
UC Riverside
UCR Honors Capstones 2018-2019

Title
Short-Run Contexts and Imperfect Testing for Continuous Sampling Plans

Permalink
https://escholarship.org/uc/item/2pt504p3

Author
Rodriguez, Mirella

Publication Date
2019-04-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2pt504p3
https://escholarship.org
http://www.cdlib.org/

By

A capstone project submitted for
Graduation with University Honors

University Honors
University of California, Riverside

APPROVED

Dr.
Department of

Dr. Richard Cardullo, Howard H Hays Jr. Chair, University Honors

1

1. Introduction

Harold F. Dodge developed the initial continuous sampling plan, referred to as CSP-1, as an

effort to ensure a high level of quality for items without the burden of 100% inspection [1]. Under

CSP-1, some defective items escape to customers because of a reduced inspection rate. Dodge’s

work included analytical formulae for performance metrics that are easy to use. However, those

formulas were designed for long-run production contexts, and therefore do not apply to finite-size

batches of items. In addition, those formulas were designed under the assumption of perfect testing,

and therefore do not apply to imperfect testing.

Dodge’s original long-run framework has been adapted to handle imperfect testing, and the

appreciable effect of imperfect testing on the performance parameters of the sampling plan is well-

understood [2]. The original long-run production framework was also adapted to account for short-

run contexts [3,4]; however, the assumption of perfect testing was retained. In these references,

analytical formulae were derived using a Markov chain modeling approach that was later

generalized by a renewal-process approach so that more general continuous sampling plans could

be analyzed [5]. Formulas for performance metrics of CSP plans resulting from the renewal-

process approach were implemented in FORTRAN code [6]. It should be emphasized, however,

that the formulas implemented in the FORTRAN code reflect an assumption of perfect testing.

This research develops a simulation algorithm for CSP-1 plans to provide a mechanism to

understand the combined impact of short-run contexts and imperfect testing. To the best of our

knowledge, this is the first attempt to combine these two important practicalities of CSP-1

sampling contexts. The simulation algorithm implements a test effectiveness parameter that

enables recognition that defective items can escape the test procedure. A key output of the

simulation is the probability distribution for the number of defective items that escape to

2

customers. An application that answers sampling design questions for the United States Navy is

presented and comparisons with analytical formula are discussed. User-friendly R code that

implements the simulation algorithm is provided.

2. Background

2.1. Continuous Sampling Plans

Continuous sampling plans, introduced by Harold F. Dodge in 1943, are useful for

establishing and improving the quality of production line items [1]. The process inspects items by

alternating between 100% inspection, where all items are inspected, and reduced inspection, where

only a fraction of the items are inspected. It then labels them as either defective or non-defective.

When an inspected item is found to be defective, it is replaced with a non-defective item. Dodge’s

plan estimates the Average Outgoing Quality (AOQ), which is the expected value of the defective

rate for the process.

CSP-1 was the initial continuous sampling plan. However, modified versions, such as CSP-2

and CSP-3, were later published by Dodge and Torrey in 1951 [7]. The CSP-2 plan is a less-

stringent modification of CSP-1, in that CSP-2 reverts back to 100% inspection only when two

defective items occur spaced less than k units apart, where k is a specified value. The CSP-3 plan

is identical to the CSP-2 plan, except when a defective item is found, the next four items require

inspection. CSP-3 provides a method of inspection to avoid clusters of defective items. Readers

are referred to [8] for a comparison and contrast of the different varieties of CSP plans.

2.2. Operating Procedures for CSP-1

The CSP-1procedure is depicted in Figure 1. The process begins in 100% Inspection, in which

every single item is sampled. The process breaks out of 100% Inspection when a specified number

3

of consecutive non-defective items is reached, denoted as n. When the consecutive number of non-

defective items is reached, the sampling procedure enters reduced inspection where the sampling

process skips a specified number of items, skip. For example, if skip = 4 then you inspect every 5-

th item. Sampling remains under reduced inspection until an item sampled is found to be defective.

At that point, the process returns to 100% Inspection. Every time a sampled item is found to be

defective, it is replaced with a non-defective item.

Figure 1. Operating Procedures for the initial continuous sampling plan (CSP-1).

