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ABSTRACT 

We analyze both finite and infinite systems of Riccati equations derived from 
stochastic differential games on infinite networks. We discuss a connection to the 
Catalan numbers and the convergence of the Catalan functions by Fourier 
transforms. 

 
Keywords: Catalan functions, Riccati equation for periodic network, Stochastic 
differential games for infinitely many players 

 
INTRODUCTION 

The Catalan numbers 𝐶𝑛, 𝑛 ≥ 0 appear as a sequence of natural numbers defined by 
 

𝐶𝑛: =
1

𝑛 + 1
(
2𝑛

𝑛
) =

(2𝑛)!

𝑛! (𝑛 + 1)!
,  𝑛 ≥ 0 (1.1) 

 
For example, 𝐶0 = 1, 𝐶1 = 1, 𝐶2 = 2  and so on. This increasing sequence satisfies the 
recurrence relations 
 

𝐶𝑛 = 𝐶0𝐶𝑛−1 + 𝐶1𝐶𝑛−2 +⋯+ 𝐶𝑛−1𝐶0 =∑  

𝑛

𝑗=1

 𝐶𝑗−1𝐶𝑛−𝑗,  𝑛 ≥ 1 (1.2) 

 

and grows like 4𝑛𝑛−3/2/√𝜋, as 𝑛 → ∞. The Catalan numbers appear in many combinatorial 
counting problems, for example, counting of non-crossing partitions, the number of the Dyck 
words, the number of standard Young tableaux (see the monographs [5], [6], [7] by Stanley). 
In this paper we shall discuss the Catalan numbers and more generally Catalan functions in 
the context of the stochastic differential games on infinite network introduced in the recent 
papers (Feng, Fouque and Ichiba [1] and [2], see also the referenced papers therein for the 
related mean-field games, some topics of stochastic differential games and their applications), 
where the Catalan functions are defined by the solution to the system of the infinite Riccati 
equations. Note that the system of the infinite Riccati equations determines the Nash 
equilibrium of the stochastic differential game for infinitely many players. Then we prove the 
convergence of the solution of the finite Riccati equation corresponding to a stochastic 
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differential game for finitely many players (say 𝑁 players) on a periodic network, as 𝑁 → ∞, 
to the solution of a system of infinite Riccati equations. 
 
Following Feng, Fouque and Ichiba [1], let us recall the following Riccati equation for the 
countably many continuous functions 𝜑𝑡

𝑖 , 𝑖 ∈ ℕ0, 0 ≤ 𝑡 ≤ 𝑇, given by the system 
 

�̇�𝑡
𝑖 =

d𝜑𝑡
𝑖

 d𝑡
=∑  

𝑖

𝑗=0

 𝜑𝑡
𝑗
𝜑𝑡
𝑖−𝑗
− 𝜀𝑖;  𝑖 ∈ ℕ0 (1.3) 

 
where 𝜀𝑖  are given by some real constants 𝜀0: = 𝜀, 𝜀1: = −𝜀, 𝜀𝑖 = 0  for 𝑖 ≠ 0,1 , and the 
terminal conditions are 𝜑𝑇

0 : = 𝑐, 𝜑𝑇
1 : = −𝑐, 𝜑𝑇

𝑖 : = 0  for 𝑖 ≠ 0,1 . Here, “ ’ " denotes the 
differentiation with respect to 𝑡, and the superscript 𝑖 is not the power of function 𝜙 but the 
index 𝑖 ∈ ℕ0. Given 𝜀 > 0 and 𝑐 ≥ 0, the solution {𝜑𝑡

𝑖 , 𝑖 ∈ ℕ, 0 ≤ 𝑡 ≤ 𝑇} of (1.3) exists and is 

unique (Lemma 1 of [1]). We call such sequence of functions the Catalan functions. 
 
The solution 𝜑𝑡

𝑖 , 0 ≤ 𝑡 ≤ 𝑇, 𝑖 ∈ ℕ0 depends on 𝜀 and 𝑇. Particularly, we take 𝜀 = 1 = 𝜀0 = −𝜀1, 
and consider the stationary solution by letting the time derivative zero, that is, �̇�𝑡

𝑖 ≡ 0, 𝑖 ∈
ℕ0, 𝑡 ≥ 0. Then the stationary solution {𝜑𝑖}

𝑖∈ℕ0
 of (1.3) satisfies 

 

𝜑0 = 1,  𝜑1 = −
1

2
,   and  𝜑𝑖 = −

1

2
∑  

𝑖−1

𝑗=1

𝜑𝑗𝜑𝑖−𝑗;  𝑖 ≥ 2 

 

Thus, the relation between the stationary solution {𝜑𝑖}
𝑖≥1

 of (1.3) and the Catalan numbers 

{𝐶𝑖}𝑖∈ℕ0  in (1.1) is 

 

𝜑𝑖 = −
2𝐶𝑖−1
4𝑖

;  𝑖 ≥ 1 (1.4) 

 
Let us also recall the Riccati equation for 𝑁 continuous functions 𝜙𝑡

𝑖 , 𝑖 = 0,1, … ,𝑁 − 1,0 ≤ 𝑡 ≤
𝑇, given by the following system 
 

�̇�𝑡
𝑖 : =

d𝜙𝑡
𝑖

 d𝑡
= ∑  

𝑁−1

𝑗=0

 𝜙𝑡
𝑗
𝜙𝑡
𝑁+𝑖−𝑗

− 𝜀𝑖;  𝑡 ≥ 0 (1.5) 

 
of ordinary differential equations for 𝑖 = 0,1, … ,𝑁 − 1 and 0 ≤ 𝑡 ≤ 𝑇 with the given terminal 
values 𝜙𝑇

0 : = 𝑐 =:−𝜙𝑇
1 > 0,𝜙𝑇

𝑖 : = 0, 𝑖 = 2,… ,𝑁 − 1 and real constants 𝜀0: = 𝜀 =:−𝜀1 > 0 and 
𝜀𝑖: = 0 for 𝑖 = 2,… ,𝑁 − 1. We impose the periodic condition 𝜙!

