
Lawrence Berkeley National Laboratory
LBL Publications

Title
Numerical Circuit Synthesis and Compilation for Multi-State Preparation

Permalink
https://escholarship.org/uc/item/2pr9231c

Authors
Szasz, Aaron
Younis, Ed
De Jong, Wibe

Publication Date
2023-01-22

DOI
10.1109/qce57702.2023.00092

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2pr9231c
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Numerical circuit synthesis and compilation for
multi-state preparation

Aaron Szasz
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, USA

aszasz@lbl.gov, ID

Ed Younis
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, USA

edyounis@lbl.gov, ID

Wibe de Jong
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, USA

wadejong@lbl.gov, ID

Abstract—Near-term quantum computers have significant er-
ror rates and short coherence times, so compilation of circuits
to be as short as possible is essential. Two types of compilation
problems are typically considered: circuits to prepare a given
state from a fixed input state, called “state preparation”; and
circuits to implement a given unitary operation, for example
by “unitary synthesis”. In this paper we solve a more general
problem: the transformation of a set of m states to another
set of m states, which we call “multi-state preparation”. State
preparation and unitary synthesis are special cases; for state
preparation, m=1, while for unitary synthesis, m is the dimension
of the full Hilbert space. We generate and optimize circuits for
multi-state preparation numerically. In cases where a top-down
approach based on matrix decompositions is also possible, our
method finds circuits with substantially (up to 40%) fewer two-
qubit gates. We discuss possible applications, including efficient
preparation of macroscopic superposition (“cat”) states and
synthesis of quantum channels.

Index Terms—quantum computing, state preparation, compi-
lation, synthesis

I. INTRODUCTION

Just as classical computations are carried out by a series
of gates each acting on one or two bits, digital quantum
computations are described by quantum circuits in which
quantum gates act on quantum bits (“qubits”) [1]. Unlike in
the classical case, in noisy intermediate-scale quantum (NISQ)
computing [2], significant error rates impose strong limits on
the useful runtime of quantum computers. Single qubits lose
coherence over a short time, meaning that the state of a qubit
becomes random and uncorrelated with neighboring qubits.

Even more problematic are the errors due to gate operations,
especially from gates acting on two (or more) qubits at a time.
Typical error rates for two-qubit gates, measured by infidelity,
ϵ, are in the range of 0.1% to 1% for quantum computing
architectures including trapped ions [3], [4], neutral atoms [5]–
[7], silicon quantum dots [8], and superconducting qubits [9]–
[12]. Since the overall fidelity of a circuit shrinks exponentially
in the number of gates d, scaling as (1 − ϵ)d, reducing the
number of two-qubit gates in a circuit is essential for making
near-term quantum computing feasible and useful.

To reduce the number of gates in a circuit as much as
possible, we can consider two related tasks: synthesis and
compilation. In the synthesis task, we start with a given unitary
operator (or quantum state) and search for the circuit with the

fewest two-qubit gates that reproduces the unitary (or state).
In the compilation task, we start with a circuit that implements
the unitary or state, and we try to find a new, shorter circuit
that performs the same operation as the original one.

Unitary synthesis is a widely-studied problem [13]–[23],
and algorithms to carry out this task are implemented in
a variety of publicly available software packages, including
Qiskit [24], Cirq [25], Tket [26], and Lawrence Berkeley
National Laboratory’s Berkeley Quantum Synthesis Toolkit
(BQSKit) [27], [28]. State preparation is also widely stud-
ied [22], [23], [29]–[33], with algorithms again implemented
in the software packages listed above.

These two synthesis/compilation tasks, state preparation and
unitary synthesis, can be generalized by considering isome-
tries. An isometry is a norm-preserving linear map from nin to
nout qubits with nin ≤ nout, and it can always be implemented
(in an under-determined manner for nin < nout) by an nout-
qubit unitary acting on nin input qubits and (nout − nin)
ancillas each initialized to |0⟩. From this perspective, the state
preparation problem, in which we prepare an n-qubit state
from the all-|0⟩ state, is isometry synthesis with nin = 0, while
unitary synthesis is the case of nin = nout. Then intermediate
problems are those with 0 < nin < nout. Prescriptive (ma-
trix decomposition-based) numerical methods for the general
isometry synthesis problem are known [34], [35] and are also
available in public software packages [24], [25], [36].

However, a further generalization is possible. We can view
state preparation as the problem of finding a way to prepare
one state from a given (simple) input state, while unitary syn-
thesis is the problem of simultaneously preparing 2n different
states of n qubits from the 2n standard computational basis
states. From this perspective, the more general problem is
the simultaneous preparation of m states efficiently for some
1 ≤ m ≤ 2n. We call this problem “multi-state preparation”.

Multi-state preparation not only generalizes state prepara-
tion and unitary synthesis, but also encompasses isometry
synthesis (with m = 2nin) and controlled quantum state prepa-
ration (CQSP) [37]. Furthermore, as we discuss in Sec. V
below, multi-state preparation allows for reductions in circuit
depth for a variety of practical applications, in some cases
beyond what is possible via any of these four more specialized
methods.

ar
X

iv
:2

30
5.

01
81

6v
3

 [
qu

an
t-

ph
]

 1
9

Se
p

20
23

https://orcid.org/0000-0002-1127-2111
https://orcid.org/0000-0002-1306-1860
https://orcid.org/0000-0002-7114-8315

In this paper, we first define the multi-state preparation
problem formally in Section II. In Section III we provide
(with rigorous proof) the conditions to determine whether a
multi-state preparation problem has a solution. In Section IV
we show how the problem can be solved numerically in
practice; in subsection A. we review our general approach to
numerical optimization of circuits, namely circuit templating
and instantiation, then in B. we present a good cost function
for the multi-state preparation problem in particular. In C.,
we provide a detailed mathematical motivation for the cost
function; readers primarily interested in using multi-state
preparation as a practical tool could skip this section on the
first read. In Section V, we discuss several applications of
multi-state preparation. In Section VI we demonstrate the
implementation of the numerical optimization procedure in
BQSKit. We provide code for a simple example, and we show
numerical results on random 3- and 4-qubit mappings, where
we outperform other available software packages. We conclude
in Section VII.

II. THE MULTI-STATE PREPARATION PROBLEM

We begin with a formal definition.
Definition of multi-state preparation: Given two
sets of m pure states of n ≥ log2(m) qubits,
{|v1⟩, · · · , |vm⟩} and {|w1⟩, · · · , |wm⟩}, find a
quantum circuit that maps |vi⟩ to |wi⟩ for all i. (The
action of the circuit on states not in the span of
{|v1⟩, · · · , |vm⟩} is not constrained.)

The multi-state preparation problem includes both state prepa-
ration and unitary synthesis as special cases.

State preparation is the problem of finding a circuit that
prepares an n-qubit pure state, |ψ⟩, from the input product
state |0⟩⊗n. Thus state preparation is a special case of multi-
state preparation with m = 1, |v1⟩ = |0⟩⊗n, and |w1⟩ = |ψ⟩.

Unitary synthesis is the problem of finding a circuit that
implements an n-qubit unitary operator, U . However, any
unitary is precisely specified by its actions on the 2n compu-
tational basis states, |0⟩⊗n, |1⟩ ⊗ |0⟩⊗n−1, · · · , |1⟩⊗n; when
viewed as a matrix, the images of these states written in the
computation basis are precisely the columns of U . Thus letting
{|vi⟩} be the computation basis states and {|wi⟩} their images,
|wi⟩ = U |vi⟩, we see that unitary synthesis is multi-state
preparation with m = 2n.

Synthesis of isometries is also a special case of multi-state
preparation. An isometry is defined by the mapping of the
computational basis states on nin qubits to some set of m =
2nin states on n ≥ nin qubits. We can then append n − nin
ancillas, each in the state |0⟩, to each of the input states. The
result is a multi-state preparation problem with m input states
and m output states, each of n qubits.

