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Abstract
Decision Making on Noisy Data with Additional Knowledge
by
Yuting Ye
Doctor of Philosophy in Biostatistics
and the Designated Emphasis in
Computational and Genomic Biology
University of California, Berkeley
Professor Haiyan Huang, Co-chair

Professor Peter J. Bickel, Co-chair

This dissertation addresses two statistical problems of dealing with noisy data with the aid
of additional knowledge. My purpose is to highlight that in the era of big data, there is an
increasing number of complicated problems with low signal-to-noise ratio, which cannot be
simply solved by existing statistical or machine learning methods. For instance, biological
data is notorious for its limited sample size but a substantial number of features (a typical
p > n problem). Fortunately, there is always additional knowledge from experts or insights
that can be employed to devise smart methods to tackle these noisy data.

Chapter 2 discusses my work supervised by Professor Haiyan Huang on the hierarchical multi-
label classification. This project is motivated by automatic disease diagnosis, where we aim to
predict the patient’s status with limited samples in each disease. The structural information
that depicts the relationship between diseases can mitigate the low signal-to-noise-ratio issue.
We introduce a new statistic called multidimensional-local-precision-rate (mLPR) for each
object in each class. We show that classification decisions made by simply sorting objects
across classes, in the descending order of mLPRs, can in theory ensure the class hierarchy and
meanwhile leading to the maximization of CATCH, a pre-defined performance metric related
to the area under a hit curve. In practical implementation, we need to estimate mLPRs
from data. Ranking the objects across classes in the descending order of estimated mLPRs,



however, would not ensure the optimization of CATCH and/or the class hierarchy anymore.
In response to this, we introduce a new ranking algorithm called HierRank, which optimizes
an empirical version of CATCH defined based on the estimated mLPRs. The ranking results
from HierRank are ensured to satisfy the hierarchical constraint. The superior performance of
our approach over state-of-art methods in literature is demonstrated with a synthetic dataset
and two real datasets.

Chapter 3 discusses my work supervised by Professor Peter J. Bickel on the binomial mixture
model with the U-shape constraint under the regime that the binomial size m can be relatively
large compared to the sample size n. This project is motivated by the GeneFishing method
(Liu et al., 2019), whose output is a combination of the parameter of interest and the
subsampling noise. To tackle the noise in the output, we utilize the observation that the
density of the output has a U shape and model the output with the binomial mixture model
under a U shape constraint. We first analyze the estimation of the underlying distribution
F in the binomial mixture model under various conditions for F. Equipped with these
theoretical understandings, we propose a simple method Ucut to identify the cutoffs of the
U shape and recover the underlying distribution based on the Grenander estimator. It has
been shown that when m = Q(n), the identified cutoffs converge at the rate O(n~'/?). The
L, distance between the recovered distribution and the true one decreases at the same rate.
To demonstrate the performance, we apply our method to varieties of simulation studies, a
GTEX dataset used in (Liu et al., 2019) and a single cell dataset from Tabula Muris.
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Chapter 1

Introduction

With the advent of the data deluge since the 1990s, the term “big data” has been catching
the attention of the whole world (Cai and Zhu, 2015). Even my aunt is constantly talking
about this concept recently, who can hardly turn on and turn off a desktop with Windows
10. But it is more than a fancy phrase used by social media to play to the gallery. Big
data has become entrenched in various scientific disciplines, e.g., computer science, statistics,
economics, biology, public health, to name a few. As a statistician whose essential mission is
“the reduction of data” (Fisher, 1922), T am fortunate to have numerous opportunities to deal
with large volumes of data collected in a loose form or structured in good shape.

My journey to the mysterious world of data started on a bioinformatics project about
isoform selection when I was a visiting college student at the University of California, Los
Angeles, in 2014. Since then, I have seen a wide and diverse variety of data, including DNA
microarray (Nuwaysir et al., 2002), bulk RNA sequencing data (Wang, Gerstein, and Snyder,
2009), single-cell RNA sequencing data (scRNA-seq) (Haque et al., 2017), multiomics data
(Vilanova and Porcar, 2016; Hasin, Seldin, and Lusis, 2017), brain networks measured by
functional Magnetic resonance imaging (MRI) (Buckner, Krienen, and Yeo, 2013) or diffusion
MRI (Sporns, 2013), electronic health record (Heart, Ben-Assuli, and Shabtai, 2017), etc.
These data share one characteristic in common — there might be insufficient samples, but
each sample has numerous features, e.g., genes, brain voxels. It is the typical high-dimensional
regime where the number of features exceeds the number of objects by far.

The primary challenge in tackling the above data is to address the low signal-to-noise-ratio
(SNR) issue. On the one hand, the inadequacy of samples refrains the signal from standing
out amongst the noise. On the other hand, some of these data are intrinsically noisy per se.
For instance, scRNA-seq suffers from a high level of technical noise than bulk RNA-seq data
due to bias of transcript coverage, low capture efficiency, and limited sequencing coverage
(Kolodziejezyk et al., 2015). Brain networks measured by functional MRI often see false
discoveries or false negatives because of head motion, physiologic noise, and neurovascular
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uncoupling (Silva et al., 2018). Off-the-shelf statistical and machine learning tools for the
high-dimension regime, such as dimension reduction methods and sparse regression methods,
can be leveraged as an initial means to look into these data. Nonetheless, the chances are
that they can barely reveal interesting discoveries due to the lack of considerations into the
characteristics of the data.

It usually demands additional knowledge about the data to expose the secrets hidden in
the data, especially when SNR is low. For instance, the multiomics area is established on the
integrative analysis of distinct biological researches, including genomics, genetics, proteomics,
and metabolomics. Even though limited by the number of subjects in the genomics study,
a comprehensive assessment of the complex diseases is accessible by borrowing knowledge
from other measurements. Another example is the systematic disease diagnosis. Modern
medicine has been accumulating understating of the associations between diseases, which
enables the physicians to make decisions with the aid of experts from other departments.
The same principle can be applied when developing an automatic disease diagnosis system
based on the structure of diseases (Huang, Liu, and Zhou, 2010).

In most situations, however, auxiliary data is not easily available. We have to perform
exploratory data analysis (EDA) to dig out information useful for modeling or further analysis.
In John W. Tukey’s book “Exploratory Data Analysis”, he held that too much emphasis was
put on statistical hypothesis analysis; more emphasis needed to be put on using data to
suggest hypotheses to test. In particular, the objectives of EDA includes:

(1) Suggest hypotheses about the causes of observed phenomena.

2) Assess assumptions on which statistical inference will be based.

(2)
(3) Support the selection of appropriate statistical tools and techniques.
(4)

4) Provide a basis for further data collection through surveys or experiments.

In my research experience, EDA plays a broader role than the above four points. For
instance, upon obtaining new data, I'm accustomed to first visualizing the data using box
plot, histogram, scatter plot, etc. Then, if the data contains too many features, some
dimension reduction tools are employed like principle component analysis (Pearson, 1901;
Hotelling, 1933), multidimensional scaling (Mead, 1992) or t-distributed stochastic neighbor
embedding (Maaten and Hinton, 2008). After such explorations, which usually take long, I
can get some idea of what potential problem can be answered by this data, how to formulate
the problem, and what characteristics this data possesses.

In my dissertation, I will study two problems where additional knowledge plays an essential
role in analyzing the data of low SNR. The knowledge of the first study is given in advance,
while EDA discovers that of the second one. Specifically, the first study concentrates on the
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hierarchical multi-label classification (HMC) problem, whose data is comprised of features,
labels, and the structure that describes the relationship between labels. One intriguing
example of this kind is the disease diagnosis problem. Given the patients’ disease status and
their microarray measurements, we manage to design an automatic disease diagnosis based
on a subject’s microarray measurement. For each disease, there are only hundreds of patients
but dozens of thousands of genes. To improve the diagnosis performance, we incorporate the
relationship structure of diseases into this study. The second study deals with the output of
the GeneFishing method (Liu et al., 2019), which is applied to high-dimensional data with
limited samples but a substantial number of features. Although the output is one-dimensional,
it suffers from measurement error because the observation is a combination of the parameter
of interest and a binomial random variable that depends on the parameter. Our goal is to
help make decisions on the GeneFishing method. To this end, we utilize the information
we obtain from the histograms that the underlying distribution of the GeneFishing output
appears in a U shape. I sketch the two works in each of the following subsections, respectively.

1.1 Background of Chapter 2: Disease Diagnosis

With the rapid development of machine learning and statistics, data mining and analysis
becomes increasingly useful to ease the burden of human beings in all kinds of fields, including
face recognition, voice/text translation, anomaly detection/prediction of machines,; to name
a few celebrated examples. In the past decades, much attention has been paid to automating
the disease diagnosis process to help physicians diagnose simple diseases (Shen et al., 2019).
It has a significant impact on both the academic and social aspects since medical resources
are never close to abundance. Our dedication to the field of automatic disease diagnosis
originated from Huang, Liu, and Zhou (2010). They developed a classifier for predicting
disease along with the Unified Medical Language System (UMLS) directed acyclic graph,
trained on public microarray datasets from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO).

GEO was initially founded in 2000 to systematically catalog the growing volume of data
produced in microarray gene expression studies. GEO data typically comes from research
experiments where scientists are required to make their data available in a public repository
by a grant or journal guidelines. In July 2008, GEO contained 421 human gene expression
studies on the three selected microarray platforms (Affymetrix HG-U95A (GPL91), HG-
U133A (GPL96), and HG-U133 Plus 2 (GPL570)). In Huang, Liu, and Zhou (2010), 100
studies were collected, yielding a total of 196 datasets for training the classifier.

Labels for each dataset were obtained by mapping text from descriptions on GEO to
concepts in the UMLS, an extensive vocabulary of concepts in the biomedical field organized
as a directed acyclic graph. The mapping resulted in a directed acyclic graph of 110 concepts
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matched to the 196 datasets at two levels of similarity — a match at the GEO submission
level and a match at the dataset level, with the latter being a stronger match. The disease
concepts and their GEO matches are listed in Table S2 in the supplementary information for
Huang, Liu, and Zhou (2010).

Challenge. The task of automatic disease diagnosis is challenging because there might
be a deficiency of samples in some diseases compared to the number of genes in the genomics
data. Consequently, the learner may have distinct powers and abilities to control the false
discovery rate across diseases. Moreover, some diseases can have an extreme imbalance issue,
which means that the number of negative samples is way more than that of positive ones.
Both issues lead to a relatively low SNR that impedes the patients from trusting the diagnosis
results output by the machine.

Additional Knowledge. Fortunately, diseases do not exist separately from one another.
We obtain knowledge of how one disease connects to others from UMLS. For the diseases
studied in Huang, Liu, and Zhou (2010), the full hierarchy graph of the diseases is partitioned
into two parts as respectively shown in Figures 2.9 and 2.10 (in Chapter 2, Section 2.7.3).
With such knowledge, we can increase the effective sample size for each disease by resorting
to other related diseases. Then it becomes a hierarchical multi-label classification problem.

Our solution. In Chapter 2, we perform the hierarchical multi-label classification in two
stages. We follow the Bayesian approach used in Huang, Liu, and Zhou (2010) to train the
first-stage classifier and place our focus on the second stage. We introduce a new statistic
called multidimensional-local-precision-rate (mLPR) for each object in each class. Under a
Bayesian setting, mLPR in HMC is analogous to multidimensional-local-true-discovery-rate
(mltdr) in hierarchical hypothesis testing (HHT). We show that classification decisions made
by simply sorting objects across classes, in the descending order of mLPRs, can in theory
ensure the class hierarchy and meanwhile leading to the maximization of CATCH, a pre-
defined performance metric related to the area under a hit curve. In practical implementation,
we need to estimate mLPRs from data. Ranking the objects across classes in the descending
order of estimated mLPRs, however, would not ensure the optimization of CATCH and/or
the class hierarchy anymore. In response to this, we introduce a new ranking algorithm
called HierRank, which optimizes an empirical version of CATCH defined based on the
estimated mLPRs. The ranking results from HierRank are ensured to satisfy the hierarchical
constraint. The superior performance of our approach over state-of-art methods in literature
is demonstrated with a synthetic dataset and two real datasets. One real dataset comes from
a study of disease diagnosis using gene expression data, and the other is from a document
categorization application.

This chapter is adapted from my joint work with Professor Haiyan Huang, Christine
Ho, Ci-Ren Jiang, and Wayne Tai Lee. This is a follow-up work of Huang, Liu, and Zhou
(2010) and Jiang et al. (2014). Huang, Liu, and Zhou (2010) first built an automated disease
diagnosis system, but they ranked the first-stage classifier scores without considering the
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hierarchy and comparability of these scores across classes. Jiang et al. (2014) proposed local
precision rates (LPRs) that are shown to be comparable between classes when the classes are
independent. We addressed the problem completely by taking into account the hierarchy and
the comparability issue simultaneously. Haiyan Huang provided valuable supervision on this
work while other collaborators gave many useful suggestions on the paper writing.

1.2 Motivating Example of Chapter 3: GeneFishing

In biological studies, it is pretty standard that the wet lab experiments only involve
hundreds of subjects, but each subject can have tons of thousands of measurements, e.g.,
sequencing over dozens of thousands of genes. To handle the low SNR issue, Liu et al. (2019)
proposed the GeneFishing method. Provided some knowledge involved in a biological process
as “bait”, GeneFishing was designed to “fish” (or identify) discoveries that are yet identified
related to this process. In this work, the authors used a set of pre-identified 21 “bait genes”,
all of which have known roles in cholesterol metabolism, and then applied GeneFishing to
three independent RNAseq datasets of human lymphoblastoid cell lines. They found that
this approach identified other genes with known roles not only in cholesterol metabolism but
also with high levels of consistency across the three datasets. They also applied GeneFishing
to GTEx human liver RNAseq data and identified gene glyoxalase I (GLO1). In a follow-up
wet-lab experiment, GLO1 knockdown increased levels of cellular cholesterol esters.

The GeneFishing procedure is as follows, as shown in Figure 1.1:

1. Split the n candidate genes randomly into many sub-search-spaces of L genes per
sub-group (e.g., L = 100), then added to with the bait genes. This step is the key
reduction of search space, facilitating making the “signal” standing out from the “noise”.

2. Construct the Spearman co-expression matrices for gene-pairs contained within each
sub-search-space. Apply the spectral clustering algorithm (with the number of clusters
equal to 2) to each matrix separately. In most cases, the bait genes are separated from
the candidate genes. But in some instances, candidate gene(s) related to the bait genes
will cluster with them. When this occurs, the candidate gene is regarded as being
“fished out”.

3. Repeat steps 1 and 2 (defining one round of GeneFishing) m times (e.g., m = 10, 000)
to reduce the impact that a candidate gene may randomly co-cluster with the bait
genes.

4. Aggregate the results from all rounds, and the i-th gene is fished out X; times out of
m. The final output records the “capture frequency rate” (CFR; := §; = X;/m). The
“fished-out” genes with large CFR values are thought of as “discoveries”. Notwithstanding,
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instead of considering these “discoveries” to perform a specific or similar function as the
bait genes, we only believe they are likely to be functionally related to the bait genes.
Figure 1.2 displays the distribution of X;’s with m = 10,000 and the number of total
genes n = 21,000 on four tissues for the cholesterol-relevant genes.

Random + Spectral :
sub-group clustering -
: Ranked gene list
Random | | _Spectral : Gene | CFR
sub-group clustering H
. . Repeat for Gt CFRi
H ALL ° ° n times
i | GENES : . G: | CFRe
L]
[} ° L]
Random + Spectral
sub-group clustering '
- E Gn CFRn
Random + Spectral
sub-group clustering

Figure 1.1: Workflow of GeneFishing (Fig 1 (e) of Liu et al. (2019)). CFR stands for Capture
Frequency Rate.

Compared to other works for “gene prioritization”, GeneFishing has three merits. First, it
takes care of extreme inhomogeneity and low signal-to-noise ratio in high-throughput data by
using dimensionality reduction by subsampling. Second, it uses clustering to identify 21 tightly
clustered bait genes, which is a data-driven confirmation of the domain knowledge. Finally,
GeneFishing leverages the technique of results aggregation (motivated by a bagging-like idea)
in order to prioritize genes relevant to the biological process and reduce false discoveries.

Challenge. Nonetheless, there remains an open question on how large a CFR should be
so that the associated gene is labeled “discovery”. One difficulty results from the fact that
the CFR is not exactly equivalent to the fishing rate, which reflects the extent to which one
candidate gene is functionally related to the bait genes. Instead, CFR is a mix of the fishing
rate and the noise induced by subsampling that hinges on the fishing rate. When we only
perform a few rounds of GeneFishing (m is small) because of a limited computational budget,
this noise cannot be neglected.

