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Abstract

We present a multiresolution technique for interactive texture-based
volume visualization of very large data sets. This method uses an
adaptive scheme that renders the volume in a region-of-interest at
a high resolution and the volume away from this region at progres-
sively lower resolutions. The algorithm is based on the segmenta-
tion of texture space into an octree, where the leaves of the tree de-
fine the original data and the internal nodes define lower-resolution
versions. Rendering is done adaptively by selecting high-resolution
cells close to a center of attention and low-resolution cells away
from this area. We limit the artifacts introduced by this method by
modifying the transfer functions in the lower-resolution data sets
and utilizing spherical shells as a proxy geometry. It is possible
to use this technique to produce viewpoint-dependent renderings of
very large data sets.
Keywords: multiresolution rendering, volume visualization, hard-
ware texture.

1 INTRODUCTION

The capability of computing technology has steadily increased for
more than four decades and continues to increase rapidly. These
increased computing capabilities have enabled applications to scale
accordingly in overall throughput and resulting data set sizes. How-
ever, current visualization techniques break down when operating
in this environment due to the massive size of the data sets. New
techniques are necessary to provide exploration of large, multidi-
mensional data sets.

In this paper, we combine hardware-assisted texture mapping
and multiresolution methods for rendering large volumetric data
sets. The general idea is to assign priorities to different regions
of the volume and to render the high-priority regions with highest
accuracy, while lower-priority regions are rendered with progres-
sively less accuracy, and progressively faster.

We use an octree to decompose texture space and produce several
coarser levels of the original data set. Each level is associated with
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a level in the octree and each level is half the resolution of the next
level. The leaf nodes are associated with the original resolution,
and the root node with the coarsest resolution. The interior nodes
are created by subsampling the node’s eight child nodes.

Rendering a volume involves traversing the octree and applying
a selection filter to each node. Three results are possible: (1) The
node (and its children) are skipped entirely; (2) the node is skipped,
but its children are visited; or (3) the node is rendered, and the chil-
dren are skipped. The selected nodes are then sorted and rendered
in back-to-front order. We use spherical shells for proxy geometries
for accuracy under perspective projections.

Section 2 contains a survey of related work. Section 3 discusses
data issues for the multiresolution representation of textures, and
Section 4 addresses the rendering of these textures. Section 5 shows
results of the method on a number of data sets and gives perfor-
mance results. Conclusions and future work are presented in Sec-
tion 6.

2 RELATED WORK

High-performance computer graphics systems are evolving rapidly.
Silicon Graphics, Inc. (SGI) has been a primary developer of this
rendering technology, introducing the RealityEngine graphics sys-
tem [1] in 1994 and the InfiniteReality graphics system [2] in 1998.
SGI has also extended its graphics library OpenGL [3], [4] to take
advantage of this hardware. These systems provided the initial ca-
pability for hardware-based rendering using solid textures.

Cabral et al. [5] show that volume rendering and reconstruc-
tion integrals are generalizations of the Radon and inverse Radon
transforms. They show that the Radon and inverse Radon trans-
forms have similar mathematical forms, and by developing this
relationship, show that both volume rendering and volume recon-
struction can be implemented with hardware-accelerated textures.
Thus, their algorithms execute many times faster than traditional
software approaches.

Cullip and Neumann [6] discuss general implementation issues
for hardware textures and are the first to generate pictures using this
technique based on two different transfer functions. Their work
illustrates the superiority of viewport- versus object-aligned sam-
pling planes.

Wilson et al. [7] and Van Gelder and Kim [8] develop the mathe-
matics for generating texture coordinates. Van Gelder and Kim also
introduce a quantized gradient method for shading. Here, a trian-
gulated sphere describes quantized normals which, when coupled
with a quantized set of material values, allows the construction of
a look-up table. For each new scene and texture block, the current
viewing and lighting parameters are applied to the look-up table,
and the look-up table is applied to the texture map as it is transfered
to the texture subsystem. They report interactive rates, both for
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Figure 1: A one-dimensional texture tile containing eight pixels.
The tile is one pixel larger than the texture function domain. We
assume that the half-pixels at the edges are constant.

orthographic and perspective projections. However, low gradient
regions show traditional quantization artifacts.