One important note is that in each of these three cases,
state preparation, unitary synthesis, and isometry synthesis,
the input states are all orthogonal to one another. As we will
see in Sec. III below, orthogonality guarantees the existence
of a solution to a multi-state preparation problem. However, it

is not a necessary condition. Thus our statement of the multi-
state preparation problem does not make any assumption on
the inner products ⟨vi|vj⟩.

A. Two-qubit examples

Example 1: Let

|v1⟩ = |00⟩, |v2⟩ = |01⟩ (1)
|w1⟩ = |00⟩, |w2⟩ = |01⟩.

This apparently trivial example actually illustrates precisely
why a dedicated approach to multi-state preparation is useful.
In the standard basis, this example problem amounts to spec-
ifying the first two columns of the 4× 4 unitary matrix that a
quantum circuit should implement. We could imagine solving
this problem by first appending two additional orthonormal
columns, then performing a full unitary synthesis.

If we were lucky and picked |10⟩ 7→ |10⟩ and |11⟩ 7→ |11⟩,
giving the identity transformation as the full unitary, we would
find a circuit with no gates whatsoever, evidently the shortest
possible circuit solving the original problem. On the other
hand, if we happened to fill out the rest of the unitary
transformation as |10⟩ 7→ |11⟩ and |11⟩ 7→ |10⟩, the full
unitary would be given by a single CNOT with the first qubit
as the control.

In other words, each multi-state preparation problem (with
m < 2n) corresponds to many unitary synthesis problems, and
some will have shorter circuits as solutions than others. From
this perspective, in solving a multi-state preparation problem,
we aim to find the optimal unitary transformation for the given
state mapping as well as the shortest implementation of that
unitary. Using the numerical approach described in Section IV,
we perform both optimizations simultaneously.

Example 2: Let

|v1⟩ = |00⟩, |v2⟩ = |11⟩ (2)

|w1⟩ = |00⟩, |w2⟩ =
|01⟩ − |10⟩√

2
.

An optimal circuit (in terms of two-qubit gate count) for this
example looks like

H

(3)

=

Ry

(
3π
2

)
Ry

(
3π
2

)
Ry

(
7π
4

)
Ry

(
7π
4

)
Ry

(
π
2

)
(4)

Notably, two 2-qubit gates are required. In comparison,
one could imagine solving this problem using a unitary
synthesis method, which would require first adding two more
orthonormal output states for inputs |01⟩ and |10⟩; however,
generic two-qubit unitaries require three CNOTs [38], [39],

so in general we get a shorter circuit by doing the multi-state
preparation problem directly. On the other side, single-state
preparation for two qubits uses at most one CNOT gate [40], so
all but a set of measure 0 of multi-state preparation problems
cannot be solved by single-state preparation. Thus there are
situations in which multi-state preparation will be beneficial
relative to both of the more common synthesis/compilation
problems.

Example 3: As noted above, the states can also be non-
orthogonal. For example, with |vi⟩, |wi⟩ as in Eq. 2, let

|ṽ2⟩ =
|v1⟩+ |v2⟩√

2
(5)

|w̃2⟩ =
|w1⟩+ |w2⟩√

2
.

Then the exact same circuits from (3) and (4) will also solve
the problem |v1⟩ 7→ |w1⟩, |ṽ2⟩ 7→ |w̃2⟩.

Example 4: As discussed in the next section, some problems
with non-orthogonal states have no solution. For example, let

|v1⟩ = |00⟩, |v2⟩ =
|00⟩+ |11⟩√

2
(6)

|w1⟩ =
|00⟩+ |01⟩√

2
, |w2⟩ =

|01⟩+ |10⟩√
2

.

Note that ⟨v1|v2⟩ = 1/
√
2 while ⟨w1|w2⟩ = 1/2. As we show

below, this implies that there is no solution to this particular
multi-state mapping problem.

III. WHEN DOES A MULTI-STATE PREPARATION PROBLEM
HAVE A SOLUTION IN PRINCIPLE?

Given two sets of m n-qubit states each, {|vi⟩} and {|wi⟩},
we want to find a quantum circuit that maps |vi⟩ to |wi⟩ for all
i ∈ {1, · · · ,m}. The first question to ask is whether a solution
exists at all. Fortunately, there is a simple answer.1

Solution: Let V be the matrix whose columns con-
tain the states |vi⟩, represented as vectors in the
computational basis, and likewise let W be a matrix
with columns |wi⟩. Both matrices are 2n × m. A
circuit that maps |vi⟩ to |wi⟩ ∀i exists if and only if
V †V =W †W , i.e. if and only if ⟨vi|vj⟩ = ⟨wi|wj⟩
for all i, j.

Intuition: By analogy, we consider four vectors on the unit
circle, v1, v2, w1, and w2, and we ask whether there is some
rotation plus reflection that takes v1 to w1 and v2 to w2. The
situation is illustrated in Fig. 1.

We can of course always find a rotation that maps v1 to
w1. Once we carry out this rotation, it becomes visually clear
whether or not we can simultaneously map v2 to w2: as shown
in the figure, this is possible only when the angle between v1

and v2 is the same (up to sign) as the angle between w1 to w2.
Intuitively, this is because rotations and reflections preserve

1Note that this result can also be found on the Mathematics Stack Exchange
forum [41].

v1
v2

w1

w2

U v1

U v2

w1

w2

w1

w2

v1

v2

U v1w1

U v2
w2

Rotate

Reflect

Fig. 1. There exists a unitary that maps vectors (v1,v2) to (w1,w2) if and
only if the angles between the vectors are the same, v1 ·v2 = w1 ·w2. In the
top row, we see that when the angles are different, a unitary U that takes v1

to w1 cannot also take v2 to w2. Conversely, on the bottom is an example
where the angles match, and thus there exists a unitary that maps both vectors
simultaneously. This is the intuition behind the condition V †V = W †W for
solvability of a multi-state preparation problem.

angles, so one set of vectors can be transformed to another
if and only if the angles between the initial and between the
final vectors match.

Returning to our multi-state preparation problem, the rota-
tions and reflections become the unitary action of the desired
quantum circuit, while the angles between vectors correspond
to the overlaps ⟨vi|vj⟩ and ⟨wi|wj⟩. These are precisely
contained in the matrices V †V and W †W :

V †V =


⟨v1|v1⟩ ⟨v1|v2⟩ · · · ⟨v1|vm⟩
⟨v2|v1⟩ ⟨v2|v2⟩ · · · ⟨v2|vm⟩

...
...

. . .
...

⟨vm|v1⟩ ⟨vm|v2⟩ · · · ⟨vm|vm⟩

 . (7)

Proof: We now prove the result.
If a circuit exists, V †V = W †W : We first suppose that

a circuit for the multi-state preparation indeed exists. This
circuit implements a unitary operator U , which by assumption
realizes the mapping |wi⟩ = U |vi⟩. Then

⟨wi|wj⟩ = ⟨Uvi|Uvj⟩ = ⟨vi|U†Uvj⟩ = ⟨vi|vj⟩ (8)

and hence each element of the two matrices is equal and
W †W = V †V . ■

If V †V = W †W , a circuit exists: We now suppose that
V †V = W †W . Let’s call this matrix O, for “overlap”. O is
Hermitian by construction, hence diagonalizable. Furthermore,
O is positive semi-definite: ⟨ψ|V †V |ψ⟩ = ⟨V ψ|V ψ⟩ =
||V ψ||2 ≥ 0. We thus let O = SDS† where S is unitary
and D is diagonal with only positive real entries. (D is only
guaranteed to be nonnegative, but if D has zero entries, we can
just remove them and remove the corresponding columns of S

to get smaller matrices, making D strictly positive. Note that
D will have zero entries when the columns of V are linearly
dependent.)