In literature, we have found three strategies to this end.

e Liu et al. (2019) picked a large cutoff 0.99 by eye. It is acceptable when the histograms
are sparse in the middle as in the liver or the transverse colon tissues (Figure 1.2 (a)(b)),
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Figure 1.2: Histograms of the CFRs on different tissues.

since cutoff= 0.25 and cutoff= 0.75 make little difference in determining the discoveries.
On the other hand, for the artery coronary and testis tissues (Figure 1.2 (c¢)(d)), the
non-trivial middle part of the histogram is a mixture of the null (irrelevant to the
biological process) distribution and the alternative (relevant to the biological process)

distribution. The null and the alternative are hard to separate since the middle part is
quite flat, and hence we need a better-selected cutoff.

e Existing tools using parametric models to estimate local false discovery rates are applied
(Gauran et al., 2018). However, these parametric models are not able to account for

the middle flatness well. As a result, they tend to select a smaller cutoff and produce
excessive false discoveries.
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e Liu et al. (2019) also provided a permutation-like procedure to compute approximate
p-values and false discovery rates (FDRs). Nonetheless, there are two problems with this
procedure. On the one hand, it is substantially computationally expensive, considering
another round of permutation is added on top of numerous fishing rounds. On the
other hand, the permutation idea is based on a strong null hypothesis that none of the
candidate non-bait genes are relevant to the bait genes, thus producing an extreme
p-value or FDR, which is unrealistic.

Additional Knowledge. To resolve the cutoff selection issues mentioned above, we
utilize the knowledge obtained by EDA. Note that in Figure 1.2 there exists a clear pattern
that the histogram is decreasing on the left-hand side and increasing on the right-hand side
for all four tissues. In the middle, liver and transverse colon display sparse densities while
artery coronary and testis exhibit flat ones. Thus, we can impose a U shape constraint on
the associated density of F' (see Section 3.4 for details). The incorporation of such shape
constraint mitigates the subsampling noise issue. And the original problem becomes finding
out the cutoff where the flat middle part transits to the increasing part on the right-hand
side.

Our solution. In this chapter, we use the binomial mixture model with the U-shape
constraint to model the CFRs generated by GeneFishing. We first analyze the estimation of
the underlying distribution F' in the binomial mixture model under various conditions for F
in the regime where the binomial size m can be relatively large compared to the sample size n.
Armed with these theoretical understandings, we propose a simple method for GeneFishing
to identify the cutoffs of the U shape and recover the underlying distribution based on
the Grenander estimator (Grenander, 1956). It has been shown that when m = Q(n), the
identified cutoffs converge at the rate O(n~'/3). The L; distance between the recovered
distribution and the true one decreases at the same rate. The performance of our method is
demonstrated with varieties of synthetic datasets, a GTEX dataset used in Liu et al. (2019)
and a single cell dataset from Tabula Muris.

This chapter is adapted from my joint work with Professor Peter J. Bickel. This work was
motivated by Liu et al. (2019). To the best of our knowledge, it is also the first theoretical
inquiry into the binomial mixture model with a large m in a finite sample regime. Peter J.
Bickel provided extensive valuable advising on this work.



Chapter 2

Decision Making for Hierarchical
Multi-label Classification with
Multi-dimensional Local Precision Rate

2.1 Introduction

Hierarchical multi-label classification (HMC) concerns the situation where additional
knowledge of the dependency relationships among classes is available and needs to be
incorporated, on top of the multi-label classification where each object is assigned to one or
multiple classes (Zhang and Zhou, 2013). The class dependency in HMC is usually assumed
to follow a hierarchical structure represented with a tree or a directed acyclic graph. HMC, an
important problem in many applications, has recently attracted a large amount of attention
in statistics and machine learning research. In biology and biomedicine, example applications
of HMC include the disease diagnosis along a directed acyclic graph (DAG) composed of
terms from the Unified Medical Language System (UMLS)?!; the assignment of genes to
multiple gene functional categories defined by the Gene Ontology DAG?; the categorization
of proteins along the MIPS FunCat rooted tree® among others (Alves, Delgado, and Freitas,
2010; Barutcuoglu, Schapire, and Troyanskaya, 2006; Blockeel et al., 2006; Clare, 2003;
Kiritchenko, Matwin, and Famili, 2005; Valentini, 2009; Valentini, 2011). Outside of biology,
HMC is commonly used in text classification, music categorization, and image recognition —
three fields where labels following a hierarchical structure are common.

A seminal line of HMC research has handled the problem in two stages. In the first

Thttps:/ /www.nlm.nih.gov/research /umls/index.html
Zhttp:/ /www.webgestalt.org/2017/GOView/
3http:/ /mips.gsf.de/projects/funcat
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stage, classifiers are trained for each class without considering the class hierarchy, as if these
are multiple independent classification problems. The task of the second stage is then to
make a decision on each class for each object, given the first-stage classifier scores, the class
hierarchy, and a predefined performance criterion (Koller and Sahami, 1997; Wu, Zhang, and
Honavar, 2005; Holden and Freitas, 2005; Silla and Freitas, 2009; Gauch, Chandramouli,
and Ranganathan, 2009). The two-stage method is popular for its flexibility — a variety
of classification methods can be applied in the first stage. This first stage also tends to be
computationally efficient since the class-specific classifiers can be learned in parallel. However,
it remains an open question for the second stage how to balance the two essential goals of
HMC: 1) respecting the given class hierarchy; 2) achieving the best possible classification
performance, evaluated by metrics like accuracy, precision rate, recall rate, F-measure, etc.

Among the above two goals in the second stage, a majority of prior efforts have focused
on one while paying less attention to the other or considered them as separate goals. One
common approach has been to determine class-specific cutoffs on the first-stage classifier
scores by optimizing an objective like H-loss or F-measure (Barutcuoglu, Schapire, and
Troyanskaya, 2006; Triguero and Vens, 2016). Because these cutoffs are determined without
full consideration of the hierarchical structure (sometimes they are determined independently),
the decisions may not respect the hierarchy. In order to alleviate this problem, the initial
decisions are adjusted to satisfy the hierarchical constraint. But this brings in another problem:
these final decisions may now no longer be optimal concerning the original performance
objective (Sun and Lim, 2001; Ananpiriyakul, Poomsirivilai, and Vateekul, 2014).

Another approach for the second stage is to rank the objects for their assignments in
all classes, given the classifier scores of the objects in every class and the class hierarchy.
Then a single cutoff on the ranking suffices to produce all the decisions. Jiang et al. (2014)
described an optimal way to rank all the objects across all classes in the general multi-class
problem: transforming the first-stage classifier scores to local precision rates (LPRs), then
obtaining the ranking by sorting LPRs in descending order. It has been shown that the
resulting ranking maximizes the pooled precision rate at any pooled recall rate. The LPR
value has a nice Bayesian interpretation that it is equivalent to the local true discovery rate
under certain probabilistic assumptions. However, this method lacks the consideration of the
hierarchical structure. Bi and Kwok (2011) used an algorithm that maximizes the sum of
top L first-stage classifier scores while respecting the hierarchy, where L is predefined. This
method can produce a list of ranked events (the status of an object in a class) by varying
L. Nonetheless, it might not be appropriate to directly sum up these classifier scores due
to potential statistical differences among the classifiers from different classes. When not
taken care of properly, such differences can lead to poor decisions; see Figure 2.2 for an
illustration example. Bi and Kwok (2015) extended Bi and Kwok (2011) by introducing an
algorithm to optimize some objective function (instead of the sum of top L classifier scores)
under the hierarchical constraint. They provided three candidate objective / risk functions.
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However, they do not suggest which risk or objective to use among the three candidates they
investigated. Moreover, they do not have a clear statistical interpretation or justification on
the risks and the hyperparameters involved in the three risks.

In this chapter, we introduce a new statistic called multidimensional local precision rates
(mLPR), given the first-stage classifier scores, for each object in each class. Similar to LPR,
mLPR has a nice Bayesian interpretation that it is equivalent to the multidimensional local
true discovery rate used in hierarchical hypothesis testing (HHT) under certain probabilistic
assumptions (Ploner et al., 2006). It is also demonstrated that in theory, sorting mLPRs in
descending order automatically satisfies the hierarchical consistency and optimizes a new
objective function, the Conditional expected Area under The Curve of the Hit curve (CATCH)
given the first-stage classifier scores. In a hit curve, the x-axis represents the number of
discoveries, and the y-axis represents the number of true discoveries (i.e., the hit number).
The new objective function inherits the characteristic of the hit curve that the maximization
of the area under the hit curve favors a large precision rate when the recall rate is small
(Herskovic, Iyengar, and Bernstam, 2007). We advocate optimizing CATCH for HMC when
the initial decisions are of more importance than the subsequent ones.

In practical implementation, since we can only estimate mLPRs instead of obtaining
their true values, the naive sorting procedure (sorting estimated mLPRs in descending order)
might fail to guarantee the optimization of CATCH or violate the hierarchy consistency. The
deviation from these two goals can be significant if the data is too noisy or the sample size
is limited. To this end, we develop the ranking algorithm HierRank (Hierarchical Ranking)
that sorts the objects across classes using estimated mLPRs while obeying the hierarchical
constraint. This algorithm is shown to achieve the optimization of an empirical version of
CATCH given the estimated mLPRs and at the same time satisfy the hierarchical constraint.
In addition, it has relatively low time complexity O(nlogn), where n is the number of
decisions to be made, which is the product of the number of classes K and the number of
samples M. Therefore, HierRank can be adapted to a large graph with numerous classes.

For evaluation, we first consider a synthetic dataset. Our method is shown to outperform
other competing methods universally in terms of the truncated area under the precision-recall
curve. Then, we study two real datasets. On the dataset for disease diagnosis, we show how
the accuracy of the mLPR estimation influences the performance of our method. On the
dataset for text classification, we emphasize the statistical differences in fitted values and
predicted values of the classifier scores, which gives a practical guideline on how to train the
two-stage method.

The rest of the chapter is organized as follows. In Section 2.2, we introduce the model. In
Section 2.3, we introduce the concepts of hit curve and local precision rate. In Section 2.4,
we introduce the performance metric CATCH and the statistic mLPR. We show that sorting
mLPRs in descending order can maximize CATCH while respecting the hierarchy. In Section
2.5, we propose the ranking algorithm HierRank that sorts objects with associated estimated
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mLPRs under the hierarchy constraint. We discuss an equivalent algorithm of HierRank and
its extension to DAG in 2.6. We assess the performance of our method on a synthetic dataset
and two case studies in Section 2.7. Finally, we conclude this chapter in Section 2.8.

2.2 Notation and Model

2.2.1 Notation

There are K classes of interest, which are structured in a hierarchy G, e.g., Figure 2.1 (a).
In G, denote by pa(k) the set of the parent nodes of the k-th node, by anc(k) the set of its
ancestor nodes, and by nbh(k) the set of its immediate neighbors. For example, pa(F') = {C'},
anc(F) ={A,C}, nbh(F) ={C,G, I} in Figure 2.1 (a), where we abuse the node index and
the node symbol when there is no ambiguity. A random object (the person or item to be
classified) can possess multiple positive labels out of the K classes, thus associated with K
classification decisions to be made. Throughout this chapter, we call an object’s membership
status in a class a classification "event". Each event has a binary variable Y indicating the
corresponding class status/label of the considered object and a pre-given classifier score S
reflecting the likelihood that the event is positive. Specifically, for a random object, denote by
Y, and S, the status and the classifier score on the k-th class. We denote Y = (Y7,..., Yk)T,
S - (Sl, e ,SK)T.

In practice, we observe M objects, and thus there are n = K x M classification events in
total. We use Yk(m) and S,E;m) to denote the status and the pre-defined classifier score for the
k-th class of the m-th object. Denote Y™ = (Yl(m), . 7YI(;"))T and S = (Sfm), e Sé(m))T
for the m-th object. For ease of notation, throughout the rest of the chapter, we say Event i is
an ancestor of Event ¢’ (or equivalently, i € anc(?')), if the two events ¢ and ¢ concern the same
object and that the class node associated with Event i is an ancestor node of that of Event 7’.
We define the ranking © = (7, ...,7,) on n events as a permutation of (1,2,...,n— 1,n).
We say a ranking w has the hierarchical consistency or is a topological ordering for G if
it satisfies

m; < mp if Event ¢ is an ancestor of Event 7.

2.2.2 Model

The hierarchy G for the K classes is assumed to be a tree/DAG. It can be disconnected
and consist of multiple connected components like Figure 2.1 (a). We mainly discuss the tree
structure in this chapter. The extension to the DAG structure is discussed in Section 2.6.3.
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Given the hierarchy G, the status/label variables Y and the first-stage classifier scores
S of a random individual /sample, we consider an augmented graph G (Figure 2.1 (b)) by
assuming the conditional independence stated in Assumption 1.

Assumption 1 The scores are conditional independent given the associated class labels, i.e.,
Sk/ 1 Sk|(Yk, Yk/) fO?” any ]i]/ 7£ k.

The conditional independence is reasonable for the two-stage method of HMC, because the
first-stage classification training is executed class by class. With this assumption, we propose
the following model H to characterize the relationship between Y and S of a random object:

(1) P(Sk - S|Sl7 e '7Sk’—1ask+1a e '7SK7Y17 B 7YK) = P(Sk‘ = S|Yk‘)
(i) P(Ve = 1[Ypa) = 1) € [0,1]; P(Y = 1¥papr) = 0) = 0.

(iii) Sk has a mixture model, i.e., P(S, < s|Y;) = Fék)(s)]I(Yk =0)+ Fl(k)(s) I(Y, = 1),
where Fo(k) denotes the null cumulative distribution function (CDF) P(Sg < s|Y; = 0)
and F*) denotes the alternative CDF P(S, < s|Yy = 1) for the k-th class.

(iii") Sy has a mixture model, i.e., P(Sy < s) = P(Sk < 5,Yx = 0) + P(S, < s,V =
1) = Fék)(s)P(Yk = 0) + FP(s)P(Y, = 1), where Fo(k) denotes the null cumulative
distribution function (CDF) P(Sy < s|Y; = 0) and Fl(k) denotes the alternative CDF
P(Sk < s|Y; = 1)for the k-th class.

The assumption (i) follows from the conditional independence; the assumption (ii) reflects
that the labels respect the hierarchy G, i.e., a negative node implies all of its descendants
are negative as well; the assumption (iii) means that the classifier score is generated from a
class-specific mixture model.

On the sample level, the M objects are independent and identically distributed, i.e.,
(Y™ gm) 9y m = 1,..., M. For a fixed k, scores {S,gm) :m =1,..., M} follow the
same mixture distribution. But if k and &’ correspond to different nodes in G, S,gm) and S ,Sn/)
would follow different distributions, and so are not directly comparable; see Figure 2.2 for an
example. When making joint decisions across all nodes, we need to take into consideration
such distinct statistical distribution properties across classes.

2.3 Preliminary

2.3.1 Hit Curve

The hit curve has been explored in the information retrieval community as a useful
alternative to the ROC curve and the PR curve. In a hit curve, the x-axis represents the
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Figure 2.1: An example hierarchical graph G and the associated augmented graph G.

number of discoveries, and the y-axis represents the number of true discoveries (i.e., the
hit number); see Figure 2.3. The hit curve is widely used in situations where the users
are more interested in the top-ranked instances. For example, in evaluating the performance
of a web search engine, the relevance of the top-ranked pages is more important than those
that appear lower in search results because users expect that the most relevant results
appear first. The hit curve can serve well in this situation as a graphic representation of the
ranker’s performance since it would plot the results in order of decreasing relevance, and
the y-axis would indicate the result’s relevance to the target. On the other hand, the ROC
curve, which plots the true positive rates (TPR) against the false positive rates (FPR) at
various threshold settings, does not depend on the prevalence of positive instances (Davis and
Goadrich, 2006; Hand, 2009). In the case of search results, the number of relevant pages is
tiny compared to the size of the World Wide Web (i.e., low prevalence of positive instances),
which would result in an almost zero FPR for the top-ranked pages. That is to say, with
very few true positives, the early part of the ROC curve would fail to visualize the search
ranking performance meaningfully. In the case of many hierarchical multi-label classification
problems, like disease diagnosis problems, this issue exists as well; there are many candidate
diseases to consider while few are actually relevant to the patient. Although the PR curve
accounts for prevalence to a degree (i.e., showing the trade-off between precision and recall for
different threshold), Herskovic, Iyengar, and Bernstam, 2007 provided a simple example where
the hit curve can be the more informative choice: with only five positive cases out of 1000, the
hit curve’s shape clearly highlighted the call order of a method that had called 100 instances
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Figure 2.2: Distributions of the SVM decision values of two classes of the RCV1v2 dataset
(see Section 2.7.4 for details). The red vertical dashed lines indicate the respective 95%
quantiles of the two classes, and the black vertical dashed line indicates the 95% quantile of
the mix of the two classes. Making decisions on the mix of the decision values of the two
classes is likely to lead to a small power on the second class, e.g., the decision rule is to take
the top 5% values as positive.

before the five true positives, whereas the corresponding PR curve was uninformative (i.e.,
both the recall and precision rates are zero for the first 100 called instances).

