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Abstract

There has been considerable interest exploring how the util-
ity of an outcome impacts the probability with which it is
mentally simulated. Earlier studies using varying methodolo-
gies have yielded divergent conclusions with different direc-
tions of the influence. To directly examine such mental pro-
cess, we employed a random generation paradigm in which
all the outcomes were either equally (i.e., followed a uniform
distribution) or unequally (i.e., a binomial distribution) proba-
ble. While our results revealed individual differences in how
the utility influenced responses, the overall findings suggested
that it is the outcomes’ probabilities, not their utilities, that
guide this process. Notably, an initial utility-independent bias
emerged, with individuals displaying a tendency to start with
smaller values when all outcomes are equally likely. Our find-
ings offer insights into the benefits of studying the mental sam-
pling processes and provide empirical support for particular
sampling models in this domain.

Keywords: random generation; sampling; probability judg-
ment

Introduction
Imagine purchasing a lottery ticket—what results do you en-
vision? Psychologists have delved into understanding how
people perceive risky events, developing sequential sampling
models such as Decision Field Theory (DFT; Busemeyer &
Townsend, 1993; Busemeyer & Diederich, 2002; Roe, Buse-
meyer, & Townsend, 2001) and Utility-Weighted Sampling
(UWS; Lieder, Griffiths, & Hsu, 2018). In the face of a risky
event, such as an option with a fifty-fifty chance of winning
either £3 or £5, these models assume individuals mentally
simulate or “sample” potential outcomes from a probability
distribution.

However, DFT and UWS make different assumptions
about the interplay between the utilities of outcomes and the
probabilities of them being sampled. DFT makes the simple
assumption that the probability of sampling an outcome is
the probability described to participants. To illustrate, in the
aforementioned example, individuals would draw a roughly
equivalent number of samples for both £3 and £5 outcomes.
In contrast, UWS assumes “oversampling” of the extreme
outcomes, i.e., individuals would draw a greater number of
samples for the larger (£5) outcome.

Past investigations on whether utilities impact the percep-
tion of their probabilities have generally found that this is in-
deed the case. However, these past investigations do not agree
about how outcomes affect probabilities. By characterising

probability judgments, choices and recall as driven by a men-
tal sampling process (Zhu, León-Villagrá, Chater, & Sanborn,
2022; Zhu, Sundh, Spicer, Chater, & Sanborn, 2023), these
findings can be categorised into four types of “biases” con-
sidering the oversampling or undersampling of extreme gains
and extreme losses, as illustrated in Figure 1.

Supporting the assumptions of UWS, some empirical stud-
ies in decisions from experience found that extreme gains
and extreme losses were overestimated (Ludvig, Madan, &
Spetch, 2014; Madan, Spetch, Machado, Mason, & Ludvig,
2021) and were more likely to be recalled (Madan, Ludvig,
& Spetch, 2014). We describe this bias as polarisation (see
Figure 1).

Figure 1: Potential biases regarding the sampling of extreme
gains and extreme losses, with citations of studies supporting
each bias.

Conversely, Pleskac and Hertwig (2014; see also Hoffart,
Rieskamp, & Dutilh, 2019) found that participants estimated
lower probabilities associated with better outcomes, suggest-
ing a centralisation bias where larger rewards or losses were
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perceived as less likely than smaller ones (also termed a “risk-
reward heuristic”).

Individuals were also found to exhibit variations in their
levels of optimism or pessimism across different tasks. Stud-
ies have demonstrated that participants tended to perceive de-
sirable events as more likely to occur and undesirable events
as less likely—both perceptions often deviating from the de-
scriptive probability (Irwin, 1953; Marks, 1951; Krizan &
Windschitl, 2007). Interestingly, in a performance prediction
task, Norem and Cantor (1986) revealed a group of “defen-
sive pessimists” who reliably expected poorer performance
that those identified as optimists.