𝑖 = 𝜙𝑖+𝑁 for every 𝑖 ∈ ℤ. The 

solution {𝜙𝑡
𝑖 , 𝑖 = 0,1, … ,𝑁 − 1,0 ≤ 𝑡 ≤ 𝑇} of (1.5) exists uniquely and depends on 𝑁. 

 
The finite system (1.5) leads us to the Nash equilibrium for the 𝑁-player, linear-quadratic 
stochastic differential game on the finite directed chain periodic network, while the infinite 
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system (1.3) leads us to the Nash equilibrium for the infinitely many player, linear-quadratic 
stochastic differential game on the infinite directed chain network. In [1] and [2] the question 
of the convergence of the Nash equilibrium for the 𝑁 player game to the Nash equilibrium for 
the infinitely many player game was left as an open question in the periodic case considered 
here. In this paper we solve this open question positively. 
 
The main results of this paper are the following propositions of convergence. 
 
Proposition 1 

For any fixed 𝑗 ∈ ℕ0 and 𝑡 ∈ [0, 𝑇], the solution 𝜙𝑡
𝑗
 of the finite system (1.5) converges to 𝜑𝑡

𝑗
 of 

the infinite system (1.3), as 𝑁 → ∞. That is, 
 

lim
𝑁→∞

 𝜙𝑡
𝑗
= 𝜑𝑡

𝑗
;  𝑗 ∈ ℕ0, 𝑡 ∈ [0, 𝑇] (1.6) 

 
Proposition 2 
For any fixed 𝑖 ∈ ℕ0 and 𝑡 ∈ [0, 𝑇], we have the convergence results 
 

lim
𝑁→∞

 ∑  

𝑁−1

𝑗=0

 𝜙𝑡
𝑗
𝜙𝑡
𝑁+𝑖−𝑗

=∑  

𝑖

𝑗=0

 𝜑𝑡
𝑗
𝜑𝑡
𝑖−𝑗
,   and  lim

𝑁→∞
  ∑  

𝑁−1

𝑗=𝑖+1

 𝜙𝑡
𝑗
𝜙𝑡
𝑁+𝑖−𝑗

= 0 (1.7) 

 
Proposition 3 
For any 𝐾 ∈ ℕ0, 𝑇 > 0, the solution {𝜙𝑡

𝑖 , 𝑖 = 0,1, … ,𝑁 − 1, 0 ≤ 𝑡 ≤ 𝑇} of (1.5) and the solution 

{𝜑𝑡
𝑖 , 𝑖 ∈ ℕ, 0 ≤ 𝑡 ≤ 𝑇} of (1.3) satisfy 

 

lim
𝑁→∞

  sup
0≤𝑖≤𝐾

  sup
0≤𝑡≤𝑇

 |𝜙𝑡
𝑖 − 𝜑𝑡

𝑖| = 0 (1.8) 

 
That is, the first 𝐾 elements of the solution of (1.5) converges uniformly to the first 𝐾 
elements of the solution of (1.3), as 𝑁 → ∞. 
 
These results are proved in the following sections by Fourier transforms. The key 

observations are the representations (2.11) and (2.13) of the solutions {𝜙𝑡
𝑗
} and {𝜑𝑡

𝑗
} of the 

Riccati equations (1.5) and (1.3) in terms of the solution {𝑓𝑡(𝑥)} in (2.8) of an auxiliary Riccati 
equation (2.5) below. After this manuscript was prepared, the recent papers [3] and [4] by 
Miana and Romero were brought up to our attention. In these papers a slightly general 
quadratic equation for Catalan generating functions, its spectrum and resolvent operator are 
studied from the point of view of functional analysis. In contrast to [3] and [4], the results 
here on the convergence of the solutions are more concrete, because of the specific form (1.3) 
of quadratic equation and because of the Fourier transforms. The generalization of the results 
in the current paper will be a theme of another paper. 

 
FOURIER TRANSFORMS AND RICCATI EQUATIONS 

Let us define the discrete Fourier transform {�̂�𝑡
𝑘 , 𝑘 = 0,1, … , 𝑁 − 1}, 0 ≤ 𝑡 ≤ 𝑇 of the solution 

{𝜙𝑡
𝑖 , 𝑖 = 0,1, … ,𝑁 − 1,0 ≤ 𝑡 ≤ 𝑇} of the Riccati equation (1.5) by 
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�̂�𝑡
𝑘: = ∑  

𝑁−1

𝑗=0

 𝜙𝑡
𝑗
exp (−

2𝜋√−1𝑗𝑘

𝑁
) ;  𝑘 = 0,1, … ,𝑁 − 1,0 ≤ 𝑡 ≤ 𝑇 (2.1) 

 