2.3.2 The local precision rate

The local precision rate was developed to maximize precision with respect to recall in
the multi-label setting (Jiang et al., 2014). Specifically, it aims to maximize an expected

. . . .. . >, TPy
population version of the micro-averaged precision, i.e., S TPTFP)
Pillai, Fumera, and Roli, 2013, where T'P}, and F' P, are the number of true and false positives
for class k, respectively.

The expected precision of the classifier for class k£ with threshold A\, can be written as

and recall rate given by

(1 — FP ()
1—F®(\,)

where 7, = P(Y;, = 1).

We also have the joint probability P(S;, > s and Y; = 1) as (1 — F®)(s))GL(F®(s)). By
pooling decisions across all K classes with the thresholds Ay, ..., \g, the expected pooled
precision rate (ppr) can be written as
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ppr = >k (1= FO () Gr()
Dol =FW)
where the denominator represents the a priori expected number of times a given instance
will be assigned to a class with the decision thresholds Aq,..., A\x. The pooled recall rate

(prr) can be written in the same form, except with ), Y} as the denominator instead.

In order to maximize ppr with respect to prr, it suffices to maximize >°, (1—F® (\.))Gr(Ar)
while fixing 37, 1 — F®)()\;) considering Y, Y} is a constant. Then, the local precision rate
(LPR) is defined as

d dGy(s
LPRu(s) = = i (1= FO)GH0)) = Gals) = (1 = F(s) Tk

In the main theoretical result Theorem 2.1 of Jiang et al. (2014), they showed that
if the LPR for each class is monotonic, then ranking the LPRs calculated for each event
maximizes the expected ppr with respect to a fixed recall rate. The monotonicity requirement
is equivalent to having monotonicity in the likelihood of the positive class, which is satisfied
when higher classifier scores correspond to a greater chance of being from the positive
class—this rules out poorly behaved classifiers.

To better understand LPR, note that df(’,jfiz) = dG;s(S) de,lf;(S

7 It follows that
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LPRy(s) = Gi(s) — (1 — F(k)(s))%

nfi(s) 7e(1 = F{Y(s))

= Gil(s) = (1= FO(s)) - F’?ml(s)) ®)(s) (k1 —FW(5))2

(%)
= Gk(s) + %(ij) - Gk(s)
o kal(k)(s)
f®(s)

- P(Yk == 1|Sk == S) = ltdI‘,

where f® and f* are the derivatives of F® and F*, Itdr is short for local true discovery
rate. The local false discovery rate, lfdr = 1 — [tdr is its more well known relative; it has
been studied extensively for Bayesian large-scale inference (Efron, 2012).

To estimate LPR in practice, Jiang et al., 2014 discussed two methods. The first method
employs kernel density estimates for fék), f®)and then plugs in 7;,’s after expressing LP Ry (s)
as the [tdr. The second method employs a local quadratic kernel smoother to simultaneously
estimate Gi(s) and G}.(s). They showed that, under certain conditions, the first method has
a faster convergence than the second. However, the second method performed better than
the first in simulation studies. The difference results from the difficulty in estimating the
densities fo(k) and f®): the estimates of {tdr are poor in any situation, which would make
kernel density estimation difficult. Furthermore, f,ik) and f*) are estimated separately, so

they have different levels of bias and variance. Particularly, since the estimation of fék) only
relies on the negative class cases, it has a larger variance. In comparison, the functions Gy (u)
and G} (u) are estimated jointly in the second method.

2.4 Problem Formulation and an Theoretical Solution

In this section, we first introduce the motivation of using the hit curve to define a new
objective function CATCH. Then we give the explicit form of CATCH, which leads to the
key statistic mLPR. By showing the theoretical advantages of the mLPR, we conclude that
sorting mLPRs in descending order not only gives a good classification performance in terms
of CATCH but guarantees the hierarchical consistency as well. Finally, we make a brief
discussion on the application of mLPRs to inference.

For simplicity, we vectorize (Y, ..., Y®)) and (SY, ..., S™)) to get ¥ = (Yl(l), . ,YI(;),

YD ,Y[({M))T and S = (S%, ..., Sg{l), LS ,S%M))T, respectively. By repre-
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senting the index i of Y and S as = (m —1)- K + k where m denotes the object index and
k denotes the class index, we write Y = (Y1,...,Y,)%, S = (Sy,...,S,)T when there is no
confusion. We keep using this notation throughout the rest of the chapter.

2.4.1 Motivation

Given all the n scores S and the model H, we attempt to produce a reasonable ranking
of the associated n events. It leads to a natural question of what objective function to be
employed to guide this ranking. Measures like ROC-AUC, precision, recall and F-measure
are widely used in classification problems without hierarchy constraint. However, consensus
on standard metrics has not yet been achieved for evaluation metrics of the HMC problem,
and the development of such metrics remains an active research topic today. For example,
H-loss (Cesa-Bianchi, Gentile, and Zaniboni, 2006b; Rousu et al., 2006; Cesa-Bianchi,
Gentile, and Zaniboni, 2006a), matching loss (Nowak et al., 2010), hierarchical hamming
loss, and hierarchical ranking loss (Bi and Kwok, 2015) are designed to blend the false
positive rate (FPR) and the false negative rate (FNR) while considering the hierarchical
structure. However, all of these loss functions depend on the choice of per-class cost and other
coefficients, usually determined with intuition or domain knowledge rather than statistical
justification. On the other hand, the hierarchical versions of precision, recall, and F-measure
introduced in Kiritchenko, Matwin, and Famili (2005) and Verspoor et al. (2006) do not
require determination of the per-class costs but have complicated forms that make them
expensive to compute and difficult to optimize over.

A proper kind of metric to look at depends on the user’s end goal, which explains why
a standard evaluation metric has not yet been agreed upon (Costa et al., 2007). In this
chapter, there are two goals to pursue. First, we are interested in a metric that emphasizes
the accuracy in the initial set of positive calls rather than capturing all of the true positives
in the dataset. This is motivated by the case of disease diagnosis, where physicians need
to have confidence that the general category of disease has been correctly diagnosed, and
the automatic diagnosis would tolerate or even expect mistakes at more specific levels since
those typically need to be corroborated by expert knowledge (Huang, Liu, and Zhou, 2010).
Second, we want a metric that fully incorporates the hierarchical information so that the
maximization of this objective naturally respects the hierarchy. Thus we do not need to
resort to a constraint.

To meet the first goal, we use the hit curve and the corresponding area under curve,
where the x-axis represents the number of discoveries and the y-axis represents the number
of true discoveries (i.e., the hit number); see Figure 2.3 in Section 2.3.1 for more details. The
hit curve can serve well in the disease diagnosis situation as a graphic representation of the
ranker’s performance since it would plot the results in order of decreasing relevance, and the
y-axis would indicate the results’ relevance to the target. By contrast, the other traditional
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metrics like ROC or PR curves are not sensitive or informative to the top-ranked instances,
especially when the number of positive instances is tiny compared to the total size (Davis
and Goadrich, 2006; Herskovic, Iyengar, and Bernstam, 2007; Hand, 2009). Additionally,
there are three more reasons why the hit curve is preferred:

e There is a close connection between the hit curve and the PR curve, e.g., the slope of
the hit curve is the precision rate. Most importantly, a large area under the hit curve
corresponds to a large area under the PR curve.

e In the interest of optimization, it is easier to work with the number of total/true
discoveries in the hit curve than the true/false discovery rates in the ROC/PR curves.

e The area under the hit curve does not depend on any manually designed hyperparameter.

As for the second goal, traditional metrics like matching loss and H-loss require hyper-
parameters that assign the class weights to leverage the hierarchy, which can barely guarantee
the hierarchical consistency. DeCoro, Barutcuoglu, and Fiebrink (2007) and Bi and Kwok
(2015) utilize a Bayesian idea to account for the dependencies, but it is not yet able to
ensure the hierarchical consistency. So they leverage an additional constraint to this end.
Here to incorporate the hierarchical information into the objective function, we consider the
expected area under the hit curve conditional on the scores across all the classes. It turns
out that maximizing this objective function without any constraint can, in theory, produce a
hierarchical consistent ranking; see Section 2.4.3.

2.4.2 Conditional expected Area under The Curve of the Hit

curve and Multidimensional Local Precision Rate
From the motivation in Section 2.4.1, we aim to find out a ranking such that the area
under the hit curve is maximized. Formally, we want to solve the optimization problem
(2.4.1). Here the hierarchy constraint is added to make the optimization a complete HMC

problem. Subsequently, after considering a conditional version of the area under the hit curve,
we will show that this constraint is no longer needed.

max  area under the hit curve, (2.4.1)

s.t. m; < my if Event 7 is an ancestor of Event 7'.

Note that the x-axis of the hit curve represents the number of calls made, and thus the
expression of the area under the hit curve is equivalent to the sum of the number of true
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positives among the top ¢ calls, for every i. This yields the convenient expression for (2.4.1):

n

(2.4.1) = i in(yﬁj =1) =Y (n—i+1)I(Yy, =1). (2.4.2)

i=1 j=1 =1

Since Y, is a random variable when the inputs are random objects, we consider the population
average of the area under the hit curve. Specifically, we take the conditional expected values
of (2.4.2) given the classifier scores S, on account of the dependencies, and arrive at

CATCH := E(AUC of hit curve|S) =) “(n—i+ 1)P(Yy, = 1]81,...,5,).  (24.3)
i=1

Here, we call the target metric the Conditional expected Area under The Curve of
the Hit curve (CATCH). We call P(Y; = 1|54,..., S,) multidimensional local preci-
sion rate (mLPR). Just as multidimensional local false discovery rate (m/fdr) extends
the traditional ¢fdr (Ploner et al., 2006), mLPR is a multidimensional extension to Local
Precision Rate (LPR). More details on LPR can be found in Section 2.4.3 and Section 2.3.2.
Proposition 1 below shows a desired property of mLPR.

Proposition 1 Under model H defined in Section 2.2.2, for two events i and ', if i € anc(i'),
then mLPR; > mLPR;.

Proof Under model H defined in Section 2.2.2, i € anc(i’) means that the two events ¢ and
7' concern the same object, and that the associated class node of Event 7 is an ancestor of
that of Event 4’.

For any ¢ and i € anc(i’), it follows that

mLPRZ/ = P(E/ = 1|Sl,...,Sn)
= > P(Yi,....Yoo1, Yy = 1,Yip, ... YalSh, ..., Sh)

@ Z P(Yly..-,yz":LYz‘:17---aYn|Sl""7S”)

< > PML. LY Y =1Yi, . Y8, S,)

where Equation (a) is obtained by the condition (ii) of the model H (Section 2.2.2). u
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Proposition 1 tells that the mLPR value of an event can not be smaller than those of its
descendants. Besides, it can be shown that a larger mLPR indicates the associated event
is more likely to be positive; see Section 2.4.3. Based on the two properties, we propose a
population-level solution to maximizing CATCH under the hierarchical constraint.

2.4.3 Sorting mLPRs in Descending Order

We aim to find the ranking that maximizes CATCH (2.4.3) while respecting the hierarchy.
This can be mathematically written as the optimization problem.

max CATCH, (2.4.4)

™

s.t. m; < my if Event ¢ is an ancestor of Event 7.

We can generate the ranking by naively sorting any scores (here, we use mLPRs) from the
largest to the smallest. We call this method naive sorting. Proposition 1 indicates that
the ranking by applying naive sorting on mLPRs satisfies the hierarchical consistency. It
immediately implies that this ranking is the solution to the problem (2.4.4), as shown in
Proposition 2. In other words, if we can get access to the population mLPRs, solving the
optimization problem (2.4.4) does not require the hierarchical constraint. This conclusion is
reasonable because the hierarchy information has been fully incorporated into mLPRs.

Proposition 2 Under Model H defined in Section 2.2.2, the ranking obtained by naive
sorting on mLPRs is a topological ordering for G and mazximizes (2.4.3).

Proof Proposition 1 indicates that sorting mLPRs from the largest to the smallest can
guarantee the hierarchy constraint that ancestors rank ahead of their descendants. Meanwhile,
the maximum of CATCH (2.4.3) is just obtained by sorting mLPRs in this manner. |

Furthermore, we will show in Proposition 3 that an event at the top of the ranking
obtained by applying naive sorting on mLPRs is more likely to be positive than an event in
the tail. In other words, given a decision rule induced by imposing a cutoff on such a ranking,
the event taken as positive by this rule is more likely to be truly positive than those taken as
negative. Fundamentally, it reflects that mLPRs account for the statistical differences across
classes. Thus, with Proposition 1 and Proposition 3 together, it is statistically justified to
directly compare mLPRs in the scenario where there are dependencies between classes. It
is an extension of a similar result for LPRs shown in Jiang et al. (2014) that sorting LPRs
in the decreasing order guarantees the optimal pooled precision at any pooled recall rate if
there is no hierarchy constraint among the classes. More details on LPR and its relation to
the local true discovery rate (Efron, 2012) are deferred to Section 2.3.2.
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Proposition 3 Given Model H defined in Section 2.2.2, let ®™° be the ranking obtained by
sorting mLPRs in an descending order. Then for any positive event i and i with w** < 7)*,

we have
P(Y; = 1nf* < %) > B(Yy = L[} < ).

Proof For a realization § of S, the resulting mLPRs give the ranking 7"* with m'* < 70,
indicating that mLPR; = P(Y; =1|S =5§) > P(Yy—1|S =8) = mLPR;;. Then we have

P(}Q:l,yr?8<7rgs> — / ]P(Yi:LS:g)
§:7TZ7‘5<71'Z§5

/ P(Y, = 1,5 = 35)
§Z7T,:LS<7T;S

= P(Yy =1,7" <m°).

Vv

2.5 HierRank: Ranking Algorithm based on estimated
mLPRs

In this section, we describe a routine on how to compute mLPRs given the observed
classifier scores. First, two approximations are provided in light of the strengths of the class
dependencies. Then, we develop a ranking method to rank the estimated mLPRs, for which
the simple naive sorting can longer guarantee the maximized empirical CATCH (given the
estimated mLPRs) and the hierarchical consistency.

2.5.1 Computation of mLPRs

The sound properties of mLPRs and the naive sorting method can be guaranteed when we
know the true values of mLPRs. In reality, it is hard to get this ideal solution, and we have
to estimate mLPRs. Given the model H defined in Section 2.2, we are able to investigate
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P(Yy,...,Y,]S1,...,S,) in a simple manner:

P(Yi,...,Y|Si, ..., S,) P(Sy,...,Su|Y1,...,Y,) - P(V4,....Y,)

n

= J[PCSiY:) PYi| Vi)
=1

© 1 PilS)

(Y| Vs

X ZH1 ]P)(Y;) ( 'L| Pa(l))

@ ﬁLPR--—P(mYP“(“) (2.5.1)
i1 P(¥:)

where (a) and (¢) hold by the Bayes rule, (b) holds by using the Markov property with
Assumption 1 (conditional independence), and Equation (d) follows from Jiang et al. (2014)
that given the scores S, the associated LPR of the i-th node is defined as

LPR; = P(Y;|S)).

