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Accurate predictions from small
boxes: variance suppression via the
Zel’dovich approximation
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aKavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stan-
ford University, Stanford, CA, USA
bKavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Lab-
oratory, Menlo Park, CA, USA
cDepartment of Physics, University of California, Berkeley, CA, USA
dPhysics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

E-mail: kokron@stanford.edu

Abstract. Simulations have become an indispensable tool for accurate modelling of observ-
ables measured in galaxy surveys, but can be expensive if very large dynamic range in scale is
required. We describe how to combine Lagrangian perturbation theory models with N-body
simulations to reduce the effects of finite computational volume in the prediction of ensemble
average properties in the simulations within the context of control variates. In particular
we use the fact that Zel’dovich displacements, computed during initial condition generation
for any simulation, correlate strongly with the final density field. Since all the correlators of
biased tracers can be computed with arbitrary precision for these displacements, pairing the
Zel’dovich ‘simulation’ with the N-body realization allows hundredfold reductions in sample
variance for power spectrum or correlation function estimation. Zel’dovich control variates
can accurately extend matter or tracer field emulators to larger scales than previously possible,
as well as improving measurements of statistics in simulations which are inherently limited
to small volumes, such as hydrodynamical simulations of galaxy formation and reionization.ar
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1 Introduction

Computer simulations of the formation of cosmic structures, from those that include dark
matter only to those solving for full radiative hydrodynamics, have become essential tools in
understanding the evolution of the Universe across different cosmic eras. Simulations shed
light on complicated non-linear phenomena that evade analytic descriptions. These include:
the non-linear dynamics of gravitational collapse, leading to the formation of bound halos;
the interplay between gas and light, leading to the formation of stars and eventually galaxies
within these halos; the radiative processes underlying reionization and countless more.

In numerical cosmology there exists an eternal tug-of-war between accurately resolving
small-scale physics and running simulations at large enough volumes that one has a statisti-
cally robust result. For example, suites of simulations run at numerous cosmologies, used for
the construction of emulators, must not only balance the dynamic range of their simulations
but also include the expense of maintaining accuracy while spanning a large space of cosmo-
logical parameters, where a new simulation has to be run for each point in this parameter
space. For emulators of large-scale structure designed to accurately predict summary statistics
measured in galaxy surveys, the challenges associated with limited volumes become even more
severe. Next-generation galaxy surveys will probe unprecedented cosmic volumes, requiring
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highly accurate (and precise) predictions at large scales, imposing additional requirements on
simulation-based inference tools.

To surmount these challenges, a plethora of techniques have been introduced that try to
ameliorate either resolution or volume requirements of simulations. On the resolution front,
statistical learning techniques have been leveraged to produce algorithms that generate so-
called super-resolution simulations which “fill in” information on scales smaller than what the
original simulation was capable of resolving in an inexpensive way [1–5]. However, super-
resolution techniques are still in their infancy and must be understood more before being
used to confront data from these galaxy surveys. On the other hand, the field of statistics has
a rich literature on the subject of variance reduction, and these techniques have begun to be
imported in a cosmological context in order to relax the requirements on either the volumes
of simulations or sheer quantity which must be run. Perhaps the most popular variance
reduction tool in cosmology is that of Latin Hypercube Sampling, which allows for efficient
sampling of high-dimensional parameter spaces such as the 7(8)-dimensional w(ν)CDM space
over which emulator suites are constructed [6–9]. Two other techniques which have seen
widespread adoption are “paired phase” and “fixed amplitude” simulations. Paired-phase, or,
“pairing”, involves simulating two Universes whose initial conditions are exactly the same up
to a minus sign [10]. The mean of statistics computed in each simulation then has its variance
significantly reduced relative to the expectation of Gaussian initial conditions. “Fixing”, on
the other hand, involves initializing simulations where the amplitude of density fluctuations
follows a Dirac delta distribution as opposed to the standard Rayleigh distribution [11]. Fixing
also significantly reduces the large-scale variance of an N -body simulation. The combination
of these two techniques, “paired–fixed” simulations, has become the object of significant study
in recent years [12–15].

Another technique which has recently seen use in reducing sample variance of simulations
in cosmology is the method of control variates [16–18]. Control variates are particularly
powerful when correlated, inexpensive surrogates of the statistics one wishes to measure can be
produced. The method is well-understood from a theoretical point of view, and the potential
variance reduction that can be achieved through its optimal application is proportional to the
degree of correlation between the surrogate adopted and the costly statistic whose variance we
wish to reduce. The success of control variates is predicated on a thorough understanding of
the statistics of the surrogate adopted, including a well-characterized mean, variance and its
co-variance with the desired statistic. So far, the surrogate of choice adopted in cosmological
applications has been an approximate simulation which, while significantly less expensive
than a full N -body simulation to produce, still incurs a substantial computational cost due
to the need of simulating hundreds of approximate mocks in order to estimate the mean
of the surrogate. Thus, the current bottleneck of applying control variates to cosmological
simulations lies in the requirement of simulating large numbers of approximate simulations
in order to characterize well its statistical properties.

At sufficiently large scales, analytic descriptions of large-scale structure statistics are
highly accurate and arbitrarily precise, and are thus powerful tools to study the large-scale
regime of large-volume surveys. While traditionally treated as two disparate ways of studying
structure formation, analytic and simulation-based descriptions are inherently linked. For
example, every simulation of cosmic structure requires initial conditions which are generated
from the aforementioned analytic descriptions, specifically using Lagrangian Perturbation
Theory (LPT). LPT is not only a potent framework to describe the statistics of the densities
and velocities of biased tracers [19–28], but it has recently also been used in combination with
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N -body simulations to produce hybrid models of structure formation [29]. Hybrid models (also
called hybrid effective field theory, or HEFT) use the tracer–matter connection as specified
by LPT with displacements that are accurate at small scales from N -body simulations. Their
combination leads to a powerful field-level description of the building blocks of structure
formation. Recent applications of Hybrid EFT include: constructing emulators of clustering
and lensing which are accurate to k ' 0.6hMpc−1 [30–32], modelling higher order statistics
beyond the power spectrum [33], and characterizing the tracer–matter connection of simulated
samples of galaxies [34, 35].

In this work we propose a novel way to leverage the intimate connection between La-
grangian perturbation theory and N -body simulations in order to improve the precision and
accuracy of simulation-based predictions significantly. Specifically, we utilize the principle of
control variates in order to create realizations of surrogate Universes with the same large-
scale noise as those measured in N -body simulations. We use first order LPT (also known as
the Zel’dovich Approximation [36]) to analytically predict the means of summary statistics.
While the use of control variates in cosmology is not new [16–18], previous work has relied on
running ensembles of simulations in order to employ this technique. Our methods, in contrast,
are computationally inexpensive. They rely only on data outputs that are a standard part of
producing initial conditions for cosmological simulations, and an additional post-processing
step that is identical in the full simulation and in the surrogate simulation.

This paper is structured as follows: in § 2 we review the control variates technique, the
variance reduction tool we have adopted in this publication. We discuss how this variance
reduction is driven by the cross-correlation coefficient between the expensive simulation we
wish to improve and the surrogate version we run. We also discuss how even the simplest
rendition of LPT, the Zel’dovich approximation (ZA), produces Universes which are highly
correlated with the results of full N -body simulations at low redshifts. In § 3 we give a brief
overview of LPT and how it is used to predict the summary statistics of biased tracers. We
focus on how to predict observables within LPT using both analytic calculations as well as
grid-based realizations of the same expressions. In § 4 we then proceed to re-formulate the
control variates problem within the context of improving measurements of the basis spectra
that make up the two-point statistics of biased tracers in LPT. We present the results of
our implementation of control variates for paired ZA realizations in § 5. We apply our
methodology to three classes of tests, of increasing complexity. We use N = 100 high-
resolution N -body simulations, as well as paired ZA realizations, to assess the statistical
performance of our technique. We begin by applying control variates to the matter power
spectrum, extend to the statistics of a sample of galaxies populated by a halo occupation
distribution (HOD) procedure, and conclude by looking at all ten basis spectra that span
second order Lagrangian bias models. Additionally, we quantify the reduction in variance
from this technique from our ensemble of simulations and consistently find strong reduction
in uncertainty for all of the forms of power spectra assessed in this work. The improvements
range from a factor of 10× reduction to nearly 1000× depending on the specific basis spectrum
in question. We also discuss potential applications of these techniques beyond just improving
predictions from cosmological emulation boxes. In § 6 we summarize our results and identify
promising future directions.

Our appendices discuss technical aspects of this technique in order to ensure a simula-
tion will benefit from its use. In Appendix A we derive the necessary expressions to model
the power spectrum of biased tracers in the Zel’dovich approximation, which is crucial in
ensuring the success of our techniques. In Appendix B we discuss the requirements imposed
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on simulations in order to ensure their paired ZA realizations will accurately match analytic
predictions. In Appendix C we discuss the potential of extending our techniques beyond the
Zel’dovich approximation, as well as challenges that must be circumvented before this can be
achieved in practice.

2 Control variates and variance reduction

Control variates are a statistical technique employed to reduce the variance of quantities es-
timated with limited samples of data. They’re applicable when one can create correlated
approximate realizations with well-characterized means [37]. In the following sections we give
a brief introduction to the theory of control variates and discuss their current applications
within a cosmological context, as well as limitations to the technique as it is currently formu-
lated. We will propose that the Zel’dovich approximation can be used as a control variate,
and explore its correlation with the matter density field. In cosmology, control variates have
recently been applied in the CARPool technique [16–18] as well as reducing the variance in
statistics measured from the AbacusSummit [9] suite of simulations [38].