Then let Ṽ = V SD−1/2, W̃ =WSD−1/2. Intuitively, V S
is the matrix whose columns are derived by orthogonalizing
the columns of V , and the factor of D−1/2 normalizes the
vectors to be orthonormal. Then both Ṽ and W̃ are isometries:

Ṽ †Ṽ = D−1/2S†V †V SD−1/2 = D−1/2S†OSD−1/2

= D−1/2DD−1/2 = Id (9)

and likewise for W̃ . In general, Ṽ and W̃ have more rows
than columns: they are isometries from a smaller space into a
larger one. In that case, we append further orthogonal columns
to make them into square matrices while maintaining the
isometric conditions Ṽ †Ṽ = Id and W̃ †W̃ = Id. Any square
isometry is unitary, so both Ṽ and W̃ are then unitary.

Finally, let U = W̃ Ṽ †. As a product of two unitaries, U is
also unitary.

Furthermore, if we didn’t need to add extra columns to Ṽ
and W̃ ,

UV =WSD−1S†V †V =WSD−1S†O

=WSD−1S†SDS† =W. (10)

If we did add extra columns, then letting the matrices con-
taining just the extra columns be CV and CW respectively,
we have

UV =W + CWC†
V V, (11)

but all the columns of V are in the span of the columns
of V SD−1/2 and the columns in CV were chosen to be
orthogonal, so C†

V V = 0.
Thus given V †V = W †W , we have explicitly constructed

a unitary that maps V to W and hence |vi⟩ to |wi⟩ for all i.
■

IV. NUMERICAL IMPLEMENTATION

Now that we know how to tell whether a solution to a multi-
state preparation problem exists, we turn to the question of
finding that solution in practice. We consider the framework of
synthesis and compilation using instantiation of parameterized
circuit templates with numerical optimization [21]. In this
framework, we find an optimal circuit using a cost function
that is minimized when the circuit solves the problem of
interest.

Here we first briefly review parameterized circuit instanti-
ation, then we present and motivate a cost function for the
multi-state preparation problem.

A. Background: numerical optimization via instantiation

Suppose we want to find a quantum circuit that solves
some task, for example preparing a given state from |0⟩⊗n

or synthesizing a unitary. We perform synthesis by repeating
two steps:

1) Generate a circuit “template” containing a variety of
parameterized gates such as exp(iθZ), with unspecified
parameters.

2) Given this circuit template, find the parameter values that
bring the circuit as close as possible to a solution to the
problem of interest. If the best possible parameterization
fails to produce a circuit that solves the problem, go back
to step 1.

Step 2 requires evaluating, for each set of parameters, how
close the parameterized circuit comes to solving the problem
(e.g. preparing the desired state). We perform this evaluation
by means of a problem-specific cost function.

For example, for unitary synthesis, if UC is the unitary
operator implemented by the circuit and U is the desired
unitary, a good cost function is 1−|Tr[UCU

†]|/2n [21], which
takes values in [0, 1] and is minimized at 0 if and only if
UC = U . For preparation of a state |ψ⟩, a good cost function
is 1− |⟨ψ|UC |0⟩| or equivalently 1− |Tr[UC |0⟩⟨ψ|]|,2 which
is again minimized at 0 for a correct solution.

For a given cost function, there remain many possible
approaches to generating circuit templates and to carrying
out the parameter optimization. BQSKit includes a vari-
ety of strategies, including QSearch [16], QFAST [17], and
LEAP [18]. The circuit templates can also be generated in a
way that respects the connectivity of some particular quantum
hardware [42].

B. Cost function for multi-state preparation

Consider the matrices V and W introduced in Sec. III, each
of whose m columns are n-qubit states. Then a natural choice
of cost function for multi-state preparation is:

1− 1

m
|Tr[UCVW

†]|. (12)

This cost function includes the ones for state preparation and
for unitary synthesis as special cases:

• For state preparation, V is the column vector
(1, 0, · · · , 0)T, while W is the column vector containing
the elements of |ψ⟩ in the computational basis. Then
the cyclic property of the trace gives Tr[UCVW

†] =
⟨ψ|UC |0⟩.

• For unitary synthesis, V is just the identity matrix, so
that its columns are the successive computational basis
vectors, and W = U since its columns are the states
mapped to by said basis vectors. Also noting that m =
2n, we exactly recover the cost function for synthesis.

For any multi-state preparation problem, the cost func-
tion (12) lies in the range [0, 1] and has a minimum value
at 0 for a correct solution: in that case, UCV =W , and

Tr[WW †] = Tr[W †W] =
∑
i

⟨wi|wi⟩ = m. (13)

Note that this proof does not require orthogonality of the |wi⟩,
or even linear independence.

2We use |0⟩ as shorthand for |0⟩⊗n

C. Motivation for cost function

Suppose that the state system in question has a solution, UC ,
which precisely maps |vi⟩ to |wi⟩. Then for all i, ⟨wi|UC |vi⟩ =
1. For arbitrary U , we have |⟨wi|U |vi⟩| ≤ 1, so any cost
function of the form

1−

∣∣∣∣∣∑
i

ai⟨wi|U |vi⟩

∣∣∣∣∣ (14)

for ai > 0,
∑

i ai = 1 will satisfy

1−

∣∣∣∣∣∑
i

ai⟨wi|U |vi⟩

∣∣∣∣∣ ≥ 1−
∑
i

ai|⟨wi|U |vi⟩| ≥ 1−
∑
i

ai = 0

(15)
and will achieve the minimum value of 0 precisely for correct
solutions UC .

The cost function given in Eq. (12) is of the form (14):
1

m
Tr[UVW †] =

1

m

∑
i

Tr[U |vi⟩⟨wi|] =
∑
i

1

m
⟨wi|U |vi⟩.

(16)
However, the choice of ai = 1/m is not obvious and deserves
some justification.

First, suppose that all the input (equivalently, output) vectors
form an orthonormal set, V †V = Id. Then all pairs of vec-
tors (|vi⟩, |wi⟩) are equivalent under some high-dimensional
reflection and rotation, so it is natural to weight the mapping
of each pair equally. 1/m is thus a natural weight to assign.

What about the more general case where the provided input
and output vectors are not orthogonal? Consider the following
example, which we will return to several times:

Example: Let |ψ1⟩ and |ψ2⟩ be orthogonal states,
and define |v±⟩ =

√
1− ϵ2|ψ1⟩ ± ϵ|ψ2⟩ for some

small ϵ > 0. So the two specified input states (and,
if the problem is solvable, the corresponding output
states) are nearly parallel, with

V †V =

(
1 1− 2ϵ2

1− 2ϵ2 1

)
. (17)

The desired images of the input states are |v±⟩ 7→
|w±⟩ and |ψi⟩ 7→ |ϕi⟩.

We will keep this example in mind as we proceed to derive
two possible cost functions and then compare them.

An exact solution to the multi-state preparation problem
would have each state in the span of {|vi⟩} mapped to the
same linear combination of the {|wi⟩}, so a natural way to
define the total cost function for the system is to average over
the error in mapping each individual state in Span({|vi⟩}).
Consider some such state |v⟩, which in the computational basis
we write as V c, for some coefficient vector c; this state should
map to Wc, so for a given circuit implementing the unitary
UC , the error for this state is ||V c||2 − c†W †UCV c. (If the
columns of V are orthonormal, ||V c||2 = 1, but that is not
true in general.) Thus we could write the overall cost for the
circuit as an average over different coefficient vectors c:

∆ =
1

V

∫
c

c†Oc dc− 1

V

∫
c

c†W †UCV c dc (18)

where V measures the volume of Span({|vi⟩}) and O is the
overlap matrix V †V . Of course, this is not yet well-defined,
since we need an integration measure on the coefficient
vectors. This choice of integration measure effectively assigns
different weights to the states in Span({|vi⟩}) and is what
determines the weights ai in Eq. (14). We take two different
approaches.