We estimate LPRs by applying the method in Jiang et al. (2014). We estimate P(Y;|Ypq())
and P(Y;) with the empirical proportions (e.g., counting number of objects such that ¥; = 1
to estimate P(Y;)). Then, with these estimates and by applying the sum-product message
passing to P(Y3,...,Y,|S1,...,5,) with respect to G (Wainwright and Jordan, 2008), we
obtain an estimator mLPR of mLPR. We call it the full version of mLPR if we keep strictly
to the above estimation procedure of mLPR. When the dependency structure is sparse,
some estimation approaches that ignore or simplify the dependency structure may generate
reasonable approximations with improvement in computation cost. We consider two strategies
to approximate the mLPR in terms of the strength of the dependencies between classes. To
be specific,

e Independence. We assume that Y; is independent of Sy for i’ # i. Then we get
mLPR; ~ P(Y;|S;), which is simply LPR;. This type of computation is called the
independence (short as indpt) approximation.

e Neighborhood. We assume that Y; is only correlated with Sy for i' =i or i" € nbh(i).
Then we get mLPR; ~ P(Y;|S;, Snen()), which can be computed in the same fashion as
Equation (2.5.1). This type of computation is called the neighborhood (short as nbh)
approximation.

The independence approximation has been widely used in statistical methods such as
Naive Bayes and Variational Bayes (Ng and Jordan, 2001; Wainwright and Jordan, 2008).



CHAPTER 2. DECISION MAKING FOR HIERARCHICAL MULTI-LABEL
CLASSIFICATION WITH MULTI-DIMENSIONAL LOCAL PRECISION RATE 24

The neighborhood approximation is a compromise between the independence approximation
and the full mLPR computation based on the complete dependencies. The assumption of
the neighborhood dependencies can be regarded as a mild augmentation of Assumption 1.
In practice, the choice of the three versions of mLPR computations depends on the signal-
to-noise ratio. It is reasonable to use the independence approximation or the neighborhood
approximation when a weak or local dependence is observed between classes. On the other
hand, even though there is an explicit dependency between classes, we will also turn to the
independence approximation when the signal is weak due to data insufficiency or bad data
quality; see Section 2.7.3 for an example.
Finally, given Wms, we consider

CATCH := Y (n—i+1)mLPR,, (2.5.2)

=1

which is an empirical version of CATCH (2.4.3).

2.5.2 Algorithms

Proposition 2 holds when true mLPRs are available. Sorting mLPRs naively (in descending
order), however, might violate the hierarchical constraint. Consequently, here we introduce a
sorting algorithm, named HierRank, to provide a ranking 7w that gives the largest possible
CATCH in (2.5.2) among all the rankings that satisfy the hierarchical constraint. We
consider this an empirical solution to the constraint optimization problem (2.4.4). Formally,
HierRank aims to solve the following problem:

max C’@H, (2.5.3)
s.t.  m < my if Object i is an ancestor of Object 7'.

We first define the terminologies that will be used in the algorithm. The terms are also
illustrated in Figure 2.4.

e node: a node corresponds to an event (the status of an object in a class) in the HMC
problem.

e tree: a tree is an undirected graph in which any two nodes are connected by exactly
one path.

e Single-child branch/chain: a branch/chain of the tree, on which every node has at
most one child. In Figure 2.4, the chains B - D — E, G — H,I — Jand K — L
are single-child branches.
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e P;: the set of nodes on all single-child branches, i.e., a node is in Py if it and its
descendants have at most one child. In Figure 2.4, nodes on the chains B — D — FE,
G— H,I — J, K— L belong to P;. Node A does not belong to P, because it is not
on a single-child branch.

e Starting node in P;: a node that is in P; but its parent(s) are not. In Figure 2.4,
Node B, G, I and K are starting nodes in P;.

e Ps5: a set of nodes with at least two children and those children are in P;. Any node in
P is attached by multiple single-child branches starting from its child nodes. In Figure
2.4, only Node F' belongs to Po. It is attached by the chains G — H and I — J. Node
A does not belong to Ps because its child C' does not belong to P;.

e Pj3: a set of nodes who are the parents/ancestors of the nodes in P, and they have only
one child. In Figure 2.4, only Node C belongs to P3. Node A does not belong to Pj
since it has two child nodes.

e C,s: a sub-chain that starts from Node r and ends at Node s (a sub-chain/path is
unique for a tree, given the two ends). Let |C,_ | be the number of nodes in C,_,,. For
example, in Figure 2.4, C4_, g represents the chain A - B — D — FE.

e C,: a simplified notation for C,_,., if » € P; and Node e is a leaf node. For example, in
Figure 2.4, Cp represents the chain B — D — E.

e C.(h): a sub-chain that consists of the first i nodes of C,. For example, in Figure 2.4,
Cg(2) is a sub-chain of Cy consisting of Cg’s first two nodes, i.e., B — D.

e £, 1(S): the average value of scores (e.g., Tﬁﬁ%) of the sub-chain C,(h), i.e., £, 4(S) =
|C7~—1(h)| >icc,(n Si- Here we use C;.(h) to denote the set of nodes in the sub-chain C,(h)
when there is no ambiguity.

We first consider ranking nodes from multiple disjoint single-child chains C,,,...,C,,.
This is equivalent to merging these chains into a single chain. The relative position along the
final chain will reflect the ranking. To this end, we introduce Algorithm 1 that is illustrated
in Figure 2.5:

(a) Initialize the ranked list £ = 0.

(b) For the chains I — J and G — H, there are four sub-chains: G, G — H, I, I — J
with average scores 0.8, 0.45, 0.3, 0.6 respectively. The sub-chain G has the largest
average, so we remove it from the original graph and attach it to L.
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Figure 2.4: Tllustration of notation. The numbers inside the nodes are the associated scores.

Graph | -> H
i &0

G:0.8 1-J: 0.6 H: 0.1
1-J: 0.6 1:0.3
G-H: 0.45 H: 0.1
________________________________ '03
Ranking = ’ ‘* > ‘*‘*’*
L= e G, ={G.I.J.H
G is selected. J-I are selected. H is selected Obtain the sorted chaln

Figure 2.5: An example of the merging process in Algorithm 1: merge the two sub-chains
G — H and I — J in Figure 2.4. The nodes in bold form a sub-chain of the highest averaging
scores, and the nodes filled in grey give a ranking produced by the merging procedure.

(c) In the remaining graph, there are three sub-chains: I — J, I and H with average scores
0.6, 0.3, 0.1. The sub-chain I — J has the largest average, so we remove it from the
remaining graph and attach it to L.

(d) There remains a single node H. We attach it to £. Since there is no node in the
remaining graph, £ is the final ranking.

The produced ranking of Algorithm 1 satisfies the hierarchical consistency because it preserves
the relative ordering of the nodes in each chain. This ranking also maximizes (2.5.2). The
heuristic is that this algorithm essentially sorts the average scores in descending order. The
detailed argument is part of the proof of Theorem 4.
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For a general tree case, we introduce Algorithm 2 (HierRank), which uses Algorithm 1
repeatedly. Figure 2.6 is used to illustrate this algorithm:

(a) Identify Py, P2 and Ps. In Figure 2.6 (a), Py = {B,D,E,G,H,1,J, K, L}. Py ={F},
Ps ={C}.

(b) For each node in P,y, we apply Algorithm 1 to merge the chains attached to it. Then
attach the resulting single chain to this node, and update Py, Ps, P3. In Figure 2.6
(a), P2 only contains Node F. Apply Algorithm 1 to merge the two sub-chains G — H
and I — J attached to node F'. Attach the resulting chain G — I — J — H to node
F, and we get Figure 2.6 (b). Update P, = {B,D,E,C,F,G,1,J, H, K, L}, Py ={A},
Ps3 = 0.

(c) Repeat step (b) until Py is empty (then Pj is empty as well). In Figure 2.6 (b), P2 only
contains node A. Apply Algorithm 1 to merge the two sub-chains B — D — E and
C —-F—G-—1— J— H that are attached to node A. Attach the resulting chain
C—-F—-G—B—D—I—J—FE— Htonode A, and we obtain Figure 2.6 (c).
Update Py = {all nodes}, P, = 0, P3 = (). Since P, is empty now, we terminate the
loop.

(d) Apply Algorithm 1 to merge the remaining single-child chains. In Figure 2.6 (c), there
remain two sub-chains K -+ Land A -C—-F —+G—-B—+D—1—J—FE— H.
Apply Algorithm 1 to merge them, and we obtain the final ranking A - K — C —
F-G—+B—+D—1—-J—-L—F—H.

In the very beginning, some nodes are put in Py, Py or Ps3, and the other nodes are
left out. As the algorithm proceeds, the nodes in P, and P3 are transferred to Py, and
some left-out nodes are transferred to Ps and P3 until all the nodes are put in P; and there
remains a single chain. It can be seen that P, are updated upwards along the graph, so
HierRank works in a bottle-up fashion. As we note above, when we repeat using Algorithm 1
in HierRank, the local ranking satisfies the hierarchy constraint and attains the maximum
of Equation (2.5.2), conditional on the involved sub-graph. We show in Theorem 4 that
HierRank enjoys the desired optimality that it produces a topological ordering of G with the
maximum of Equation (2.5.2). The detailed proof is deferred to Appendix A.1.

Theorem 4 Let G’ be a new graph obtained by replacing any sub-tree in G with the corre-
sponding merged chain given by Algorithm 2. Then an optimal topological ordering of G’ is
also an optimal topological ordering of G. Hence, Algorithm 2 leads to an optimal topological
ordering by merging all the trees into a single chain.
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Figure 2.6: An example of the merging process in Algorithm 2: (a)—(b) merge G — H
and | — Jinto G -1 - J — H; (b)=(c) merge B—-D - EFandC - F -G — 1 —
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(d) merge all nodes to

Algorithm 1 The Chain-Merge algorithm.

Input: p chains D = {node € C, : ¥ = 11,...,7,}, the node scores S (e.g., classifier scores,
or ms)
Procedure:

1: Set £ = 0;

2: Compute {£,;(S):i=1,...|C.|,r =71,...,1}.

3: while D # () do

4 (',1) = arg max £,,(S).

Cr(h)CcD "’

L+ L®C,(h), where @ indicates the concatenation of two sequences.

D« (D\C.) U (C\Cw(h)).
Update the average scores of the remaining nodes as step 2.
end while

Output: L.
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Algorithm 2 The HierRank algorithm for the tree hierarchy.

—

Input: The tree graph G, node scores S (e.g., classifier scores, or mLPRs).
Procedure:

1: Figure out Py, Pa, Ps.

2: while P, # () do

3:  Pop out one v from P,. Take all children of v, i.e., r1, 7o, .. ..
4:  Feed C,,, C,,, ... into Algorithm 1 and obtain L(ry,79,...).
5. Replace C,,, C,,, ... with L(ry,79,...).

6:  Update Py, Pa, Ps.

7: end while

8: if There remain multiple chains then

9:  Apply Algorithm 1 to these chains.
10: end if

11: Let £ be the resulting chain.
[1] Output: a ranking L.

We have three remarks for HierRank. First, the property stated in Proposition 3 is
not guaranteed when using mLP Rs instead of mLPRs. If we have good estimates of P(Y}),
P(Y;|Ypas)) and LPR;, the naive sorting behaves similarly to HierRank when ranking m.LP Rs;

see Section 2.7.2 for an example. If the estimates are way off the true values, mLPRs will miss
the hierarchy information in G, and thus HierRank outperforms naive sorting significantly; see
Section 2.7.3 for an example. Second, the time complexity of HierRank reaches up to O(K?)
for each individual. It implies that the ranking over the K nodes in G across M individuals
costs O(nK? + nlog M) computations (n = MK). This high complexity stems from the
exhaustive merging and repeated computations of the moving average at each iteration. To
improve the efficiency, we modify Algorithm 2 by segmenting a chain into blocks, which
are defined by the maximal running average. In this fashion, we eliminate the redundant
computations and obtain Algorithm 2’. Algorithm 2’ is equivalent to Algorithm 2 in light of
the output and only costs O(nlogn) operations. In addition, we note that there is an existing
algorithm Condensing Sort and Select Algorithm (CSSA) (Bi and Kwok, 2011) that has the
same time complexity as Algorithm 2. CSSA was designed to make the first L decisions (L
is a positive integer) and can be applied to the ranking problem. It produces almost the
same ranking as HierRank except for some local parts; see Section 2.6.2 for the details of
Algorithm 2" and CSSA. Third, we can extend Algorithm 2 that is designed for the tree graph
to handle the DAG graph. The details of this algorithm are deferred to Section 2.6.3.
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2.6 Discussion on HierRank

2.6.1 An equivalent algorithm

We find an existing algorithm called Condensing Sort and Select Algorithm (CSSA)
(Baraniuk and Jones, 1994) that is also of O(nlogn) complexity and can be adapted to solve
(2.5.3). Bi and Kwok, 2011 first extended CSSA in their proposed decision rule for the HMC
problem. In their paper, CSSA was used to provide an approximate solution to the integer
programming problem

max > B(k)(k) (2.6.1)
keT
st W(k)€{0,1},Vk, Y W(k) =1L, (2.6.2)
keT

V¥ is T-non-increasing,

where T-nonincreasing means that ®(k) < ®(k) if node £’ is the ancestor of node k; B(k) is
a score produced by kernel dependency estimation (KDE) approach (Weston et al., 2003).
Instead of directly solving (2.6.1) with (2.6.2), Bi and Kwok, 2011 tackles a relaxed problem
by replacing the binary constraint (2.6.2) with

U(k) >0,Vk, ©(0)=1,> U(k) <L (2.6.3)
keT

Bi and Kwok, 2011 proposed CSSA (Algorithm 3) to solve this problem. They showed that
this algorithm can produce the optimal result that maximizes the objective function (2.6.1)
while respecting (2.6.3).
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Algorithm 3 The CSSA algorithm

Input: A collection of trees T, scores S (e.g., nmi’s)
Denote Par(T},) as the parent of supernode Ty, n(7}) as the number of nodes in T}, and ¥
as a vector indicating which nodes are selected.

1: Initialize ¥(0) < 1; " < 1.
2: Initialize all other nodes as supernodes with W (k) < 0 and sort them according to the
scores.

3: while I' < L do

4:  Find k = argmax,, n(%k/) Yier, Si

5. if W(Par(Ty)) =1 then

6: U(T) < min{1, (L —T')/n(Ty)}

7. T« T +n(T))

8: else

9: Condense Ty and Par(T}) as a new supernode.
10:  end if

11: end while
Output: Vector ¥ = (U(1),¥(2),...).

Note that CSSA has a property that W(k) = 1 for L implies ®(k) = 1 for L' (the same
node k) when L < L. Tt indicates this algorithm is able to produce a ranking by varying L.
It turns out that CSSA can be modified as Algorithm 4 that is shown to generate the same
result as HierRank (see Theorem 5). On the other hand, we note CSSA and Algorithm 2
differ in the following aspects.

First, HierRank is independently introduced and interpreted in the context of CATCH,
with a statistical justification for ordering nodes using mLPRs in particular. CSSA originates
in signal processing and has been successfully used in wavelet approximation and model-based
compressed sensing (Baraniuk and Jones, 1994; Baraniuk, 1999; Baraniuk et al., 2010).

Second, there might be local differences between the ranking of HierRank and that of
CSSA. This results from the relaxation condition (2.6.3) — the same set of nodes can be
selected for L and L + 1, thus CSSA cannot differentiate the ordering of some nodes. For
example, consider a simple tree B < A — C, with S = 3.6, S4 = 3, S¢ = 4. In this
case, V(A) =¥(B) =V(C) =1/3 when L =1; V(A) = ¥(B) = ¥(C) = 2/3 when L = 2;
V(A) =¥(B)=¥(C) =1 when L =3. So Nodes A, B and C are always picked together.
CSSA only knows that A should be ranked ahead of B and C, but cannot determine which
of B and C should rank first. On the other hand, HierRank gives the resulting ranking
A—C— B.
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Finally, HierRank merges the chains from the bottom up, rather than as in CSSA,
constructing ordered sets of nodes called supernodes by starting from the node with the
largest value in the graph and moving outward. It is easy to see that the blocks defined
in Algorithm 2’ (the faster version of HierRank introduced in Section 2.6.2) are essentially
the same as the supernodes taken off in Algorithm 4. Hence, our independently proposed
algorithm provides some novel insight into CSSA under the HMC setting.

Theorem 5 Algorithm 2 and Algorithm / yield the same ordering, so Algorithm 4 maximizes
CATCH as well.

Algorithm 4 An equivalent algorithm modified from CSSA.

Input: A forest T, scores S (e.g., WEP\RZ-’S)

Denote Par(T},) as the parent of supernode T}, n(7}) as the number of nodes in T}, and £
as a vector for holding sorted scores .

Procedure:

1: Initialize with one node per score value, and each node as its own supernode, £ = ||
(empty vector).

2: while | £| <n do

3:  Find k = argmax,, n(%k,) >ier, Si

4:  if Par(Ty) = () then

5: Take the nodes in T}, off the graph and append them to L.
6: else

7 Condense T and Par(T},) into a supernode.

8 end if

9: end while

Output: A ranking L.