Despite exploring the interaction between utilities and
probability judgments using varied procedures, these stud-
ies did not directly investigate the sampling process itself, on
which the probability judgments rely. And, importantly, past
work has generally not considered the time course of biases:
While past work has characterized these biases as constant, it
is possible that just the first few mental simulations are biased
by utilities. For example, mental sampling accounts of the
anchoring effect assume that the anchor affects only the start-
ing point of the mental simulation process, with later sam-
ples gradually becoming unbiased (Lieder, Griffiths, Huys, &
Goodman, 2018). Notably, the individual level has received
limited attention in these studies, and the presence of outliers
could introduce bias into the results.

To examine the time course of biases in mental simulation,
we adapted a paradigm that calls for repeated mental simu-
lation: the random generation task (Baddeley, 1966). In this
task participants were asked to repeatedly mentally simulate
playing a lottery and utter the outcome out loud while fol-
lowing the beats of a metronome. Random generation was
initially used to study working memory (Baddeley, 1998) and
people’s concept of randomness (Nickerson, 2002), and has
recently been adapted to explore the mental sampling pro-
cess itself, both for equally probable and unequally proba-
ble events (Castillo, León-Villagrá, Chater, & Sanborn, 2024;
León-Villagrá, Castillo, Chater, & Sanborn, 2022).

In general, we tested for the hypotheses depicted in Figure
1 using the random generation paradigm with two probabil-
ity distributions: a uniform distribution (i.e., drawing slips of
papers from a bag; Experiment 1) and a binomial distribution
(i.e., the number of heads after tossing ten coins simultane-
ously; Experiment 2).

Experiment 1
Participants
28 participants (8 women, 20 men; age: M = 21.9 years, SD
= 3.5) took part in the study. Two additional participants were
recruited but were excluded from the analysis since the length
of their generated sequence was shorter than 80% of the re-
quested length. Participants received a show-up fee of £3,
plus a bonus of up to 20p depending on the number of points
they received at the end of the experiment. The average pay-
ment was £3.10, and the experiment took about 40 minutes to

complete.

Design and Materials

The experiment employed a within-subject design, incorpo-
rating three variants of a random generation task through
three distinct scenarios: winning, losing, and control. All the
participants began with the control scenario, and the order of
the subsequent winning and losing scenarios was counterbal-
anced across subjects.

In each scenario, participants were presented with a set
of 11 slips of paper of identical size reflecting the numbers
0 to 10. Scenarios differed in the value of these numbers:
In the winning scenario, slips were labelled as “winning [x]
points”; in the losing scenario, slips were labeled as “losing
[x] points”, where “x” represents each of the numbers 0 to
10; in the control scenario, slips were only labeled with their
respective number. Participants were asked to imagine “draw-
ing a slip out from a bag, saying the number or the outcome
on it out loud, putting it back, shuffling, then repeating the
process”, following the instructions in Baddeley (1966). No-
tably, in the winning and losing scenarios, participants were
asked to articulate the full phrase ”winning” or ”losing [x]
points” during every response to ensure scenario retention.

To aid comparison between scenarios, each generated re-
sponse was converted into its absolute value, meaning “5” in
the control scenario, “winning 5 points” in the winning sce-
nario, and “losing 5 points” in the losing scenario were all
transcribed as 5 (and all termed “number” below).

Procedure

The experiment was conducted online using Microsoft
Teams, which was also used to record participants’ audio.
The experiment began with an explanation of the random gen-
eration task, including a visual demonstration of the drawing
process using physical slips by the experimenter.

The experiment contained three blocks, one for each of the
three scenarios. Each block began by showing a photograph
of the set of slips from that scenario. Participants were then
asked to generate draws from that set as spoken responses for
4 minutes. To guide the pace of responses, participants were
presented with a flashing dot in the middle of their screen,
appearing 37 times per minute. Participants were asked to
generate a number every time the dot appeared. They pro-
duced responses slightly faster than requested, producing an
average of 156.77 numbers (SD = 27.82).