2.1 Standard control variates

Say we are interested in precisely estimating the mean of a simulated observable, x̂. Suppose
also that we have a related quantity, the control variate ĉ, that is significantly cheaper to
produce than x̂ but is correlated with it. Then, we may define a quantity

ŷ ≡ x̂− β(ĉ− µc) , (2.1)

with µc = 〈ĉ〉. Taking the expectation value of Eq. 2.1 shows that 〈ŷ〉 is an unbiased estimator
of 〈x̂〉 for any β. The covariance between ĉ and x̂ can allow Var(ŷ) < Var(x̂) and in fact Var(ŷ)
can be minimized by taking

β? =
Cov[x̂, ĉ]

Var[ĉ]
. (2.2)

This value of β? leads to a variance reduction

Var[ŷ]

Var[x̂]
= 1− Cov2[x̂, ĉ]

Var[x̂]Var[ĉ]
= 1− ρ2

xc, (2.3)

where we’ve defined the cross-correlation coefficient ρxc = Cov[x̂, ĉ]/(σxσc). Therefore, using a
highly correlated surrogate that is inexpensive to produce can lead to significant improvements
in estimation of such quantities without having to produce many realizations of x̂, which
could be computationally expensive. Within the context of cosmology, x̂ can be the power
spectrum of an N -body simulation [16], or a quantity such as the covariance matrix of that
power spectrum [17]. Our interest will be in the case when x̂ is a given element of the basis
spectrum Pij(k), which we define shortly in § 3 . The basis spectra Pij(k) are the building
blocks of the statistics of biased tracers within LPT. This scenario includes as special cases
the matter power spectrum and the spectrum of a biased tracer (e.g. galaxies).

One of the key limitations in applying control variates to problems in computational
cosmology so far has been the computational cost of estimating the mean µc of the variate.
If improperly estimated, the estimator ŷ could become biased and the variance reduction
becomes significantly hindered by the variance associated with estimating µc. Even when
using fast approximate N -body solvers such as FastPM [39] or COLA [40, 41], the computational
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Zel'dovich density Nonlinear density Difference

Figure 1. Comparison between the distribution of particles from a full N -body simulation and a
matched realization using the Zel’dovich approximation, at z = 0.5. The panels showing the Zel’dovich
and nonlinear density fields δZA and δN , respectively, range from [-1, 4δc] with δc = 1.686 the critical
threshold density for spherical collapse. The right-most panel shows the difference between the two
fields, with the color bar for the rightmost plot encompassing the range δZA(x) − δN (x) ∈ [−1, 1].
The maps shown are roughly 390× 390h−1Mpc, projected across roughly 20h−1Mpc.

cost incurred from having to run many realizations can quickly limit possible gains from
employing the technique. Another limitation comes in estimating the optimal form of β?,
especially in the multivariate problem. This involves computing many realizations of x̂ and ĉ
in order to estimate the full Cov[x̂, ĉ] matrix across multiple modes. When x̂ is an observable
measured from a cosmological N -body simulation, the number of realizations for a single
cosmology required to estimate a numerically stable β? can easily exceed the total number of
simulations typically produced for a whole emulation suite.

2.2 The Zel’dovich approximation as a control variate

It is highly desirable to define a control variate which simultaneously correlates significantly
with the N -body statistic, but whose analytic properties are known exactly. As alluded to in
the introduction, cosmological N -body simulations are often initialized using LPT. The first
order solution in LPT is also known as the Zel’dovich approximation [36, 42]. While we will
describe LPT and the Zel’dovich approximation in further detail in § 3, the approximation
qualitatively states that fluid elements simply move in straight lines through the Universe
with a displacement that is proportional to the linear growth factor. The direction of these
displacements is seeded by the initial density fluctuations, and is found by solving for the
linearized continuity equation in Fourier space. The properties of density fields in LPT are
known to arbitrary precision, as they are analytic in nature. It is instructive, then, to consider
whether the same theory used to initialize an N -body simulation can be extended to lower
redshifts and used as a control variate. In Fig. 1 we show 20 h−1Mpc projections of the
Zel’dovich and N -body density fields, which share the same initial conditions, evolved to
z = 0.5. As one can see, the Zel’dovich approximation captures the structure of the cosmic
web in a striking fashion. The initial conditions and non-linear distributions used come from
the Quijote [43] ‘high resolution’ (HR) suite of dark matter-only N -body simulations, which
have a volume of V = 1(h−1Gpc)3 and N = 10243 particles. The fundamental grid size of
these simulations is given by Lcell ≈ 1h−1Mpc.

If the correlation between the Zel’dovich density and the non-linear density extends itself
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Figure 2. Comparison of the z = 0.5 matter-matter power spectrum between linear theory, simulated
ZA, analytic ZA and the full non-linear prediction from an N -body simulation. Top left: Matter
power spectra, Pmm, for the linear density field that seeded the initial conditions, the Zel’dovich-
displaced density field, and the fully non-linear density field at z = 0.5. Bottom left: Cross-correlation
coefficients between the non-linear density field and the linear (in blue) and Zel’dovich (in orange)
densities, respectively. We see that despite having a similar power spectrum to the linear field, the
Zel’dovich realization is much more highly correlated with the non-linear density down to small scales.
The cross-correlation coefficient is 90% at k = 0.64hMpc−1 and 75% at k = 1.0hMpc−1, while the
linear density rapidly decorrelates. Top Right: Matter power spectrum for the same Zel’dovich and
non-linear densities, but showing in blue the result of the analytic Zel’dovich spectrum. Bottom Right:
Ratio between the two schemes used to make ZA predictions, as well as the ratio between the N -body
and Zel’dovich realizations with the same initial conditions. The shaded region denotes 2-σ error bars
assuming a Gaussian disconnected covariance for the power spectrum. We see that the analytic and
realization-based Zel’dovich calculations agree to high accuracy down to scales of kmax ≈ 1hMpc−1.

beyond the visual correlation of Fig. 1, a promising picture of its use as a control variate arises.
The Zel’dovich approximation is a surrogate for structure formation that is typically available
for all simulations and whose analytic results are known exactly. The basis spectra Pij(k)
that are the building blocks for clustering and lensing statistics can be computed with no
approximations within Zel’dovich. At the same time, Zel’dovich “realizations” of full N -body
simulations are extremely inexpensive to generate (usually using codes that are already part
of the N-body pipeline), and form a field-level description for any summary statistic that
one wishes to measure. Thus, if one can ensure that the two different approaches (analytic
and grid-based) to calculating statistics in the Zel’dovich approximation are in numerical
agreement, then the control variates technique can be employed with negligible computational
overhead to greatly improve the precision of measurements of non-linear basis spectra.

A more quantitative comparison elucidates the structure of this correlation. Specifically,
we compute the cross-correlation coefficient between the density fields

ρxc =
PZA, N (k)√

PN,N (k)PZA,ZA(k)
, (2.4)

as well as the power spectra of these fields, and show them in the bottom left panel of Fig. 2.
We observe a strong correlation coefficient between the Zel’dovich and nonlinear densities,
which is still at 75% for k = 1hMpc−1. The linear density distribution, by comparison,
reaches 75% correlation with the nonlinear density at k ≈ 0.15hMpc−1.
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The fact that the Zel’dovich approximation produces distributions of matter that corre-
late highly with the non-linear matter distribution is not new. Indeed, this has been explored
previously in many publications [44–48]. That the cross-correlation with the Zel’dovich ap-
proximation is high while the linear theory prediction is low, despite having similar two-point
statistics, is due to the nature of the comparison made. In a Universe with only linear displace-
ments, fluid elements will move across distances of roughly ΣΨ, where Σ2

Ψ =
∫
dkP (k)/6π2.

Comparing the fields before and after these displacements leads to decorrelation on scales
smaller than ΣΨ, as dark matter particles have been displaced by this distance from their ini-
tial conditions. The chief impact of gravitational non-linearities is to introduce accelerations
and slight deviations in the motions of fluid elements on scales smaller than this dispersion,
and thus the Zel’dovich approximation describes most of this displacement. Curiously, it
has also been noted that higher-order Lagrangian perturbation theories correlate more poorly
with the density field at lower redshifts, despite describing the matter power spectrum more
accurately.

In this section we reviewed the method of control variates and its applications so far
in cosmology. We pointed out the expense of estimating 〈ĉ〉 and β when ĉ is a fast N -body
simulation as one of the main challenges of deploying this technique today. We proceeded to
suggest that the Zel’dovich approximation, whose ingredients are generated when initializing
any N -body simulation, could be a powerful control variate due to its high correlation with
the non-linear density field.

We now proceed with a discussion of computing power spectra in LPT to § 3. We leave
Figures 1 and 2 as tantalizing figures that point to the power of the Zel’dovich approximation
as a control variate. We will formulate in § 4 the control variate problem for the basis spectra
of biased tracers, which will include as special cases both the power spectrum of matter
density fluctuations and the statistics of any biased tracer measured from simulations.

3 Lagrangian Perturbation Theory Two Ways

In the Lagrangian picture of structure formation, the density contrast field is calculated from
the movement of Lagrangian fluid elements across cosmic time. That is, particles located at
a position q at initial conditions are advected by a displacement Ψ to their final position

x(a) = q + Ψ(q, a). (3.1)

where a = (1 + z)−1 is the scale factor. If the initial distribution of densities is approximately
uniform, ρ(q) ≈ ρ̄, then at late times the mapping from Eulerian to Lagrangian coordinates
gives an evolved density distribution from the continuity equation

1 + δ(x, a) =

∫
d3q δD(x− q −Ψ(q, a)), (3.2)

where δD is the Dirac delta function. In the presence of biased tracers, Eqn. 3.2 is extended
by including a functional F [δ(q)] that specifies the tracer–matter connection at early times.
The components of this functional are similarly advected, and the late-time tracer density
δt(x, a) is given by

1 + δt(x, a) =

∫
d3q F [δ(q)]δD(x− q −Ψ(q, a)). (3.3)
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The functional F [δ(q)] is normally expanded to second order as [20, 24, 49]

F [δ(q)] ≈ 1 + bδδ(q) + bδ2(δ2(q)− 〈δ2〉) + (3.4)

bs(s
2(q)− 〈s2〉) + b∇2∇2δ(q) + · · ·

where s2(q) = sij(q)sij(q) is the tidal field strength, and sij(q) is the tidal tensor defined as

sij(q) =

(
∂i∂j
∂2
− δij

3

)
δ(q). (3.5)