2.6.2 A faster implementation of HierRank

To solve the scalability issue of Algorithm 2, we propose a faster version of HierRank by
reducing redundant and repetitive computations in Algorithm 2. The speed-up is motivated
by the following observations: 1) Algorithm 1 breaks a single chain into multiple blocks via
the formula (', h') = arg Cr%uccpgnh(g); 2) It can be shown that these blocks can only be

agglomerated into a larger block rather than being further partitioned into smaller ones; 3) the
agglomeration occurs only between a parent block and its child blocks in the hierarchy. Thus,
HierRank can be implemented at the block level so that the partition is only executed once
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during multiple merging. By considering the above facts and taking care of other details, we

obtain a faster version of HierRank (see Algorithm 2'), which costs O(nlogn) computations.
In Algorithm 1, we note the fact that each sub-chain in the tree can be partitioned into

multiple blocks — given a chain C)., the breaking points are sequentially defined as

Max) <p<|Cy crl(g Zke(]r(h) Sk ifj==1
bj = keCr(h)/Cr(p;_1) Sk s ] (2.6.4)
MaXp; 1 <h<ICrl TG00 0 Y

For example, Figure 2.7 (i) shows a chain of 6 nodes can be partitioned into two blocks.
During the merging procedure of Algorithm 2, it turns out that the blocks defined by the
above partitions will not be broken into smaller pieces, but can be further agglomerated. To
show this, suppose there are two consecutive blocks in a chain, By, By, and B; locates ahead
of By. Now we reform the blocks from the nodes in B; and Bs, using the rule in (2.6.4). It
is obvious that nodes in By will be clustered together. It remains to see which nodes in B,
will be clustered with the nodes in B;. Denote by By(h) a sub-block consisting of the first
h nodes in B,, and by /g = ﬁ > ren Sk given a block B. Then, the average scores of the
nodes in By and the first A nodes in B is computed as:

|B1|lB, + hlp,n) Cyny — B,
14 = =lg, + ——F—. 2.6.5
BlUBQ(h) |B1| + h, B1 |B1|/h+ 1 ( )
By the definition of block By, we have (g, > lp,1), Vh = 1,...,|Bs|. If {p, > {p,, none of

the nodes in By will be clustered together with the nodes in By. If {5, < (p,, (2.6.5) shows
that all the nodes of By and Bs will form a new block. Therefore, blocks will not be broken
into pieces but can be further agglomerated. During the merging of multiple chains whose
roots have the same parent, no blocks will be agglomerated since the blocks are sorted in a
descending way along the merged chain; see the three descendant blocks of the bold block
in Figure 2.7 (ii). On the contrary, blocks can be agglomerated with those from the parent
chain. Figure 2.7 (iii) shows that after chains merge, the blocks in the merged chain can be
further agglomerated with the parent block (the bold one).

These observations motivate us to propose Algorithm 2’ a faster version of Algorithm
2. We avoid repeatedly computing moving averages by partitioning each chain into blocks,
storing the size and the average of each block. Specifically, there are three new components
we need for Algorithm 2"

e Detect breaking points. For a chain C,., breaking points can be detected by (2.6.4).
Many existing algorithms can be used to this end. For example, recursion leads to an
O(|C,|log |C,|) time complexity. Figure 2.7 (i) illustrates this step.

e Merge multiple chains with defined blocks. Merging m multiple chains with
detected blocks can be realized using the k-way merge algorithm. The time complexity
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is O(slogm), where s is the total number of blocks in these chains. Figure 2.7 (ii)
illustrates this step using a tree of five blocks.

e Agglomerate the upstream chain and the downstream merged chain. For a
node v € P,, denote by C*) the longest chain that ends with the node v and all the nodes
in C) but v have only one child. Suppose the children of v are 1, . .., 7. Denote by C,
the chain output by merging C,,, ..., C,, using the k-way merge algorithm. Denote the
blocks of C® by B .. B{"" and the blocks of C, by B™*™ ..., B*"™ Algorithm
5 agglomerates the blocks of C*) and C, with a time complexity of O(|C™ |+ |C,]).
Figure 2.7 (iii) illustrates this step using the output of Figure 2.7 (ii).

Throughout Algorithm 2'; the total time complexity consists of three parts: 1) detecting
breaking points requires O(nlog K') computations; 2) merging multiple chains with defined
blocks requires O(Dnlog K + nlog M) computations, where D is the number of nodes that
have multiple children in the graph (for one sample). The quantity D upper bounds the
number of times each sub-chain merges during the algorithm; 3) agglomerating the upstream
chain and the downstream merged chain requires O(Dn) computations. In total, the time
complexity of Algorithm 2" is O(Dnlog K). In reality, most tree structures are shallow with
D < 10. For example, the D =6 and D =5 in Figure 2.9 and Figure 2.10 respectively. So
our algorithm is actually of O(nlog K) run time for practical use.

Algorithm 5 Agglomerate the blocks in the upstream chain and the downstream chain

Input: Blocks B%w )., B™ from the upstream chain C®) and Blocks B%dow"), e Bt(dow”)
from the downstream chain C,,.
Procedure:

1: Let by be B\™ b_, be the block ahead of by in C®) and b,; be the block after by in
Cy. Denote by £, 0y_,, ¢y, the averaging LPR within by, b_; and by, respectively.

2: while gbo > £b71 or €b+1 > &,0 do

3: if fbo > €b71 then

4: Agglomerate by and b_;. The new block is still called by and the block ahead of the
original b_; now is called b_;.

5. else

6: Agglomerate by and b,;. The new block is still called by and the block after the
original by, now is called b, .

7. end if

8: end while

[1] Output: The new sequence of blocks.
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Figure 2.7: Illustrating the three components in Algorithm 2’ using two examples which are
separated by the solid line. The first example starts from a tree of six nodes, and the second
example starts from a tree of five blocks. (i) Detect breaking points of the chain of six nodes
and partition them into two blocks. (ii) Merge the two child chains of the bold block. (iii)
Agglomerate the upstream chain and the downstream chain around the bold node. The final
list of blocks are positioned in a descending way.
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Algorithm 2’ A faster implementation of the HierRank algorithm.
Input: A forest T, scores S.
Procedure:

1: Figure out Ps.
2: while P,y # () do
3:  Popout awv from Py. Take out all of its children r, ..., rg. These children’s descendants
have at most one child. Denote by C®) the longest chain that ends with the node v
and all the nodes in C) but v have only one child.
4:  Find the breaking points pgh), o ,pgz) for C,, by (2.6.4), h=1,..., H.
Merge C,,,...,C,,, in terms of the averaging score values of the blocks separated by
the breaking points. Denote the new chain as C,.
Agglomerate blocks of C®) and C, by Algorithm 5.
Update Ps.
end while
if There remain multiple chains then
10:  Merge them use the k-way merge algorithm.
11: end if
12: Let £ be the resulting chain.

[1] Output: a ranking L.

o

2.6.3 Extension to DAG

Directed acyclic graph (DAG) is a more general hierarchy than the tree structure and is
more applicable to real data. In the DAG hierarchy structure, one node can have more than
one parent, which brings about an additional decision issue — which parent the node and
its descendants should respect. We call it the “AND” constraint if the node respects its all
parents and call it the “OR” constraint if the node only respects one of its parents. Denote
by Q all the nodes that have at least two parents.

It is easy to extend our algorithm for the tree hierarchy to the DAG structure by dynamic
programming. For each node in Q, we explore all the possible cases where this node respects
one of its parents and disconnects the edges to other parents. Such a strategy works for the
“OR” constraint. Bi and Kwok, 2011 has shown that at least one case satisfies the “AND”
requirement. Each case boils down to a forest; thus, we can use Algorithm 2’ to get a ranking.
For the “OR” requirement, we select the case with the highest objective function value. For
the “AND” requirement, we select the highest value scenario among those satisfying the
requirement. Although the above brute-force strategy looks clumsy and time-consuming,
it works for most practical scenarios since most applications have shallow and scattered
hierarchy structures. For instance, in Figure 2.9, there are seven nodes that have multiple
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parents in a connected part, while there are two such nodes in Figure 2.10. So we only need
to explore 27 = 128 cases at most. Considering there are only a limited number of labels,
about 100 for most times, the computation time is acceptable.

To adapt HierRank to a complicated DAG with substantial nodes that have multiple
parents, we follow the strategy used in CSSA. To be specific, we find the node v with multiple
parents and one of its parents has the minimal parent score value:

Find v € @ such that min S, = min Sy
u€pa(v) U€U,/ ¢ gpa(u’)

Then we find the parent of v that has the minimal score value:

Find v := argminS,,.
u/ Epa(v)

Then we assign the parents of v except for u as the new parents of v and disconnect v to its
parents but u. Bi and Kwok, 2011 has shown that this strategy works for the “OR” constraint.
The detailed algorithm that uses this strategy to extend HierRank to DAG is summarized as
Algorithm 5.
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Algorithm 5 The HierRank algorithm for the DAG hierarchy.

Input: The DAG graph G, node scores S.
Procedure:
1: Figure out Ps.
2: Figure out Q := {v : v has more than one parent}.
3: while There is a node with more than one children or more than one parent. do

4:  while P, # () do

5: Pop out one v from P,. Take two children of v, r; and r».

6: Feed C,, and C,, into Algorithm 1 and obtain L(ry,rs).

7 Replace C,, and C,, with £(ry,72).

8: Update Ps.

9: end while

10:  if Q # (). then

11: Find v € Q such that min S, = min  S,. Find v := argminS,,.
uepa(v) UEU, 7 gpa(u’) u’Epa(v)

12: Let pa(u) = pa(u) U pa(v)/u, pa(v) = u.

13: Update Py and Q.

14:  end if

15: end while

16: if There remain multiple chains then
17:  Apply Algorithm 1 to these chains.
18: end if

19: Let £ be the resulting chain.

[1] Output: a ranking L.




CHAPTER 2. DECISION MAKING FOR HIERARCHICAL MULTI-LABEL
CLASSIFICATION WITH MULTI-DIMENSIONAL LOCAL PRECISION RATE 39

2.7 Evaluation

2.7.1 Setup

In the sequel, a variety of rankings can be produced based on mLPRs (denote by
mLPR-Rank the associated ranking method), which differ in how to estimate mLPRs and

how to rank mLPRs (the method is implemented in the R language?). To obtain mS,
we estimate P(Y;|Y,q(;)) and P(Y;) using SVM with covariates or the empirical proportions
without covariates. We estimate LPR by the local polynomial regression (polyreg) as Jiang
et al. (2014), or estimate P(S;|Y;) by modelling P(S]Y = 0) and P(S|Y = 1) as two Gaussian
densities (DeCoro, Barutcuoglu, and Fiebrink, 2007). Then the mLPR is estimated in terms
of the indpt approximation, the nbh approximation, and the full version. Note that for the
indpt approximation, it does not rely on the estimates of P(Y;|Ypq()) and P(Y;), so it performs
the same regardless of how these quantities are estimated. The ranking is produced via either
naive sorting or HierRank based on mLPRs.

We compare mLPR-Rank to three competing methods of different variants. The first one
is simply ranking the raw classifier scores (call the associated ranking method Raw-Rank).
Next, we consider HIROM (Bi and Kwok, 2015) which is the state-of-the-art local HMC
classifier. It produces Bayes-optimal predictions that minimize a series of hierarchical risks
with a general learning model that is independent of the loss functions. Here we use the
hierarchical ranking loss and the hierarchical hamming loss for HIROM, which extends the
classic ranking loss and hamming loss to the HMC scenario by considering the hierarchy
information. Moreover, we consider another line of efforts for the HMC problem, i.e., the
“global” classifier. It solves the classification issue and the hierarchy issue mentioned above
simultaneously. Unlike two-stage methods, global methods simultaneously make predictions
for the graph rather than on a node by node basis. Here we use CLUS-HMC?® and its
variants (Blockeel et al., 2002; Blockeel et al., 2006; Vens et al., 2008), which extend the
decision tree for HMC on both tree and DAG label hierarchies. It is a state-of-the-art global
HMC classifier. The details of all the above methods are summarized in Table 2.1.

We evaluate mLPR-Rank using three HMC datasets: 1) A synthetic dataset with three
trees that are comprised of 25 nodes; 2) the disease-gene-expression data (Huang, Liu, and

4The implementation can be found in github.com/Elric2718 /mLPR.

SWe use ClusHMC and follow Dimitrovski et al., 2011 by constructing bagged ensembles and use the
original settings of Vens et al., 2008, weighting each node equally when assessing distance, i.e. w; = 1 for
all 4. In addition to node weights, the minimum number of events is set to 5, and the minimum variance
reduction is tuned via 5-fold cross-validation from the options 0.60, 0.70, 0.80, 0.90, and 0.95. Following
the implementation of Lee, 2013, a default of 100 (Predictive Clustering Trees) PCTs are trained for each
ClusHMC ensemble; each PCT is estimated by resampling the training data with replacement and running
ClusHMC on the result.
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Method Raw-Rank ClusHMC HIROM mLP R-Rank
two-stage two-stage two-stage
Method type (2nd stage) global (1st and 2nd) (2nd stage)
ot Classifier Labels Y;’s; Labels Y;’s; Labels Y;’s;
P Scores Covariates Covariates Classifier Scores
Estimators of SVM, SVM,
P(Y;), P(Y:| Vo)) N/A N/A empirical empirical
v i1 pali) estimator estimator
. naive sorting, . naive sorting,
Ranking HierRank N/A HierRank HierRank
Approximation:
version: loss: indpt, nbh, full
. oy Hier. Ranking,
Other variants N/A k\)famlilrelm, Estimator of LPR:
ageIng Hier. Hamming local polyreg,
Gaussian Mixture

Zhou, 2010); 3) the RCV1v2 data (Lewis et al., 2004). We use the truncated area under the
PR as the evaluation metric. To be specific, we convert the result into a ranking where the
top ones are more likely to be positive. Then we take top x x 100% of the samples as positive
and the remaining as negative, where x € {0.1,0.2,0.3,0.4,0.5,1}. For each k, we get the
corresponding recall rate and compute the area under the PR curve truncated at this recall
rate. -

After obtaining a ranking given by mL P R-Rank, the next step is to cut the ranking to
make the final decisions. One immediate solution is to resort to the validation set. Suppose the
individual classifier for each node in G and the estimation methods of P(Y;)’s, P(Y;|Y}q())s and
LPRs are trained on the training set. Then we can determine the cutoffs on the validation
set. Specifically, the classifiers and the estimation methods of LPRs, P(Y;), P(Y;|Ypa())
learned from the training set can be applied to the validation set to produce mLPRs. Then
HierRank /naive sorting takes these mLPRs to produce a ranking of nodes for the validation
set. Since the truth is known on this dataset, metrics like F-measure and false discovery rate
(FDR) can be computed at an arbitrary cutoff. Then the desired cutoff on this ranking can be
chosen to attain the maximal F-measure or a target FDR. The evaluation of the goodness of
this cutoff is performed on the testing set. For other methods in Table 2.1, the same strategy
can be used to select a cutoff.
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2.7.2 A synthetic data with a complicated tree structure

For the synthetic dataset, the setting comprises three trees with mixes of high- and
low-quality nodes and varying levels of dependence between the nodes (Figure 2.8). The
quality of a node refers to the ability of the corresponding classifier to distinguish between
the positive and the negative. The simulation dataset consists of 5,000 training samples and
1,000 test samples. We generate the true instance status as follows. First, the conditional
probabilities P(Y; = 1Y) = 1)’s are randomly generated from a uniform distribution, with
the constraint that each dataset has to have a minimum of 15 positive events in the training
set, which amounts to a minimum prevalence of 0.3% for any class. Then, given the instance
status, the simulated classification score is sampled from the status-specific distribution —
data are generated from a Beta(n, 6) distribution for the negative case and a Beta(6, n)
distribution for the positive case, where n = 2, 4, 5.5 for the high, medium, low node quality
respectively. Details of the score generation mechanism can be found in Table 2.2.

Table 2.2: Score distribution in terms of the node quality.

Quality | Positive instance Negative instance Node color
High Beta(6, 2) Beta(2,6) white
Medium | Beta(6,4) Beta(4, 6) grey

Low Beta(6,5.5) Beta(5.5,6) black

Figure 2.8: A 25-nodes tree-hierarchy. White, grey, and black correspond to high, medium,
and low quality, respectively.