At the end of each block, participants received a ques-
tionnaire with two questions: first, a forced-choice question,
whether all the numbers were equally likely; and second, the
probabilities of each number as a percentage without requir-
ing that they sum to 100. After the questionnaire, in the win-
ning and losing scenarios, the experimenter took a slip from a
bag in front of the participants. The outcome on the slip was
either added or subtracted from the point total, and this total
was then converted into a cash bonus, with each point equal-
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ing one penny. 1 This approach aimed to encode outcomes as
either losses or gains while keeping them independent from
the random generation tasks.

Results
Distribution of Responses We analyzed participants’ re-
sponses to the forced-choice question: The proportions of
participants selecting “yes” were significantly higher than
50% in all three scenarios (Control: 22/28, Z = 2.83, p =
.002; Winning: 23/28, Z = 3.21, p < .001; Losing: 19/28,
Z = 1.70, p = .044) after a Holm-Bonferroni correction at the
significance level of .05.

Figure 2A illustrates the distribution of (normalised) prob-
ability judgments and random generation proportions across
numbers for each scenario. Comparisons with the uniform
distribution via one-sample t-tests revealed tendencies to un-
derestimate 0, under-generate 0 and 1 in the winning sce-
nario, and over-generate 3 in the losing scenario. However,
these statistical differences were explained by individual dif-
ferences found in further analysis. Furthermore, we observed
high similarity between the probability judgment and random
generation distributions, quantified by the overlapping coeffi-
cient (Pastore & Calcagnı̀, 2019; Weitzman, 1970) measuring
the percentage of these distributions covering the same area;
overlapping coefficients were calculated individually for each
subject, and the mean coefficient for each scenario is pre-
sented in Figure 2A.

Model Comparison of Random Generation Data To ex-
amine whether the scenarios influenced the means of the gen-
erated numbers, we conducted an extensive comparison of
Bayesian linear mixed models.2 Table 1 shows the set of
models and their natural log of Bayes factors (lnBF). Because
Model 0 was used as the reference model in each Bayes fac-
tor, the lnBF comparing any other two models can also be
calculated by taking the difference of the lnBFs reported in
the table. Further, because of the common reference model,
the model with the highest lnBF provides the best predictions.

Model 9 performed the best among these models, implying
individual differences, but no fixed effects, across the influ-
ence of the scenarios on the average of the numbers generated
(as Model 9 outperformed Model 10; BF = 160.77). In ad-
dition, as Model 9 outperformed Model 1 (BF = 5.84×106),
the first generated number (i.e., the ‘starting point’) appears
to deviate from the overall mean. However, such starting-
point bias is utility-independent as Model 11 underperformed
Model 10 (BF = 9.28×10−3).

Individual Differences in the Effect of Scenarios We next
explored the individual differences in the effect of the sce-
nario identified in the Bayesian mixed linear model compar-

1In the losing scenario, participants were endowed with 10 points
before the gamble so they would not truly lose points.

2For more details about the estimation of the Bayesian
linear mixed models and their lnBF, please refer to the
Appendix 1 on OSF (https://osf.io/a6w3v/?view only=
7ee3219936b647c1a63c796296072cde).

ison. We first tested each participant against the neutrality
hypothesis: In the winning and losing scenarios, each per-
son drew samples from the same distribution as they did in
the control scenario. We thus calculated the mean values of
each scenario for each participant, and then subtracted the
mean value of the control scenario from the mean values of
the winning and the losing scenarios. Figure 3A shows the
relationship between the empirical winning-control mean dif-
ference against the empirical losing-control difference on the
individual level.

In order to test the neutrality hypothesis, we conducted a
Monte-Carlo (MC) simulation by drawing samples from the
random generation response distribution in the control sce-
nario (shown as the blue bar of the left panel of Figure 2A).3

The MC simulation can provide a likelihood estimation of the
neutrality hypothesis, and thus can also provide a 95% con-
fidence region, which is shown as a red ellipse in Figure 3A.
We found that 23 out of 28 participants’ points (82%) fell
in the ellipse, significantly more than 50% (p < .001, 95%
CI=[63.11%, 93.94%]). Thus, more than half of the partici-
pants were not influenced by the scenarios. Of the remaining
participants, there were some who showed optimism, central-
isation, or polarisation, but none who showed pessimism.