Advecting each component of Eqn. 3.4 individually leads to the description of the late-time
tracer field in terms of a set of advected operators

δt(x) = δm(x) + bδOδ(x) + bδ2Oδ2(x) + bsOs2(x) + b∇2O∇2δ(x) + ε(x) (3.6)

=
∑

i∈{m,δ,δ2,··· }

biOi + ε(x), (3.7)

where Oi are the advected operators and ε(x) is a stochastic field which quantifies both
inherent randomness in the process of tracer formation as well as the impact of neglected
higher-order operators. Note that in this notation Om(x) = δm(x) and bm ≡ 1. We further
follow the convention in the LPT literature and use as aliases b1 ≡ bδ and b2 ≡ bδ2 . Tracer
power spectra will receive contributions from correlations between the advected operators
that compose the functional F . This decomposition will have the form

P tt(k) =
∑

i,j∈{m,δ,δ2,··· }

bibjPij(k), (3.8)

P tm(k) =
∑

j∈{m,δ,δ2,··· }

bjPmj(k), (3.9)

where Pij is the cross-spectrum 〈OiOj〉 and Pmj are cross-correlations between the matter
density field and the bias operators1. Since the matter field is obtained by weighting each
particle with weight 1, the matter power spectrum (Pmm) is often written as P11 in the
language of Lagrangian bias. For this work, we’ll neglect the ∇2δ(q) operator in our analysis
and only work with {b1, b2, bs} as bias parameters. The reasons are two-fold; we expect
that basis spectra of the type P∇2δX will scale as −k2PmX analytically [30], and numerically
realizing the ∇2δ(q) fields is challenging due to the extreme sensitivity of the field to small
scales (high k). More careful numerical studies of the ∇2δ(q) field in the context of hybrid
EFT models are of great interest and will be explored in future work.

In Lagrangian Perturbation Theory, the displacements Ψ whose correlations serve as
input for predictions of the spectra Pij are computed order-to-order in perturbation theory.
To third order, this expansion is commonly written as [51]

Ψ3LPT(q, a) ≈ D(a)Ψ(1)(q) +D(2)(a)Ψ(2)(q) +D(3)(a)Ψ(3)(q), (3.10)
1In the main text we neglect the effect of massive neutrinos, which affect the clustering of matter and

galaxies in distinct ways — while neutrinos contribute to the matter field, to a very good approximation
galaxies trace the baryon-cold dark matter field δcb [50], which clusters on small scales (unlike the neutrinos,
δν). In order to accurately capture this effect we need to distinguish between two “m” fields: δcb(x), the
overdensity of cb particles obtained by advecting them via N-body displacements, and δm(x), the nonlinear
matter field obtained by mass weighting the cb and ν particles. All of the bias operators should be built from
the initial δcb(q). Then we simply swap in these two versions of the “m” term in the above equations, e.g. for
the cross spectrum P tm(k) =

∑
j bjPmj(k) where j ∈ {cb, δcb, δ

2
cb, · · · }.
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where D(n)(a) is the n-th order solution to the growth factor in perturbation theory [52]. At
any given order (n), Ψ(n) can be computed from suitable convolutions of n powers of the
first-order solution to displacements, also known as the Zel’dovich approximation. Today,
efficient codes exist that implement the analytic equations for one-loop (combined fourth-
order) power spectra in a numerically efficient manner, such as velocileptors2 [25], and
also codes that compute higher-order initial conditions for N -body simulations by numeri-
cally evaluating the displacements in Eqn. 3.10 such as monofonIC [51] and LEFTfield [48]3.
For the rest of this text we will focus on only the Zel’dovich approximation, and defer a dis-
cussion of implementing our methodology for higher order Lagrangian Perturbation Theory
in Appendix C.

3.1 Analytic predictions in the Zel’dovich approximation

In the first order solution to Lagrangian Perturbation Theory, the Zel’dovich approximation,
fluid elements in the Universe propagate in straight lines, with a direction set by the potential
sourced by the initial matter distribution. These displacements are obtained by solving the
linearized continuity equation, and read

ΨZA(q, a) = D(a)

∫
d3k

(2π)3
eik·q

ik

k2
δ(k). (3.11)

The late-time tracer density, in Fourier space, is then given by the Fourier transform of
Eqn. 3.2

δt(k) =

∫
d3q eik·q

[
F [δ(q)]eik·Ψ(q) − 1

]
(3.12)

≡
∑

i∈{m,δ,δ2,··· }

biOi(k), (3.13)

where we’ve defined the advected operators Oi(k)

Oi(k) ≡
∫
d3q eik·(q+Ψ(q))Fi(q), (3.14)

and Fi(q) is a Lagrangian element of the functional that composes Eqn. 3.4. The right-most
term of Eqn. 3.12 can be neglected, as it only contributes when k = 0. The tracer-tracer
power spectrum may then be written as [20, 21, 53]

P tt(k) =
∑
i,j

bibj〈Oi(k)O∗j (k)〉 (3.15)

=
∑
i,j

bibj

∫
d3qeik·q

〈
Fi(q1)Fj(q2)eik·∆(q)

〉
︸ ︷︷ ︸

Pij(k)

, (3.16)

where we have defined ∆(q) = Ψ(q1) − Ψ(q2) and q ≡ q1 − q2
4. The expectation value

above is computed by using the cumulant expansion as well as defining appropriate source
2Available at https://github.com/sfschen/velocileptors.
3Available at https://bitbucket.org/ohahn/monofonic and https://gitlab.mpcdf.mpg.de/leftfield/release/leftfield,

respectively.
4The integral for the basis spectra Pij(k) depend only on q due to translation invariance.
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currents for the Lagrangian fields, Fi(q). When working strictly within the Zel’dovich ap-
proximation, ∆(q) is a Gaussian random variable and only the second connected moment
remains, significantly simplifying the calculation of the basis spectra Pij(k).

In Appendix. A we provide a detailed derivation of the structure of each basis spectrum,
Pij , within the Zel’dovich approximation. We include several new terms that exist beyond the
standard “one-loop” (quadratic in the two-point correlation function) order. We implement
them in a new code, ZeNBu5. We use ZeNBu for the analytic calculations in the rest of this
paper unless otherwise specified.

3.2 Grid-based predictions in the Zel’dovich approximation

An alternative way of computing the basis spectra Pij comes from employing grid-based
Lagrangian Perturbation Theory. Given a fixed realization of the initial Lagrangian density
δ(q), one computes the displacementsΨ(q, a) by numerically evaluating the Fourier transform
in Eqn. 3.11. Each element of the initial grid is then advected using these displacements,
and they are used to reconstruct the final density field as in Eqn. 3.2. Grid-based LPT
has been well-studied in the context of setting up initial conditions for cosmological N -body
simulations, with codes for ZA, 2LPT [54] and 3LPT [51] being widely available. Recent works
have also investigated n-LPT at arbitrary order [48], including to assess the fundamental
convergence properties of LPT [55]. Other applications of grid-based LPT include studying
the fundamental limits of perturbative models [56] and using LPT as forward models to
reconstruct the initial conditions of data taken from cosmic surveys [57–59]. Relative to
analytic approaches, grid-based schemes allow for “field-level” assessments of perturbation
theories. Computing any summary statistic in grid-based PT is achieved by analyzing the
output as a mock dataset. Grid-based schemes have also recently seen interest within the
context of Eulerian perturbation theories [60–62]. However, Eulerian theory does not capture
large-scale displacements which are naturally included in Lagrangian schemes.

In the right panel of Fig. 2 we show a comparison between the matter power spectrum
measured from the Zel’dovich density field, the fully nonlinear field and the matter power
spectrum as predicted by ZeNBu. Both ZA predictions have the same Gaussian smoothing
applied to their linear power spectra, at a scale of kcut = πNmesh/Lbox ≈ 3.2hMpc−1, given
by Eqn. B.2. The predictions agree exquisitely to small scales of k = 1hMpc−1.

Emulators based on Lagrangian Perturbation Theory (hybrid EFT) have recently been
introduced as powerful models for describing the basis spectra of Eqn. 3.8, where the non-
linear displacements from N -body simulations are used, as opposed to perturbative displace-
ments [29–32]. While these emulators are promising tools, there are still limitations which
have prevented their wide adoption. For example, most LPT-based emulators eventually re-
vert to analytic predictions at large scales. This happens when sample variance in the suite
of N -body simulations used to construct the emulator becomes too large, preventing accurate
predictions from being made. Many algorithms for performing N -body simulations exhibit
slight discrepancies in how they evolve large-scale growth [8, 63–66] relative to linear theory.
A small-mismatch between LPT predictions and measurements in simulations can introduce
unphysical features in emulated spectra6. These features, while local in Fourier space, signifi-
cantly affect configuration space-based emulators using these same suites. Another challenge

5“Ze(ldovich calculations for) N-B(ody Em)u(lators)”, available at https://github.com/sfschen/ZeNBu
6For example, refs. [30, 31] had to take care to connect LPT predictions to HEFT spectra without intro-

ducing discontinuities in the emulator predictions.
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is the trade-off between covering a cosmological parameter space adequately while also hav-
ing sufficiently large volumes that emulator accuracy is below the requirements for the next
generation of large-scale surveys. Indeed, attempts to use anzu7, the emulator of ref. [30]
based on the Aemulus suite [8], in an analysis of data [28] ran into the issue that the bounds
of the emulator were too restrictive relative to the posteriors obtained from the analysis.

As such, reducing sample variance at large scales, especially in the transition regime
between LPT and full non-linear displacements, for basis spectra measured from N -body
based emulators could have the potential to enable larger parameter space coverage and more
stable emulators than have been currently constructed. The striking correlation between the
matter density fields constructed in the Zel’dovich approximation and the final result of the
N -body simulation suggest that cheap Zel’dovich realizations can enable substantial reduction
in sample variance of emulated quantities. This was pointed out, without control variates, in
ref. [46] for the case of the matter power spectrum, but this principle holds for all basis spectra,
as well as any other statistic that can be computed within the Zel’dovich approximation. We
will illustrate how this is the case in the remainder of the text. In Fig. 3 we show a similar
plot to the lower right-hand plot of Fig. 2 but for all component spectra in ZA. We find
near sub-percent agreement for almost all basis spectra to scales of k = 1hMpc−1. We note
that the discrepancy for cubic basis spectra at large scales is due to these quantities being
noisily measured despite using N=100 Quijote HR simulations. The small scale discrepancies
for 〈s2δ2〉 are due to issues in the smallest scales probed by our simulations8. These small
discrepancies are not an issue, as

1. Contributions from higher order basis spectra are sub-leading relative to the full pre-
dictions of galaxy clustering and lensing.