The analytical formulas developed for CSP-1 assume infinite batch sizes and assume that the

test is perfect. That is, defective items do not test as non-defective and non-defective items do not

test as defective. The simulation algorithm we describe in the next section, and have implemented

in the R code, relaxes both of these assumptions in order to extend the applicability of CSP-1 plans

to short-run contexts that have imperfect testing. Navy applications often fall into this category,

particularly since the units under examination can be very sophisticated electronic equipment that

are difficult to exhaustively test.

4

3. Simulation Algorithm

The R function in Appendix A encodes the logic shown by the flowchart in Figure 2. The

inputs to the R function are described in Section 3.1, and the outputs are described in Section 3.2.

5

Figure 2. Coding Flowchart. AOQ = Average Outgoing Quality; APS = Average Percent

Sampled.

3.1. Inputs

Table 1 gives a description of the input variables. In Table 1, N represents the total number of

items to be produced and delivered to the customer as a batch. F is the expected number of failures

among the N items. In practice, a range of values for F can be considered to understand the

influence it might have on AOQ. The required run length under 100% Inspection is denoted by n.

The skip parameter represents the number of items skipped over while on reduced inspection. The

parameter θ represents the probability a defective item is found to be defective by the test. We do

not need to consider the case of a non-defective item testing as defective, because even if this were

to happen the item would be replaced with another non-defective item.

Table 1. Input variables.

Variable Description

N Batch size

F Failures in the batch

n Required run under 100% inspection

skip Items to skip over in reduced inspection

θ Test effectiveness parameter

3.2. Outputs

Table 2 gives a description of the key output variables. For a given set of inputs, the algorithm

runs 10,000 simulations of CSP-1 and outputs the AOQ and Average Percent Sampled (APS)

6

values. AOQ is computed as the average (across the simulations) of the percentage of items in the

batch that escape to the customer as defective, and the APS is computed as the average (across the

simulations) number of items in the batch that are sampled. The algorithm can be used to tabulate

AOQ as a function of F by running it with multiple choices for F. This will create multiple AOQ

values, and the maximum of these values is defined as the Average Outgoing Quality Limit

(AOQL).

Table 2. Output variables.

Variable Description

AOQ Average Outgoing Quality

APS Average Percent Sampled

3.3. Algorithm Design

Figure 2 shows a flowchart that guided the design of the simulation algorithm. The essential

idea of the design is to populate a matrix of 10,000 rows and N columns with 0 s and 1 s subject

to the constraint that each row has F 1 s randomly slotted into the columns. The rows of the matrix

are processed independently as batch replicates.

For each row, CSP-1 is simulated according to Figure 1. However, when a failed item is

encountered, as indicated by reading a 1 from the row-column position, a Bernoulli (θ) random

variable is simulated and the failure is only marked as detected if the Bernoulli outcome is also a

1. After each row of the matrix is processed, the total number of items sampled and the total

number of failures in each batch are available for summary analyses.

7

The execution time of the simulation algorithm will depend primarily on the value of N.

However, for our own use of the algorithm with batch sizes of 3200, the algorithm completed the

calculations in less than a minute when executed on a typical Windows laptop computer.

4. Navy Applications

4.1. Background

The motivation for this research stemmed from a question the U.S. Navy wanted to answer.

The U.S. Navy chose CSP-1 because it would allow them to be more efficient with time and money

while still maintaining quality. Two particular CSP-1 plans were proposed and they sought advice

on which was preferable. Both plans have N = 3200, F = 64, and skip = 4. However, the first plan,

Plan 1, used n = 100, while the second, Plan 2, used n = 30.

4.2. Perfect Testing

For Plan 1, in which n = 100, the AOQ after CSP-1 is 0.66% and the APS is equal to 67.38%.

For Plan 2, in which n = 30, the AOQ is equal 1.36% and the average percent sampled is equal to

32.18%. While the second CSP-1 plan sampled half as many items, the AOQ was twice as high.

The Navy’s original question did not involve the implementation of the test effectiveness

parameter; therefore, the testing procedure is assumed to be perfect in these two plans.

Figure 3 below illustrates the AOQ versus Initial Defective Rate and the APS versus Initial

Defective Quality for both plans while varying the number of failures F from 0 to 320, where the

Initial Defective Rate (IDR) is defined as F/N. We can see in Figure 3 that there is a mound shape

to the AOQ graph, and the maximum AOQ is defined as the Average Outgoing Quality Limit

(AOQL).

