for future studies to
disentangle potential causal relationships.
Our findings should also be interpreted in the light of certain

limitations. The participants in our study were relatively well-
educated and from high income countries and thus, our findings
may not be generalizable to disadvantaged populations that are
more vulnerable to adverse health outcomes. This study included
mostly individuals of European ancestry and a small sample from
African and Hispanic backgrounds due to lack of data availability;
hence, the findings are not generalizable to ancestries beyond
Europeans. We assessed MEA at the time of pregnancy and did
not investigate education attained later in the childhood and
adolescent cohorts. It is important to emphasize that we did not
aim to draw direct causal conclusions, or to distinguish how much
of these associations were confounded by other factors such as
paternal education to understand the importance of maternal
factors in the context of the family on DNA methylation [37].
Importantly, we observed overlap of methylation sites between
maternal smoking and education, and the adjustment for
sustained maternal smoking attenuated the associations at birth.
It is likely that among individuals who continue to smoke
throughout pregnancy, those of lower educational status might
be over-represented.
We found that MEA at the time of pregnancy was associated

with offspring DNA methylation at birth, in childhood, and in
adolescence. The findings from the gene expression and
enrichment analyses identified differential DNA methylation of
genes involved in important biological processes. This may mean
that socio-economic factors such as maternal education leave a
“biological residue” which in turn may influence development,
health, and wellbeing. Given the known association between
higher maternal educational attainment and unhealthy maternal
conditions (for ex. increased BMI, history of smoking, low folate
levels, low Vitamin B12) [38] that have been linked to differences
in DNA methylation patterns, investing in education access,
especially in low-resource settings, holds potential to reduce
health inequalities and improve the well-being across generations.
This is consistent with the hypothesis that public health benefits
are gained by improving educational attainment and addressing
the social determinants of health [36, 39]. The summary statistics
from this study provide an important resource for future studies to

Table 3. Enrichment for maternal educational attainment related CpG’s in the offspring at birth with DNA methylation signatures of maternal
prenatal exposures.

Birth Childhood Adolescents

Maternal prenatal exposures N Overlap n Overlap P-value Overlap n Overlap P-value Overlap n Overlap P-
value

Maternal folate 443 74 2.41E–138 0 – 0 –

Maternal Vit B12 109 22 1.11E–43 0 – 0 –

Maternal smoking 6073 85 1.06E–66 1 0.01 2 0.001

Maternal BMI during
pregnancy

104 3 1.97E–04 0 – 0 –
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further investigate the intricate biosocial pathways involved in in-
utero programming and establish a more comprehensive under-
standing of intergenerational health.

Disclaimer
Where authors are identified as personnel of the International
Agency for Research on Cancer/ World Health Organization, the
authors alone are responsible for the views expressed in this
article and they do not necessarily represent the decisions, policy,
or views of the International Agency for Research on Cancer/
World Health Organization.

DATA AVAILABILITY
Meta-analysis results files will be deposited in the EWAS Catalogue data repository
(http://ewascatalog.org) upon publication.
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