2. Higher order basis spectra fall off rapidly at high k, and thus their difference will induce
a very small bias in the variance-reduced estimate of that basis spectra.

3. The regression coefficient β̂(k) will be small at high k, when the correlation between
Zel’dovich and N -body is small.

The sub-percent agreement for most basis spectra to k = 1hMpc−1 shown in Fig. 3 shows
there are no potential biases in using analytic calculations as the mean when applying ZA as
a control variate for Lagrangian basis spectra. The use of analytic predictions for the mean
of the control variate significantly reduces computational expenses in applying the technique.
The other main potential challenge, as discussed, is computing the regression matrix β. We
will discuss this in the following section.

4 Control variates for LPT basis spectra

Returning to the question of variance reduction, we now formulate the problem of control
variates within the notation of basis spectra in LPT. The control variate problem as defined
in Eqn. 2.1 may be written as9

7Available at https://github.com/kokron/anzu
8We discuss in Appendix B what is the dynamic range in scales that an N -body simulation should contain

in order to accurately reproduce the analytic calculations of ZA.
9In principle one should consider the full multivariate control variate problem for the data vector

{Pij(k1) · · ·Pij(kn)}, however for power spectrum estimation the diagonal approximation works reasonably
well [16].
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Figure 3. Ratio between the grid-based ZA basis spectra as measured from 100 Quijote HR boxes
and spectra computed analytically in the Zel’dovich approximation. Each line corresponds to the
cross-spectrum of the advected particles weighted by fields (i, j) in the initial conditions. The mea-
surements are binned with ∆k = 4 modes, corresponding to approximately ∆k = 0.025hMpc−1. The
shaded bands are the standard deviations measured from the Quijote HR boxes divided by

√
100.

P̂ij(k) = P̂Nij (k)− β?ij(k)
(
P̂ZA
ij (k)− PZA

ij (k)
)
, (4.1)

where P̂Nij denotes the measured basis spectrum from fullN -body simulations, P̂ZA
ij is the basis

spectrum from ZA given the same initial conditions, and PZA
ij is the average ZA prediction,

which can be computed either analytically or from several ZA realizations averaged together.
The β? term in this case is slightly more complicated. Assuming only contributions diagonal
in Fourier wavenumber k contribute we have

Cov[P̂Nij , P̂
ZA
ij ](k) ∝

〈
ÔNi (k)ÔNj (−k)ÔZA

i (k)ÔZA
j (−k)

〉
− PNij (k)PZA

ij (k), (4.2)

Var[P̂ZA
ij ](k) ∝

〈
ÔZA
i (k)ÔZA

j (−k)ÔZA
i (k)ÔZA

j (−k)
〉
− (PZA

ij (k))2. (4.3)

The operator Ôi(k) corresponds to the advected, late-time Lagrangian bias field whose cross-
correlations form the basis spectra, as defined in Eqn. 3.14. When the ratio defining β? is
taken, we can neglect the proportionality constants related to the volume of the simulation
box10. Since any choice of β leads to an unbiased estimator, we adopt a compromise between
the optimal β? and a surrogate that is easier to compute while still providing substantial
variance reduction. To do this, we will employ approximations in computing the covariances
of Eqns. 4.2 and 4.3. Notably, we opt to select only the disconnected contributions from the
above four-point correlations, which leads to a more amenable form

β̂ij(k) ≈
P̂NZii P̂NZjj + P̂NZij P̂ZNij

(P̂ZZij )2 + P̂ZZii P̂ZZjj
, (4.4)

where PZNij is defined as the spectrum 〈OZA
i ONj 〉.

10There are also contributions which depend on the connected tri-spectrum between N body and ZA fields
which don’t depend on the volume, but they are neglected when taking only disconnected terms.
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Figure 4. Plotting β as measured empirically from Quijote HR, compared to the analytic approx-
imation of Eqn. 4.4 as well as using the tanh filter function of Eqn. 4.7 where k0 and ∆k have been
calibrated to β11. Despite calibrating to β11 we find the filtered analytic β are in good agreement
with the empirical results for all other basis spectra.

The quantity β̂ is simple to compute from the simulation outputs used to generate the
basis spectra of Lagrangian bias emulators. The main over-head is associated with producing
the Zel’dovich-advected component fields. Additionally, since the estimator in Eqn. 4.4 is a
ratio of power spectra measured from boxes which share the same initial phases, we expect
β̂ij to be a relatively noiseless quantity, despite depending on only a single ZA realization.
We have verified that, while in principle the quantity β̂ij(k) could vary from simulation
to simulation the variance cancellation from the ratios of simulated quantities results in a
measured β̂ij with negligible variance. Additionally we note that, formally, using a β̂ij(k)
measured in the same simulation as the one whose variance is being reduced could affect the
unbiased properties of the estimator in Eqn. 4.1. To avoid this issue, we use β̂ij measured
from Box 0 of Quijote HR as the regression matrix for all other boxes.

In order to test the approximation of β̂ in Eqn. 4.4, we also compute the numerical β?

from the Quijote HR boxes. We compute the covariance between ZA andN -body simulations
explicitly and compute the multivariate estimator for β? described in [16]. In the context of
basis spectra estimation, this β? reads

β?ij(k, k
′) =

∑
k′′

Cov[P̂Nij (k), P̂ZA
ij (k′′)]Cov[PZA

ij (k′′), PZA
ij (k′)]−1. (4.5)

The inverse covariance is computed using the Moore-Penrose pseudoinverse due to the small
number of realizations. While the entire matrix β? is poorly estimated with only N = 100
simulations, we find that the diagonal component is relatively well measured. Thus, we
proceed to compare our analytic approximation with the empirical result. This comparison
is shown between the orange and blue lines of Fig. 4 for the ten basis spectra which span
second order Lagrangian bias. The analytic approximation of Eqn. 4.4 holds well until scales
of k ≈ 0.3hMpc−1, after which the empirically measured β? damp to zero. This damping
is not observed in the analytic approximation. The disagreement between the analytic form
and our measurement can be understood by re-casting β? as

β? = ρN,ZA
σN
σZA

. (4.6)
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The dominant contribution to the second term will scale as the “transfer function” between
linear and non-linear power, and typically grows as a function of scale in ΛCDM. On the
other hand, the disconnected approximation for ρN,ZA we employ does not capture the full
de-correlation between N -body dynamics and the Zel’dovich approximation. However, for all
basis spectra we also find that this damping is very well approximated by a tanh function of
the form

F (k; k0,∆k) =
1

2

[
1− tanh

(
k − k0

∆k

)]
. (4.7)

Fitting values of k0 and ∆k to β11, measured for the dark matter densities, we find fiducial
values k0 = 0.618hMpc−1 and ∆k = 0.167hMpc−1. These values give a very good description
of high-k damping for all other β functions and we use them throughout the rest of this work.
Thus, we adopt as an inexpensive approximation to the full empirical β the product between
Eqn. 4.4 and the filter function F (k; k0,∆k). Choosing different values of k0 and ∆k also
allows for control over the trade-off between any bias between the predicted and measured
variate, and cancellation of sample variance. This damping of β̂ also means any small-scale
biases in our estimation of the mean Zel’dovich of the control variate can be safely neglected.
In Fig. 4 we show in green the resulting damped β for the ten basis spectra of Lagrangian
bias. Despite calibrating the filter F to the regression matrix of the matter power spectrum,
its combination with the analytic approximation of Eqn. 4.4 provides a strong agreement for
the diagonals of regression matrices of all 10 basis spectra.

We have thus formulated the control variate problem for basis spectra in Lagrangian bias
theory (which inclues the matter power spectrum and clustering/lensing of biased tracers as
special cases) under the assumption the Zel’dovich approximation is a suitable control variate.
We have derived an approximation for the regression matrix βij which reproduces empirical
results obtained from a suite of high resolution simulations. We therefore have all of the
ingredients required to estimate P̂ij(k) and quantify the variance reduction obtained from
Zel’dovich control variates.

5 Results and discussion

In the following section we apply Zel’dovich control variates to progressively more complex-
cosmological power spectra. We begin with the matter power spectrum as a warm up, proceed
to the case of extending the results for an HOD-like sample of galaxies, and conclude with
the fully general case of improving measurements of all 10 basis spectra in second order
Lagrangian bias models.

All measurements in this section are carried out across the whole ensemble of N = 100
Quijote HR simulations. While small in number relative to the full Quijote suite, we find
that we need the higher dynamic range in order to match analytic and grid-based LPT,
and prevent biases in the mean control variate estimate. We show why this is the case
explicitly in Appendix B. We adopt as a fiducial choice the z = 0.5 snapshot but note that
there are no impediments to using other snapshots beyond computational costs. The use of
N = 100 simulations should allow, at least, for quantification of the reduction in the variance
of numerical observables. We leave a quantification of their reduction of co-variance to future
work, as this is a significantly more numerically challenging problem.

– 14 –



10 2 10 1 100

k [h Mpc 1]

0

25

50

75

100

125

150

175
St

an
da

rd
 d

ev
ia

tio
n 

ra
tio Pmm(k)

25 50 75 100 125 150 175 200
r [h 1Mpc]

10

5

0

5

10

15

20

25

r2
m

m
(r)

[h
1 M

pc
]2

ZA
Filtered 
N-body

200 300 400 500
0

20

Figure 5. Left panel: Scale-dependent ratio, between standard deviations of matter power spectra,
from paired ZA control-variates and the empirical standard deviations from the N=100 Quijote HR
boxes. Right panel: Visualizing variance reduction in the configuration-space correlation function,
ξmm(r). The blue curve results from Hankel-transforming the Zel’dovich Pmm(k) prediction from
ZeNBu. The orange and green curves are obtained by similarly Hankel-transforming empirically mea-
sured power spectra from a single Quijote HR box. The inset shows the increase in bias and variance
for the standard N -body result at very large separations, while the control variate closely tracks the
correct large-scale behavior predicted by the Zel’dovich approximation.