Of the hypotheses of bias proposed in past work, only the
UWS hypothesis (e.g., polarisation in Figure 1), has been
specified well enough to quantitatively compare against neu-
trality in our data. In their original paper, Lieder, Griffiths,
and Hsu (2018) defined the utility of an outcome o as

u(o) =
ok

ok
max −ok

min
+ ε, (1)

where k was set to k = 1, omax and omin were the largest and
the smallest outcome in the given choice, and ε∼N(0,σ) was
neural noise (omitted in our analysis). We also tested a utility
function with k = 0.5 as the range of 0.5 to 1 covers the range
used in previous studies (e.g., Glöckner & Pachur, 2012).

To calculate the likelihood of UWS, we employed a similar
MC method.3 Therefore, the neutrality hypothesis and both
UWS models have their respective likelihood estimations on
the plane depicted by Figure 3A. Then, we found the best-fit
hypothesis according to their likelihoods for each participant.
The neutrality hypothesis outperformed both UWS models
for 27 participants, and the UWS with the exponent of 0.5
best fit the remaining participant. These findings suggest that
the utilities of the outcomes did not have an impact on the
sampling process as predicted by UWS.

Fixed Effect of Starting-point Bias As indicated in the
model comparison, participants exhibited a starting-point
bias. To investigate the direction people were biased, we cal-
culated the mean values of the first five numbers generated in
each of the three scenarios (see Figure 4). Participants tended
to begin with relatively smaller numbers but within a few re-
sponses converged on the theoretical mean of 5. Although the

3For more details about the MC simulation, please refer to the
Appendix 2 on OSF (link in Footnote 2).
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Figure 2: The comparison between the normalised probability judgment and the distributions of random generation in the
control, winning and losing scenarios of (A) Experiment 1 and of (B) Experiment 2. Dashed lines indicate the theoretical
distributions; black error bars represent the 95% confidence intervals; stars mark the numbers whose densities are significantly
different from the theoretical distribution after a Holm-Bonferroni correction at the significance level of .05; and percentages
are the overlapping coefficients between the probability judgment and random generation distributions.

Figure 3: Scatter plots showing the relationship between the empirical winning-control mean difference and the empirical
losing-control mean difference on the individual level in (A) Experiment 1 and in (B) Experiment 2. The red ellipse represents
the 95% confidence region of the neutrality hypothesis; the deep blue ellipse represents the 95% confidence region of the UWS
with the utility exponent of 1; the maroon ellipse represents the 95% confidence region of the UWS with the exponent of 0.5.
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Table 1: Logarithm of the Bayes Factor (BF) for Each Model Compared with Model 0 in Experiment 1 and Experiment 2

index model lnBF in Exp 1 lnBF in Exp 2

0 numbers = β0 +u0,i 0 0
1 numbers = β0 +u0,i +u1,iscenario 213.84 335.39
2 numbers = β0 +u0,i +(β1 +u1,i)scenario 208.75 329.38
3 numbers = β0 +u0,i +u1,iscenario+β2equal 210.29 332.78
4 numbers = β0 +u0,i +(β1 +u1,i)scenario+β2equal 205.08 326.53
5 numbers = β0 +u0,i +(β1 +u1,i)scenario+β2equal +β3scenario · equal 198.94 319.93
6 numbers = β0 +u0,i +u1,iscenario+β2order 210.17 331.52
7 numbers = β0 +u0,i +(β1 +u1,i)scenario+β2order 204.69 325.44
8 numbers = β0 +u0,i +(β1 +u1,i)scenario+β2order+β3scenario ·order 201.34 318.72
9 numbers = β0 +u0,i +u1,iscenario+β2st pointnumbers = β0 +u0,i +u1,iscenario+β2st pointnumbers = β0 +u0,i +u1,iscenario+β2st point 229.42 334.38