8

Figure 3. AOQ and APS for Navy sampling plans with perfect testing (top row is Plan 1 and

bottom row is Plan 2). The top-left shows AOQ versus Initial Defective Rate for Plan 1 with

perfect testing; the top-right shows APS versus Initial Defective Rate for Plan 1 with perfect

testing; the bottom-left shows AOQ versus Initial Defective for Plan 2 with perfect testing;

the bottom-right shows APS versus Initial Defective Rate for Plan 2 with perfect testing.

4.3. Imperfect Testing

9

This next example uses the same input values as the Perfect Testing example; however, the

testing is imperfect with θ = 0.8, meaning that defective items are correctly identified 80% of the

time.

For Plan 1, the AOQ after CSP-1 is 1.07% and the APS is equal to 58.15%. In Plan 2, the

AOQ is 1.52% and the APS is 29.69%. In comparison to the perfect testing example, the AOQ is

higher and the APS is lower. AOQ increases because defective items can escape the test procedure

and end up in the batch that is delivered to the customers. APS decreases because some defective

items are counted as non-defective, making it easier to switch to reduced inspection and therefore

inspect less items.

Figure 4 below illustrates the AOQ versus Initial Defective Rate and the APS versus Initial

Defective Rate for both plans while varying the number of failures F from 0 to 320. In this case,

there is no mound shape and that is a consequence of imperfect testing. If θ ≥ 0.82, the mound

shape returns. With imperfect testing, AOQ starts at 0 and increases to 1−θ, with no guarantee that

there is going to be a mound shape. The upper limit on AOQ of 1−θ can be explained by

considering what happens when the initial defect rate is large. In that case, it becomes increasingly

difficult to move from 100% Inspection to reduced inspection, and under 100% Inspection the

fraction of failed items that go undetected will be equal to the probability that the test fails to detect

them, namely 1−θ.

10

Figure 4. AOQ and APS for Navy sampling plans with imperfect testing (top row is Plan 1 and

bottom row is Plan 2). The top-left shows AOQ versus Initial Defective Rate for Plan 1 with

imperfect testing; the top-right shows APS versus Initial Defective Rate for Plan 1 with

imperfect testing; the bottom-left shows AOQ versus Initial Defective Rate for Plan 2 with

imperfect testing; the bottom-right shows APS versus Initial Defective Rate for Plan 2 with

imperfect testing.

5. Analytical Comparisons

11

5.1. Calibration

Dodge developed mathematical expressions for AOQ and APS under his assumed context of

infinite items being produced and perfect testing [1,9]. Let f denote the fraction of items inspected

under Reduced Inspection.

f= 1skip + 1

Dodge’s formulas derived

AOQ=p (1-APS)

APS= u+f vu+v

where

u= 1-qnp qn

v= 1f p

p=probability of a defect

q=1-p

The formulas for AOQ and APS hold under perfect testing and when N = ∞. In order to apply

them for a short-run context with perfect testing, we assign p as

p= FN .

Note that this definition of p is the initial probability of defect, which is not constant

throughout sampling procedure in short-run contexts. Consequently, the formula above for AOQ

and APS will be approximations.

5.2. Illustrations

In this section, we revisit the analysis of Plan 1 with perfect testing. Table 3 compares the

output of the simulation for AOQ and APS with the approximations in Section 5.1 and with

analytical formula available in the previously discussed references.

12

Table 3. Plan 1 with perfect testing.

Metric Simulation Section 5.1 Approximation Formulas in References [3,4]

AOQ 0.66% 0.69% 0.65%

APS 67.38% 65.34% 67.27%

The calculation using the Section 5.1 formula is close to the calculation of the simulation

because F/N is small. The simulation results agree nicely with the analytical formulas available in

the literature that can be used in short-run contexts provided there is perfect testing.

As a second illustration we revisit the analysis of Plan 1 with imperfect testing. Table 4

compares the output of the simulation for AOQ and APS with results obtained from naively using

the imperfect testing formulas in [2]. The naiveté results from ignoring the effect of the short-run

context, since the formulas in [2] are valid only under long-run contexts.

Table 4. Plan 1 with imperfect testing.