Westerman et al. [9] show how to visualize isosurfaces resulting
from rectilinear and unstructured grids. They use fragment testing
to draw only those pixels that have a density value over a given
threshold. Rectilinear grids are rendered by solid-texturing, which
is shown to be much faster than the unstructured grid method. They
also demonstrate how shade the texture-based isosurfaces with a
technique that performs the shading as the texture map is transfered
to the texturing subsystem.

Grzeszczuk et al. [10] enumerate most methods for using
hardware-accelerated texturing to provide interactive volume visu-
alization. They also introduce a library for texture-based rendering
calledVolumizer, see [11].

Massively parallel computers have been used to provide interac-
tive volume visualization and isosurface extraction, see [12], [13],
[14], and [15]. Both ray-tracers and marching-cubes algorithms
have been implemented, and both are very parallelizable. The over-
head of data distribution and image composition is very high, and
requires careful partitioning and tuning.

Our new method differs from these prior approaches in the sense
that we allow adaptive rendering of a volume. Prior algorithms as-
sume that the data is “uniformly complex” and “uniformly impor-
tant.” This is not the case, for example, in an immersive environ-
ment, where data closer to the viewer has more visual importance
than data far away. Also, quality should be a “tunable” parameter:
If a graphics supercomputer is not available or a user just wishes
to quickly browse a data set, then the user will be satisfied with a
poorer rendering quality.

3 GENERATING THE TEXTURE HIERAR-
CHY

In hardware texturing algorithms, linear interpolation is used to in-
terpolate the values at the centers of adjacent pixels. If we consider
the one-dimensional example shown in Figure 1 and assume that
the “tile” containsp pixels, then the texture function domain is the
interval [ 1

2p
, 2p−1

2p
]. If the unused half-pixels are clipped, a larger

texture can be broken into a set of smaller textures or tiles, where
interior edge pixels are duplicated between adjacent tiles. This tech-
nique is known in the literature as “bricking,” see [10].

In Figure 2, we show a two-level texture hierarchy. The higher-
resolution texture is denoted as levelA, with tilesA0 andA1, and
the lower-resolution one as levelB. The grey regions at the ends
are unused, and the grey region shared byA0 andA1 indicates the
“overlay pixel.” The image represented byA can be approximated
byB. The image represented byB has the same number of pixels
asA0 or A1, and half the number of pixels ofA. We note that
the natural relationship for two textures whose resolutions differ by
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Figure 2: A texture hierarchy of two levels.
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Figure 3: A texture hierarchy of four levels. Level 0 is the original
texture, broken into eight tiles. Overlapping pixels are shared be-
tween the tiles. The dashed lines show the texture function domain
for each level.

a factor of two is using pixel-center alignment. In the binary tree
arrangement defined by this one-dimensional textureB is the parent
of A0 andA1.

3.1 The Multiresolution Texture Hierarchy

Figure 3 shows a one-dimensional texture hierarchy of four levels.
The top level, level 0, is the original texture, broken into eight tiles;
level 1 contains four tiles at half of the original resolution; level
2 contains two tiles at a quarter of the resolution; and level 3 has
one tile at an eighth of the original resolution. The dashed vertical
lines on either side show the domain of the texture function over the
entire hierarchy. The arrows denote the parent-child relationship of
the hierarchy, defining a binary tree, rooted at the coarsest tile, level
3.

Figure 4 illustrates the logic for selecting tiles in a multiresolu-
tion environment: The thick vertical line denotes a point of interest,
p, and tiles are selected if the distance fromp to the center of the
tile is greater than the width of the tile. Start with the root tile and
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Figure 4: Selecting tiles from a texture hierarchy of four levels. The
vertical line represents a point of interestp. Tile selection depends
on the width of the tile and the distance from the point.
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Figure 5: Selecting a tile set in two dimensions from a texture hi-
erarchy of five levels. Given the pointp, tiles are selected if the
distance from the center of the tile top is greater than the length of
the diagonal of the tile. The selected tiles are shaded.

perform this selection until all tiles meet this criterion, or no smaller
tiles exist. (This is the case on the left side of Figure 4.)