Approach 1: First, we could sample c as random m-
dimensional vectors, i.e. from the first column of m×m Haar-
random unitaries; for unitary Um, the first column is Ume1
with e1 = (1, 0, · · · , 0)T. Then Eq. (18) becomes

eT1

[∫
Haar
U†
mOUm dµ(Um)−

∫
Haar
U†
mW

†UCV Um dµ(Um)

]
e1

(19)
where dµ is the Haar measure. The Haar average can be
computed exactly, by the “twirling” integral [43]∫

Haar
U†AU dµ(U) =

Tr[A]
m

Id. (20)

Using Tr[O] = m, we thus get a cost function of[
1− 1

m
Tr[W †UCV]

] (
eT1 · Id · e1

)
= 1− 1

m
Tr[W †UCV],

(21)
which is precisely Eq. (12) up to taking the magnitude, which
we do in (12) only for the convenience of working with real
numbers in numerical optimization.

We claimed that our choice of distribution for sampling
the coefficients c corresponds to a choice of weights for the
average over states in Span({|vi⟩}). To understand the weights
that arise from unitary sampling of c as considered here, we
turn back to the example above. The cost function becomes

1− (⟨w+|UC |v+⟩+ ⟨w−|UC |v−⟩) /2 (22)

which in terms of the orthogonal states |ψ1⟩ and |ψ2⟩ is

1−
(
(1− ϵ2)⟨ϕ1|UC |ψ1⟩+ ϵ2⟨ϕ2|UC |ψ2⟩

)
. (23)

So in the cost function, the orthogonal basis states for
Span({|vi⟩}) are effectively weighted by their prevalence in
the specified input states. In this case, most of the weight is
given to |ψ1⟩ since that is also the case for |v±⟩.

To get the corresponding general result, we recall that the
overlap matrices can be diagonalized as V †V = W †W =
SDS†. Then the cost function can be rewritten with

Tr[W †UV] = Tr[D
(
WSD−1/2

)†
U
(
V SD−1/2

)
]. (24)

Letting |ṽi⟩ and |w̃i⟩ be the (orthonormal) columns of
V SD−1/2 and WSD−1/2, we can then rewrite the cost
function (12) as

1− 1

m

∣∣∣∣∣∑
i

di⟨w̃i|UC |ṽi⟩

∣∣∣∣∣ . (25)

Thus in terms of this orthonormal basis for Span({|vi⟩}), the
weights are given by the eigenvalues of V †V , which are the
weights of the |ṽ⟩ basis states in the original input vectors:

di =
∑
j

|⟨vj |ṽi⟩|2. (26)

Approach 2: Alternatively, we could sample V c as random
m-dimensional vectors from the first column of m × m
Haar-random unitaries. Conceptually, this corresponds to first
finding Span({|vi⟩}), then forgetting about the original input
states and just averaging over the space in a uniform way; in
practice, we can take linear combinations given by Ume1 over
some orthonormal basis of the span, for example the columns
of V SD−1/2. Then Eq. (18) becomes

1−eT1

[∫
Haar
U†
m(WSD−1/2)†UC(V SD

−1/2)Um dµ(Um)

]
e1.

(27)
This gives

1− 1

m
Tr[(WSD−1/2)†UC(V SD

−1/2)]. (28)

In the style of Eq. (14), we have

∆ = 1− 1

m

∣∣∣∣∣∑
i

⟨w̃i|UC |ṽi⟩

∣∣∣∣∣ . (29)

Which approach is best? Both approaches seem reasonable,
a priori, but Approach 1 is preferred for several reasons:

• Approach 1 is more flexible as a software tool. If we
implemented Approach 2, an end-user would have no way
to access Approach 1, since the code would automatically
perform the orthogonalization and re-weighting, so that
the user could not choose to specify other weights if
desired. Conversely, a user could separately perform diag-
onalization of V †V and input V SD−1/2 and WSD−1/2

in place of V and W , thus recreating Approach 2 from
Approach 1.

• Computing Eq. (28) requires inverting the overlap matrix,
so if the input states are nearly linearly dependent as
in the example above with a small ϵ, the cost function
involves a numerically unstable operation.

• One might want to find a circuit that gives a good
approximate mapping in the case that V †V ̸= W †W .
The cost function of Eq. (12) remains well-defined and
corresponds to an intuitive picture of how an approximate
mapping should behave.

Consider again our example problem, but now suppose
that the requested mapping is

|v±⟩ =
√
1− ϵ2|ψ1⟩ ± ϵ|ψ2⟩ (30)

7→ |w±⟩ =
√
1− 4ϵ2|ψ1⟩ ± 2ϵ|ψ2⟩. (31)

Evidently, there is no exact solution, but for small ϵ
the identity transformation is close. Specifically, using
Eq. (12), we find an appropriately small cost of ≈ ϵ2/2.

On the other hand, Eq. (28) is no longer well-defined.
We could define V SD−1/2 using S and D from V †V
and WSD−1/2 using S and D from W †W , but then in
the example we would find a cost of exactly 0, a clearly
nonsensical result.

V. APPLICATIONS

Multi-state preparation has a variety of practical applications
that go beyond single-state preparation and unitary synthesis.
We address three such applications in some detail below. Other
applications (for which we would use multi-state preparation
as a subroutine in CQSP [37]) include solving linear sys-
tems [44] and quantum clustering algorithms [45].

A. Preparation of macroscopic superposition states

Multi-state preparation on a few qubits is helpful as a
subroutine for preparing a single highly-entangled state of
many qubits. Imagine we want to prepare a macroscopic
superposition state (often called a “cat” state) of the form

|ψ⟩ = 1√
2
(|ϕ1⟩+ |ϕ2⟩) (32)

where |ϕ1⟩ and |ϕ2⟩ are orthogonal n-qubit states.
An important special case is where the system can be

divided into few-qubit pieces, and between each piece there
is no entanglement in either |ϕ1⟩ or |ϕ2⟩, and furthermore
where for each few-qubit piece, the local states of |ϕ1⟩ and
|ϕ2⟩ are orthogonal. This class of states sounds contrived, but
it includes some very important examples both for theory and
for practical simulation of physical systems:

• The Greenberger-Horne-Zeilinger (GHZ) state: |ψ⟩ =
(|0⟩⊗n+|1⟩⊗n)/

√
2. This is the simplest example, where

each of the two pieces is a product over single-qubit
states.

• Any state of the form

|ψ⟩ = 1√
2

(
(a|00⟩+ b|11⟩)⊗n/2 + (c|01⟩+ d|10⟩)⊗n/2

)
(33)

Here the system is divided into two-qubit pieces, and on
each piece |ϕ1⟩ has a factor (a|00⟩ + b|11⟩) while |ϕ2⟩
has a factor (c|01⟩+ d|10⟩).

• More general states similar to (33). For example, for the
first two qubits, |ϕ1⟩ could have a factor |01⟩ and |ϕ2⟩
a factor |10⟩, while for the next three, |ϕ1⟩ could have
a factor (|000⟩ + |111⟩)/

√
2 and |ϕ2⟩ a factor (|001⟩ +

|010⟩+ |100⟩)/
√
3. The key requirement is that the state

is divided into chunks of qubits, where within each of
|ϕ1⟩ and |ϕ2⟩ there is no entanglement between chunks,
and where for each chunk the states on |ϕ1⟩ and |ϕ2⟩ are
orthogonal.

The GHZ state can be prepared in a constant-depth circuit (not
scaling with system size) by using measurement and reset in
addition to unitary operations [46]. We can then combine the
GHZ state with multi-state preparation to immediately prepare
a state like (33). We solve the multi-state preparation problem
for the system

|00⟩ 7→ a|00⟩+ b|11⟩ (34)
|11⟩ 7→ c|01⟩+ d|10⟩ (35)

and then just append that circuit to the one for GHZ prepara-
tion on each of the n/2 two-qubit blocks.