Metric Simulation Formulas in Reference [2]

AOQ 1.07% 1.11%

APS 58.15% 55.6%

The differences in the results shown above expose the fact that even in relatively large batches,

the naïve use of the formulas in [2] can lead to non-trivial discrepancies with the correct simulation

answers. As a sensitivity study, we evaluated a modification where the batch size was doubled to

6400 and the number of failures was also doubled to 128 (preserving the initial 2% probability of

a defect). With the larger batch size, the short-run context becomes closer to a long-run context

and the simulation estimates of AOQ and APS change to 1.09% and 56.94%, respectively, which

are closer to the results given by the long-run formulas.

13

6. Summary

CSP-1 was designed under the assumption that the number of items to be inspected was

infinitely large, as in a production line assembly context, for example. In addition, an implicit

assumption of perfect testing was made. While subsequent research separately relaxed the infinite

batch size and perfect testing assumption, to our knowledge our work is the first that

simultaneously relaxes these two assumptions. Our research developed a simulation algorithm,

and implemented it in the R programming language, for CSP-1 plans in short-run contexts and in

the presence of imperfect testing. One of the outputs of the R code is the distribution of the number

of failed items in the batch that escape detection, which is a performance measure that has not been

studied in previous literature.

We illustrated the simulation algorithm by comparing two alternative CSP-1 designs that were

of interest to the United States Navy for batch sizes of 3200. The two plans differed in the length

of the required run under 100% Inspection before switching to reduced inspection (n = 100 versus

n = 30, respectively). If perfect testing is assumed, the trade-off is that Plan 2 reduces the amount

of sampling by about 50%, but also approximately doubles the AQO from 0.66% to 1.36%. The

decision-maker at the Navy will judge if 1.36% is still an acceptable level of quality, and if so, the

benefit of Plan 2 in terms of less testing effort is very compelling.

Comparing the two plans under 80% test effectiveness shows that Plan 2 offers a similar

reduction in the amount of sampling, but the impact of imperfect testing is more noticeable for

Plan 1 where the AOQ increases by 62% compared to an increase of 12% for Plan 2. The reason

for the bigger impact on Plan 1 is because more items are tested and therefore more failed items

escape as a result of the imperfect test.

14

For future work, an analytical analysis of CSP-1 plans with imperfect testing and in short-run

contexts would be interesting. The simulation algorithm could be modified to include other types

of CSP plans and a detailed comparison could be carried out, including a comparison with single-

stage sampling plans.

Acknowledgments: Mirella Rodriguez received a research stipend from the UCR undergraduate

program for Research in Science and Engineering (RISE).

Author Contributions: Daniel R. Jeske conceived the research problem, communicated with the

Navy to understand their design questions, and guided Mirella Rodriguez on formulating the

simulation algorithm. Mirella Rodriguez developed the R code for the simulation algorithm and

took primary responsibility for drafting the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. User Manual

Appendix A.1. Description

This function is used to simulate CSP-1 for any production line assembly context with a finite

number of items and an indicated level of effectiveness regarding the testing procedure. The

function csp1 (), with the parameters below, runs 10,000 simulations of CSP-1 and outputs the

Average Outgoing Quality and Average Percent Sampled.

Usage

csp1 (N, n, skip, θ, F)

Arguments

15

N Total number of items

n Failures among the N items

skip Items to skip over in reduced inspection

θ Test Effectiveness Parameter

F Failures among N items

Details

If θ = 1, then the testing procedure is perfect.

N should be greater than n.

set.seed (1) was used

Example

≥csp1 (3200, 100, 4, 1, 64)

Average Outgoing Quality: 0.666125

Average Percent Sampled: 67.38524

Appendix B. R Code for the Implementation of the Simulation Algorithm

csp1 <- function(N, n, skip, theta,F)

{

N is total number of units

F is number of failures among the N units

n is the required run under 100% inspection

skip is the reduced sampling jump value

theta is the test effective parameter

16

AOQ <- vector("numeric")

pctsampled <- vector("numeric")

 F <- F

 N<- N

 n<- n

 skip<- skip

 nsim<-10000

 fulldata<-matrix(0,nsim,N)

 # set seed for reproducibility

 set.seed(1)

 #initialize counter for for loop

 j <- 1

 # the for-loop below simulates nsim sequences of N items that have F failures randomly

dispersed

 for (j in 1:nsim)

 {

 fail<-rep(1,F)