Here, the superscript 𝑘 for �̂�. is not the power but the index. √−1 is the imaginary unit, the 
complex square root of -1. Inverting the discrete Fourier transform, we obtain 
 

𝜙𝑡
𝑗
=
1

𝑁
∑  

𝑁−1

𝑘=0

  �̂�𝑡
𝑘exp (

2𝜋√−1𝑗𝑘

𝑁
) ;  𝑗 = 0,1, … ,𝑁 − 1 (2.2) 

 
and in particular, 
 

𝜙𝑡
0 =

1

𝑁
∑  

𝑁−1

𝑘=0

  �̂�𝑡
𝑘;  0 ≤ 𝑡 ≤ 𝑇 (2.3) 

 
Since the discrete Fourier transform of the convolution of two sequences is the product of 
their discrete Fourier transforms, it follows from the Riccati equation (1.5) that �̂�𝑡

𝑘 in (2.1) 
satisfies the one-dimensional Riccati equation 
 

�̂�𝑡
𝑘˙ = (�̂�𝑡

𝑘)
2
− (1 − 𝑒−2𝜋√−1𝑘/𝑁)𝜀;  0 ≤ 𝑡 ≤ 𝑇 (2.4) 

 

with the terminal condition �̂�𝑇
𝑘 = (1 − 𝑒−2𝜋√−1𝑘/𝑁)𝑐  for 𝑘 = 0,1, … ,𝑁 − 1 . 

In a similar manner, replacing 𝑘/𝑁 by 𝑥 in (2.4) , let us consider the following, one-
dimensional, auxiliary Riccati equation for ℂ-valued function {𝑓𝑡(𝑥),0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ [0,1]} 
defined by 
 

𝑓𝑡(𝑥) = (𝑓𝑡(𝑥))
2 − (1 − 𝑒−2𝜋√−1𝑥)𝜀;  0 ≤ 𝑡 ≤ 𝑇,  𝑥 ∈ [0,1] (2.5) 

 

with the terminal condition 𝑓𝑇(𝑥) = (1 − 𝑒
−2𝜋√−1𝑥)𝑐, 𝑥 ∈ [0,1]. 

 
Since both Riccati equations (2.4) and (2.5) are scalar-valued ordinary differential equations, 
we solve them explicitly by the standard method of solving the general Riccati equation of the 
form 
 

�̇�𝑡 = 𝑎𝑡 + 𝑏𝑡𝑦𝑡 + 𝑐𝑡(𝑦𝑡)
2;  0 ≤ 𝑡 ≤ 𝑇 (2.6) 

 
with some (smooth) functions 𝑎. , 𝑏. , 𝑐. That is, solving a second-order ordinary differential 
equation 

�̈�𝑡 − (𝑏𝑡 +
�̇�𝑡
𝑐𝑡
) �̇�𝑡 + 𝑎𝑡𝑐𝑡𝑢𝑡 = 0 (2.7) 

 
for {𝑢𝑡}, we obtain the solution 𝑦𝑡 = −�̇�𝑡/(𝑐𝑡𝑢𝑡), 0 ≤ 𝑡 ≤ 𝑇 for the general Riccati equation. 
The solutions to our Riccati equations (2.4) and (2.5) are given by the following proposition. 
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Proposition 4 
The solution of the auxiliary Riccati equation (2.5) is given by 
 

𝑓𝑡(𝑥) = √𝜀𝔯(𝑥)𝑒
√−1𝜽(𝑥) ⋅

𝔞+(𝑥)𝔢𝑡
+(𝑥) − 𝔞−(𝑥)𝔢𝑡

−(𝑥)

𝔞+(𝑥)𝔢𝑡
+(𝑥) + 𝔞−(𝑥)𝔢𝑡

−(𝑥)
(2.8) 

 

where 𝔞±(𝑥) and 𝔢𝑡
±(𝑥) are ℂ-valued functions defined by 

 

𝔞±(𝑥):= √𝜀 ± 𝑐𝔯(𝑥)𝑒√−1𝜽(𝑥),  𝔢𝑡
±(𝑥): = exp (±√𝜀𝔯(𝑥)𝑒√−1𝜽(𝑥)(𝑇 − 𝑡));  0 ≤ 𝑡 ≤ 𝑇 (2.9) 

 
With 
 

𝔯(𝑥): = [2(1 − cos (2𝜋𝑥))]1/4,  𝜽(𝑥): =
1

2
arctan (

sin (2𝜋𝑥)

1 − cos (2𝜋𝑥)
) ∈ [0, 𝜋) (2.10) 

 
for fixed 𝑥 ∈ [0,1]. 
 
Proof. For each fixed 𝑥 ∈ [0,1], we shall solve the Riccati equation (2.5) for {𝑓𝑡(𝑥)}, as the 

special case of the general Riccati equation (2.6) with 𝑎𝑡: = −(1 − 𝑒
−2𝜋√−1𝑥)𝜀, 𝑏𝑡: = 0, 𝑐𝑡 =

1, 0 ≤ 𝑡 ≤ 𝑇. By the transformation from 𝑦. in 2.6 to 𝑢. in 2.7), it amounts to solving the 
second-order differential equation 
 

�̈�𝑡 + (1 − 𝑒
−2𝜋√−1𝑥)𝜀𝑢𝑡 = 0;  0 ≤ 𝑡 ≤ 𝑇.  