Since there is no covariate for each sample, we just use empirical proportions as the
estimates of P(Y;|Ypa(;)) and P(Y;). From Table 2.3, we see that mL P R-Rank works best for

the HMC task. Among variants of m—Rank, the full version outperforms that of the
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neighborhood approximation. The independence approximation is the worst. We interpret
this result as that the sample size is sufficiently large, and the data quality is sufficiently
good to learn the estimators of the LPRs, P(Y;|Y,q:))’s and P(Y;)’s accurately. Therefore,
the hierarchy information can be well learned when estimating the mLPRs. One direct
evidence, based on Proposition 1, is that mLPR-Rank of the full version using the naive
sorting performs almost as well as that using HierRank. Finally, mLPR-Rank with LPRs
learned by modelling P(S|Y') as Gaussian densities is inferior to those of the other methods.
It shows the advantage of using LPRs in Formula (2.5.1) (d) instead of P(S]Y) in Formula
(2.5.1) (b) — it is more robust and more accurate.

Given the ranking produced by m—Rank, the next step is to determine the cutoff to
make the final decisions. To this end, we split the original training set into a training set
and a validation set of equal sizes (2500 samples) and then use the cutoff selection approach
discussed at the end of Section 2.7.1. In Table 2.4 and Table 2.5, we show the performance
of this strategy. The cutoff is taken to attain an o x 100% FDR (a = 0.01,0.05,0.1,0.2) or
the maximal F-score on the validation set. Then the same cutoff is applied to the testing
set. We see that the observed false discovery proportion (FDP) on the testing set is close
to the target one for every method except for the Raw-Rank method. For the F-score, the
strategy also finds out the nearly maximal value for each method. These results indicate the
reliability of the cutoff selection strategy. On the other hand, the results also corroborate the
conclusion drawn from Table 2.3: in Table 2.4, mLPR-Rank of the full version finds most
discoveries before exceeding the given FDR; in Table 2.5, mLPR-Rank of the full version
gives the ranking with the highest maximal F-score.

2.7.3 Disease Diagnosis

Huang, Liu, and Zhou (2010) developed a classifier for predicting disease along the UMLS
directed acyclic graph, trained on public microarray datasets from the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO). They collected 100
studies, including a total of 196 datasets and 110 disease labels. The 110 labels represent 110
nodes, which are grouped into 24 connected DAGs; see Figure 2.9 and 2.10. In general, the
graphs have three properties:

e [t is shallow rather than deep: the maximum node depth is 6, though the median is 2.
Only 10 nodes have more than one child. It occurs because 11 of the connected sets are
standalone nodes, while six are simple two-node trees. The two largest sets consist of
28 and 30 nodes, respectively.

e [t is scattered rather than highly connected. The graph nearly follows a tree structure.
Most nodes have only one parent or are at the root level. Only 15 nodes have 2 parents,
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and 2 nodes have 3 parents. Most nodes do not have a high positive case prevalence.
The largest number of samples belonging to a label is 62, or a 32.63% positive case
prevalence. The average prevalence is 5.89%, with a minimum prevalence of 1.53%,
corresponding to 3 cases for a label.

e Data redundancy occurs as an artifact of the label mining: usually, the positive events
for a disease concept are the same for its parents. Few datasets are tagged with a
general label and not a leaf-level one. Twenty-six nodes or 23.64% of all nodes share the
same data as their parents, so they have the same classifier, and therefore the identical
classifier scores as their parents. If we take the number of nodes that share more than
half of their data with their parent, this statistic rises to 50%. A consequence of this
redundancy is that the graph is shallower than appears in the figure. For example, the
first connected set in the top left of Figure 2.10 appears to have six levels but only has
three because the last three levels do not contain any new information.

We simply follow Huang, Liu, and Zhou (2010) to get the first-stage classifier scores. We
summarize that process here. In the classifier for a particular disease concept, the negative
training events were the profiles among the 196 that did not match with that disease concept.
The principal modeling step involved expressing the posterior probability of belonging to a
label in terms of the log-likelihood ratio and some probabilities that have straightforward
empirical estimates. The log-likelihood ratio was modeled with a log-linear regression. A
posterior probability estimate, which would be used as the first stage classifier score, was
then obtained for each of the 110 x 196 events in the data by leave-one-out cross-validation
(LOOCV), i.e., estimating the i-th posterior probability based on the remaining ones. It
guarantees that, for each class, the classification scores are identically distributed across all
samples (see the related discussion in Section 2.7.4). Next, we use another round of LOOCV
to compute the mLPRs. Since the disease-gene-expression data has very limited sample size,
we just use the empirical proportion for P(Y;|Ypaq)) and P(Y;). Finally, we apply HierRank
on these mLPRs to produce the ranking.

We compare the performance of mLPR-Rank against other competing methods (other
methods are executed in the same LOOCYV fashion as above). The resulting precision-recall

curve is shown in Figure 2.11. Overall, mLPR-Rank performs better than all of the other
methods, and it performs significantly better in the initial portion of the precision-recall curve.
It is not a surprise that the indpt approximation performs better than the nbh approximation
and the full version since it is hard to estimate P(Y;|Y,q()) and P(Y;) due to the limited
sample size. In this case, the mLPR estimation does not fully incorporate the hierarchy
information, and the assumption of Proposition 1 is violated. Thus, HierRank plays an
important role in making use of the hierarchy. In contrast, Raw-Rank with HierRank poorly
behaves because the first-stage classifiers are not good enough on their associated classes,
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Figure 2.9: Structure of the disease diagnosis dataset, part 1 of 2. The colors correspond to
node quality: white indicates that a node’s base classifier has AUC between (0.9, 1]; light
grey, (0.7,0.9], dark grey, (0,0.7]. The value inside a circle indicates the number of positive
cases, while the value underneath gives the maximum percentage of cases shared with a
parent node.

and these classification scores are not statistically comparable across classes. HIROM does
not work well due to the poor estimators of P(Y;|Y,qz))’s and P(Y;)’s. ClusHMC is better

but inferior to m/L\PR—Rank since it is not able to handle disconnected hierarchies.
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Figure 2.10: Structure of the disease diagnosis dataset, part 2 of 2. The colors correspond to
node quality: white indicates that a node’s base classifier has AUC between (0.9, 1]; light
grey, (0.7,0.9], dark grey, (0,0.7]. The value inside a circle indicates the number of positive
cases, while the value underneath gives the maximum percentage of cases shared with a
parent node.

2.7.4 RCV example

In this section, we consider a text categorization task using the Reuters Corpus Volume I
(RCV1) dataset, which is an archive of over 800,000 manually categorized newswire stories
made available by Reuters, Ltd. To be more specific, we use the corrected version RCV1v2
(Lewis et al., 2004), which describes the coding policy and quality control procedures used in
producing the RCV1 data, the intended semantics of the hierarchical category taxonomies,
and the corrections necessary to remove errorful data. The RCV1v2 dataset used here
contains 30,000 samples in total and 103 categories. The data has a good quality, and the
categorization task is not difficult.
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Figure 2.11: Precision-recall curve for several classifiers run on the real dataset of Huang,
Liu, and Zhou (2010).

We use this example mainly to illustrate a subtlety in the training process of mLPR-Rank.
In this method, we have two training stages: 1) train the binary classification scores using
SVM, 2) train the LPR model using the SVM scores and train learners to estimate P(Y;)’s
and P(Y;|Ypa(:))’s. For a fair evaluation, we split the dataset into three partitions: Partition
I (25% of the samples), Partition II (25% of the samples), and Partition 11T (50% of the
samples). First, we train the SVM model on partition I, and then predict the classification
scores on each partition (Figure 2.12c (a)). The distributions of the classification scores
on Partition I differ far from those on Partition II and Partition III, while the latter two
distributions are quite similar. It is reasonable since Partition I is the training dataset and
Partition I1& III are the testing dataset for the first stage. For the estimation of the LPR
(and other quantities), there are two possible training strategies:

1. Train the model for the LPR on Partition I and then predict the LPR scores on Partition
IT & III.

2. Train the model for the LPR on Partition II and then predict the LPR scores on
Partition III.

We suggest using the second strategy. To elaborate on this point, we investigate the predicted
LPR scores for both strategies. As shown in Figure 2.12¢ (b), for the first strategy, the
distributions of the estimated LPRs are mixed between the positive and the negative groups
on Partition II & III. In contrast, the distributions are clearly separated on Partition I. It
results from the fact that the distribution of the input SVM scores on Partition I deviates far
from that on Partition II & III. It leads to a bad generalization from the training data to the
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(c) Predicted SVM/LPR scores. (a) The SVM model is trained on Partition I, and predicted on
all partitions. (b) The LPR models are respectively trained on Partition I then predicted on all
partitions (left), and trained on Partition II then predicted on Partition II & IIT (right).

testing data. By contrast, the second strategy overcomes this issue by training on Partition
IT and testing on Partition III, which have similar distributions of the SVM scores. As a
result, the distributions of the estimated LPRs between the two groups are well separated on

both Partition II and III. Similar phenomena are observed for the estimation of P(Y;) and
P(Yi|Yoa(i))-

Using the second strategy for data splitting, we evaluate mLPR-Rank against the compet-
ing methods on the RCV1v2 dataset, as shown in Table 2.6. Almost all the methods, except
for the Raw-Rank methods, can find a majority of correct positives in the very beginning
since it is easy to classify texts in this dataset. It can be seen that mILPR-Rank outperforms
all the other methods, which justifies our argument that the full consideration of the hierarchy
is significantly beneficial. Also, we observe that the full version performs better than the
indpt approximation and the nbh approximation.

Finally, we need to point out that we trim the factor 1/P(Y;) since it can be pretty
unstable if I@’(YZ) is close to 0. This strategy has been commonly adopted in statistics and
machine learning, e.g., the Iterated Probability Weights method in causal inference (Lee,
Lessler, and Stuart, 2011) and varieties of deep neural networks (Pascanu, Mikolov, and
Bengio, 2013) use the clipping trick.
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2.8 Discussion

In this chapter, we present a method that produces the ranking for the second-stage
decision in the two-stage HMC method. When true mLPRs are accessible, the resulting
ranking obtained by sorting mLPRs in descending order maximizes the objective function
CATCH and meanwhile satisfies the hierarchical consistency and has a nice property that a
front node in the ranking is more likely to be positive than a tail node (Proposition 3). In
practical implementation, we have to resort to estimating mLPRs, which might no longer
enjoy these properties. To this end, the ranking algorithm HierRank is developed. It has
been theoretically shown to optimize the empirical CATCH (given estimated mLPRs) under
the hierarchical constraint.

We demonstrate the advantage of our approach over the competing methods in one
simulation study and two real data studies. Our method outperforms the competing methods
constantly in terms of the truncated area under the PR curve. We also provide an approach
to select a cutoff for the final decision on the ranking. It has been shown that this cutoff
selection method can ensure the FDR control or maximize the F-score. Our method finds
more discoveries than other methods before exceeding the target FDR. In addition, our
method can obtain a higher maximal F-score than other methods. Both results imply that the
ranking produced by our method puts more true positives in the front than other rankings.
For the above reasons, we recommend our method as a computationally efficient, statistically
driven approach that produces a ranking for the second-stage decision in a local classification
framework. -

We also provide a practical guideline in training mL P R-Rank. First, we use different
versions of approximations, in terms of the data quality and the sample size, to estimate
mLPRs given the first stage classifier scores. The independent version fits when the data is
noisy or insufficient; otherwise, a full version is preferred. Second, we should split the training
data into two parts, one for the learning of the first-stage classifiers, the other one for the
learning of LPR scores, P(Y;|Ypq(;))’s and P(Y;)’s. Third, we should use the trimming trick
on P(Y;) to avoid the inflation of its reciprocal 1/P(Y;) used to compute mLPR.

Despite the merits of mLPR-Rank mentioned above, there remains large room for im-
provement. First, we note that mLPR-Rank of the independent approximation, neighborhood
approximation, and the full version perform differently in terms of the data quality and the
sample size. It will be useful to have a deep theoretical understanding of how these factors
affect the choice of the three types of mLPRs. Second, rather than using CATCH as the
objective function in the second stage, it is of great interest to use it as an objective function
to train an end-to-end classification system while taking into account the graph hierarchy.
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Chapter 3

Binomial Mixture Model With U-shape
Constraint

3.1 Introduction

To devise a cost-effective method that is able to yield a conservative cutoff for the
GeneFishing method (see Section 1.2 for details), we use the binomial mixture model to
model the output of this method. Specifically, we assume there is an underlying fishing rate
s;, reflecting the probability that the i-th gene is fished out in each GeneFishing round. The
fishing rates are assumed to be independently sampled from the same distribution F'. We
mention that the independence assumption is raised mainly for convenience but not realistic
de facto since genes may be interactive and correlated in the same pathways or even remotely.
Consequently, the effective sample size is smaller than expected. However, this assumption is
still acceptable by assuming only a handful of candidate genes are related to the bait genes,
which is reasonable from the biological perspective. Furthermore, in Figure 1.2, there is a
clear pattern that the histogram is decreasing on the left-hand side and increasing on the
right-hand side for all four tissues. In the middle, liver and transverse colon display sparse
densities while artery coronary and testis exhibit flat ones. Thus, we can impose a U shape
constraint on the associated density of F' (see Section 3.4 for details). Then the original
problem becomes finding out the cutoff where the flat middle part transits to the increasing
part on the right-hand side.

3.1.1 Binomial Mixture Model

We first take a review of the binomial mixture model that has received a lot of attention
since the late 1960s. In the field of performance evaluation, Lord (1969), Lord and Cressie
(1975), and Sivaganesan and Berger (1993) utilized this model to address the problem of
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psychological testing. Thomas (1989) used a two-component binomial mixture distribution
to model the individual differences in children’s performance on a classification task. Grilli,
Rampichini, and Varriale (2015) employed a finite binomial mixture to model the number of
credits gained by freshmen during the first year at the School of Economics of the University
of Florence. In addition, the binomial N-mixture model is commonly applied to analyze
population survey data in ecology. Royle (2004), Kéry (2008), O’Donnell, Thompson III, and
Semlitsch (2015), and Wu et al. (2015) estimated absolute abundance while accounting for
imperfect detection using binomial detection models. The binomial N-mixture model was
also used to estimate bird and bat fatalities at wind power facilities (McDonald et al., 2020).
Formally, we say X is a random variable which has a binomial mixture model if

X ~ /Binomial(m, s)dQ(m, s) (3.1.1)

where Q(-,-) is a bivariate measure of the binomial size m and the success probability s
on N x [0,1]. In the field of population survey in ecology, m is modeled as Poisson or
negative binomial random variable while s is modeled as a beta random variable, linked to a
linear combination of additional covariates by a logistic function (Royle, 2004; Kéry, 2008;
O’Donnell, Thompson III, and Semlitsch, 2015; Wu et al., 2015; McDonald et al., 2020).
Such models are always identifiable thanks to the parametric assumptions. In the field of
performance evaluation, m is always known, thus (3.1.1) is reduced to

{ s~ b (3.1.2)

X|s ~ Binomial(m, s),

where F' is a probability distribution on [0,1]. For instance, m refers to the number of
questions of a psychological test in Lord (1969), Lord and Cressie (1975), and Sivaganesan
and Berger (1993). The univariate probability distribution F' can correspond to a finite point
mass function (pmf) as in Thomas (1989) and Grilli, Rampichini, and Varriale (2015) or
correspond to a density as in Lord (1969), Lord and Cressie (1975), and Sivaganesan and
Berger (1993). Such models suffer from an unidentifiability issue as discussed in Section 3.1.2.

In this study, we are interested in a regime unlike that for performance evaluation where m
is known and small (restricted by the intrinsic nature of the problem) and that for population
survey in ecology where m is unknown. We concern (3.1.2) with a known m that can be
relatively large compared to n, which has not been investigated before in the literature.
Notably, suppose there are n objects, e.g., genes; we can determine the parameter m on
our own (as in GeneFishing), and then for each object an observation X; or §; := X;/m
(i=1,...,n) is i.i.d generated from the binomial mixture model (3.1.2).
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3.1.2 The Identifiability Issue

Before diving into the binomial mixture model (3.1.2) with a large m, we first review
existing results for mixtures of distributions and binomial mixture model in the literature. A
general mixture model is defined as

H(z) = /Qh(a:\e)dF(s), (3.1.3)

where h(-|s) is a density function for all s € €, h(x|-) is a Borel measurable function for each
x and G is a distribution function defined on €. The family h(z|s), s € € is referred to as the
kernel of the mixture and F' as the mixing distribution function. In order to devise statistical
procedures for inferential purposes, an important requirement is the identifiability of the
mixing distribution. Without this condition, it is not meaningful to estimate the distribution
either non-parametrically or parametrically. The mixture H defined by (3.1.3) is said to be
identifiable if there exists a unique F' yielding H, or equivalently, if the relationship

Hiz) = /Q h(z|s)dFy(s) = /Q h(z|s)dFy(s)

implies F(s) = Fy(s) for all s € Q.

