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Introduction

Despite the tremendous advances in data-driven platforms, technologies, and analytical tools

designed to ease collaboration between researchers and data scientists, very little attention has

been devoted to understanding or developing the culture of collaboration—i.e., how interper-

sonal dynamics between research professionals drive collaboration and the institutional roles

that sponsors, universities, and experts play in the coproduction of knowledge. “Collaboratory

cultures” is a people-first structure in the research ecosystem and necessary to support the next

wave of data-driven “transdisciplinary” research. Individuals who possess the skills to lead

transdisciplinary projects and the savvy to negotiate collaboratory cultures will be the most

effective at advancing their research agendas.

This article is the result of the 2019 Lemon Labs workshop [1], where the authors of this

article shared their collective experiences on a wide range of data-driven science issues. This

“visioning lab” event provided an open, inviting space for participants to share the challenges

they face in their own collaborative projects (see S1 Text). Lessons learned were summarized

and developed into the following interconnected (see Fig 1) Ten Simple Rules within a “colla-

boratory cultures” framework. While many Ten Simple Rules have been written about general

collaboration, data sciences collaboration, statisticians’ collaborations, and leveraging big data

[2–7], we emphasize the “nontechnical” criteria that are necessary to promote effective collab-

orations, accelerate discovery, facilitate new partnerships, and develop the role of individuals

within transdisciplinary [8] research projects—projects that combine disciplines in a nontradi-

tional way, resulting in the development of novel frameworks, concepts, and methodologies to

address scientific problems.

We provide guidelines for investigators who have the need for and the interest in a new col-

laboration but do not know how to get started, as well as for those already starting collabora-

tions but do not know how to structure newly formed teams in a way that will produce the

desired outcome. Although these guidelines describe research collaboration between the data

sciences and the disciplinary sciences, their application is not limited to the academic sector.

These principles work for both in-person and remote collaborations and provide a pathway to

build upon the “collaboratory” concept as it was first envisioned by William Wulf [9], particu-

larly in the utilization of communication technologies and digital collaboration tools to “sup-

port” collaboration, but not to “replace” the societal function of successful research teams.

Table 1 provides a glossary of key terms used in this article.

Rule 1: Develop reflexive habits

Reflexive practices involve the exploration of one’s own discipline through the lens of another

discipline. Data scientists and researchers should engage in each other’s knowledge sharing

and practitioner events.

In traditional academic settings, it is common for data scientists to be scattered across vari-

ous departments. They participate in local hacking groups, meetups, Carpentries workshops

[12], and public competitions, which serve to introduce the data sciences community to the

problems and datasets within a specific scientific discipline. In order to better understand the

interdisciplinary role that data scientists play within their own disciplines, it is important for

researchers to gain knowledge and create relationships with the data sciences community by

attending workshops, conferences, colloquia, hackathons, and meetups. Here, emphasis is on

the collaboratory activity; the onus is not on one person to seek, attend, and learn, but on the

research community as a whole to engage with each other. For example, events such as Astro-

HackWeek, Summer School in Statistics for Astronomers, Data Science for Social Good,

Oceanhackweek, or the Google Earth Engine User Summits [13] provide opportunities for
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individuals to learn about innovations and advances in data technology within their own fields,

while deepening connections with the data sciences community. These events may be espe-

cially beneficial for students and postdocs who are just starting their research careers and still

finding their interdisciplinary niche.

Many organizations structure their events to facilitate new partnerships. But individuals

may not know how to interpret the jargon, concepts, and tools unique to each discipline.

Develop
reflexive
habits

Fail early
and often

Speak the
same

language

Document
your

collaboration

Write code
that others can

understand

Manage
your data

People

TechnologyData

Share
collaboration

tools

Communicate
the project

plan

Observe
ethical

hygiene

Design
projects so 
everybody
benefits

Fig 1. How the rules work together and intersect. There are multiple components in collaborations: person–person

interactions, person–technology interactions, person–data interactions, and data–technology interactions. Synergy

between these components results in a successful collaboration.

https://doi.org/10.1371/journal.pcbi.1008879.g001
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Reflexivity can close these gaps by inviting new information into the local knowledge regime,

opening a frame of reference for the potential of interdisciplinary relevance across depart-

ments, and introducing the jargon and concepts that are key to successful transdisciplinary

efforts. The normative value of reflexivity is the permission it gives to researchers to spend the

time and make the effort to find transdisciplinary spaces in their own research ecosystem. This

creates space and time for collaborations to arise and succeed.