 

With the definitions (2.10) of 𝔯(𝑥) and 𝜃(𝑥), the square roots of −(1 − 𝑒−2𝜋√−1𝑥) is given by 

±√−1𝔯(𝑥)𝑒√−1𝜃(𝑥). Hence, the solution 𝑢. to the second-order differential equation is given by 
 

𝑢𝑡(𝑥) = 𝔠1(𝑥) ⋅ 𝑒
√−1𝔯(𝑥)𝑒√−1𝜽(𝑥)𝑡 + 𝔠2(𝑥) ⋅ 𝑒

−√−1𝔯(𝑥)𝑒√−1𝜽(𝑥)𝑡;  0 ≤ 𝑡 ≤ 𝑇 
 
for some 𝔠𝑖(𝑥), 𝑖 = 1,2 which are determined by the terminal condition 𝑓𝑇(𝑥) = −�̇�𝑇(𝑥)/
𝑢𝑇(𝑥), and 𝑓𝑡(𝑥) = −�̇�𝑡(𝑥)/𝑢𝑡(𝑥) is given by (2.8) for 𝑥 ∈ [0,1], 𝑡 ∈ [0, 𝑇]. 
 
Proposition 5 
With {𝑓𝑡(𝑥)} defined in (2.8), the solution of the Riccati equation (2.4) and the solution of the 
Riccati equation (1.5) are represented by 
 

�̂�𝑡
𝑘 = 𝑓𝑡 (

𝑘

𝑁
) ,   and  𝜙𝑡

𝑘 =
1

𝑁
∑  

𝑁

𝑗=1

 𝑓𝑡 (
𝑘

𝑁
) exp (2𝜋√−1𝑗 ⋅

𝑘

𝑁
) (2.11) 

 
for 𝑘 = 0,1, … , 𝑁 − 1,0 ≤ 𝑡 ≤ 𝑇. Thus, there exists a constant  
 
𝑐𝑇: = sup0≤𝑡≤𝑇  sup𝑥∈[0,1]  |𝑓𝑡(𝑥)| ∈ (0,∞), 
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such that 
 

sup
𝑁≥2
  sup
0≤𝑘≤𝑁−1

  sup
0≤𝑡≤𝑇

 |𝜙𝑡
𝑘| ≤ sup

𝑁≥2
  sup
0≤𝑘≤𝑁−1

  sup
0≤𝑡≤𝑇

 |�̂�𝑡
𝑘| ≤ 𝑐𝑇 (2.12) 

 
Proof. For each fixed 𝑘 = 0,1, … , 𝑁 − 1, we solve the Riccati equation (2.4) for the discrete 
Fourier transform �̂�𝑡

𝑘 and obtain �̂�𝑡
𝑘 = 𝑓𝑡(𝑘/𝑁) in a similar procedure, replacing 𝑘/𝑁 by 𝑥 in 

the proof of Proposition 4. Substituting it to the inverse discrete Fourier transform (2.2), we 
obtain (2.11). The uniform bound (2.12) is obtained directly by the representations (2.11). 
 
In order to prove Proposition 1, we derive the following representation of the infinite Riccati 
solution {𝜑𝑡

𝑘} in terms of the auxiliary Riccati solution {𝑓𝑡(𝑥)} in (2.8). 
 
Proposition 6 

With the solution {𝑓𝑡(𝑥)} in (2.8) of the auxiliary Riccati equation (2.5), the solution {𝜑𝑡
𝑗
} of 

the infinite Riccati equation (1.3) is represented as 
 

𝜑𝑡
𝑗
= ∫  

1

0

 𝑓𝑡(𝑥)𝑒
2𝜋√−1𝑗𝑥 d𝑥;  𝑗 ∈ ℕ0, 0 ≤ 𝑡 ≤ 𝑇 (2.13) 

 
Consequently, we have the upper bound 
 

sup
𝑗∈ℕ0

  sup
0≤𝑡≤𝑇

 |𝜑𝑡
𝑗
| ≤ 𝑐𝑡 = sup

0≤𝑡≤𝑇
  sup
𝑥∈[0,1]

 |𝑓𝑡(𝑥)| ∈ (0,∞) (2.14) 

 

Proof. Note that the family {𝑒−2𝜋√−1𝑗𝑥, 𝑗 ∈ ℕ0} of continuous functions on [0,1] forms an 

orthonormal basis of the space 𝐿2([0,1]), and the right hand of (2.13) is the 𝑗-th Fourier 
coefficient of 𝑓𝑡  with respect to this orthonormal basis, that is, 
 

𝑓𝑡(𝑥) =∑  

∞

𝑗=0

  𝐜𝑗,𝑡𝑒
−2𝜋√−1𝑗𝑥,  𝐜𝑗,𝑡: = ∫  

1

0

 𝑓𝑡(𝑦)𝑒
2𝜋√−1𝑗𝑦 d𝑦;  𝑥 ∈ [0,1], 𝑡 ∈ [0, 𝑇] (2.15) 

 

To show (2.13), we shall verify that the Fourier coefficients {𝐜𝑗,𝑡} satisfy the infinite Riccati 

equation (1.3) and we apply its uniqueness of the solution. Since {𝑓𝑡(𝑥)} satisfies the auxiliary 
Riccati equation (2.5), by the direct calculation we obtain 
 

d

d𝑡
∫  
1

0

 𝑓𝑡(𝑥)𝑒
2𝜋√−1𝑗𝑥 d𝑥 = ∫  

1

0

 𝑓𝑡(𝑥)𝑒
2𝜋√−1𝑗𝑥 d𝑥

 = ∫  
1

0

  ((𝑓𝑡(𝑥))
2 − (1 − 𝑒−2𝜋√−1𝑥)𝜀)𝑒2𝜋√−1𝑗𝑥 d𝑥

 = ∫  
1

0

  (𝑓𝑡(𝑥))
2𝑒2𝜋√−1𝑗𝑥 d𝑥 − 𝜀𝑗 ,  𝑗 ∈ ℕ0, 𝑡 ∈ [0, 𝑇]

 



 
 

 
 
 

413 

Feng, Y., Fouque, J.-P., & Ichiba, T. (2024). Catalan Numbers, Riccati Equations and Convergence. European Journal of Applied Sciences, Vol - 12(4). 
407-418. 