The identifiability problems concerning finite and countable mixtures (i.e. when the
support of F'in (3.1.3) is finite and countable respectively) have been investigated by Teicher
(1963), Patil and Bildikar (1966), Yakowitz and Spragins (1968), Tallis (1969), Fraser, Hsu,
and JJ (1981), Tallis and Chesson (1982), and Kent (1983). Examples of identifiable finite
mixtures include: the family of Gaussian distribution {N(u, 0?), —oo < 1 < 00,0 < 02 < 00},
the family of one-dimensional Gaussian distributions, the family of one-dimensional gamma
distributions, the family of multiple products of exponential distributions, the multivariate
Gaussian family, the union of the last two families, the family of one-dimensional Cauchy
distributions, etc.

For sufficient conditions for identifiability of arbitrary mixtures, Teicher (1961) studied
the identifiability of mixtures of additive closed families, while Barndorff-Nielsen (1965)
discussed the identifiability of mixtures of some restricted multivariate exponential families.
Liixxmann-Ellinghaus (1987) has given a sufficient condition for the identifiability of a large
class of discrete distributions, namely that of the power-series distributions. Using topological
arguments, he has shown that if the family in question is infinitely divisible, mixtures of
this family are identifiable. For example, Poisson, negative binomial, logarithmic series are
infinitely divisible, so arbitrary mixtures are identifiable.

On the other hand, despite being a power-series distribution, the binomial distribution
is not infinitely divisible. So its identifiability is not established for the success parameter
(Sapatinas, 1995). In fact, the binomial mixture has often been regarded as unidentifiable, as
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F' can be determined only up to its first m moments when H is known exactly. To be more
specific, h(z|s) is a linear function of the first m moments u, = fol s"dF(s),r =1,2,...,m of
F(s), for every x. Therefore, with the same first m moments, any other F”(s) will make the
same mixed distribution H(z). To ensure the identifiability for the binomial mixture model,
it is a common practice to assume that F' corresponds to a finite discrete pmf or a parametric
density (e.g., beta distribution).

In particular, there are two results for the identifiability of binomial mixture model
(Teicher, 1963):

1. If h(z|s) in (3.1.3) is a binomial distribution with a known binomial size m, and the
support of F' only contain K points. A necessary and sufficient condition that the
identifiability holds is that m > 2K — 1.

2. Consider h(z|m;, s;) as a binomial distribution with binomial size m; and probability
s;, where 0 < s; <1, j =1,2,... and the support of F' is {s1,s2,...}. If m; # m;: for
j =7, then (3.1.3) is identifiable.

In this study, we are interested in the regime where the support size of F' may not be
finite, and thus the identifiability may fail for the binomial mixture model. Some efforts are
made without identifiability. Lord and Cressie (1975) and Sivaganesan and Berger (1993)
constructed credible intervals for the Bayes estimators of each point mass and that of F,
which rely on the lower order moments of the mixing distribution. Wood (1999) empirically
shows that their proposed nonparametric maximum likelihood estimator of F' is unique with
high probability when m is large. However, these results are far from satisfying in terms of
our ultimate goal — estimate or infer the underlying distribution F'.

3.1.3 Goals

In this study, the goal is to estimate and infer the underlying distribution F' on [0, 1]. We
have two specific questions to answer:

1. Considering that m = oo, the binomial mixture model (3.1.2) is trivially identifiable, is
there a minimal m such that we can have an “acceptable” estimator of F' under various
conditions:

General I’ without additional conditions.

F with a density.

F with a continuously differentiable density.

F with a monotone density.
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e F with a U-shape density.

2. Suppose the underlying distribution F' has a density of a U shape; how to make a
decision (on the CFR cutoff for GeneFishing) based on the data generated from the
binomial mixture model?

When m is sufficiently large, the binomial randomness plays little role, and there is no
difference between 5; and s; for estimation or inference purposes. Therefore, the first question
naturally arises when looking into the binomial mixture with a large m. This question is
related to the identifiability issue of the binomial mixture model. After we obtain some
insights into the first question, we are ready to answer the second question that motivates
this study, i.e., the cutoff selection problem for GeneFishing.

3.1.4 Main contributions

Our contributions are twofold, which correspond to the two questions raised in Section
3.1.3. One tackles the identifiability issue for the binomial mixture model when m can be
relatively large compared to n. The other one answers the motivating question — how to
select the cutoff for the output of GeneFishing.

3.1.4.1 New results for large m in Binomial mixture model

Based on the results of Teicher (1963) and Wood (1999), the only hope is to use a large
m if we want to solve, or at least alleviate, the identifiability issue for arbitrary mixtures of
binomial distributions. We show that regardless of the identifiability of the model (3.1.2), we
can find an estimator of F', according to the conditions on F', such that the estimator locates
in a ball of radius r(m) of ' (when n is sufficiently large) in terms of some metrics such as
L, distance and Kolmogorov distance, where r(m) is a decreasing function of m. Specifically,

e [Corollary of Theorem 6] For general F, if the L, distance is used, then r(m) = —“-

m_ 2P
for the empirical cumulative distribution function, where C is a positive constant that

depends on p.

e [Corollary of Theorem 10] If F' has a bounded density and the Kolmogorov distance
is used, then r(m) = 5—% for the empirical cumulative distribution function, where Cy
only depends on the maximal value of the density of F.

e [Corollary of Theorem 13] If F' has a density whose derivative is absolutely con-
tinuous, and the truncated integrated Lo distance is used, then r(m) = %/C_% for the
histogram estimator, where C3 only depends on the density of F'.
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e [Corollary of Theorem 19] If F has a bounded monotone density and the L distance

is used, then r(m) = <~ for the Grenander estimator, where C; only depends on the

Tm
density of F.

e [Corollary of Theorem 23| If F' has a U-shape density as specified in Section 3.4,
then r(m) = é/c_% for the Ucut introduced in Section 3.5, where C5 only depends on the
density of F.

3.1.4.2 The cutoff selection for GeneFishing

To model the CFRs generated by GeneFishing, we use the binomial mixture model
with the U-shape constraint, under the regime where the binomial size m can be relatively
large compared to the sample size n. With the theoretical understandings mentioned above,
we propose a simple method Ucut to identify the cutoffs of the U shape and recover the
underlying distribution based on the Grenander estimator. It has been shown that when
m = Q(n), the identified cutoffs converge at the rate O(n~/?). The L; distance between the
recovered distribution and the true one decreases at the same rate. We also show that the
estimated cutoff is larger than the true cutoff with high probability if the U-shape model
holds. The performance of our method is demonstrated with varieties of simulation studies,
a GTEX dataset used in (Liu et al., 2019) and a single cell dataset from Tabula Muris.

3.1.5 Outline

The rest of the chapter is organized as follows. Section 3.2 introduces the notation used
throughout the chapter. To answer the first question mentioned in Section 3.1.3, Section
3.3 analyzes the estimation of the underlying distribution F' in the binomial mixture model
(3.1.2), under various conditions imposed on F'. Equipped with these analysis tools, we
cast our attention back to the GeneFishing method to answer the second question raised in
Section 3.1.3. Section 3.4 introduces a model with U-shape constraint to model the output of
GeneFishing. The cutoffs of our interest are also introduced in this model. In Section 3.5, we
propose a non-parametric maximum likelihood estimation (NPMLE) method Ucut based on
the Grenander estimator to estimate the underlying U-shape density as well as identifying
the cutoffs. We also provide a theoretical analysis of the estimator in Section 3.5.3. Next,
we apply Ucut to several synthetic datasets in Section 3.6 and real datasets in Section 3.7.
Finally, all the detailed proofs of the theorems mentioned in previous sections are put in
Appendix B.
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3.2 Notation

Denote by F' a probability distribution. Let s ~ F' and m - § ~ Binomial(m, s) given s,
where m is a positive integer; see Model (3.1.2) for details. If there is no confusion, we also use
F to represent the associated cumulative distribution function (CDF), i.e, F(z) = P[s < z].
By F(™) denote the binomial mixture CDF for §, i.e., F™(z) = P[5 < .

Suppose there are n samples independently generated from F, i.e., s1,...,s,. Corre-
spondingly, we have m - §;|s; ~ Binomial(m, s;) independently. By F,, and F, ,,, denote the
empirical CDF of s;’s and §;’s, respectively. Specifically,

and

If F has a density, define the Grenander estimator fn(a:) ( fnm(x)) for s;’s (8;’s) as the left
derivative of the least concave majorant of F,, (F),,,) evaluated at x (Grenander, 1956).

Define oy(x;v) = Plv < z], appia(x, y;v) = Plo < v <y, a,.(y;v) = Plv > y|, where v can
be s or §. Define Ny(x; {v;}i) :i= #{vi < z,yi=1,...,n}, Npia(x,y; {vi}1y) = #{zr <v; <
y,i = 1,...,n}, No(y;{vi}liy) == #{vi > y,i = 1,...,n}, N(z;{v;},) = #{v; = z,i =
1,...,n}, where {v;}; can be {s;}, or {5} ,.

For a density f, we use fqae and fii, to denote its maximal and minimal function values
on the domain of f. We use I to denote the indicator function, and use ™, 2~ to denote the
right and left limit of x respectively.

3.3 Estimation of F' in Binomial Mixture Model

When m is sufficiently large, s behaves like s, which implies that we can directly estimate
the underlying true F' of the binomial mixture model (3.1.2). A natural question arises
whether there exists a minimal binomial size m so that the identifiability issue mentioned in
Section 3.1.2 is not a concern. We investigate general F', F' with a density, F' whose density
has an absolutely continuous derivative, and F' with a monotone density. We consider the
empirical CDF estimator for the first two conditions, the histogram estimator for the third
condition, and the Grenander estimator for the last condition. The investigations into the
estimation of F' under various conditions provide us with the analysis tools to design and
analyze the cutoff method for GeneFishing.
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3.3.1 General I

We begin with the estimation of F', based on {$;}? ,, without additional conditions except
that F'is defined on [0, 1]. Towards this end, the empirical CDF estimator might be the first
method that comes into one’s mind. It is easy to interpret using a diagram, and it exists no
matter F' corresponds to a density, a point mass function, or a mixture of both.

To measure the deviation of the empirical CDF from F', one might think of the L, distance
with p > 1. The L, distance between two distributions F and F5 is defined as

EAHJ%?=<4UK@—F%@VM>;

The L, distance has two special cases that are easily interpretable from a geometric perspective.
First, when p = 1, it looks at the cumulative differences between the two CDFs; see the grey
shaded area in Figure 3.1. The L; distance is known to be equivalent to the 1-Wasserstein
(W) distance on R, which is also known as the Kantorovich-Monge-Rubinstein metric.
Second, when p = 00, it corresponds to the Kolmogorov-Smirnov (K-S) distance:

dgs(Fi, Fy) == sup |Fi(z) — Fy(x)|,

which measures the largest deviation between two CDEFs; see the length of the red vertical
shaded line in Figure 3.1. The K-S distance is a weaker notion of the total variation distance
on R (total variation is often too strong to be useful).

In the sequel, we study L£,(F (m) F) for F supported on [0,1]. Theorem 6 states that
without any conditions imposed on F', the L, distance between F (m) and F is bounded by
O(mfﬁ). One key to this theorem lies in the finite support of F', which enables the usage of
the Fubini’s theorem. Along with the Dvoretzky-Kiefer-Wolfowi (DKW) inequality (Massart,
1990), it implies that the L, distance between F,, ,, and F' is bounded by O(m_flp) +0(n2).
Particularly, we have £1(F™ F) = O(m~2) and L1(Fpm, F) = O(m™2) + O(n"2).

Theorem 6 (The L, distance between F(™ /F, . and F) For a general F on [0,1], it

follows that 1
([ 190 - papar) < €2,
0

m?2e

where C(p) is a positive constant that depends on p. It indicates that

where K is another universal positive constant.
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»
|

dgs(F1, F2) | Li(F1, F)

Figure 3.1: The length of the vertical shaded line in red represents the dxg(F;, F'2); the area
of the grey shaded region represents L£;(F}, F3).

Proof By definition, it follows that

[FO(@) = F(a)] = |E[(3

Note that
E[l(3 <z < s)] = E[E[I(3 < x < 5)|s]] = E[E[[(3—s < 2—s < 0)|s]] < E[exp{—m(z—s)?/2}],

where § — s is bounded in [—1, 1], and thus it is a sub-Gaussian random variable with the
variance less or equal to 1 (Hoeffding, 1963). The same argument applies to E[I(s < z < §)].
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Therefore, we have

(/ 1|F<m><x>—F<x>|pdx); < 2 / Blexp(~mp(c — 5)/2}]ds
_ 2(/ exp{—mp(x — 5)?/2}dF (s)d );
© 2( / exp{—mp(z — 5)?/2}dzdF (s ))i’
<=(f )
_22m)w
(mp)%

where Equation (7) holds by the Fubini’s theorem. Further, by noting that F,, ,,(x) — F(x) =
Fp(z) — F™ () + F™(2) — F(z) and using the DKW inequality, it follows that

E/O | Fom(z) — F(z)|dx <

]
Notwithstanding, Theorem 6 does not establish a useful bound for the K-S distance that

1
corresponds to the L., distance — there remains a non-negligible constant lim M =2
P=0 (mp) 2P
which does not depend on m. In fact, the K-S distance might evaluate the estimate of F'

from a too stringent perspective. Proposition 7 shows that no matter how small m is, there
is an F with a point mass function and a point zy such that |F(™ (z) — F(x)| is larger
than a constant that is independent of m. This result is attributed to the “bad” points
with non-trivial masses like xy. Such a “bad” point gives rise to a sharp jump in F, which
F() cannot immediately catch up with due to the discretization nature of the binomial
randomness. It leads to difficulty in recovering the underlying distribution F' of the binomial
mixture model.

On the other hand, the L,, distance with p < oo does not suffer from the issue of the K-S
distance — it can be regarded as looking at an average of the absolute distance between F(™
and I when the support of F' is finite. To be specific, even if there are “bad” points x1, xs, . ..
such that |F(™) (x;) — F(z;)| has a non-trivial difference, i = 1,2, ..., this difference will
diminish outside a small neighbor of @; of a width O(--). Therefore, when taking the integral,
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the averaging distance decreases as m grows. Furthermore, if ' has a density, the issue of
“bad” points no longer exists for the K-S distance either. In this case, the K-S distance is
an appropriate choice to measure the difference between F™ and F'; see Section 3.3.2 for
details.

Proposition 7 (F(™ can deviate in K-S far from F with a pmf) There exists an F
with a pmf, such that sup, |F™ (z) — F(z)| > ¢ > 0, where c is a constant.

Proof Let F(z) be the delta function taking the mass at % + K, where k is an extremely
small positive irrational number. Then by CLT, with probability about 1/2, § is no larger
than 2, where 7 is the largest integer such that 2 < 1 + k. Take any zo in (2,2 + «). It

follows that F(zo) = 0 but F™ () ~ 1. It implies that F™ (2q) — F(x) is larger than a
constant that is independent of m. [ ]

3.3.2 F with a density

In this section, we focus on F' with a density so that the K-S distance can be employed.
In addition, we stick to this metric partly because it is related to Grenander estimator for
monotone density estimation (Grenander, 1956; Birge, 1989), which constitutes our method
for the GeneFishing cutoff selection; see Section 3.3.4 and Section 3.5.

To bound the K-S distance between F, ,, and F, i.e., sup, |F,..(z) — F(z)|, we just
need to bound that between F,,, — F™ and that between F(™ and F by noticing that
Fom—F=F,,— Fm) 4 ptm) _ F By the DKW inequality, we have a tight bound

Plsup |Fpym(z) — F™(2)| > t) < 2exp{—2nt?}, Vt> 0.

So it only remains to study the deviation of F™ and F. In Proposition 8, we show that
when F has a derivative bounded from both below and above, the K-S distance between F (™)
and F is bounded by O(L) from below and by O(\/Lrn) from above.