To adopt a reflexive approach, researchers and data scientists should schedule visits to each

other’s institutions or departments, follow each other on social media, jointly apply for grants

and submit proposals for interdisciplinary workshops, and attend less formal events, such as

graduate seminars and department-sponsored socials. Conferences and in-house seminar

series are a great networking opportunity for graduate students, so students should be encour-

aged to meet with speakers and invite them to department events. Even if the meeting does not

result in a collaboration, the lab has learned new jargon and grown its data sciences network.

These approaches facilitate collaborative cultures, as well as deepen and improve one’s disci-

plinary expertise.

Rule 2: Communicate the project management plan early and often

Effective collaboration requires team leadership, personal motivation, and clearly defined proj-

ect goals. Teams and team leaders should cocreate a project management plan with milestones

and deadlines that lead to the desired output, assign roles and tasks according to the strengths

and interests of each team member, and invest in the personal contribution of individual team

members. In the academic environment in particular, where there is emphasis on training and

development, members should be encouraged to participate in efforts that help them learn a

new skill they are interested in.

Like all community efforts, scientific collaboration can suffer from a kind of “diffusion of

responsibility” [14] that leaves the majority of work to be performed by a minority of the

group after the initial planning period. This diffusion of responsibility can lead to negative

experiences and have a chilling effect on future collaborations. Lemon Labs participants

revealed that when collaboration stalled, progress required someone to take ownership of the

project and reinvigorate the team (see S1 Text). To help ensure success in the design of the

project management plan, team leaders should design Standard Operating Procedures (SOPs)

Table 1. Glossary of certain terms for the purpose of this article.

Term Definition

Data Scientist An expert in wrangling, manipulating, and analyzing data.

Disciplinary Researcher Researcher with specific knowledge within a science field, such as Astronomy, Biology,

Sociology, etc.

Collaboratory A portmanteau of the words “collaboration” and “laboratory” [9,10], which

encompasses the research capacities that are enabled by digital communications, big

data tools, and multidisciplinary researchers; the open research environments that allow

colleagues to share, access, and use digital resources and instruments freely [9]; and the

coproduction of knowledge through multiple forms of communication, both formal and

informal, and a shared agreement of values and rules [11].

Infrastructure Underlying foundation to do work. Examples include lab manuals, platforms for

sharing and analyzing data, etc.

Platforms Software designed to help manage and disseminate data storage and analyses.

Standard Operating

Procedure

Ground rules between team members which assigns roles, modes of communication

and designates timelines.

Tools Technologies for specific tasks (e.g., version control, communication).

Workflow Pattern and order of operations for tasks that are part of a project.

https://doi.org/10.1371/journal.pcbi.1008879.t001
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(see Table 1) and communicate it to team members early on and disseminate updates. SOPs

can strengthen the vision for collaboration by providing frameworks for thinking through the

“what ifs” and “how tos” involved in the project lifecycle. They put the pieces of a project into

context and preserve the integrity of the project’s goals over time.

The SOP should detail clear roles, responsibilities, authorship guidelines, and additional

information, such as how to label project files (see Rule 6). A good SOP should incorporate

team feedback in the design phase and map to project milestones with regular review and

updates (see Rule 5). Components of a good SOP include:

• Defining the purpose of the collaboration;

• Assigning roles and responsibilities for all collaboratory members involved in the project

lifecycle, including principal investigators and team leads;

• Outlining benchmarks of success (i.e., project milestones); and

• Defining collaboration tools and how they relate to the purpose of the project, such as com-

munication platforms and meeting schedules (see Rule 6).