URL: http://dx.doi.org/10.14738/aivp.124.17471 

where {𝜀𝑗} was defined as 𝜀0 = 𝜀 = −𝜀1 > 0, and 𝜀𝑖 = 0, 𝑖 ≥ 2. For the first term of the right 

hand, it follows from (2.15) and the convolution of the Fourier series that 
 

∫  
1

0

  (𝑓𝑡(𝑥))
2𝑒2𝜋√−1𝑗𝑥 d𝑥 = ∫  

1

0

 (∑  

∞

ℓ=0

 𝐜ℓ,𝑡𝑒
−2𝜋√−1ℓ𝑥∑ 

∞

𝑘=0

  𝐜𝑘,𝑡𝑒
−2𝜋√−1𝑘𝑥)𝑒2𝜋√−1𝑗𝑥 d𝑥

 = ∑  

𝑗

𝑘=0

 (∫  
1

0

 𝑓𝑡(𝑥)𝑒
2𝜋√−1𝑘𝑥 d𝑥)(∫  

1

0

 𝑓𝑡(𝑥)𝑒
2𝜋√−1(𝑗−𝑘)𝑥 d𝑥)

 

 
Substituting this expression in (2.16), and because of (2.15), we obtain the infinite Riccati 
equation 
 

�̇�𝑗,𝑡 =
d

d𝑡
∫  
1

0

 𝑓𝑡(𝑥)𝑒
2𝜋√−1𝑗𝑥 d𝑥

 = ∑  

𝑗

𝑘=0

  𝐜𝑘,𝑡𝐜𝑗−𝑘,𝑡 − 𝜀
𝑗;  𝑗 ∈ ℕ0, 0 ≤ 𝑡 ≤ 𝑇

 

 
equivalent to (1.3). Also, the terminal condition satisfies   
 

𝐜𝑇,𝑗 = ∫  
1

0
𝑓𝑇(𝑥)𝑒

2𝜋√−1𝑗𝑥 d𝑥 = ∫  
1

0
𝑐(1 − 𝑒−2𝜋√−1𝑥)𝑒2𝜋√−1𝑗𝑥 d𝑥 = 𝑐𝑗 , 

 
where {𝑐𝑗} was defined as 𝑐0 = 𝑐 = −𝑐1 > 0 and 𝑐𝑖 = 0, 𝑖 ≥ 2. Thus, by the uniqueness of the 

solution to the infinite Riccati equation (1.3), we identify 𝐜𝑗,𝑡 = 𝜑𝑡
𝑗
, 𝑗 ∈ ℕ0, 𝑡 ∈ [0, 𝑇] as in 

(2.13). 
 
Proof of Proposition 1 
Now we shall prove Proposition 1. Substituting (2.11) into the inverse discrete Fourier 
transform 2.2, we obtain the Riemann sum 
 

𝜙𝑡
𝑗
=
1

𝑁
∑  

𝑁−1

𝑘=0

�̂�𝑡
𝑘exp (

2𝜋√−1𝑗𝑘

𝑁
) =

1

𝑁
∑  

𝑁−1

𝑘=0

𝑓𝑡 (
𝑘

𝑁
)exp (2𝜋√−1𝑗 ⋅

𝑘

𝑁
) 

 

for 𝑗 = 0,1, … ,𝑁 − 1,0 ≤ 𝑡 ≤ 𝑇. Since 𝑓𝑡(𝑥)𝑒
2𝜋√−1𝑘𝑥 is a continuous function of 𝑥 for every 

fixed 𝑗 and 𝑡, taking the limit as 𝑁 → ∞, we obtain the limit of 𝜙𝑡
𝑗
, 

 

lim
𝑁→∞

 𝜙𝑡
𝑗
= lim
𝑁→∞

 
1

𝑁
∑  

𝑁−1

𝑘=0

 𝑓𝑡 (
𝑘

𝑁
) exp (2𝜋√−1𝑗 ⋅

𝑘

𝑁
) = ∫  

1

0

 𝑓𝑡(𝑥)𝑒
2𝜋√−1𝑗𝑥 d𝑥 = 𝜑𝑡

𝑗
(2.19) 

 
for each fixed 𝑗 ∈ ℕ0 and 𝑡 ∈ [0, 𝑇], thanks to the identification in Proposition 6. 
 