5.1 Variance reduction for the matter power spectrum

In Eqn. 2.3 we derived that, in the standard control variates approach, the variance of the
estimator is parametrically reduced by the cross-correlation coefficient between the full N -
body result and the Zel’dovich surrogate. In Fig. 2 we showed that for the case of the matter
density field, this cross-correlation coefficient was substantial at k = 1hMpc−1. However,
Eqn. 2.3 assumes a form β? which is different from the final form of F (k; k0,∆k)β̂ij(k) that
we used in this work. Thus, we turn to our statistical ensemble of simulations to quantify, in
practice, how much variance reduction we can achieve through our technique.

We begin by considering solely the matter density field and its auto-spectrum, Pmm(k).
In the language of Lagrangian bias this is the P11(k) spectrum, and we will show results for the
whole suite of basis spectra shortly. The control variate estimator we’ve derived, explicitly,
is given by

P̂mm(k) = P̂Nmm(k)− F (k; k0,∆k)

(
P̂ ∗NZ
mm (k)

P̂ ∗ZA
mm (k)

)2 (
P̂ZA
mm(k)− PZA

mm(k)
)
, (5.1)

where P̂ ∗NZ and P̂ ∗ZA are spectra measured from a different box in order to prevent biasing
the estimator, as discussed in § 4. We measure the matter power spectrum in our Zel’dovich
mocks, as well as in the full N -body fields, for all 100 boxes of Quijote HR. We also measure
the cross-power spectrum between matter fields in all 100 matched boxes. To quantify the
amount of variance reduction (or, equivalently, effective volume increase) we report the ratio
of standard deviations

σNbody(k)

σCV(k)
, (5.2)

as a function of scale obtained from implementing ZA control-variates for all basis spectra.
These standard deviations are measured empirically from the Quijote HR suite. We show
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the result in the right-hand panel of Fig. 5.
In agreement with the intuition of Eqn. 2.3, we see that variance reduction is most

substantial at large scales where the Zel’dovich approximation more faithfully captures the
dynamics of structure formation. We also find that, due to the damping function F (k; k0,∆k)
at very small scales we observe no reduction in uncertainty from our estimator. At k '
0.01hMpc−1, the reduction in standard deviation is of the order of σNbody/σCV ∼ 110. Since
the standard deviation scales as

σ ∝ V 1/2,

this is equivalent to an effective volume increase of a factor of ∼ 104. This reduction is larger
at larger scales which are worse affected by sample variance. While the empirical N -body
uncertainty grows as k → 0, we find that for the paired ZA control variate the uncertainty
scales as σCV ∝ P (k), after k . 0.03hMpc−1. This can be understood by treating the cross-
spectrum between ZA and N -body as the same at large scales as the cross-spectrum between
ZA and linear theory. Then, following ref. [10] we can write ρ2

ZN = e−2(k/kNL)2 . The end
result is that σ2

CV ∝ P (k)2/(V∆kk2
NL) at large scales.

To illustrate the degree of sample variance reduction we achieve, we also reconstruct
the configuration-space correlation function ξmm(r) directly from the empirically measured
power spectra in boxes. We reconstruct the correlation function by evaluating

ξ̂mm(r) =
1

2π2

∫ ∞
0

k2dk j0(kr)P̂mm(k),

which is done using MCFit11. The empirically measured power spectra are extrapolated be-
yond k ∈ [kf , kNyq]12 by constructing a linear spline in (log k, logP (k)), which is then re-
binned in log-spaced k bins. We show our reconstructed correlation functions in the left
panel of Fig. 5, as well as the prediction from the Zel’dovich approximation. We find the
reconstructed ξ̂ from ZA control variates to have significantly reduced noise, as well as appro-
priate damping of the BAO. We also see that at very large scales r ≥ 102h−1Mpc the result is
in close agreement with linear theory, despite only extrapolating the power spectrum to lower
k. In contrast, the result from attempting this ξmm reconstruction for the default N -body
result leads to significant biases beyond r > 102h−1Mpc, as well as large variances around the
trend line. We note that if we extend P̂ (k) at k < 2π/Lbox by including the noiseless P (k)
from linear theory, the reconstructed control variate ξ does not change, while the N -body
result becomes less biased at large scales but still with equivalently large variance.

The reconstruction of large-scale ξ̂mm(r) in this form, while a simple application, show-
cases the strength of this technique and the myriad ways in which the variance-reduced spectra
could be used. We stress that the only additional steps in going from the green to the or-
ange curves in Fig. 5 are: running an inexpensive Zel’dovich mock at z = 0.5 and from this
measuring PZA

mm(k) and the cross-spectrum PNZ
mm(k).

5.2 Reducing the variance of biased tracer samples

Hydrodynamic simulations [67–73] that try to reproduce galaxy formation ab initio, and
radiative hydrodynamics simulations that try to understand the structure and evolution of
reionization fronts [74] have extreme resolution requirements which significantly limit their

11https://github.com/eelregit/mcfit
12For Quijote HR, which has Lbox = 1000h−1Mpc and Nmesh = 1024 we have kf ≈ 6.3×10−3 hMpc−1 and

kNyq ≈ 3.2hMpc−1.
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Figure 6. Left panel : Measurements of tracer statistics with and without applying Zel’dovich control
variates. The points show the power spectrum of galaxies populating halos in a randomly chosen
Quijote HR box, with uncertainties estimated from the ensemble. The dark, solid colored lines
show measurements from the same realization, but measured using control variates. Dotted black
lines correspond to the mean of the Quijote HR ensemble of simulations. The transparent lines
correspond to the Zel’dovich predictions, at large scales, using only b1. Right panel : Ratio of the
standard deviations of the spectra shown in the left panel. The dashed lines show the improvements
in error reduction from only using matter field as a control variate, while the solid lines show the same
technique but where we have also included the b1 field in building the control variate.

volume. Measuring summary statistics in these simulations with less noise and to larger
scales is thus highly desirable. Given the impacts of small-scale baryonic physics do not
backreact on large scales, we can use control variates to extend their measurements to larger
scales. Extending simulation-based models to larger scales is also highly desirable in light
of recent advances in simulation–based inference. While the power spectrum at small scales
possesses many modes, which require simulations to accurately describe, summary statistics
at large scales provide complementary information and their combination can break parameter
degeneracies that arise in complicated models. Purely simulation–based analyses of galaxy
statistics such as those in [75–79] achieve impressive constraints on parameters, however are
limited to fairly small scales (r . 30h−1Mpc).

We proceed to apply Zel’dovich control variates to a sample of “galaxies” selected from
the Quijote HR boxes to demonstrate how our technique can extend the range of scales
of measurements of biased tracer statistics in simulations. Using the public halo catalogs,
we create density fields of halos, where each halo is weighted by the expected number of
galaxies 〈N(M)〉 for its mass. The weights are derived from the halo occupation distribution
of ref. [80], which was fit to a sample of luminous red galaxies from the Sloan Digital Sky
Survey. Since control variates will be most powerful at large scales, this crude approximation
to the galaxy–halo connection should be sufficient for the purposes of illustrating applications
to tracer samples. While we have used catalogs of mock LRGs, these techniques are applicable
to any tracer catalog from a simulation. This includes galaxies in hydrodynamical simulations,
or the power spectrum of the electron distribution measured during reionization, for example.

We wish to estimate the power spectra relevant to galaxy clustering and lensing, that is,

Pgg = 〈δgδg〉, Pgm = 〈δgδm〉 (5.3)

in our simulations (having discussed Pmm already). We first use the matter power spectrum
itself as a surrogate as this is extremely cheap and quick to implement. We then define the
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control variate estimator for these spectra

P̂g[g,m](k) = Pg[g,m] − β̂∗mm
[
P̂ZA
mm(k)− PZA

mm(k)
]
, (5.4)

where Pg[g,m] is a short-hand for either spectrum used. While we expect that the cross-
correlation coefficient between the matter power spectrum in Zel’dovich and the statistics of
biased tracers to be lower than if we had used a surrogate for the tracer itself, we should still
expect some degree of variance reduction. We show the results of this procedure in the right-
hand panel of Fig. 6, in the dashed lines. Despite using a crude control variate, we still find
substantial reduction in sample variance across all scales k ≤ 0.2hMpc−1. At k = 0.2hMpc−1

the autospectrum has a 2× reduction in its uncertainty, while for Pgm we find a 3× reduction
at this scale. The reduction is always higher for the galaxy–galaxy lensing spectrum Pgm,
which can be understood from the absence of shot noise in this spectrum compared to the
tracer autospectrum. Shot noise will explicitly decorrelate the matter density field from that
of tracers at small scales. At k ∼ 0.01hMpc−1, we find an average reduction in uncertainty
that is of an order of magnitude. This is is equivalent to averaging N = 100 simulations at
this volume.