17

 success<-rep(0,N-F)

 fulldata[j,]<-sample(c(fail,success),N)

 }

 # vector for how many samples per simulation

 totalsamples <- vector("numeric", nsim)

 # vector for number of missed failures per simulation

 residualfailures <- vector("numeric", nsim)

 #initialize counter for for loop

 k <- 1

 # for loop for selecting single rows of fulldata

 for (k in 1:nsim)

 {

 data <- fulldata[k,]

 # indx = keeps track of what slot you are at

 # currentrun = how many consecutive zeros you have had

 # sampled = how many I have sampled

18

 # failures = how many failures have I observed

 #initializing counting and interation variables

 indx <- 1

 sampled <- 0

 failures <- 0

 while(indx <= N) #loop checked all elements of vector data

 {

 #start checking vector

 #100% inspection

 currentrun = 0

 while(currentrun < n)

 {

 if(indx > N)

 {

 break

 }

 else

 {

 #checking value of spot/slot/element

 if(data[indx]==0)

19

 {

 currentrun=currentrun + 1

 }

 else

 {

 effective = rbinom(1,1,theta)

if (effective == 1)

{

 failures=failures+1

 #keep currentrun=0 in case currentrun != 0, but needs to be reset

 currentrun=0

 }

else

{

}

}

 sampled = sampled +1

 indx = indx +1

 }

 }

20

 #break out of loop to reduced sampling

 stopreduced = 0

 while(stopreduced == 0)

 {

 indx = indx + skip

 #if index is still outside vector

 if(indx > N)

 {

 stopreduced = 1

 break

 }

 #if index is inside vector

 else

 {

 #if element of position index is equal to 1

 if(data[indx] == 1)

 {

effective = rbinom(1,1,theta)

if(effective == 1)

21

{

 failures = failures + 1

 stopreduced = 1

 }

else

{

}

}

 sampled=sampled+1

 indx=indx+1

 }

 }

 }

 totalsamples[k] = sampled

 residualfailures[k]= (F - failures)

 k = k+1

 }

22

 #average outgoing quality per simulation

 AOQ <- (mean(residualfailures))/N * 100

 #percent of entire simulation vector sampled

 pctsampled <- (mean(totalsamples)/N) * 100

cat("Average Outgoing Quality:", AOQ, "\n")

cat("Average Percent Sampled:", pctsampled, "\n")

}

References

1. Dodge, H.F. A Sampling Inspection Plan for Continuous Production. Ann. Math. Stat.

1943, 14, 264–279.

2. Case, K.E.; Bennett, G.K.; Schmidt, J.W. The Dodge CSP-1 Continuous Sampling Plan

under Inspection Error. AIIE Trans. 1973, 5, 193–202.

3. Blackwell, M.T.R. The Effect of Short Production Runs on CSP-1. Technometrics 1977,

19, 259–262.

4. Chen, C.H. Average Outgoing Quality Limit for Short-Run CSP-1 Plan. Tamkang J. Sci.

Eng. 2005, 8, 81–85.

5. Wang, R.C.; Chen, C.H. Minimum Average Fraction Inspected for Short-Run CSP-1 Plan.

J. Appl. Stat. 1998, 25, 733–738.

6. Yang, G.L. A Renewal-Process Approach to Continuous Sampling Plans. Technometrics

1993, 25, 59–67.

23

7. Liu, M.C.; Aldag, L. Computerized Continuous Sampling Plans with Finite Production.

Comput. Ind. Eng. 1993, 25, 4345–4448.

8. Dodge, H.F.; Torrey, M.N. Additional Continuous Sampling Inspection Plans. Ind. Qual.

Control 1951, 7, 7–12.

9. Suresh, K.K.; Nirmala, V. Comparison of Certain Types of Continuous Sampling Plans

(CSPs) and its Operating Procedures—A Review. Int. J. Sci. Res. 2015, 4, 455–459.

	rodriguez_mirella_title (3)
	Capstone Title_1mentor
	Abstract

	rodriguez_mirella_capstone (5)

	Title 1: SHORT-RUN CONTEXTS AND IMPERFECT TESTING
	Text2: FOR CONTINUOUS SAMPLING PLANS
	Text3:
	Name: Mirella R Rodriguez
	Text5: April 30, 2019
	Text6: Daniel Jeske
	Text7: Statistics