 
 

  
 
 

414 Services for Science and Education – United Kingdom 

Vol. 12, Issue 4, August-2024 European Journal of Applied Sciences (EJAS) 

Proof of Proposition 2 
The first part of the convergence results (1.7) is obtained in a similar manner as in the proof 
of Proposition 1. Indeed, using (2.2) and 2.11, we rewrite the sum as a Riemann sum, and then 
we take the limit, as 𝑁 → ∞ 
 

∑  

𝑁−1

𝑗=0

 𝜙𝑡
𝑗
𝜙𝑡
𝑁+𝑖−𝑗

= ∑  

𝑁−1

𝑗=0

 
1

𝑁
∑  

𝑁−1

𝑘=0

  �̂�𝑡
𝑘𝑒2𝜋√−1𝑘𝑗/𝑁 ⋅

1

𝑁
∑  

𝑁−1

ℓ=0

  �̂�𝑡
ℓ𝑒2𝜋√−1(𝑁+𝑖−𝑗)ℓ/𝑁

 =
1

𝑁2
∑  

𝑁−1

𝑘,ℓ=0

 𝑓𝑡 (
𝑘

𝑁
)𝑓𝑡 (

ℓ

𝑁
)∑  

𝑁−1

𝑗=0

  𝑒2𝜋√−1(𝑘−ℓ)𝑗/𝑁 ⋅ 𝑒2𝜋√−1𝑖ℓ/𝑁

 =
1

𝑁
∑  

𝑁−1

𝑘=0

  [𝑓𝑡 (
𝑘

𝑁
)]
2

𝑒2𝜋√−1𝑖ℓ/𝑁

 →
 

𝑁→∞
∫  
1

0

  (𝑓𝑡(𝑥))
2𝑒2𝜋√−1𝑖𝑥 d𝑥 =∑  

𝑖

𝑗=0

  𝐜𝑗,𝑡𝐜𝑖−𝑗,𝑡 =∑  

𝑖

𝑗=0

 𝜑𝑡
𝑗
𝜑𝑡
𝑖−𝑗

 

 
for every 𝑡 ∈ [0, 𝑇] and 𝑖 ≥ 0, because of (2.13) and (2.17). Here, 𝟏{𝑘=ℓ} is the indicator 

function which takes 1 on the set 𝑘 = ℓ and 0, otherwise, and 𝐜,𝑡 was defined in (2.15) . This 
proves the first part of the convergence results (1.7). 
 
For the second part of the convergence results, combining the first part (2.20) with the 
convergence of {𝜙𝑡

𝑖} in Proposition 1, we obtain 

 

∑  

𝑁−1

𝑗=𝑖+1

 𝜙𝑡
𝑗
𝜙𝑡
𝑁+𝑖−𝑗

= ∑  

𝑁−1

𝑗=0

 𝜙𝑡
𝑗
𝜙𝑡
𝑁+𝑖−𝑗

−∑  

𝑖

𝑗=0

 𝜙𝑡
𝑗
𝜙𝑡
𝑁+𝑖−𝑗

⟶
𝑁→∞

∑ 

𝑖

𝑗=0

 𝜑𝑡
𝑗
𝜑𝑡
𝑖−𝑗
−∑  

𝑖

𝑗=0

 𝜑𝑡
𝑗
𝜑𝑡
𝑖−𝑗
= 0.

(2.21)

 

 
Therefore, we conclude the proof of Proposition 2 
 
Proof of Proposition 3 
We shall evaluate the difference 𝐷𝑁(𝑡): = sup0≤𝑖≤𝐾  sup0≤𝑠≤𝑡  |𝜙𝑠

𝑖 − 𝜑𝑠
𝑖|, 0 ≤ 𝑡 ≤ 𝑇. With the 

time-reversal 𝜙‾𝑡
𝑖 : = 𝜙𝑇−𝑡

𝑖 , 𝜑‾𝑡
𝑖 : = 𝜑𝑇−𝑡

𝑖 , 0 ≤ 𝑡 ≤ 𝑇, it follows from the Riccati equations that for 
𝑖 = 0,1, … , 𝑁 − 2, 0 ≤ 𝑡 ≤ 𝑇 
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−𝜙‾̇𝑡
𝑖 + 𝜑‾̇𝑡

𝑖  = �̇�𝑡
𝑖 − �̇�𝑡 = ∑  

𝑁−1

𝑗=0

 𝜙𝑡
𝑗
𝜙𝑡
𝑁+𝑖−𝑗

−∑  

𝑖

𝑗=0

 𝜑𝑡
𝑗
𝜑𝑡
𝑖−𝑗

 = ∑  

𝑁−1

𝑗=𝑖+1

 𝜙𝑡
𝑗
𝜙𝑡
𝑁+𝑖−𝑗

+∑  

𝑖

𝑗=0

  [(𝜙𝑡
𝑗
− 𝜑𝑡

𝑗
)𝜙𝑡

𝑖−𝑗
+ 𝜑𝑡

𝑗
(𝜙𝑡

𝑖−𝑗
− 𝜑𝑡

𝑖−𝑗
)]

 = ∑  

𝑁−1

𝑗=𝑖+1

 𝜙‾𝑡
𝑗
𝜙‾𝑡
𝑁+𝑖−𝑗

+∑  

𝑖

𝑗=0

  [(𝜙‾𝑡
𝑗
− 𝜑‾𝑡

𝑗
)𝜙‾𝑡

𝑖−𝑗
+ 𝜑‾𝑡

𝑗
(𝜙‾𝑡

𝑖−𝑗
− 𝜑‾𝑡

𝑖−𝑗
)].