Figure 5 shows a two-dimensional quadtree example. The origi-
nal texture, level 0, has256 tiles. The darker regions in each level
show the portion of that level used to approximate the full image.
The selection method is similar to the one-dimensional case: Select
a node if the distance from the center of the node to the pointp is
greater than the length of the diagonal of the node. The original tex-
ture, divided into256 tiles, requires256 time units to render. The
adaptive rendering requires 49 time units, which implies a speed-up
factor of approximately five. This formulation extends in a straight-
forward manner to three-dimensional textures.

We generate a texture hierarchy by subsampling textures.1 Sub-
sampling chooses every other voxel when generating a lower-
resolution data set;e.g., if A is a linear array of2n elements andB
is a linear array ofn elements that approximatesA, then we gener-
ate the elements ofB asBi = A2i, i = 0, 1, . . . , n− 1.

How much memory is wasted by breaking a volume into bricks?
The waste is generated by the outer layer of voxels, which is shared
by adjacent tiles. If a brick has sizen (n3 voxels) and is surrounded
by a half-voxel layer of duplicate voxels, the effective size of a brick
is n − 1, and there aren3 − (n − 1)3 “waste” voxels. The waste
relative to the tile size isO(n2/n3) = O(n−1), which means that
as the tile size increases the relative waste decreases.2 If we choose

1We have also tried several other methods, including averaging tech-
niques, but the results are substantially better using subsampling for the
data sets used in this study.

2The total waste still increases.
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Figure 6: Field-of-view selection filter. The projected angleβ of
the tile is less than half the field-of-view angleα.

a tile size of643, the tile contains 262,144 voxels, 250,047 effective
voxels and 12,097 extra voxels.

4 RENDERING

The rendering phase is divided into three steps: (1) Selecting tiles
to render; (2) sorting the tiles; and (3) rendering the tiles using a
proxy geometry.

4.1 Selecting Tiles

The first rendering step determines which tiles will be rendered.
The general filtering logic starts at the root tile and performs a
depth-first traversal of the octree. At each tile, we evaluate a se-
lection filter, which returns one of three possible responses:

• Ignore this tile and all of its children. This response is used to
cull the tree. For example, if a tile is not in the view frustum,
then we can ignore the tile and its children.

• The tile satisfies all criteria. Render the tile and do not con-
sider the children.

• The tile does not satisfy the criteria. Check the children of the
tile.

Our primary selection filter is based on one of the following criteria:

• Distance. This filter selects a tile if the distance from the
viewpoint to the center of the tile is greater than the diagonal
length of the tile.

• Field-of-View. This filter selects a tile if it intersects the view
frustum and the projected angle of the tile is less than half the
view frustum’s field-of-view angle, see Figure 6.

Tiles must be sorted and composited in back-to-front order. We
order tiles with respect to a view direction such that, when drawn
in this order, no tile is drawn behind a rendered tile. The order is
fixed for the entire tree for orthogonal projections, and has to be
computed just once for each new rendering, see [10]. The order is
not fixed for perspective projections, and it must be computed at
each new node.



Figure 7: Spherical shells intersecting the voxelized data set. These
shells provide a proxy geometry that can be adapted to the location
of the viewpoint.

4.2 Proxy Geometries

Texture-based volume visualization requires proxy geometries on
which to render the texture. Object-aligned planes and viewport-
aligned planes are two traditional techniques, but they lead to se-
rious artifacts under perspective projections. To deal with these
artifacts, we use “spherical shells” – finely tessellated concen-
tric spheres surrounding the viewpoint, culled to the view frus-
tum. Figure 8 shows the differences when object-aligned planes,
viewport-aligned planes, and spherical shells are used as proxy ge-
ometries on a constant texture defined over a cube.