Precisely this kind of superposition is useful for measuring
expectation values of operators on a quantum computer, with
applications in physics and chemistry. Suppose, for example,
that one has an initial state |ψ0⟩ and wants to find the expecta-
tion value of the time-evolution operator for a Hamiltonian H ,
U = e−iHt. This expectation value is important in algorithms
such as variational quantum phase estimation (VQPE) for
finding ground states [47]. A common approach to finding both
the magnitude and phase of ⟨ψ0|U |ψ0⟩ is the Hadamard test,
but since all operations in the state preparation and application
of U become controlled operations with an ancilla, the circuit
depth becomes much longer than for running U on its own, a
major problem for near-term devices.

A different approach, proposed in [48], makes use of
a reference state |Ref⟩, one which is easy to prepare, is
orthogonal to |ψ0⟩, and is an eigenstate of H with known
eigenvalue E. In that case, the expectation value ⟨ψ0|U |ψ0⟩ =
reiθ, including phase, can be computed using |⟨ψ0|U |ψ0⟩|,
|(⟨ψ0|+⟨Ref|)U(|ψ0⟩+|Ref⟩)|/2, and |(⟨ψ0|+⟨Ref|)U(|ψ0⟩+
i|Ref⟩)|/2; respectively, these give access to r, cos(θ), and
sin(θ). All three can be measured without adding additional
controlled gates and thus without significantly increasing cir-
cuit depth.

One example of a Hamiltonian where this reference state
approach is useful is the spin Heisenberg model on a latttice,
used for simulating magnetism. Typical initial states |ψ0⟩
of interest have total spin 0 (Marshall’s theorem, [49]§5.1),
meaning that they are linear combinations of basis states that
have an equal number of |0⟩s and |1⟩s. On the other hand, the
fully polarized states |0⟩⊗n and |1⟩⊗n are exact eigenstates
of H with total spin n/2 and make for good reference states.
Thus when, e.g., running VQPE to find the ground state of a
spin system, we might want to prepare the superposition of the
spin-0 initial state ((|01⟩ − |10⟩)/

√
2)⊗n/2 with the reference

state |0⟩⊗n, which is precisely of the form (33).

B. Hamiltonian evolution for certain symmetry sectors

Related to the previous problem, if we want to apply the
operator e−iHt to a given state |ψ0⟩, we may be able to use
multi-state preparation to construct a different operator from
e−iHt with a shorter circuit but which still acts correctly on
|ψ0⟩ in particular.

For example, consider a two-qubit system with H given by

H =


1

−1 2
2 −1

1

 . (36)

(This is, in fact, the aforementioned spin Heisenberg model,
specialized to two spins.) The time evolution operator e−iHt

maintains the same block structure:

e−iHt =


e−it

eit cos(2t) −ieit sin(2t)
−ieit sin(2t) eit cos(2t)

e−it

 .

(37)

If the initial state |ψ0⟩ is of the form a|01⟩+ b|10⟩, the block
structure of e−iHt ensures that the time-evolved state will
remain a superposition of |01⟩ and |10⟩. Consequently, we
can replace e−iHt by any unitary of the form

U =


∗ ∗

eit cos(2t) −ieit sin(2t)
−ieit sin(2t) eit cos(2t)

∗ ∗

 (38)

without changing the action on |ψ0⟩. Thus instead of finding
a circuit for e−iHt using unitary synthesis, we can solve the
multi-state preparation problem

|01⟩ 7→ eit cos(2t)|01⟩ − ieit sin(2t)|10⟩ (39a)

|10⟩ 7→ eit cos(2t)|10⟩ − ieit sin(2t)|01⟩, (39b)

which in general will produce a shorter circuit.

C. Preparation of isometry circuits and quantum channels

General operations on quantum states are described by
quantum channels, i.e. completely positive trace-preserving
(CPTP) maps [1], so we would like to be able to find a short
and efficient circuit that carries out a given channel. Although
channels are non-unitary, generically involving measurement,
reset, and feed-forward, Stinespring’s dilation theorem [50]
guarantees that any channel can be implemented by an isome-
try followed by partial trace, i.e. measurement. More precisely,
a channel from nin to nout qubits can be implemented by an
isometry from nin qubits to nin + 2nout qubits, followed by
discarding all but nout of the output qubits [35]. This is the
approach to channel compilation taken in, for example, the
Mathematica library UniversalQCompiler [36].

As we demonstrate in Sec. VI below, our numerical solution
to the multi-state preparation problem finds shorter circuits
than do existing software implementations for compilation of
isometries [24], [25], [36]. We will therefore be able to reduce
gate depths and thus improve fidelity for simulations of quan-
tum channels. One key application where this compression
will be essential is simulation of open quantum systems, where
recent papers have already made use of the representation of
a channel as an isometry followed by measurement [51], [52].

VI. SOFTWARE IMPLEMENTATION AND NUMERICAL
DEMONSTRATION

A. BQSKit code

Multi-state preparation is included in the Berkeley Quan-
tum Synthesis Toolkit (BQSKit), an open-source quantum
compiler library written in Python and Rust and maintained
by Lawrence Berkeley National Laboratory [27], [28], be-
ginning with version 1.1. The problem is specified as a
StateSystem object, defined using a dictionary where
the input states are the keys and the corresponding output
states the values, {psi_in : psi_out}. Here we include
python code for a small example, the two-qubit problem from
Eq. 2.

from bqskit import compile
from bqskit.qis import StateVector
from bqskit.qis import StateSystem

in1 = StateVector(np.array([1,0,0,0]))
in2 = StateVector(np.array([0,0,0,1]))

out1 = StateVector(in1)
out2 = np.array([0,1,-1,0])/np.sqrt(2)
out2 = StateVector(out2)

system = StateSystem({in1:out1, in2:out2})

c = compile(system, optimization_level=2)

out1_c = c.get_statevector(in1)
out2_c = c.get_statevector(in2)

print(c.gate_counts)
print(out1_c)
print(out2_c)
print(out1_c.get_distance_from(out1))
print(out2_c.get_distance_from(out2))

>>> {U3Gate: 1, RYGate: 4, CNOTGate: 2}
>>> [1.00e+00+3.06e-07j 1.63e-05+8.47e-12j

5.56e-06+3.77e-12j -1.56e-06-1.27e-07j]
>>> [-7.61e-06-1.54e-12j 7.07e-01+5.03e-08j

-7.07e-01+1.29e-07j 7.86e-06+3.48e-12j]
>>> 2.999380743773372e-10
>>> 2.644338081836395e-10

The “off-the-shelf” compile function allows some error in
the output vectors as seen here, but the user can request higher
precision.

While one solution to this particular problem, the circuit in
Eq. (3), could be found relatively easily with pencil and paper,
a solution with CNOT as the only two-qubit gate is much more
challenging to find by hand; the circuit in Eq. (4) is the solution
generated by the code just above. Furthermore, the BQSKit
implementation of multi-state preparation provides optimal or
near-optimal solutions for three- and four-qubit problems that
are infeasible to solve by hand.

B. Numerical simulation examples
In Sec. IIA, we considered the number of entangling gates

such as CNOT and CH required to solve some simple multi-
state preparation problems on two qubits. These sample prob-
lems exemplify the theoretically known number of CNOTs
required, namely at most one for single-state preparation [40],
at most two for a 1 qubit → 2 qubit isometry [35], and at
most three for a full unitary operation [38], [39].