 

 
Since we have 𝜙‾0

𝑖 = 𝜙𝑇
𝑖 = 𝜑𝑇

𝑖 = 𝜑‾0
𝑖 , integrating both sides over [0, 𝑠](⊆ [0, 𝑇]), taking the 

absolute values and using the triangle inequality, we obtain 
 

|𝜙‾𝑠
𝑖 − 𝜑‾𝑠

𝑖| ≤ ∫  
𝑠

0

  | ∑  

𝑁−1

𝑗=𝑖+1

 𝜙‾𝑢
𝑗
𝜙‾𝑢
𝑁+𝑖−𝑗

| d𝑢 + ∫  
𝑠

0

 ∑  

𝑖

𝑗=0

  [|𝜙‾𝑢
𝑗
− 𝜑‾𝑢

𝑗
| ⋅ |𝜙‾𝑢

𝑖−𝑗
| + |𝜑‾𝑢

𝑗
| ⋅ |𝜙‾𝑢

𝑖−𝑗
− 𝜑‾𝑢

𝑖−𝑗
|]d𝑢.

(2.22)

 

 
Then the difference 𝐷𝑁(𝑡) satisfies the inequality 
 

𝐷𝑁(𝑡) = sup
0≤𝑖≤𝐾

  sup
0≤𝑠≤𝑡

 |𝜙𝑠
𝑖 − 𝜑𝑠

𝑖| = sup
0≤𝑖≤𝐾

  sup
0≤𝑠≤𝑡

 |𝜙‾𝑠
𝑖 − 𝜑‾𝑠

𝑖|

 +∫  
𝑡

0

  sup
0≤𝑖≤𝐾

  sup
0≤𝑢≤𝑠

 max(|𝜙‾𝑢
𝑖 |, |𝜑‾𝑢

𝑖 |)𝐷𝑁(𝑠)d𝑠

≤𝑐𝑁,1(𝑡) + ∫  
𝑡

0

  𝑐𝑁,2(𝑠)𝐷𝑁(𝑠)d𝑠,

 

 
where we defined 

𝑐𝑁,1(𝑡): = 𝑡 ⋅ sup
0≤𝑖≤𝐾

  sup
𝑇−𝑡≤𝑢≤𝑇

  | ∑  

𝑁−1

𝑗=𝑖+1

 𝜙𝑢
𝑗
𝜙𝑢
𝑁+𝑖−𝑗

| ≤ 𝑐𝑁,1(𝑇),

𝑐𝑁,2(𝑡): = 𝐾 ⋅ sup
0≤𝑖≤𝐾

  sup
𝑇−𝑡≤𝑢≤𝑇

 max(|𝜙𝑢
𝑖 |, |𝜑𝑢

𝑖 |) ≤ 𝑐𝑁,2(𝑇) < ∞

 

 
for 0 ≤ 𝑡 ≤ 𝑇. Note that by (2.12) and (2.14), we have sup𝑁  𝑐𝑁,2(𝑇) < ∞. Applying the 

Gronwall inequality, we obtain 
 

𝐷𝑁(𝑇) ≤ 𝑐𝑁,1(𝑇) exp (∫  
𝑇

0

 𝑐𝑁,2(𝑡)d𝑡) . (2.24) 

 
Since the function 𝑓. (⋅) is bounded, we may refine the proof of Propositions 1-2. Particularly, 
the approximation of the Riemann sum in (2.20) is uniform over 𝑖 = 0,1, … , 𝐾 and over [0, 𝑇]. 
Thus, we obtain 
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lim
𝑁→∞

 𝑐𝑁,1(𝑇) = lim
𝑁→∞

 𝑇 ⋅ sup
0≤𝑖≤𝐾

  sup
0≤𝑢≤𝑇

 |∑  𝑁−1
𝑗=𝑖+1  𝜙𝑢

𝑗
𝜙𝑢
𝑁+𝑖−𝑗

| = 0. 

 
Therefore, combining this with (2.24), we conclude the proof of Proposition 3 
 

lim
𝑁→∞

  sup
0≤𝑖≤𝐾

  sup
0≤𝑡≤𝑇

 |𝜙𝑡
𝑖 − 𝜑𝑡

𝑖| = lim
𝑁→∞

 𝐷𝑁(𝑇) ≤ lim
𝑁→∞

 𝑐𝑁,1(𝑇)exp (∫  
𝑇

0
  𝑐𝑁,2(𝑡)d𝑡) = 0. 

 
As a consequence of Proposition 3. we have the following corollary which resolves the open 
question left in [1]. 
 
Corollary 2.1 
The 𝑁-player Nash equilibrium of linear quadratic stochastic differential games on the 
directed chain periodic network in [1] converges to the infinitely many player Nash 
equilibrium of linear quadratic stochastic differential games on the infinite directed chain 
network in [1]. 
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Appendix 
Finite System Solved by Matrix Riccati Equation 
The above Riccati equation (1.5) can be written as a matrix Riccati equation 
 

Φ̇(𝑡) = Φ(𝑡)Φ(𝑡) − E,  Φ(𝑇): = C (3.1) 
 

where Φ(⋅) is the 𝑁 × 𝑁 matrix-valued function Φ(𝑡): = (Φ𝑖,𝑗(𝑡))0≤𝑖,𝑗≤𝑁−1, 0 ≤ 𝑡 ≤ 𝑇 with Φ𝑖,𝑗(𝑡): = 𝜙𝑡
𝑖−𝑗

 for 0 ≤

𝑖, 𝑗 ≤ 𝑁 − 1 with the condition 𝜙𝑖 = 𝜙𝑖+𝑁 for every 𝑖 ∈ ℤ and E is an 𝑁 × 𝑁 matrix given by 
 