We also consider variance reduction in biased tracer spectra for a slightly more accurate
control variate. Instead of using the matter power spectrum, we use our Zel’dovich component
fields to create linearly biased surrogates with power spectra given by

PZA
gg (k) = PZA

mm(k) + 2b1P
ZA
1δ (k) + b21P

ZA
δδ (k), (5.5)

PZA
gm (k) = PZA

mm(k) + b1P
ZA
1δ (k). (5.6)

We also use β̂ constructed appropriately from the disconnected approximation of Eqn. 4.4.
This step requires the re-estimation of the cross-spectra between the biased tracer and the
Zel’dovich fields, and thus incurs some additional computational overhead. However this
overhead is quite small, as measurements of power spectra are not a particularly computa-
tionally intensive task. For every box we estimate a value of b1 using the field-level bias
estimator of ref. [35] at kmax = 0.2hMpc−1, but the variance reduction obtained is insensitive
to the exact value of b1 adopted as long as the analytic and grid-based ZA predictions use
consistent values13. The results from applying our linearly biased control variate are shown
in both panels of Fig. 6. In the left panel, we compare a single realization to the mean of
the 100 Quijote HR boxes for this tracer sample and find entirely compatible results. In
addition, we see that our largest scale points are wholly in agreement with predictions from
the Zel’dovich approximation and our inferred linear bias value. This means that we can
extend, as a model, our simulation-based measurement of Pg[g,m] to arbitrarily large scales
without worrying about sample variance. In addition, in the right panel of Fig. 6 we show,
in solid lines, the reduction in sample variance from the linearly biased control variate. The
performance is mildly better than the Pmm case, but overall comparable. The peak reduction
in uncertainty over the Pmm case is of the order of 30% (equivalent to ∼70% more volume),
and occurs at k = 0.1hMpc−1.

5.3 Variance reduction for hybrid EFT spectra

Beyond the matter density field, or linearly biased tracers, it is also of great interest to improve
measurements of all possible spectra that can contribute to the statistics of biased tracers.

13Indeed, the Pmm estimator can be thought of as a special case of the linearly biased tracer example where
we set b1 = 0. This is an ‘infinitely incorrect’ estimate of b1, and yet we still obtain strong variance reduction.
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Figure 7. Comparison between the non-linear component spectra and the variance-reduced spec-
tra measured with Zel’dovich control variates. With a single simulation we can extend accurate
simulation-based measurements for the basis spectra from k ' 0.1hMpc−1 down to k ≈ 0.03hMpc−1,
allowing accurate matching to LPT for the extrapolation to k → 0.

The question of applying control variates to the full set of basis spectra Pij(k) is particularly
relevant for the construction of emulators of basis spectra in hybrid EFT, as discussed in
§ 3.2. In this subsection we report the results of applying ZA control variates to the ten basis
spectra of second-order hybrid EFT.

In Fig. 7 we show component spectra from an N -body simulation drawn from this suite,
and the result of applying our Zel’dovich control variate scheme, as well as predictions from
one-loop LPT computed using velocileptors . We observe significant reduction in noise at
large scales, especially for the cubic spectra, which enforces significantly better agreement with
perturbation theory at large scales than naively obtained from a single realization. Notably,
we find that a single paired Zel’dovich realization can extend the range of agreement with
LPT from k ' 0.1hMpc−1 to k ≈ 0.03hMpc−1. We also note that despite using ZA as
the control variate, the final estimator agrees (in the k → 0 limit) with one-loop Lagrangian
Perturbation Theory which is a more accurate model of basis spectra.

A more quantitative assessment of the improvement in accuracy from our approach is

– 19 –



0.95

1.00

1.05
Ra

tio
1,1

Box
CV

,1 , 2,1 2,

10 2 10 1 100

k [h Mpc 1]

0.95

1.00

1.05

Ra
tio

2, 2

10 2 10 1 100

k [h Mpc 1]

s2,1

10 2 10 1 100

k [h Mpc 1]

s2,

10 2 10 1 100

k [h Mpc 1]

s2, 2

10 2 10 1 100

k [h Mpc 1]

s2,s2

Figure 8. Ratio between basis spectra from an N -body box with the mean of N = 100 Quijote
HR basis spectra (in blue) and one Zel’dovich control variate estimate (in orange), using the filter of
Eqn. 4.7 fit to β?

11. We see significant improvements in the accuracy of the estimation of basis spectra,
especially at large scales. We caution that noise in the ratios for cubic spectra are due to the fact
that even with 100 realizations the mean values of cubic spectra exhibit significant sample variance.

shown in Fig. 8, where we now show residuals of our CV approach compared to the mean of
our Quijote HR boxes. We see that for non-cubic spectra the paired curves are in exquisite
agreement with the low k values inferred by our large volumes, with no discernible biases.
For cubic spectra, this comparison is hampered by significant sample variance despite having
N = 100 boxes. The means are not well determined, and of comparable noise to a single
ZA-paired control variate estimate. Since ZA realizations are extremely inexpensive to gener-
ate for a given box (and, indeed, the density field that seeds ZA displacements is a standard
output of initial conditions codes), there is a large potential for improvement of the accu-
racy of simulation-based measurements with little extra effort relative to running the initial
simulation.

In Fig. 9 we now show the full degree of scale-dependent variance reduction we obtain
from paired ZA control variates for all ten basis spectra that span second-order Lagrangian
bias. The 〈1 1〉 curve was previously shown in Fig. 5. Quantitatively, we find that even for
basis spectra of fields that couple small scale modes to large scales in the initial conditions
(such as δ2(q) and s2(q)) we still find an over ten-fold reduction in error for all basis spectra.
For spectra that don’t involve convolved fields we find improvements that range from 100×
to 500× reductions in power spectra uncertainties from our estimator which augments each
simulation with a single ZA mock.

The reduced performance of our variance reduction techniques for fields that involve
Fourier-space convolutions can be directly understood as a consequence of the smoothing
imposed in initial conditions in order to match grid-based and analytic predictions of basis
spectra in the Zel’dovich approximation, as described in Appendix B. The full Quijote HR
simulations have been run with un-damped initial conditions, that cut off in power at the
Nyquist frequency kNyq. When producing Lagrangian bias operators which involve Fourier-
space convolutions such as

δ2(k) =

∫
d3k′

(2π)3
δ(k− k′)δ(k′), (5.7)

a large scale mode k will receive contributions from arbitrarily small scales. When the linear
density δ(k) is filtered in order to accurately match grid-based and analytic approaches, the
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Figure 9. Ratio of the standard deviations of basis spectra, as measured from N = 100 Quijote HR
simulations, compared to the variance measured from N = 100 pairs of simulations and ZA control
variates. At large scales, we observe at least a factor of 10× reduction in uncertainty compared to
cosmic variance at volumes of V = 1(h−1Gpc)3 for the 〈s2, s2〉 basis spectrum, up to nearly 1000×
for the 〈δ, δ〉 spectrum.

final filtered Lagrangian fields will now be slightly de-correlated even at large scales compared
to the fiducial density field used to initialize the N -body simulation. From Eqn. 2.3 we
can then see that a lower cross-correlation coefficient will result in less substantial variance
reduction than for the case of the standard density field, where the Fourier-space damping
is cancelled out. This issue can be circumvented: if one produces ZA realizations from the
un-damped density field whose statistics agree with analytic LPT then our technique should
result in comparable variance reduction for all basis spectra. We leave a more detailed study
of matching analytic and grid-based LPT to future work.

The consequences of applying paired ZA control variates to the problem of simulation-
based modelling are manifold. The most immediate consequence is that suites of cosmolog-
ical N -body simulations used to construct emulators such as Aemulus [8], BACCO [81] and
AbacusSummit [9] can drastically improve their large-scale measurements of biased tracer
spectra without running additional simulations. These methods also make clear that future
suites designed for the purpose of emulating biased tracer statistics should not require pro-
hibitively large simulation volumes to ensure precise measurements of these statistics at large
scales. As long as the dynamic range of the simulation is sufficient (and most emulation suites
possess better dynamic range than Quijote HR) to resolve physical scales that contribute to
most basis spectra, paired ZA control variate estimators can allow for accurate emulation of
large physical scales with simulations that have significantly reduced volumes. Thus, a larger
number of cheaper simulations can be used to develop the suite. This larger number of sim-
ulations can then cover a larger cosmological parameter space, or perhaps known extensions
to ΛCDM where the second order Lagrangian bias expansion above and Zel’dovich dynamics
are still appropriate.

5.4 Comparison with previous results

It is also worth comparing techniques described in this paper with other recent attempts
at reducing the variance of basis spectra measured in simulations. In ref. [82], the authors
studied the properties of basis spectra as measured in ‘paired-fixed’ simulations. Pairing and
fixing involves running, at every cosmology, two sets of simulations with non-Gaussian initial
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conditions that exactly fix the amplitude of fluctuations to follow |δk| =
√
V P (k) and have

Fourier phases shifted by a factor of π. The authors of ref. [82] have shown that by using an
estimator that averages basis spectra as measured by these two sets of simulations, significant
reduction in uncertainties can be obtained for a sub-set of basis spectra.

Our results in Fig. 9 are numerically comparable to those of fig. 3 in ref. [82], however we
additionally find substantial reduction in uncertainty for the quartic spectra 〈δ2 δ2〉, 〈δ2 s2〉,
and 〈s2 s2〉 unlike ref. [82] who find no improvement from fixing-and-pairing for those spectra.
Additionally, the use of paired ZA control variates only requires cheap surrogate realizations
for every simulation, with generic initial conditions, as opposed to having to run two sets
of simulations with non-Gaussian initial conditions when using paired-and-fixed simulations.
However, the tools of ref. [82] are complementary to what we have introduced in this work
and future work could investigate jointly using many variance reduction techniques to achieve
greater results than what could be accomplished by each individually.

Recently, the DESI collaboration [83] applied control variates in order to expand the vol-
umes of their fiducial suite of simulations, AbacusSummit. Their control variate of choice was
the approximate N -body solver FastPM [39]. Over 500 surrogates were produced throughout
their work, generating on the order of 400TB of ancillary data at a computational cost of 24
million NERSC CPU-hours. Their technique results in an improvement of effective volume
for the redshift-space clustering of halos on the order of 100×. While not an apples-to-apples
comparison, our worst-case scenario improvement for biased spectra is comparable to their
quoted improvement. In this publication we have not analyzed redshift space correlations or
higher order correlations, but we shall present these developments in future work.

The computational expense of implementing ZA control variates in an N -body simula-
tion are substantially more modest than when using an approximate solver such as FastPM.
For the code that we have developed in this paper, at the Quijote HR resolution, produc-
ing all relevant Lagrangian component fields, advecting them, and measuring all relevant
cross-spectra takes on the order of 50 CPU-hours per snapshot. The largest computational
expenses are equally distributed among generating the Lagrangian fields, advecting them to
produce late-time realizations, and measuring all relevant cross-spectra to compute β (which
also contains all N -body and ZA basis spectra).