For a more thorough guidelines on writing a successful SOP, interested readers may refer to

[15]. The SOP we designed to facilitate the collaborative writing of this article is available at [16].

Rule 3: Speak the same language

Curiosity-driven dialogue constitutes the core value of collaboratory cultures because all sci-

ence practitioners share a love of knowledge in the spirit of inquiry. Transdisciplinary teams

should adopt an inclusive environment that encourages questions, fosters understanding of

new concepts, and aids in vocabulary building.

The variety of backgrounds and competencies in complex knowledge production presents a

further challenge to the cohesion of virtual teams. Simple tools, such as communication guide-

lines documented in the SOP (see Rule 2) and a glossary of terms, can help researchers and data

scientists to understand each other across disciplines. But tools alone do not get the job done.

Collaboration requires communication to share ideas and time to build knowledge. So, while

team members might need to use jargon to explain concepts from their own disciplines, team

leaders should factor in enough time for the thoughtful exploration of new concepts and the

explanation of new terminology. These terms and concepts can then be reviewed iteratively until

all jargon is well defined and understood across the team, and the concept itself becomes clear.

Cultivating an inclusive and welcoming environment is necessary to foster open communi-

cation. Cocreating shared values [17] and documenting them via Codes of Conduct [18–22] is a

foundational building block in collaboratory cultures. This resource provides a valuable team-

building exercise and helps to ensure that all team members—especially early-career research-

ers, graduate students, and members of marginalized or underrepresented communities—are

effectively engaged in the collaboration, valued in their roles, and empowered to contribute

their perspectives in equal measure. You can model welcoming leadership by incorporating a

few simple guidelines:

• If you don’t understand, ask a question.

• If you do understand, answer the question.

• Respect and encourage a diversity of opinions, backgrounds, and experiences.

• Avoid jargon when a synonym can be used. When jargon is unavoidable, define terms.

• Be curious.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008879 May 13, 2021 5 / 12

https://doi.org/10.1371/journal.pcbi.1008879


• Discuss conflicting ideas or approaches as they arise and call on the wisdom of the crowd to

find creative resolutions.

These practices are only sustainable in a culture of acceptance and psychological safety, where

leadership by example is crucial: practice active listening, create a space where questions are wel-

comed and celebrated, and frame “failures” as valuable learning tools in the solution process.

Rule 4: Design the project so that everybody benefits

Transdisciplinary teams involve experts who possess a diversity of knowledge, experience,

skills, interests, professions, capacity, seniority, and ambition. Project planning should incor-

porate the research agendas of all collaborators.

Most collaborations are based on the need for investigators to apply data science methods

to produce a scientific outcome. Generally speaking, data scientists value “methods,” whereas

disciplinary researchers value “results.” Often, the value of the collaboration is reduced to its

scientific output without regard to the investment of the time and effort that is required to

develop the novel data science solutions, which are frequently necessary to achieve the science

community’s research goals. This lack of regard for the important contribution from the data

sciences can lead to feelings of frustration, the perception that the role of the data scientist is

merely a technical worker who does not directly contribute to scientific discovery, and the

belief that the individual contribution of the data scientist is less important to the success of

the collaborative effort (see S1 Text). Obviously, these negative experiences can interfere with

the cultivation of a strong and productive collaboratory culture. Managing the contribution of

each team member proactively allows all collaborators to invest equally in the project’s out-

come, and to find motivation in their own contribution.

Include these considerations in the development of your project plan and elicit specific

feedback from each team member to ensure that they have an appropriate role in the copro-

duction process:

• Create a flexible-by-design framework that can accommodate variable scope and unantici-

pated results. In other words, give room to both data scientists and disciplinary researchers

to pursue what matters to them, while collaborating on the project;

• Specify the distinct contribution that each collaborator has to offer to their field;

• Identify inclusive objectives and/or outputs that allow each contributor to advance their own

professional goals and research agendas;

• Account for differences in the fundamental approach to research between disciplines and

practices, including methodology, experimental design, and analysis [23];

• Clarify that the results of collaborative research, including data science methods, will ulti-

mately be evaluated by disciplinary experts;

• Do not assume that disciplinary contributions will contribute to the research portfolio of the

data scientists, and vice versa; and

• Revise and improve your plan as you onboard new collaborators (see Rule 2).