Here we demonstrate our numerical approach on a more
difficult case, multi-state preparation for three-qubit and four-
qubit states. We find how the required number of CNOT
gates scales with the number of states to simultaneously
prepare, and we also show that when the number of states
is a power of 2, so that the problem is equivalent to isometry
synthesis, we find substantially lower CNOT counts than does
the “top-down” matrix decomposition approach of [35] (used
in UniversalQCompiler [36], Qiskit [24], and Cirq [25]); for
large m, the reduction is around 30-40%.

1 2 4 8 16
States to map, m

101

102

C
N
O
T
ga
te
s

UQC

BQSKit

n = 3

n = 4

4 8
m

5

10

t
(s
ec
.)

Fig. 2. Number of CNOT gates for the shortest circuit found to solve the
multi-state mapping problem with 3 (circle markers) and 4 qubits (triangles),
and with varying numbers of states to map, m. Yellow points show the CNOT
counts for numerical optimization via instantiation with the cost function from
Eq. (12) as implemented in BQSKit [28], while teal markers show the CNOT
counts from the software package UniversalQCompiler [36]. Evidently, the
numerical approach finds significantly shorter circuits. The inset shows the
mean computation time to numerically solve the multi-state problem for n = 3
qubits as a function of the number of states m, showing a monotonic and
approximately linear dependence.

To be precise, we carry out the following numerical exper-
iment Nshots times, with n = 3, 4:

1) Generate a 2n × 2n unitary operator, U .
2) For m ∈ {1, · · · , 2n}, perform multi-state preparation

where the |vi⟩ are the first m standard basis vectors
and |wi⟩ the first m columns of U . Find the minimum
number of CNOT gates needed for each m.3

We show the results of the experiment, both for n = 3 and
n = 4, in Figure 2. The inset shows how the time required for
the compilation scales with the number of states to be mapped,
m. Evidently, if one needs a few states to be mapped correctly
but does not care about the actions of the circuit on the rest of
the Hilbert space, there is substantial freedom to shorten the
required circuit by performing mutli-state preparation rather
than unitary synthesis, with the side benefit that the classical
computation time to find a good circuit will also be reduced.

Recalling Example 1 from Section II A., there are two
possible reasons for why shorter circuits are returned by our
numerical instantiation approach than by top-down matrix de-
composition: (a) among all unitary transformations consistent
with the multi-state problem, numerical instantiation may be
finding one that has a shorter optimal circuit implementation;
and/or (b) the top-down approach may be finding a longer
than necessary circuit to implement its unitary transformation.
If only (b) were the case, but not (a), we could feed the
output circuits from the top-down approach into a numerical
compiler, such as the one included with BQSKit, and find
equivalent circuits of the same depth as those from the numer-
ical instantiation approach. When we perform this additional

3In this numerical experiment, we assume all-to-all connectivity. BQSKit
also supports multi-state preparation with any connectivity graph.

experiment, we find that, while some circuit depths are indeed
reduced, for all cases with m < 2n we still find longer
circuits for top-down plus recompiling compared with direct
numerical instantiation. (For example, with n = 4, m = 23,
UniversalQCompiler outputs a circuit with 73 CNOTs, which
BQSKit compiles down to 57. The direct numerical approach
gives 46 CNOTs.) We conclude that the numerical instantiation
approach produces fundamentally better solutions that cannot
be matched by post-processing the output circuits of the top-
down approach.

Finally, we comment on the level of precision in the two
approaches. The matrix decomposition approach returns cir-
cuits that produce the desired isometry exactly up to machine
precision. On the other hand, the numerical approach produces
circuits that match the desired isometry only up to a specified
threshold of the cost function; we currently target a cost
threshold that returns isometries accurate to about 10−4 in
each matrix element. This reduction in precision should not
be viewed as a drawback of the method. Rather, as long as
these errors are significantly smaller than those that arise in
running the circuit on hardware, the imprecision will have no
meaningful impact on the results of real simulations; currently,
for a circuit with dozens of two-qubit gates, the hardware
errors are orders of magnitude larger. Furthermore, by allowing
some imprecision, it may be possible to produce shorter
circuits than if full precision is required, and thus we can
choose to slightly increase the error in the theoretical circuit
and in exchange substantially lower the noise and infidelity
from hardware, a worthwhile tradeoff.

VII. DISCUSSION

We have studied a very general quantum circuit synthesis
problem that falls between the commonly considered cases of
single-state preparation and full unitary synthesis, and which
includes each of those problems as a special case. We prove
that a set of input states {|vi⟩} can be exactly mapped to a
set of output states {|wi⟩} if and only if the overlaps for the
two sets of states are equal, ⟨vi|vj⟩ = ⟨wi|wj⟩ for all pairs
i, j. Furthermore, we show that to numerically optimize a
quantum circuit to perform the state mapping, a good cost
function is given by equation (12). We have implemented
both the solvability check and the circuit optimization in
Berkeley Lab’s open-source quantum compiler, BQSKit, and
we demonstrated the strong performance of the numerical
optimizer on three- and four-qubit problems.

Multi-state preparation is a useful tool for a variety of
applications, including preparation of efficient circuits to
implement isometries and hence quantum channels. Other
applications include preparation of macroscopic superposition
states and reduction of circuits for time evolution in physics
and chemistry simulations by preparing a circuit only for the
part of the time evolution operator that acts within a specific
block of a block-diagonal Hamiltonian.

With the addition of multi-state preparation to BQSKit in
version 1.1, we now support the full range of pure-state prepa-
ration and unitary synthesis. Planned future updates to BQSKit

will add further capabilities, including direct compilation of
non-unitary channels as well as state preparation making use
of measurement and reset.

ACKNOWLEDGMENT

We thank Huo Chen for helpful conversations and for point-
ing out several useful references. This work was supported
Office of Science, Office of Advanced Scientific Comput-
ing Research Accelerated Research for Quantum Computing
Program of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. This research used resources of
the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User
Facility located at Lawrence Berkeley National Laboratory.

REFERENCES

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
2010.

[2] J. Preskill, “Quantum Computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https:
//doi.org/10.22331/q-2018-08-06-79

[3] “Quantinuum Sets New Record with Highest Ever Quantum
Volume”. [Online]. Available: https://www.quantinuum.com/news/
quantinuum-sets-new-record-with-highest-ever-quantum-volume

[4] “IONQ Aria: Practical Performance”. [Online]. Available: https:
//ionq.com/resources/ionq-aria-practical-performance

[5] M. Saffman, I. I. Beterov, A. Dalal, E. J. Páez, and B. C.
Sanders, “Symmetric rydberg controlled-z gates with adiabatic pulses,”
Phys. Rev. A, vol. 101, p. 062309, Jun 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.101.062309

[6] I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper,
H. Pichler, V. Schkolnik, J. R. Williams, and M. Endres, “High-fidelity
entanglement and detection of alkaline-earth rydberg atoms,” Nature
Physics, vol. 16, no. 8, pp. 857–861, Aug 2020. [Online]. Available:
https://doi.org/10.1038/s41567-020-0903-z

[7] S. J. Evered, D. Bluvstein, M. Kalinowski, S. Ebadi, T. Manovitz,
H. Zhou, S. H. Li, A. A. Geim, T. T. Wang, N. Maskara, H. Levine,
G. Semeghini, M. Greiner, V. Vuletic, and M. D. Lukin, “High-fidelity
parallel entangling gates on a neutral atom quantum computer,” 2023.
[Online]. Available: https://arxiv.org/abs/2304.05420

[8] A. R. Mills, C. R. Guinn, M. J. Gullans, A. J. Sigillito,
M. M. Feldman, E. Nielsen, and J. R. Petta, “Two-qubit silicon
quantum processor with operation fidelity exceeding 99%,” Science
Advances, vol. 8, no. 14, p. eabn5130, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/sciadv.abn5130