Φ(𝑡): =

(

  
 

𝜙𝑡
0 𝜙𝑡

𝑁−1 … 𝜙𝑡
1

𝜙𝑡
1 𝜙𝑡

0 ⋱ 𝜙𝑡
2

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝜙𝑡

𝑁−1

𝜙𝑡
𝑁−1 ⋯ 𝜙𝑡

1 𝜙𝑡
0 )

  
 
,  𝐄: =

(

 
 

𝜀 0 ⋯ 0 −𝜀
−𝜀 𝜀 ⋱ ⋱ 0
0 −𝜀 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ 0 −𝜀 𝜀 )

 
 

 

 
and the 𝑁 × 𝑁 matrix 𝐂 determines the terminal condition 
 

𝐂:=

(

 
 

𝑐 0 ⋯ 0 −𝑐
−𝑐 𝑐 ⋱ ⋱ 0
0 −𝑐 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ 0 −𝑐 𝑐 )

 
 

 

 
Here, Φ̇(𝑡)  stands for the element wise differentiation of Φ(𝑡)  with respect to 𝑡 . 
Let us consider the time reversal parametrized by 𝜏: = 𝑇 − 𝑡 and Ψ(𝜏): = Φ(𝑇 − 𝜏),0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝜏 ≤ 𝑇. Then 
the matrix-valued Riccati equation is 
 

Ψ̇(𝜏) = −Ψ(𝜏)Ψ(𝜏) + E (3.2) 
 
for 0 ≤ 𝜏 ≤ 𝑇 with the initial value Ψ(0): = C. Its solution is given by 
 

Ψ(𝜏) = (O21(𝜏) + O22(𝜏)C)(O11(𝜏) + O12(𝜏)C)
−1 (3.3) 

 
where O𝑖𝑗(⋅),1 ≤ 𝑖, 𝑗 ≤ 2 are the 𝑁 × 𝑁 block matrix elements of O(⋅) defined by 

 

M:= (
0 I
E 0

) ,  O(𝜏): = (
O11(𝜏) O12(𝜏)
O21(𝜏) O22(𝜏)

) : = exp (M𝜏) (3.4) 

 
for 0 ≤ 𝜏 ≤ 𝑇. Here 0 is 𝑁 × 𝑁 zero matrix and I is 𝑁 × 𝑁 identity matrix. Thus, we obtain the solution to the 
Riccati equation (1.5) as the first column of Φ(𝑡) = Ψ(𝑇 − 𝑡) for 0 ≤ 𝑡 ≤ 𝑇. 
 
The characteristic polynomial of the 2𝑁 × 2𝑁 matrix M in (3.4), in terms of 𝜆 ∈ ℂ, is simply given by 
 

det (𝜆I − M) = (𝜆2 − 𝜀)𝑁 − (−𝜀)𝑁 (3.5) 
and hence the eigenvalues are 
 

𝜆 = ±√𝜀 ⋅ (1 − exp (√−1 ⋅
2𝜋𝑘

𝑁
)) ;  𝑘 = 0,1, … ,𝑁 − 1 

 

and 𝜆 = 0 has multiplicity of 2. Thus, the size of the eigenvalues is bounded by √2𝜀. For example, in the case of 
𝑁 = 4, the eight eigenvalues are 
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{0,0, ±√(1 + √−1)𝜀,±√(1 − √−1)𝜀,±√2𝜀} 

 
The direct numerical calculation of (3.3) is not stable for a large 𝜏, because of multiple eigenvalues. It is often 
suggested (e.g., Vaughan [8]) to calculate iteratively 
 

Ψ((𝑘 + 1)Δ𝜏) = (O21(Δ𝜏) + O22(Δ𝜏)Ψ(𝑘Δ𝜏))(O11(Δ𝜏) + O12(Δ𝜏)Ψ(𝑘Δ))
−1;  𝑘 = 0,1,2, … 

 
with Ψ(0) = C, where Δ𝜏 is set to be small. 
 
Generating Function for Infinite Riccati Equation 
For the infinite system 1.3 let us recall the generating function 𝑆𝑡(𝑧):= ∑𝑘=0

∞  𝑧𝑘𝜑𝑡
𝑘  for 𝜑𝑘 , 𝑘 = 0,1,2, … satisfies 

the scaler Riccati equation 
 

d

d𝑡
𝑆𝑡(𝑧) = [𝑆𝑡(𝑧)]

2 − 𝜀(1 − 𝑧),  0 ≤ 𝑡 ≤ 𝑇,  𝑆𝑇(𝑧) = 𝑐(1 − 𝑧) 

 
for |𝑧| < 1. As in Proposition 4, the solution to this Riccati equation is given by 
 

𝑆𝑡(𝑧) = √𝜀(1 − 𝑧) ⋅
�̅�+𝔨̅𝑡

+−�̅�−𝔨̅𝑡
−

�̅�+𝔨̅𝑡
++�̅�−𝔨̅𝑡

−, 

 
where 

�̅�±: = √𝜀(1 − 𝑧) ± 𝑐(1 − 𝑧),  �̅�𝑡
±: = exp (±√𝜀(1 − 𝑧)(𝑇 − 𝑡)) 

 
for 0 ≤ 𝑡 ≤ 𝑇, |𝑧| < 1. 
 