Rule 5: Fail early and often

Data sciences projects characteristically involve perceived failures in the short term, which

often illustrate design weaknesses or oversights that can be corrected in time to deliver a
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successful result. Collaborative teams should fully embrace failure and learn to leverage these

setbacks into opportunities for growth and success of their collaboration.

A major difference between traditional scientific studies and data science projects is the fre-

quency of (mini) failure. For instance, a common experience shared by Lemon Labs attendees

was code failure and the fear of committing code to a public platform. Do not wait until your

code is perfect and flawless. Disclosing experimental successes and failures is a hallmark of sci-

entific knowledge production. Consider how sharing your innovative efforts with others con-

tributes to scientific knowledge, and the importance of understanding failures and mistakes,

which is critical to process efficiency and improvement. Furthermore, to help encourage

groups that may suffer from this fear—often early-career and underrepresented investigators

—create a safe space for them to learn this practice and get into the habit of sharing their work.

Team members who feel disempowered to share their failures can stagnate the project. One

tactic to overcome stagnation is to adopt agile strategies, such as conducting a periodic review

of milestones, accomplishments, and challenges through the practice of “blameless retrospec-

tive.” This approach assumes that everyone did their best with the skills, tools, and time they

were given, and encourages critical examination by workshopping what worked, what didn’t

work, and what can be improved going forward. In this way, teams can effectively iterate fail-

ure into success.

People-first techniques like this also strengthen collaboratory cultures by allowing team-

mates to express questions and concerns about the project, explore new ideas together, and

build trust through nonjudgmental discourse. It also provides a process-oriented framework,

which can serve to ease interpersonal conflicts, especially when there is a perceived disparity in

effort between team members.

Rule 6: Share collaboration tools

All scientific knowledge is rooted in sharing—sharing discoveries, sharing ideas, sharing meth-

ods, and sharing data. Transdisciplinary collaboration should leverage the tools, skills, and

resources that each member brings to the project by sharing them freely.

Collaborative tools drive cooperative research. They improve communication, accelerate

discovery, facilitate relationships, broaden perspectives, and provide team members with

access to new data-gathering methods and analytical devices. These tools should be organized

prior to beginning the project. Instructions for access to project tools and descriptions of their

purpose should be included in the SOP (see Rule 2).

The following collaborative tools facilitate communication and sharing among team

members:

• Collaborative documents allow multiple users the ability to take notes, edit, and comment in

real time.

• Shared calendars allow team members to schedule meetings, set deadlines, assign time-sensi-

tive tasks, and track project milestones.

• Instant messaging allows real-time communication between members to ask and answer

questions, and across teams make general announcements.

• Video conferencing allows multiple users to share video and screen content, regardless of

location.

• File sharing provides real-time editing capability to multiple users, while supporting access

control (i.e., “view only” versus “editing” access).
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• Data repositories provide version control, multiple threads, and updates.

• Project archives provide permanent access to project assets and resources.

• Reproducible and executable software configuration, commonly referred to as containeriza-
tion [24], bundles together software, configuration files, dependent versions, and data so that

projects can be reproduced, regardless of future changes in operating systems and software

versions.

• Computational notebooks and tutorials combine code, results, and descriptive text into a

computational narrative [25].

• Scientific discovery platforms enable computational research and data science collaboration

with big data assets.

Rule 7: Manage your data like the collaboration depends on it

Because it does!

A shared set of standards and tools allows all project members to work together to organize

data, collect metadata, improve data quality, and access data as needed. Collaborative teams

should become proficient in data management best practices [26] and work together to create

data management plans that support FAIR data principles (Findable, Accessible, Interopera-

ble, and Reusable [27]).