[9] A. Kandala, K. X. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G. A.
Keefe, D. Klaus, O. Dial, and D. C. McKay, “Demonstration of a high-
fidelity cnot gate for fixed-frequency transmons with engineered zz
suppression,” Phys. Rev. Lett., vol. 127, p. 130501, Sep 2021. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.127.130501

[10] L. B. Nguyen, G. Koolstra, Y. Kim, A. Morvan, T. Chistolini,
S. Singh, K. N. Nesterov, C. Jünger, L. Chen, Z. Pedramrazi, B. K.
Mitchell, J. M. Kreikebaum, S. Puri, D. I. Santiago, and I. Siddiqi,
“Blueprint for a high-performance fluxonium quantum processor,”
PRX Quantum, vol. 3, p. 037001, Aug 2022. [Online]. Available:
https://link.aps.org/doi/10.1103/PRXQuantum.3.037001

[11] I. N. Moskalenko, I. A. Simakov, N. N. Abramov, A. A.
Grigorev, D. O. Moskalev, A. A. Pishchimova, N. S. Smirnov,
E. V. Zikiy, I. A. Rodionov, and I. S. Besedin, “High fidelity
two-qubit gates on fluxoniums using a tunable coupler,” npj
Quantum Information, p. 130, Nov. 2022. [Online]. Available:
https://doi.org/10.1038/s41534-022-00644-x

[12] Google Quantum AI, “Suppressing quantum errors by scaling a surface
code logical qubit,” Nature, vol. 614, no. 7949, pp. 676–681, Feb 2023.
[Online]. Available: https://doi.org/10.1038/s41586-022-05434-1

[13] J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Optimal
quantum circuit synthesis from controlled-unitary gates,” Phys.
Rev. A, vol. 69, p. 042309, Apr 2004. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.69.042309

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://www.quantinuum.com/news/quantinuum-sets-new-record-with-highest-ever-quantum-volume
https://www.quantinuum.com/news/quantinuum-sets-new-record-with-highest-ever-quantum-volume
https://ionq.com/resources/ionq-aria-practical-performance
https://ionq.com/resources/ionq-aria-practical-performance
https://link.aps.org/doi/10.1103/PhysRevA.101.062309
https://doi.org/10.1038/s41567-020-0903-z
https://arxiv.org/abs/2304.05420
https://www.science.org/doi/abs/10.1126/sciadv.abn5130
https://link.aps.org/doi/10.1103/PhysRevLett.127.130501
https://link.aps.org/doi/10.1103/PRXQuantum.3.037001
https://doi.org/10.1038/s41534-022-00644-x
https://doi.org/10.1038/s41586-022-05434-1
https://link.aps.org/doi/10.1103/PhysRevA.69.042309

[14] V. Shende, S. Bullock, and I. Markov, “Synthesis of quantum-logic
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 6, pp. 1000–1010, 2006. [Online].
Available: https://ieeexplore.ieee.org/document/1629135

[15] D. Camps and R. Van Beeumen, “Approximate quantum circuit
synthesis using block encodings,” Phys. Rev. A, vol. 102, p.
052411, Nov 2020. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.102.052411

[16] M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and
C. Iancu, “Towards optimal topology aware quantum circuit synthesis,”
2020 IEEE International Conference on Quantum Computing and
Engineering (QCE), pp. 223–234, 2020. [Online]. Available: https:
//ieeexplore.ieee.org/document/9259942

[17] E. Younis, K. Sen, K. A. Yelick, and C. Iancu, “Qfast: Conflating
search and numerical optimization for scalable quantum circuit
synthesis,” 2021 IEEE International Conference on Quantum Computing
and Engineering (QCE), pp. 232–243, 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9605287

[18] E. Smith, M. G. Davis, J. Larson, E. Younis, L. B. Oftelie,
W. Lavrijsen, and C. Iancu, “Leap: Scaling numerical optimization
based synthesis using an incremental approach,” ACM Transactions
on Quantum Computing, vol. 4, no. 1, feb 2023. [Online]. Available:
https://doi.org/10.1145/3548693

[19] L. Cincio, K. Rudinger, M. Sarovar, and P. J. Coles, “Machine
learning of noise-resilient quantum circuits,” PRX Quantum, vol. 2, p.
010324, Feb 2021. [Online]. Available: https://link.aps.org/doi/10.1103/
PRXQuantum.2.010324

[20] P. Rakyta and Z. Zimborás, “Efficient quantum gate decomposition
via adaptive circuit compression,” 2022. [Online]. Available: https:
//arxiv.org/abs/2203.04426

[21] E. Younis and C. Iancu, “Quantum circuit optimization and transpilation
via parameterized circuit instantiation,” in 2022 IEEE International
Conference on Quantum Computing and Engineering (QCE), 2022,
pp. 465–475. [Online]. Available: https://ieeexplore.ieee.org/document/
9951320

[22] S. Ashhab, N. Yamamoto, F. Yoshihara, and K. Semba, “Numerical
analysis of quantum circuits for state preparation and unitary operator
synthesis,” Phys. Rev. A, vol. 106, p. 022426, Aug 2022. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.106.022426

[23] X. Sun, G. Tian, S. Yang, P. Yuan, and S. Zhang, “Asymptotically
optimal circuit depth for quantum state preparation and general
unitary synthesis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1–1, 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/10044235

[24] Qiskit contributors, “Qiskit: An open-source framework for quantum
computing,” 2023. [Online]. Available: https://doi.org/10.5281/zenodo.
2573505

[25] Cirq Developers, “Cirq,” Dec. 2022, See full list of authors
on Github: https://github .com/quantumlib/Cirq/graphs/contributors.
[Online]. Available: https://doi.org/10.5281/zenodo.7465577

[26] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington,
and R. Duncan, “t—ket〉: a retargetable compiler for nisq devices,”
Quantum Science and Technology, vol. 6, no. 1, p. 014003, nov 2020.
[Online]. Available: https://dx.doi.org/10.1088/2058-9565/ab8e92

[27] E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, and E. Smith,
“Berkeley quantum synthesis toolkit (bqskit) v1,” 4 2021. [Online].
Available: https://www.osti.gov/biblio/1785933

[28] BQSKit code repository. [Online]. Available: https://github.com/
BQSKit/bqskit

[29] W. P. Schleich and M. G. Raymer, “Special issue on quantum
state preparation and measurement,” Journal of Modern Optics,
vol. 44, no. 11-12, pp. 2021–2022, 1997. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.1080/09500349708231863

[30] V. Bergholm, J. J. Vartiainen, M. Möttönen, and M. M. Salomaa,
“Quantum circuits with uniformly controlled one-qubit gates,” Phys.
Rev. A, vol. 71, p. 052330, May 2005. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.71.052330

[31] M. Plesch and Č. Brukner, “Quantum-state preparation with universal
gate decompositions,” Phys. Rev. A, vol. 83, p. 032302, Mar
2011. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.
83.032302

[32] I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva, “A
divide-and-conquer algorithm for quantum state preparation,” Scientific

Reports, vol. 11, no. 1, p. 6329, Mar 2021. [Online]. Available:
https://doi.org/10.1038/s41598-021-85474-1

[33] X.-M. Zhang, T. Li, and X. Yuan, “Quantum state preparation
with optimal circuit depth: Implementations and applications,” Phys.
Rev. Lett., vol. 129, p. 230504, Nov 2022. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.129.230504

[34] E. Knill, “Approximation by quantum circuits,” 1995. [Online].
Available: https://arxiv.org/abs/quant-ph/9508006

[35] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl,
“Quantum circuits for isometries,” Phys. Rev. A, vol. 93, p.
032318, Mar 2016. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.93.032318

[36] R. Iten, O. Reardon-Smith, E. Malvetti, L. Mondada, G. Pauvert,
E. Redmond, R. S. Kohli, and R. Colbeck, “Introduction to
UniversalQCompiler,” 2021. [Online]. Available: https://arxiv.org/abs/
1904.01072