6 Conclusions

In this paper we have re-visited the problem of sample variance reduction in N -body simu-
lations through use of the method of control variates. While previous works in this direction
have used approximate N -body solvers as surrogates for structure formation, we proposed the
use of the Zel’dovich approximation as a surrogate of structure formation that is simultane-
ously inexpensive to produce and highly correlated with the non-linear density field. We have
shown that, for biased tracers in real space, we can compute the mean prediction in Zel’dovich
to arbitrary precision. This development sidesteps one of the main limitations of applying
control variates previously, where many realizations of the approximate simulation had to
be produced in order to reduce the uncertainty on the mean variate. Additionally, we have
presented a physically motivated, analytic approximation for the regression matrix β, which
is often another source of significant computational expense when applying control variates.
We validated this approximation using an ensemble of N -body simulations and showed that
a simple empirical damping function applied to the approximation leads to strong agreement
with numerical estimates of the regression matrix.
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We proceed to quantify any residual biases in our technique, as well as reduction in un-
certainty, in three different problems which are applicable to many different classes of N -body
simulations. We showed that for the matter power spectrum, we find a reduction in variance
that is equivalent to averaging 104 simulations at k = 0.01hMpc−1 for the Quijote volume.
We also find strong agreement with the Zel’dovich approximation at large scales, which en-
ables reconstructions of the configuration–space correlation function that are significantly less
noisy at large scales.

We then turned to the more complicated case of reducing variance in measurements of
tracer statistics. We showed that using the matter power spectrum as the control variate
for tracer statistics still leads to substantial variance reduction, comparable to increasing the
volume of the simulation by 100× at large scales. We further showed that using a more
elaborate but still highly approximate surrogate, a linearly biased tracer, led to additional
reductions in uncertainty on the order of 30% at little additional computational cost.

We concluded with the most general case of applying control variates to the ten basis
spectra of second-order hybrid EFT. We found improvements in effective volume that were
equivalent to ∼ 100 − 106×, depending on the specific basis spectrum under consideration.
This dramatic increase in effective volume has substantial implications in the design and
accuracy of emulators of cosmic structure.

There are many future directions to consider stemming from this work. The most im-
mediate, perhaps, is to extend our results to redshift-space. Redshift-space distortions in the
Zel’dovich approximation are a simple additive offset in the original displacements. Thus,
we should expect that the degree of variance reduction obtained here should be sustained.
We shall present this development in a future paper. Another direction in which to extend
this work is in pushing to higher order correlations such as the bispectrum of biased tracers.
While the 3-point correlation function has previously been computed in Zel’dovich [84], the
bispectrum has not. However, even lacking a full description of the bispectrum of biased
tracers, the results using matter power spectra as a surrogate show that gains could be made
in this regime by computing the matter bispectrum in the Zel’dovich approximation, BZA

mmm.
Another potential consideration is extending these techniques to the case of simulations with
primordial non-Gaussianity (PNG). Matching phases between simulations with and without
PNG has recently been demonstrated to be a powerful tool to isolate the effects of PNG in
simulations with substantially less sample variance [85]. As biasing is well-understood in the
presence of PNG [86], producing variance-reduced realizations of observables in the presence
of PNG is well within the scope of the techniques we have laid out in this paper. We leave
these, and other extensions, to future work.
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A Basis spectra in the Zel’dovich approximation

In this section we give the power spectra of tracers with bias up to quadratic order within
the Zeldovich approximation. Doing so requires including terms beyond 1-loop order which
are usually dropped in perturbation-theory calculations to consistently track dynamics and
biasing to the same order; here we must include them to properly compute the mean of the
basis spectra in simulations where the dynamics are taken to be Zeldovich. Up to 1-loop
order the results below are equivalent to those in Eqn. 4.11 from ref. [25] with terms due to
beyond-Zeldovich displacements set to zero, while a subset of the higher-order terms for the
case of quadratic density bias were calculated in ref. [42, 91].

To evaluate the basis power spectra within the Zeldovich approximation we need to
evaluate the functional

Z(q, λn, an) = 〈eM(q1,q2,λn,an)〉

where the exponent is defined as:

M(q1, q2) = ik ·∆ +
∑
n=1,2

λnδ(qn) + an,ijsij(qn), ∆ = Ψ(q1)−Ψ(q2). (A.1)

SinceM is Gaussian we have that Z is simply given by the exponentiated second cumulant,

1

2
〈M2〉c =− 1

2
kikjAij + (λ1 + λ2)ikiUi + λ1λ2ξL +

1

2
(λ2

1 + λ2
2)σ2

L

+ a1,ija2,klCijkl +
1

2
(a1,ija1,kl + a2,ija2,kl)〈sijskl〉

+ (a1,jk + a2,jk)ikiBijk + (λ1a2,ij + λ2a1,ij)Eij

where we have defined the functions [21]

Aij(q) = 〈∆i∆j〉 = X(q)δij + Y (q)q̂iq̂j , Ui(q) = 〈δ1∆i〉 (A.2)

and we also define shear correlators

Cijkl = 〈s1,ijs2,kl〉 , Bijk = 〈∆is1,jk〉 , Eij = 〈δ1s2,ij〉 (A.3)

and we have used that 〈δsij〉 = 0. All the correlators are strictly functions of q = q1 − q2 by
translation invariance.

In order to obtain the biased-tracer power spectrum we use the substitutions

b1δn → b1
d

dλn
, b2δ

2
n → b2

d2

dλ2
n

, bss
2
n → bsδiaδjb

d

dan,ij

d

dan,ab
. (A.4)

in the bias functional F (qn), which becomes an operator F̂n. The power spectrum is then
given by

P (k) =

∫
d3q eik·q

[
F̂1F̂2Z(q, λn, an)

]
λn,an=0

. (A.5)
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This gives the component spectra as

Pij(k) =

∫
d3q eik·q−

1
2
kikjAij Fij(k, q) (A.6)

where for each basis spectrum the function Fij(k, q) is given by

(1, 1) : 1

(1, b1) : ikiUi

(b1, b1) : ξL − kikjUiUj
(1, b2) : −kikjUiUj

(b1, b2) : 2ikiUiξL − ikikjkkUiUjUk
(b2, b2) : 2ξ2

L − 4kikjUiUjξL + kikjkkklUiUjUkUl

(1, bs) : −kikjBiabBjab
(b1, bs) : 2ikiBiabEab − ikikjkkUiBjabBkab
(b2, bs) : 2EabEab − 4kikjUiEabBjab + kikjkkklUiUjBkabBlab

(bs, bs) : 2CabcdCabcd − 4kikjBiabBjcdCabcd + kikjkkklBiabBjabBkcdBlcd. (A.7)

Many of the contractions in the above can be written as correlators of the scalar s2 with
densities and displacements. Some of these have been previously defined in other works (see
e.g. ref. [26])

χ = 〈δ2
1s

2
2〉c = 2EabEab , ζ = 〈s2

1s
2
2〉c = 2CabcdCabcd

Υij = 〈s2∆i∆j〉 = 2BiabBjab , V 12
i = 〈δ1s

2
2∆i〉 = 2EabBiab (A.8)

so we can simplify some of above expressions for basis spectra:

(1, bs) : −1

2
kikjΥij

(b1, bs) : ikiV
12
i −

1

2
ikikjkkUiΥjk

(b2, bs) : χ− 2kikjUiV
12
j +

1

2
kikjkkklUiUjΥkl

(bs, bs) : ζ − 4kikjBiabBjcdCabcd +
1

4
kikjkkklΥijΥkl. (A.9)

The (bs, bs) component contains a term that cannot be reduced to previously computed
quantities but is rather proportional to Lij = BiabBjcdCabcd. This term comes from the
expectation value of (1/2)(iki∆i)

2s2
1s

2
2 which contains

〈∆i∆js
2
1s

2
2〉 3 8〈∆is1,ab〉〈∆js2,cd〉〈s1,abs2,cd〉

leading to the combinatorial factor (−4) = 1
2 × i

2 × 8. This contribution can be expressed in
terms of its components as

Lij = 2K1J3δij +
(
2K1(J2 + J3 + J4) +K2(J2 + 2J3 + J4)

)
q̂iq̂j (A.10)

where we the Jn are defined as in Appendix A of ref. [42, 91] and we have defined the quantities

K1 = 2J3(J6 + J8), K2 = 2J3(J7 + 2J8 + J9) + J4(2J6 + J7 + 4J8 + J9). (A.11)

All of the above expressions are implemented in the publicly available code ZeNBu14.
14Ze(ldovich calculations for) N-B(ody Em)u(lators); https://github.com/sfschen/ZeNBu.
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Figure 10. Normalized integrands for Lagrangian basis spectra at scales of k =
[0.05, 0.1, 0.5, 1]hMpc−1. The shaded regions correspond to physical scales that are not well probed
by the fiducial Quijote HR simulations. Each integrand is offset (vertically) by an arbitrary value so
their features and support can be clearly distinguished.

B Matching analytic and grid-based LPT

The success of the control variates approach we have laid out in this work is predicated
on ensuring precise agreement from our two separate predictions for basis spectra in the
Zel’dovich approximation. If grid-based calculations do not agree with the analytic result,
then the control variate could introduce significant biases, as well as additional uncertainty,
in the estimates of the fully non-linear spectra.