In data sciences collaborations, the person who creates the data and interprets the results is

often different from the person who analyzes the data. Every step of the data process should be

saved, logged, and documented to allow researchers to access that data for analysis through the

project lifecycle and to preserve context for future reproduction studies. The effort to make

data FAIR—cleaning data, putting them into interoperable data formats, and publishing both

code and data early and often in open source formats—is a necessary labor investment for the

data sciences community, because it pays off downstream in the open access environment and

supports scientific reproducibility. The immediate reward to the collaboratory is the on-

demand access to data assets as soon as they have been processed according to FAIR standards.

Indeed, such practices provide significant gains to individual researchers [28] by speeding up

the revision process and giving their data broader reach across the open science community.

Rule 8: Write code that others can use and reproduce

Data scientists can improve their skills by adopting some of the tools and habits of software

engineers. They should prioritize the development of workable, readable, and executable code

that can be reused by collaborators and researchers across a wide variety of disciplines [25].

Software engineers have decades of experience working in large teams to write complex

code, organize workflows, and satisfy the competing demands of multiple stakeholders.

Whether building analytics tools, cleaning data, or writing software, data scientists can benefit

from observing some of the principles of software development. Always keep in mind that

your code has value only if your collaborators and future users can continue to use and reuse

your code. Training in software engineering practices offers the added benefit of delivering a

set of valuable skills that are in high demand in the private sector.

Finally, strong code-writing skills foster ethical and responsible research outcomes, such as

reproducibility. Reproducible research links convergent data science practices to scientific

research and strengthens collaboratory cultures. These skills include deploying packages

through online platforms, writing container “recipes,” using version control systems, develop-

ing workflows, efficiently storing data, and using data management systems. Table 2 lists a
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selection of good practices for creating sustainable, accessible codes. For a more thorough and

technical best practices, interested readers may refer to [29].

Rule 9: Observe ethical hygiene

Ethical protocols are often dismissed as administrative functions that exist outside the pursuit

of scientific knowledge. Researchers should stay current on best practices, observe ethical

hygiene throughout the research lifecycle, and prioritize the ethical guidelines published by

their research sponsors [30].

The arbitrary adoption of standards and application of rules creates barriers to collabora-

tion across fields, innovation within fields, and the advancement of science throughout. Con-

sistency in ethical hygiene is uniquely critical for data sciences projects because the methods,

tools, or algorithm developed for one purpose are often repurposed within very different con-

texts or domains. This fungibility allows data scientists to move laterally across disciplines.

However, when the application of data tools moves from one context, where ethical consider-

ations were deemed irrelevant to the project outcome, to a different context that directly

impacts human lives, the result can create harms throughout society. For example, facial recog-

nition tools that were designed to improve image searching and social media functions have

been adopted for use outside that context for racial profiling, cyberstalking, identity theft, deep

fakes, and other applications that erode privacy and cause harm on a massive scale. Awareness

of ethical concerns and best practices can help data scientists to design tools that are less prone

to misuse.

Ethical hygiene also protects individuals from social, ethical, and legal liability in the work-

place. These protections foster a welcoming environment by clearly stating the community’s

values and rules of behavior, which in turn supports collaboratory cultures. In the absence of

social norms, uniform rules, and universal regulations, the adherence to ethical protocols

[18,31,32] can prevent individuals and institutions from engaging in harmful practices—

Table 2. Suggested practices for creating sustainable, accessible codes.

Function Suggested practices

Generic • Provide a step-by-step user manual for tools whenever possible.

• Provide high-level comments at the beginning of each file and throughout the code as needed.

• Follow consistent naming convention across your codes.

• Do version control.

Data curation • Automate as many of the processes involved in data access, storage, and reformatting as

possible.

• Keep separate copies of the original (raw) data and the curated data.

Data analysis • Research and employ common, successful analysis methods. Do not reinvent the wheel.

• Map your method to the research questions you are trying to answer. Do not try to fit your

method to an application.

• Make a tutorial-style document that explains your analytical method in simple language.

Data visualization • Use visual graphics to communicate the final result with collaborators.

• Use high-quality formats to produce images.

• Automate data visualization as much as possible.

• Aim for users being only a single click away from reproducing everything.