[37] P. Yuan and S. Zhang, “Optimal (controlled) quantum state preparation
and improved unitary synthesis by quantum circuits with any number
of ancillary qubits,” Quantum, vol. 7, p. 956, Mar. 2023. [Online].
Available: https://doi.org/10.22331/q-2023-03-20-956

[38] G. Vidal and C. M. Dawson, “Universal quantum circuit for
two-qubit transformations with three controlled-not gates,” Phys.
Rev. A, vol. 69, p. 010301, Jan 2004. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevA.69.010301

[39] F. Vatan and C. Williams, “Optimal quantum circuits for general
two-qubit gates,” Phys. Rev. A, vol. 69, p. 032315, Mar 2004. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.69.032315

[40] M. Žnidarič, O. Giraud, and B. Georgeot, “Optimal number
of controlled-not gates to generate a three-qubit state,” Phys.
Rev. A, vol. 77, p. 032320, Mar 2008. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.77.032320

[41] copper.hat (https://math.stackexchange.com/users/27978/copper hat),
“Unitary map between sets of vectors,” Mathematics Stack Exchange,
uRL:https://math.stackexchange.com/q/583653 (version: 2013-11-27).
[Online]. Available: https://math.stackexchange.com/q/583653

[42] M. Weiden, J. Kalloor, J. Kubiatowicz, E. Younis, and C. Iancu,
“Wide quantum circuit optimization with topology aware synthesis,”
in 2022 IEEE/ACM Third International Workshop on Quantum
Computing Software (QCS), 2022, pp. 1–11. [Online]. Available:
https://ieeexplore.ieee.org/document/10025533

[43] D. A. Roberts and B. Yoshida, “Chaos and complexity by design,”
Journal of High Energy Physics, vol. 2017, p. 121, Apr 2017. [Online].
Available: https://doi.org/10.1007/JHEP04(2017)121

[44] L. Wossnig, Z. Zhao, and A. Prakash, “Quantum linear system
algorithm for dense matrices,” Phys. Rev. Lett., vol. 120, p. 050502, Jan
2018. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.
120.050502

[45] I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, “q-means:
A quantum algorithm for unsupervised machine learning,” in
Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2019/file/16026d60ff9b54410b3435b403afd226-Paper.pdf

[46] H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of
interacting particles,” Phys. Rev. Lett., vol. 86, pp. 910–913, Jan 2001.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.86.910

[47] K. Klymko, C. Mejuto-Zaera, S. J. Cotton, F. Wudarski, M. Urbanek,
D. Hait, M. Head-Gordon, K. B. Whaley, J. Moussa, N. Wiebe,
W. A. de Jong, and N. M. Tubman, “Real-time evolution for
ultracompact hamiltonian eigenstates on quantum hardware,” PRX
Quantum, vol. 3, p. 020323, May 2022. [Online]. Available:
https://link.aps.org/doi/10.1103/PRXQuantum.3.020323

[48] C. L. Cortes and S. K. Gray, “Quantum krylov subspace algorithms for
ground- and excited-state energy estimation,” Phys. Rev. A, vol. 105, p.
022417, Feb 2022. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.105.022417

[49] A. Auerbach, Ground States of the Heisenberg Model. New
York, NY: Springer New York, 1994. [Online]. Available: https:
//doi.org/10.1007/978-1-4612-0869-3

[50] W. F. Stinespring, “Positive functions on c*-algebras,” Proceedings of
the American Mathematical Society, vol. 6, no. 2, pp. 211–216, 1955.
[Online]. Available: http://www.jstor.org/stable/2032342

https://ieeexplore.ieee.org/document/1629135
https://link.aps.org/doi/10.1103/PhysRevA.102.052411
https://link.aps.org/doi/10.1103/PhysRevA.102.052411
https://ieeexplore.ieee.org/document/9259942
https://ieeexplore.ieee.org/document/9259942
https://ieeexplore.ieee.org/document/9605287
https://doi.org/10.1145/3548693
https://link.aps.org/doi/10.1103/PRXQuantum.2.010324
https://link.aps.org/doi/10.1103/PRXQuantum.2.010324
https://arxiv.org/abs/2203.04426
https://arxiv.org/abs/2203.04426
https://ieeexplore.ieee.org/document/9951320
https://ieeexplore.ieee.org/document/9951320
https://link.aps.org/doi/10.1103/PhysRevA.106.022426
https://ieeexplore.ieee.org/document/10044235
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.7465577
https://dx.doi.org/10.1088/2058-9565/ab8e92
https://www.osti.gov/biblio/1785933
https://github.com/BQSKit/bqskit
https://github.com/BQSKit/bqskit
https://www.tandfonline.com/doi/abs/10.1080/09500349708231863
https://link.aps.org/doi/10.1103/PhysRevA.71.052330
https://link.aps.org/doi/10.1103/PhysRevA.83.032302
https://link.aps.org/doi/10.1103/PhysRevA.83.032302
https://doi.org/10.1038/s41598-021-85474-1
https://link.aps.org/doi/10.1103/PhysRevLett.129.230504
https://arxiv.org/abs/quant-ph/9508006
https://link.aps.org/doi/10.1103/PhysRevA.93.032318
https://link.aps.org/doi/10.1103/PhysRevA.93.032318
https://arxiv.org/abs/1904.01072
https://arxiv.org/abs/1904.01072
https://doi.org/10.22331/q-2023-03-20-956
https://link.aps.org/doi/10.1103/PhysRevA.69.010301
https://link.aps.org/doi/10.1103/PhysRevA.69.010301
https://link.aps.org/doi/10.1103/PhysRevA.69.032315
https://link.aps.org/doi/10.1103/PhysRevA.77.032320
https://math.stackexchange.com/q/583653
https://ieeexplore.ieee.org/document/10025533
https://doi.org/10.1007/JHEP04(2017)121
https://link.aps.org/doi/10.1103/PhysRevLett.120.050502
https://link.aps.org/doi/10.1103/PhysRevLett.120.050502
https://proceedings.neurips.cc/paper_files/paper/2019/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://link.aps.org/doi/10.1103/PhysRevLett.86.910
https://link.aps.org/doi/10.1103/PRXQuantum.3.020323
https://link.aps.org/doi/10.1103/PhysRevA.105.022417
https://link.aps.org/doi/10.1103/PhysRevA.105.022417
https://doi.org/10.1007/978-1-4612-0869-3
https://doi.org/10.1007/978-1-4612-0869-3
http://www.jstor.org/stable/2032342

[51] L. Del Re, B. Rost, A. F. Kemper, and J. K. Freericks, “Driven-
dissipative quantum mechanics on a lattice: Simulating a fermionic
reservoir on a quantum computer,” Phys. Rev. B, vol. 102, p.
125112, Sep 2020. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevB.102.125112

[52] Z. Hu, R. Xia, and S. Kais, “A quantum algorithm for evolving
open quantum dynamics on quantum computing devices,” Scientific
Reports, vol. 10, no. 1, p. 3301, Feb 2020. [Online]. Available:
https://doi.org/10.1038/s41598-020-60321-x

https://link.aps.org/doi/10.1103/PhysRevB.102.125112
https://link.aps.org/doi/10.1103/PhysRevB.102.125112
https://doi.org/10.1038/s41598-020-60321-x

	Introduction
	The multi-state preparation problem
	Two-qubit examples

	When does a multi-state preparation problem have a solution in principle?
	Numerical implementation
	Background: numerical optimization via instantiation
	Cost function for multi-state preparation
	Motivation for cost function

	Applications
	Preparation of macroscopic superposition states
	Hamiltonian evolution for certain symmetry sectors
	Preparation of isometry circuits and quantum channels

	Software implementation and numerical demonstration
	BQSKit code
	Numerical simulation examples

	Discussion
	References