In this appendix we explore, in more detail, the structure of the contributions to any
given basis spectrum in the analytic code. Any given spectrum Pij(k) is written as in the
form of Eqn. A.6. In order to efficiently evaluate the integrals, ZeNBu further projects the
Fij(k, q) kernels into a Spherical Fourier-Bessel basis. The angular integrals are then per-
formed analytically, and the radial integrals reduce to Hankel transforms of the form

Pij(k) = 4π

∞∑
`=0

∫
q2dq e−k

2(X+Y )/2

(
kY

q

)`
f

(`)
ij (q, k)j`(kq), (B.1)

where f (`)
ij (q) is a basis spectrum-dependent kernel. These Hankel transforms can then be

rapidly evaluated using the FFTLog algorithm [23, 92, 93]. A summary of the structure
of the implementation can be found in Appendix A of ref. [28], with full details available
in refs. [24, 25]. In practice, additional regularization is needed to compute this expression
stably and this is done by including a cutoff in the linear power spectrum

P lin(k)→ e−(k/kcut)2P lin(k), (B.2)

where kcut is a cutoff scale imposed from filtering the linear density modes at initial conditions
as

δ(k)→ e−(k/kcut)2/2δ(k). (B.3)

This same filter is applied to the initial density field used to evaluate Zel’dovich displacements
and their subsequent component fields/spectra. We use kcut = πN

1/3
p /Lbox ≈ 3.2hMpc−1,
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where Np is the total number of particles in the simulation, corresponding to the smallest
Fourier modes probed by the initial conditions of the Quijote HR boxes15. Without this
equivalent filtering, we find that we are unable to match grid-based results and analytics,
even in the case of Pmm(k).

If we re-cast Eq. B.1 in the following form:

Pij(k) =

∫
dq Fij(q, k), (B.4)

where Fij is given by

Fij(q, k) =
∑
`

e−(k2/2)(Xlin+Y lin)

(
kY

q

)`
f

(`)
ij (q, k)q2j`(kq), (B.5)

then we can assess the scales needed to be probed by our grid-based realization in order to
ensure accuracy relative to the analytic calculation. If for a given wavenumber k, Fij(q, k)
has significant support for q that are either larger than the largest resolved mode in the box,
qmax or smaller than the smallest scale qmin, then these contributions will be missed in the
grid-based calculation. While at first impression one might assume that qmin = Lbox/Nmesh,
the fundamental grid spacing, and qmax = Lbox/2, the largest resolvable separation, this is not
the case. Power in the N -body simulation is initialized on a Fourier-space grid, which is then
Fourier-transformed to configuration space. This imposes two anisotropic window functions
which filter small and larger scales. The “true” density field is thus

δ̃(k) = WUV(k)WIR(k)δ(k), (B.6)

where the small-scale and large-scale anisotropic window functions are, respectively,

WUV(k) =

{
1, if |ki| ≤ πNmesh

Lbox

0, if |ki| > πNmesh
Lbox

, WIR(k) =

{
1, if |ki| ≥ 2π

Lbox

0, if |ki| < 2π
Lbox

. (B.7)

The sharp Fourier-space windows imposed by the gridded density field will leak power into
scales q < Lbox/Nmesh. In configuration space, these filters are given by sinc functions of the
form

WUV(q) ∝
∏
i

sinc

(
πNmeshqi
Lbox

)
. (B.8)

If we compare the integral of this window relative to a ‘sharp-q’ window function, we can define
an equivalent qmin from assessing when their integrals reach their asymptotic values at q →∞.
For the sinc function with argument as we’ve defined, this value is reached at roughly qmin ≈
2/kNyq

16. Thus, we adopt qmin = 2/kNyq as a heuristic for the smallest configuration-space
scales probed by simulations when understanding the extent of integrands Fij(q). Similarly,
we choose qmax = 2/kf = Lbox/π as a heuristic scale for the largest configuration-space
scale. In Fig. 10, we explicitly visualize the kernels Fij for k ∈ [0.05, 0.1, 0.5, 1]. We find
that across this range of scales, most integrands have support well within the scales probed
by the Quijote HR boxes. We also note that this same figure explains why we cannot use

15As Quijote is evolved using a tree-based code, nonlinear forces are calculated at scales smaller than kcut.
16The precise value is closer to 1.926/kNyq and is related to when the Sine integral Si(q?) = π/2 for the first

time.
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Figure 11. The resolution dependence of basis spectra at Lagrangian coordinates. Left: The ratio of
a standard Quijote resolution realization, a super-resolution realization and an analytic calculation
of the effects of a small scale cutoff on the 〈s2s2〉 spectrum compared to grids computed at the
fiducial Quijote HR resolution of this work. Right: The same ratios but for the basis spectrum 〈s2δ〉.
Cutting off the linear theory power spectrum at small scales produces an effect on correlators that is
comparable to the effect of reducing grid size.

the fiducial resolution Quijote suite: for k ≥ 0.5hMpc−1 they fail to resolve scales near the
peak of the integrands for several of the basis functions. However, we also note that from our
heuristic qmin we might be at risk of missing several low-q scales for spectra such as 〈s2s2〉
and 〈δ2s2〉.

Another way to assess whether the dynamic range in a grid used for grid-based LPT
is sufficient is to consider, instead, Lagrangian correlators. These are the leading contri-
butions to the final advected spectra, but don’t mix configuration-space and Fourier-space
modes as strongly as in the post-advection case we have considered above. For 〈δ2s2〉 and
〈s2s2〉 these correlators are given by Hankel transforms of the functions χ(q) and ζ(q) defined
in Appendix. A. Discrepancies in Lagrangian correlators will propagate into post-advection
measurements, and their origin similarly comes from being unable to resolve all scales that
contribute to a given spectrum in a grid-based approach. To illustrate this we consider the
Lagrangian power spectra

PLag
δ2s2

(k) = 4π

∫
q2 dq j0(kq)χ(q), (B.9)

PLag
s2s2

(k) = 4π

∫
q2 dq j0(kq) ζ(q).

We measure, in the Lagrangian fields, these basis spectra for three grids that share the same
initial seeds and power spectra with varying resolutions. Beyond the fiducial Quijote HR
resolution, we also consider a grid at the standard Quijote resolution of Nmesh = 512. To
understand whether our Quijote HR results are well converged, we also consider correlators
measured at a resolution comparable to that of the Aemulus suite, using Nmesh = 1400. We
also compute the spectra in Eqn. B.9 analytically in two different ways. The first is using,
as input, the linear theory damped P (k) across all scales. If our grid adequately resolves
all relevant physical scales, and the numerical operation of extracting sij is well-converged,
then the comparison between PLag

δ2s2
(k) computed using Eqn. B.9 and as measured in the

Lagrangian fields of our simulations should be excellent at small scales where sample variance
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is negligible. We have verified that in our boxes this is the case – residuals between grid-based
and analytic Lagrangian correlators agree to within 0.2% at k = 1hMpc−1.

Our second calculation uses analytic window functions that are spherically sharp in k
space, with kUV = 512π/Lbox and kIR = 2π/Lbox. While these window functions are different
from how the grid-based calculations are treated, their inclusion in the analytic calculation
allows for comparison with the downsampled result at Nmesh = 512. We increase kUV by
20% to approximately convert the spherical damping back to the cartesian case employed in
grid-based calculations, resulting in kUV ≈ 2hMpc−1. We show these results in Fig. 11, where
we display the ratio of power spectra at various resolutions relative to the fiducial Quijote
HR realization. The higher resolution realization has less than a percent additional power
at k = 1hMpc−1 for 〈s2s2〉 while the excess is of order a percent for 〈s2δ2〉. This excess for
〈s2δ2〉 can also be seen in Fig. 3, implying for that specific spectrum we would find potentially
better convergence with the analytic ZA result at a higher resolution. The comparison with
the Aemulus resolution boxes shows that we are not missing small-scale modes for the Quijote
HR-based analysis.

Turning to the standard Quijote resolution realizations, we find a large absence of power
for both Lagrangian correlators. At k = 1hMpc−1 the deficit for 〈s2s2〉 is on the order of 10%,
and both this amount as well as the shape of the decay is well matched by our theoretical
result smoothed by a spherical sharp-k window. For 〈s2δ2〉 the effects are even stronger, we
find on the order of 80% missing power at k = 1hMpc−1. Again, the observed damping
is well described by convolving the input theory spectrum with a spherical sharp-k window
function before computing correlators in ZeNBu. Fig. 11 shows that the standard resolution
Quijote simulations do not possess sufficient dynamic range for Zel’dovich control variates
to be used effectively to scales of k = 1hMpc−1.

Future attempts to use control variates should be cognizant of the analysis carried out
in this Appendix. Understanding accuracy requirements at different scales for emulation, as
well as what the dynamic range required in a simulation/grid-based LPT in order to achieve
satisfactory prediction of the mean of a control variate can be obtained via the arguments
laid out here.

C Challenges in going beyond Zel’dovich

In this work we have concerned ourselves solely with using the Zel’dovich approximation as
the control variate that correlates with the non-linear density field. It is natural, then, to
wonder whether even further reduction in sample variance can be achieved with a surrogate
that is more closely correlated to the non-linear density, but is still analytic. The natural
candidate for such a surrogate is the density field predicted from displacements carried out at
higher order in LPT. Indeed, the state of the field is such that there now exist mature codes
that compute basis spectra in one-loop LPT (such as velocileptors ) and using grid-based
schemes, such as monofonIC [51].

However, there is an additional subtlety if one wishes to compare 3LPT between an
analytic prediction and a grid-based realization at the same order. Most analytic calculations
codes for higher order LPT implement so-called convolution Lagrangian pertrubation theory
[21]. CLPT performs a re-summation of certain terms that arise in the expansion of connected
moments, 〈Mn〉c, with M as defined in Eqn. A.1. In the Zel’dovich approximation, all
ingredients in the expansion are Gaussian and thus there are no connected moments beyond
second order.
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However, when ∆ contains contributions from higher order displacements the above
statement is no longer true. Now, connected moments beyond the second exist and will
contribute to the evaluation of Z. For example, a contribution arises from the correlation of
three displacements at second order

Wijk = 〈∆i∆j∆k〉. (C.1)

In CLPT, and other perturbative approaches, higher order terms like Wijk are treated as
small and expanded out of the exponential in Z17. On the other hand, grid-based approaches
fully evaluate this exponential. These differences lead to discrepancies between grid-based
and analytic LPT when trying to extend the use of surrogates to higher order. Attempts
to use higher order LPT as a control variate must, then, deal with this issue before being
practical. We leave this question to further work, as we find the performance of the Zel’dovich
approximation as a control variate to be adequate for the purposes of a first study.
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