Object-aligned planes (OAP) are implemented with two-
dimensional textures on polygons aligned with thexy-, yz-, and
xz-planes of the volume. This is the fastest method, and it is
supported by most contemporary graphics workstations. However,
three sets of polygons must be maintained. If only one set is used,
certain viewpoints will lead to an “edge-on situation,” and nothing
will be rendered. Also, the light attenuation is not computed cor-
rectly as the projected distance between polygons is not constant.
This error is worst for an angle of45o. Figure 9 illustrates mul-
tiresolution OAP in two dimensions. Here, OAPs planes must be
generated independently for each tile, generating substantial arti-
facts at the boundaries of the tiles.

Viewport-aligned planes (VAP) are implemented with three-
dimensional textures and polygons that are aligned parallel to the
viewport. Only one texture set is required. All orthographic pro-
jections yield visually correct results. Three-dimensional texturing
is currently only supported on high-end workstations. Rendering
based on VAPs is generally less than half as fast as OAPs because
(1) the Nyquist sampling theorem requires twice the number of
polygons as OAPs requires, and (2) the underlying computations
are more complex.

Figure 10 shows the use of multiresolution VAPs. This technique
creates strong artifacts under perspective projections. The tiles are
rendered with a differently oriented set of polygons, and these poly-
gons do not meet at the tile borders. This creates an artifact rem-
iniscent of the “cracking” artifact from multiresolution polygonal
schemes, and it manifests itself as light-and-dark alternating bands
at the tiles boundaries.

Viewpoint-centered spherical shells (VCSS) are implemented
with three-dimensional textures and use concentric spherical shells
centered at the viewpoint, culled to the view frustum. This tech-
nique does not produce artifacts under perspective projections, but
it is slower than VAPs due to the increased geometric complexity
required to approximate a spherical shell. In Figure 7, the view-

(a)

(b)
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Figure 8: Differences between (a) object-aligned planes; (b)
viewport-aligned planes; and (c) spherical shells on a constant tex-
ture. Note the artifacts at the “tile boundaries” visible in (b).

�

Figure 9: Multiresolution object-aligned planes. The proxy geom-
etry is generated independently for each tile.
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Figure 10: Multiresolution viewpoint-aligned planes. The proxy
geometry is generated independently for each tile. Substantial arti-
facts can appear at the boundaries.
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Figure 11: Multiresolution viewpoint-centered spherical shells.
The differences between sampling on the boundaries of the tiles
is relatively small.
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Figure 12: When the space is sampled at two different resolutions,
the colorsC andC? should be the same.

point is on the left-hand side, almost touching the volume. The
sample interval is exaggerated to show the structure – one shell ev-
ery two voxels. Figure 11 illustrates multiresolution VCSSs. Using
this approach, one can achieve continuity across tile faces.

4.3 Preserving Visual Properties

When rendering tiles at different levels of the hierarchy, the opac-
ity properties of the tiles are different. The classical rendering al-
gorithms depend on using the same sampling along rays for each
pixel, see [16]. But in the context of a multiresolution format, the
the volume is sampled in different ways, and at varying resolutions.
To preserve optical properties between tiles of different resolutions,
we must modify the transfer functions for those tiles generated by
subsampling the original texture.

Figure 12 shows an example where we have sampled a texture
with spherical shells at two different resolutions – one is half the
resolution of the other. Each samplesi has an associated color
ci and an opacity valueαi. The light emitted bysi is a function
of the incoming light, and the color and opacity properties of the
sample itself. Following [16], the colorC resulting from the higher-
resolution sampling is

C = α0c0 + (1− α0)C1, (1)

whereC1 is the incoming color from sampless1, s2, ... – that is

C1 = α1c1 + (1− α1)C2, (2)

whereC2 is the incoming color from sampless2, s3, ... For the
coarse resolution, the colorC? is given by

C? = α?0c0 + (1− α?0)C?2 , (3)

whereC?2 is the color calculated as a result of the sampless4, s6, ...
By considering only the first three samples, the resulting colors

C andC? are given by

C =α0c0 + (1− α0)α1C1 + (1− α0)(1− α1)C2 and (4)

C? =α?0c0 + (1− α?0)C?2 , (5)

and these quantities, in general, are different.
However, if we compute the total-accumulated opacitiesA and

A?, we obtain

A =α0 + (1− α0)α1 + (1− α0)(1− α1)A2 and (6)

A? =α?0 + (1− α?0)A?2. (7)

Assuming that the accumulated opacities are equal at the even sam-
ples, it follows thatA2 = A?2 andA = A?, i.e.,

α0 + (1− α0)α1 + (1− α0)(1− α1)A2 = α?0 + (1− α?0)A2.
(8)



Figure 13: The horse metacarpus data set.