10 numbers = β0 +u0,i +(β1 +u1,i)scenario+β2st point 224.34 328.50
11 numbers = β0 +u0,i +(β1 +u1,i)scenario+β2st point +β3scenario · st point 219.80 323.82

Note: The highest lnBFs and any with no substantial differences for each experiment are in bold. Additionally, the model with
the highest lnBFs (considering equivalence) across the experiments is highlighted in bold. β represents fixed effects and u
represents random effects. Four predictors were considered, namely the scenarios (scenario), participants’ replies to the
“equally likely” question (equal), the order of winning and losing scenarios (order), and whether the number is the first
generated number in the sequence (st point).

starting point of the winning scenario is numerically higher
than the other two scenarios, the model comparison results in
Table 1 argue against such an interaction.

Figure 4: The means of the first five numbers generated in
Experiment 1. The error bars represent the 95% confidence
interval for each mean.

Experiment 2
While the results of Experiment 1 generally support the neu-
trality hypothesis, all three scenarios in this task involved
a uniform distribution. As most risky events have unequal
probabilities, Experiment 2 investigated whether these results
hold for outcomes with unequal probabilities.

Participants
36 participants (29 women, 7 men; age: M = 22.9 years, SD
= 3.7) took part in this experiment. Three additional par-
ticipants were recruited but were excluded from the analysis
since the length of their generated sequence was shorter than
80% of the theoretical length; and another one participant’s
data was excluded due to more than three values out of the
range of 0 and 10. They received a show-up fee of £3, plus a
potential bonus of £1, depending on the total points earned by
the end of the experiment. The average payment was £3.50,
and the experiment took about 40 minutes to complete.

Design, Materials and Procedure
The design and procedure were the same as Experiment 1,
with the following exceptions. The materials were ten coins
presented in a transparent box. Participants were asked to
imagine shaking the box, observing the number of heads, and
respond with that number. In the winning and losing scenar-
ios, the number of heads represented the number of points that
was won or lost, while in the control scenario, the number of
heads had no meaning.

The order of the scenarios and the tempo of the flashing dot
were identical to Experiment 1. In Experiment 2, participants
produced a speed close to the theoretical one—an average of
148.26 numbers (SD = 6.19) after 4 minutes.

After the questionnaire, in the winning and losing scenar-
ios, the experimenter shook the box in front of the partic-
ipants, counted the number of heads, and converted it into
points (one head equals one point) that the participants won
or lost (see Footnote 1). Before the experiment ended, the
experimenter calculated the total points (denoted as T). Then
the participants were given a T/20 chance to win a £1 bonus
or otherwise only received the show-up fee.
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Results
Distribution of Responses Regarding participants’ re-
sponses to the forced-choice question, the proportions of par-
ticipants correctly selecting “no” were significantly higher
than 50% in all three scenarios (Control: 25/36, Z = 2.17, p=
.015; Winning: 26/36, Z = 2.50, p = .006; Losing: 25/36,
Z = 2.17, p = .015) after a Holm-Bonferroni correction at a
significance level of .05.

Figure 2B depicts the probability judgment and the dis-
tribution of random generation for each scenario compared
with the binomial distribution. Notably, both the probability
judgments and the distributions of random generation exhib-
ited a significant departure from the expected binomial dis-
tribution, reflecting a flattened shape consistent with findings
from prior research (Peterson, Ducharme, & Edwards, 1968;
Teigen, 1974). The probability judgments and the random
generation distributions were however again fairly similar to
one another within participants, as measured by the overlap-
ping coefficient (see Figure 2B).