Tool building • If possible and where appropriate, build a Graphical User Interface (GUI) that allows your

collaborators to tweak parameters and apply their expertise to parameter evaluation and

exploratory analyses.

• When appropriate, build add-on packages and libraries.

https://doi.org/10.1371/journal.pcbi.1008879.t002

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008879 May 13, 2021 9 / 12

https://doi.org/10.1371/journal.pcbi.1008879.t002
https://doi.org/10.1371/journal.pcbi.1008879


intentional or otherwise. Rather than viewing ethical commitments as restrictive rules that

hamper research, collaborators can reframe ethics as the shared expression of the research val-

ues that deliver the high-quality, reproducible outputs that can withstand critical scrutiny.

The National Science Foundation provides general guidance and discipline-specific ethical

guidelines on its website [33] and also sponsors the Online Ethics Center for Engineering and

Science (OEC; [34]), which offers extensive resources, training, events, curricula, case histories,

best practices, and more to serve the science community. This coordinated effort reflects an

increasing interest in accountability, responsibility, and ethics in scientific research. Materials

found on the OEC website can be incorporated both in the classroom for student instruction

and in the lab via Codes of Conduct included in a project SOP.

Rule 10: Document your collaboration

The experiences, reflections, and evolving best practices that result from data science collabo-

rations can benefit the entire research community by providing anecdotal evidence about

what works. Transdisciplinary teams should regularly document their collaborative experi-

ences, regardless of perceived successes or failures.

The Fourth Paradigm’s data-intensive science [35] framework is a collective, long-term

enterprise. Project journaling normalizes the reflexive habits that support evidence-based best

practices and reinforces collaboratory cultures, while providing teams with a running account

of the significant events, divergent opinions, and decisions that directly impact project out-

comes. It enhances project management by providing an outlet to reflect on experiences, cele-

brate successes, share lessons learned, and document change. This form of documentation

translates into evidence-based guidelines that can be shared in the classroom, at conferences,

during team meetings, and with future collaborators. It has the added benefit of developing

expository writing skills, which are critical in effective science writing and interdisciplinary

communication. And of course, the practice preserves important research for posterity, which

helps cultural researchers trace revolutionary discoveries and interpret the impacts of science

on society. The participants of Lemon Labs engaged in reflexive activities to help participants

identify where collaborative projects have previously failed (see S1 Text). These activities

throughout the workshop informed the rules included in this article.

Conclusion

It has been over 30 years since William Wulf introduced his vision of interdisciplinary research

without walls, which he termed the collaboratory—a portmanteau of the words “collaboration”

and “laboratory” [9,10]—and more than a decade since Hey and colleagues described the

emergence of data-driven research as a new scientific paradigm [35]. These Ten Simple Rules

and their emphasis on collaboratory cultures provides a framework for sponsors, investigators,

students, and other stakeholders to positively support each other in an increasingly virtual

environment through the thoughtful selection of collaborative tools, best practices, and agile

management techniques. Investigators are stretched thin, Big Science is designed to favor

siloes and exclude underrepresented stakeholders, and research administration departments

are not equipped to provide management services throughout the full project lifecycle. While

the main takeaway for investigators is to better understand the cultural dynamics involved in

transdisciplinary collaboration, it is also a call to action for research sponsors, who need to

reconsider their investment in the costs related to complex knowledge production.

Finally, a note on reflexivity and best practices. This list of Ten Simple Rules was an out-

come of extensive discussions held by Lemon Labs participants in 2019, in which we told our

stories about project success and failure, workshopped workplace problems and solutions, and
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reached consensus about more effective ways of doing things. We have committed to adopting

these rules within a reflexive framework over the next year by applying each rule and docu-

menting implementations and outcomes. We will use our findings to deliver evidence of each

rule’s effectiveness (or not) in specific collaborative projects.

Supporting information

S1 Text. Challenges. During the first 2 days of the Lemon Labs, participants shared about

challenges that they commonly face in their collaboration. Here is a summary of “complaints”

that participants shared during the meeting. We have also listed possible approaches to deal

with them and provided reference to specific rules that would address them.

(PDF)
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