Solving this equation forα?0, one obtains

α?0 = α0 + (1− α0)α1 (9)

= 1− (1− α0)(1− α1). (10)

By assuming thatα1 = α0 + ε (whereε is a very small number),
we obtain the equation

α?0 = 1− (1− α0)(1− α1) (11)

= 1− (1− α0)(1− α0) + ε(1− α0) (12)

= 1− (1− α0)2 +O(ε). (13)

Therefore, we modify the transfer function of the parent (coarser)
texture by

α? = 1− (1− α)2 (14)

for all opacity values in the subsampled texture to minimize the
artifacts between the texture bricks. This formula is used when
applying the transfer function to a level of the texture hierarchy.

5 RESULTS

We have implemented our algorithm and applied it to several com-
plex data sets. All data sets were rendered on an SGI Onyx2 com-
puter system with .5 gigabytes of main memory, using a single
195Mz R10000 processor.

The first data set is a CT scan of a horse metacarpus. This data
set consists of128× 128× 108 voxels. Figure 13 shows this data
set. The primary feature of this data set is the “empty interior” of
the bone, which can be visualized only from close inspection of
one end. Figures 14a and 14b were generated using fixed tile sizes,
while Figures 14c and 14d were generated using our multiresolution
technique. In Figure 14a, we show the viewpoint and bricks associ-
ated with the rendering in Figure 14b. In Figure 14c, we show the
bricks used for the adaptive rendering of the texture, resulting in the
image in Figure 14d.

The second image is a rendering of a trebecular bone data set,
shown in Figure 14e. The data set consists of2563 voxels, and the

Model Horse Immersive Trebecular
Metacarpus Auditory Bone

Data Set Size 1282 × 108 1263 2563

Tile Size 163 163 163

Number of Tiles (Fixed Tile Size) 391 237 1049
Number of Tiles (Mulriresolution) 195 64 397

Time (OAP) (Fixed Tile Size) 0.848 0.419 2.25
Time (OAP) (Mulriresolution) 0.424 0.123 0.853
Time (VAP) (Fixed Tile Size) 1.51 1.10 4.20
Time (VAP) (Mulriresolution) 0.964 0.683 2.23
Time (VCSS) (Fixed Tile Size) 2.87 1.73 8.94
Time (VCSS) (Mulriresolution) 1.530 0.830 3.93

Table 1: Rendering times for the various data sets. All times are in
seconds.

interesting features are inside the data set. Figures 14f–i show two
views of this data set, one from just outside the data set, and one
from the interior. The respective viewpoints and bricks associated
with the views are shown in Figures 14f and 14h, while the resulting
renderings are shown in Figures 14g and 14i.

The third image is a rendering of data generated from an immer-
sive auditory interface system, shown in Figure 14j. This data set
has a “channel” in the middle of the volume. An image from the
interior of the channel is shown in Figures 14k and 14l.

Statistics concerning the rendering times for the various algo-
rithms applied to the three data sets are given in Table 1.

6 CONCLUSIONS

We have described a new method for building and rendering a mul-
tiresolution texture hierarchy approximation for very large data sets.
The approach utilizes a “bricking” strategy, where the displayed
bricks are selected from an octree representation. Despite the fact
that our overall system is limited by the amount of available texture
memory, the algorithm produces very good results, and we expect
that this approach will have a major impact on the huge volumetric
data sets that are currently encountered in numerous applications.
Future work will involve the extension of the technique to vector
fields and the parallelization of our algorithm.
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Figure 14: Multiresolution Texture-Based Volume Rendering