Model Comparison of Random Generation Data The
Bayesian linear mixed models and their lnBFs for Experi-
ment 2 are shown in Table 1. Model 1 performed the best
amongst these models. Like in Experiment 1, there was ex-
treme evidence for individual differences in the effect of sce-
nario (as Model 1 outperformed Model 0; BF = 4.55×10145)
and there was also evidence against a fixed effect of scenario
(comparing Model 2 with Model 1; BF = 2.45×10−3).

While in this experiment, Model 1 numerically outper-
formed Model 9, the Bayes factor in favor of Model 1 (BF =
2.75) showed it could only be classed as anecdotal evidence.
Thus, it was inconclusive in this experiment whether there
was a starting-point bias.

Individual Differences in the Effect of Scenarios We next
explored the individual differences in the effect of scenario,
employing the same MC method as in Experiment 1. As
shown in Figure 3B, we found that 25 out of 36 participants’
points (69%) fell in the 95% confidence region of the neutral-
ity hypothesis, significantly higher than 50% (p < .05, 95%
CI=[51.89%, 83.65%]). Such results imply that more than
half of the participants were unaffected by the scenarios, i.e.,
the utilities.

We also compared the neutrality hypothesis with the UWS
with two types of utility function defined above. The neutral-
ity hypothesis outperformed the UWS models on 26 partici-
pants; the UWS with the exponent of 0.5 won on 8 partici-
pants; and the UWS with the exponent of 1 was supported by
2 participants.

General Discussion
Using the paradigm of random generation, we investigated
the potential impact of outcomes’ utilities on individuals’
mental simulations with either a uniform or binomial pay-
off distribution. Across both experiments, for a majority of
participants, the mean values of mental simulations appeared

unbiased by utilities. These findings support the “neutrality”
hypothesis outlined in Figure 1.

However, we also observed a utility-independent starting-
point bias—a tendency to start from a lower number—though
this bias was only evident in Experiment 1 and not replicated
in Experiment 2. One plausible explanation for this absence
may stem from the nature of the binomial distribution, which
is more concentrated around the mean than the uniform distri-
bution. This concentration could influence individuals’ sam-
pling process, starting from the distribution’s central region.
Consequently, detecting the bias becomes challenging due to
its alignment with the probability influence. This discrepancy
suggests that the bias is more likely to arise on conditions
where all outcomes hold equal likelihood.

These discoveries hold theoretical implications for
sampling-based models of probability judgment (e.g., Zhu
et al., 2022, 2023) and risky choice (e.g., Busemeyer &
Townsend, 1993; Busemeyer & Diederich, 2002; Roe et al.,
2001; Lieder, Griffiths, & Hsu, 2018). These models assume
that individuals make their decisions and judgments by sam-
pling from specific distributions. Our findings indicate that
such distributions should remain independent from outcome
utilities, as in DFT but in contrast to models like UWS.

While primarily supporting the neutrality hypothesis, our
results are concurrent with some hypothesises in Figure 1
while contradicting others. The observed individual differ-
ences align with the suggestion that only a subset of partic-
ipants were pessimistic (Norem & Cantor, 1986), although
we observed only one pessimistic participant in Experiment 2
and none in Experiment 1. The identified starting-point bias
explains the findings supporting the centralisation hypothe-
sis, where the risk-reward heuristic may be attributed to the
initial recall of lower numbers. The difference between our
results and those showing a polarization hypothesis could be
because those studies used an experience paradigm in contrast
to our description paradigm, and indeed polarisation seems to
be driven by the encoding context rather than the choice con-
text (Madan et al., 2021). Additionally, our findings might
differ from studies on the optimism hypothesis due to instruc-
tional variations, as bias extents can vary based on different
elicitation methods (Park et al., 2022).

There are however some limitations in our study, offering
directions for future work. Firstly, the “random generation”
instruction diverges from the common “prediction” instruc-
tion prevalent in this area of research; further research should
thus investigate whether instructional changes influence ran-
dom generation outcomes. Secondly, the differences among
these outcomes might not be distinct enough to prompt a pro-
nounced perception of utility disparity; employing distribu-
tions with more distinct outcomes in future research could
therefore be valuable.
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