Proposition 8 (Deviation of ™ from F with a density) Suppose f is a density func-
tion on [0,1] with 0 < fin < fumax < 00. Let s ~ f and m - § ~ Binomial(m,s). It follows

that
2V 2w
< F(m) _F < max ° .
T < S FO @) = F0)] < fawe s~

Proof For the lower bound, we have

fmin
m+1

Ps<0)—P(s<0)=P(5<0)= /0 (1 —uw)" f(u)du > fmin/0 (1 —u)"du =
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For the upper bound, note that

FM(z)—F(z) = P(3<z)—P(s<z)
= E(I[s <z] —1[s < z])
= Els <z <s]-Is<xz<3s|)
We have
Els<z<s = P(s<z<s)

IA
E =
@
>
k)
0
2
&
|
V2)
~
no
~~
o

/0 exp(—m(x — u)2/2) f (u)du

V2r
fmax : ﬁa

Similarly, we have El[s < z < §] < fiax - % So it follows that

IN

27
vl

sup |P(§ <z) —P(s < z)| <supEIl[s§ <z < s]+supEl[s <z < §] < frax -

Proposition 8 shows that the largest deviation of the binomial mixture CDF from the
underlying CDF is at least the order O(m™) and at most the order @(m~2). In fact, the
condition that f is bounded can be relaxed to that f is L,-integrable with p > 1 using the
Holder inequality, but the rate will be O (m_ﬁ) correspondingly. Our result is the special
case with p = co. Moreover, F' with a density is a necessary condition for Proposition 8 —
we have seen in Proposition 7 that if F' has a point mass function, the deviation of F(™ from
F' cannot be controlled w.r.t m.

Proposition 9 shows that there exist two simple distributions that respectively attain the
lower bound and the upper bound. However, Proposition 8 can be further improved: if the
underlying density is assumed to be smooth, the lower bound is attained; see Proposition 12
in Section 3.3.3.

Proposition 9 (Tightness of Proposition 8) The upper bound and the lower bound in
Proposition 8 are tight. In other words, there exist an Fy and Fy such that sup, |F1(m)(:17) —
Fi(z)] < Oy - =15 and sup, IF{™(z) — Fy(z)| > Cs - \/Lﬁ, where Cy and Cy are two positive
constants.
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Proof The lower bound of Proposition 8 can be attained by the uniform distribution.
Specifically, if f =1, P(§ =k/m) = #ﬂ So |P(3 < 0) —P(s < 0)| = 5.
On the other hand, the upper bound can be attained by another simple distribution. Let

flx)=18-I(x €[0,1/2]) + 0.2 -I(z € (1/2,1])

We can show that this density f leads to |P(s < 1/2) — P(s < 1/2)| > %, where C' is a
positive constant. It is a consequence of the central limit theorem for the binomial distribution.
The detailed proof is delegated to Appendix B.1. [ ]

Given Proposition 8, we can get the rate of of sup, |F},,(z) — F(x)| along with the DKW
inequality, which is O(n~'/2) + O(m~'/?) as shown in Theorem 10. By taking integral of
P(sup, [Fm(x) — F(z)] > t) w.r.t ¢, we immediately have Corollary 11. It is easy to see that
Theorem 10 can be generalized to a zero-inflation or one-inflation density.

Theorem 10 (The rate of K-S distance between F),,, and F' with a density)
Suppose f is a density function on [0,1] with fun.x < 00. The data is generated as Model
(3.1.2). It follows that

P(sup[Fm(z) — F(2)] > t) < exp(—nt*/2) + I frmax - 2o ),

DL v

where t > l(;gf. The two-side tail bound also holds as follow

44/ 21

P P () = F(@)] > 1) < 205p(=nt2/2) + U f -

> 1),

where t > 0.
Proof Note that

SUp | Fyn () — F(2)] < sup| By () — F™ (2)] + sup [F™ (x) — F(z)].

The first term can be bounded by the original DKW inequality and the second term can be
bound using the result of Proposition 8. Then we conclude the second result. The first result
can be obtained in the same fashion. [ ]

Corollary 11 Under the same setup of Theorem 10, we have Esup,[F), .(z) — F(z)] <

% + min{1, %ﬂ}, and Esup, |F, .(z) — F(z)| < % + min{1, fmaxTi;ﬂ}
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Proof By Theorem 10, it follows that

E[sgp[Fn,m@:)—F(x)H = /0 P(sgp[Fn,m(w)—F(x)bt)dt
2v/21

2
© S 1)dt
m

< / exp(~nt/2) + L(fmc- ~

< Y2 1 min{l,

The two-side expectation can be proved in a similar manner. [ ]

3.3.3 F with A Smooth Density

In this section, we investigate the estimation of F' with a smooth density. Under this
condition, we first obtain a stronger result than Proposition 8 for F(™) based on a truncated
K-S distance on the interval [a, 1 — a], where 0 < a < 1/2. Proposition 12 shows that if the
density of F'is smooth, the truncated K-S distance decreases at (’)(%) The proof is based
on the fact the binomial distribution random variable m - §; behaves like a Gaussian random
variable when the binomial probability s; is bounded away from 0 and 1. When s; is close
to 0 and 1, the Gaussian approximation cannot be used since it has an unbounded variance
m The proof is deferred to Appendix B.2.

Proposition 12 (Deviation of F™ from F with a smooth density) Suppose f is a
density function on [0,1] with [’ being absolutely continuous. Let s ~ f and m -§ ~
Binomial(m, s). It follows for any 0 < a < 1/2 that

1
sup |F0(z) — F(z) <€~
z€la,1—a] m

Y

where C' is some constant that only depends on f and a.

Then, we investigate the histogram estimator, since it is the one of simplest nonparametric
density estimators and it has a theoretical guarantee when the density is smooth. Let L be
an integer and define bins

1 1 2 L—-1
B =0,-),Bo=|—,—),...,B,=|—,1].
1 [ ’L)’ 2 [L, L), y PL [ I ) ]
Define the bin-width h = 1/L, let Y; be the number of observations in By, let p; = Y;/n
and p; = P(s; € By). It is known that under certain smoothness conditions, the histogram
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converges in the cubic root rate for the rooted mean squared error (MSE) (Wasserman, 2006).
Next we study how the histogram behaves on the binomial mixture model. Denote

{fnm( )_ Zz lh I(s; € B(z))
()_IZZ 1 7 1(si € B(x))

where h is the bandwidth, B(x) denotes the the bin that x falls in. Theorem 13 shows that the
histogram estimator based on §;’s has the same convergence rate in terms of the MSE metrics
as the histogram estimator based on s;’s if m = Q(n?3) and h = O(n~3). This rate might
not be improved even if f has higher order continuous derivatives since E|f, n(z) — E fa()]
is bounded by O(\/Lm + h + -5-), which dominates E|f,(z) — F(z)| = O(h*) when f has a
v-order continuous derivative. The proof of Theorem 13 is delegated to Appendix B.3.

Theorem 13 (Upper bound of the histogram risk for binomial mixture model)

Let R(a,b) f E(f(z) — fom(x))?dz be the integrated risk on the interval [a,b]. Assume
that f' is absolutely contznuous. It follows that

1 1 1 1
2
R(a,1—a) < Cy-(h +E+W+E)’vo<a<§’

Furthermore, if m > Cy - ng, h=Cs- n_%, we have

2 1
R(a,1—a) <Cy-n"3Y0<a< 3"

Here Cy, Cy and Cy are positive constants that only depend on a and f, C5 > 0 only depends
on f.

Finally, we conclude this section with a study on F' whose density is discretized into a
point mass function of K non-zero masses. In contrast to the existing results in Teicher
(1963), we allow K to be as large as y/n, and study the finite-sample rate of the histogram
estimator. Let p(x) be a point mass function such that

= a(k)(z = ), (3.3.1)

where a(k) > 0 and i a(k) =1, s, = W Denote by I, the interval centered at
xy and of length 1/K. We can make («(1),...,a(K)) “smooth” by letting a(k) = fIk f(t)dt
where f is a smooth function. Denote

= LS (S € TL)
bn(k) = 137 1(s; € Iy)
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Then the MSE can be defined as R(&4,0) = + S (@(k) — a(k))?. Tt is known that
R(ap,a) = O(l). Theorem 14 shows that the same rate can be achieved by &, ,, when
m = Q(y/nmax{y/n, K}). The proof is deferred to Appendix B.4.

Theorem 14 (Upper bound of the histogram risk for finite binomial mixture)
Let of fI t)dt, where f' is absolutely continuous and [(f')?dx < oo. Let R(a,b) =

S K<k<bK) ZaK<k<bK(a”m(k> — a(k))? be the risk on the interval [a,b]. It follows that
k=1 a8 SES

1 1 K? 1
R(a,1—a) < C; - ( +— + )V0<a<§

Furthermore, if m > Cy - v/nmax{\/n, K}, then

1 1
R(a,1—a)<(C3-—,¥V0<a< —.
n 2

Here C, Cy, C5 are positive constants that only depend on a and f.

3.3.4 F with A Monotone Density

Next, we shift our attention to I’ with a monotone density f. It is motivated by the U
shape in the histograms of the GeneFishing output, where we can decompose the U shape
into a decreasing part, a flat part, and an increasing part. To estimate f, a natural solution
is the Grenander estimator (Grenander, 1956; Jankowski and Wellner, 2009). Specifically, we
construct the least concave majorant of the empirical CDF of F'. And its left derivative is
the desired estimator.

3.3.4.1 Review of Grenander Estimator

Monotone density models are often used in survival analysis and reliability analysis in
economics—see Huang and Zhang (1994) and Huang and Wellner (1995). We can apply
maximum likelihood for the monotone density estimation. Suppose that Xi,...,X,, is a
random sample from a density f on [0,00) that is known to be nonincreasing; the maximum
likelihood estimator fn is defined as the nonincreasing density that maximizes the log-likelihood
0(f) = > log f(X;). Grenander (1956) first showed that this optimization problem has
a unique solution under the monotone assumption — so the estimator is also called the
Grenander estimator. The Grenander estimator is given explicitly by the left derivative of the
least concave majorant of the empirical distribution function F},. The least concave majorant
of F, is defined as the smallest concave function F, with F,, > F,, for every x. Because F, is
concave, its derivative is nonincreasing.

Marshall and Proschan (1965) showed that Grenander estimator is consistent when f is
decreasing, as stated in Theorem 15.
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Theorem 15 (Marshall and Proschan (1965)) Suppose that Xi,..., X, are i.i.d ran-
dom variables with a decreasing density f on [0,00). Then the Grenander estimator f, is
uniformly consistent on closed intervals bounded away from zero: that is, for each ¢ > 0, we
have

sup \fn(x) — f(z)] = 0 a.s.

c<x<oo

The inconsistency of the Grenander estimator at 0, when f(0) is bounded, was first pointed
out by Woodroofe and Sun (1993). Balabdaoui et al. (2011) later extended this result to other
situations, where they consider different behavior near zero of the true density. Theorem 16
explicitly characterizes the behavior of fn at zero.

Theorem 16 (Woodroofe and Sun (1993)) Suppose that [ is a decreasing density on
[0,00) with 0 < f(0) < oo, and let N(t) denote a rate 1 Poisson process. Then

£2(0) N(t) a 1
TR SrTA

where U is a uniform random variable on the unit interval.

Birge (1989) proved that Grenander estimator has a cubic root convergence rate in the sense
of Ly norm, as in Theorem 17. Van der Vaart and Van der Laan (2003) pointed out that the
rate of convergence of the Grenander estimator is slower than that of the monotone kernel
density estimator when the underlying function is smooth enough.

Theorem 17 (Birge (1989)) Suppose f is a decreasing density on [0, 00) with 0 < f(0) <
0o. it follows that

1
0
where C' is a constant that only depends on f.

Rao (1970) first obtained the limiting distribution of the Grenander estimator at a point. He
has proved that &/n(f,(to) — f(to)) converges to the location of the maximum of the process
{B(x) — 2,z € R}, where f’(to) < 0 and B(z) is the standard two-sided Brownian motion
on R such that B(0) = 0; see Rao (1970). Wang (1992) extends this result to the flat region
and a higher order derivative, as stated in Theorem 18.

Theorem 18 (Wang (1992)) Suppose f is a decreasing density on [0,1] and is smooth at
to € (0,1). It follows that



CHAPTER 3. BINOMIAL MIXTURE MODEL WITH U-SHAPE CONSTRAINT 70

(A) If f is flat in a neighborhood of to. Let [a,b] be the flat part containing to. Then,

A

Vi falto) = F(to)) % Sap(to),

where Sq4(t) is the slope at F(t) of the least concave majorant in [F(a), F(b)] of a
standard Brownian Bridge in [0, 1].

(B) If f(t) — f(to) ~ P (to)(t — to)* near ty for some k and f*(ty) < 0. Then,

TR
(k+1)!

| 72551 (f(to) — f(to)) > Vi(0),

n2}c+1 [

where Vj(t) is the slope at t of the least concave magjorant of the process { B(t)—|t|**!,t €
(—00,00)}, and B(t) is a standard two-sided Brownian motion on R with B(0) = 0.

3.3.4.2 The Grenander Density Estimator for the Binomial Mixture Model

In this section, we establish similar results introduced in Section 3.3.4.1 for fnm that is
the Grenander estimator based on §;’s instead of s;’s. Theorem 19 states f,, ,,, achieves the
convergence rate of O(n~3) if m = Q(n).

Theorem 19 (L; convergence of fmn) Suppose f is a decreasing density on [0, 1] with
fmax < 00. It follows that

Ef/ |fnm )|d[L‘<Cl n- 3 +02 BER

Furthermore, if m > C3 - n, we have

=

Ef/ |fnm )|de‘<C4 BER

Here C,Cy, C3,Cy are positive constants that only depend on f.

Theorem 19 follows by Corollary 11 and the proof of Theorem 17. The details can be found
in Appendix B.5.

Next, we study the local asymptotics of fmm. For the binomial mixture model, we yield a
similar result for fnym as Theorem 18 when m grows faster than n, as shown in Theorem 20.

Theorem 20 (Local Asymptotics of f,,,,) Suppose f is a decreasing density on [0,1]
and is smooth at to € (0,1). If fimax < 00 and ™ — 00 as n — oo, we have
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(A) If f is flat in a neighborhood of to. Let [a,b] be the flat part containing to. Then,

Vi Fon(to) = f(to)) 5 Sus(to),

where Sq,(t) is the slope at F(t) of the least concave majorant in [F(a), F(b)] of a
standard Brownian Bridge in [0, 1].

(B) If £(t) — f(to) ~ fP®)(to)(t — to)* near ty for some k and f*(ty) < 0. Then,

FE(to) [ f M (to)]
(k+1)!

T |

|75 (fon(to) — f(t0)) % Vi (0),

where Vi (t) is the slope at t of the least concave majorant of the process { B(t)—|t|**1 t €
(—00,00)}, and B(t) is a standard two-sided Brownian motion on R with B(0) = 0.

The proof of Theorem 20 relies on Proposition 8 and the Komlés-Major-Tusnady (KMT)
approximation (Komlos, Major, and Tusnady, 1975). Given these two results, we can show
that if f is upper bounded, there exists a sequence of Brownian bridges { B, (z),0 <z < 1}
such that

g {oiligl V(B () = F(x)) = Ba(F(2))] > %ﬁ + al\j%” + t} < beeV,

where a > 0 only depends on f and a, b, c are universal positive constants. Together with the
proof of Theorem 18, Theorem 20 follows. The details are deferred to Appendix B.6.

Remark 1 Theorem 19 and Theorem 20 can be improved when f is smooth in the sense
that we only need m = Q(y/n) and m grows faster than \/n, respectively. This results from
the fact that supy<,<, |F™ (z) — F(z)| = O(m~2) when f is bounded (Proposition 8) can
be improved to sup,,«;_, |F" (x) — F(x)| = O(m™") when f has an absolutely continuous
derivative (Proposition 12).

Finally, we conclude this section with a discussion on the histogram estimator and the
Grenander estimator (for a density). Both of them are bin estimators but differ in the choice
of the bin width. One can pick the bin width for the histogram to attain optimal convergence
rates (Wasserman, 2006). On the other hand, the bin widths of the Grenander estimator are
chosen completely automatically by the estimator and are naturally locally adaptive (Birge,
1989). The consequence is that the Grenander estimator can guarantee monotonicity, but the
histogram estimator cannot. If the underlying model is monotone, the Grenander estimator
has a better convergence rate than the histogram estimator. Notably, the convergence theory
of the histogram estimator cannot be established unless the density is smooth. In contrast,
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that of the Grenander estimator only requires the density is monotone and L, integrable
(p > 2) (Birge, 1989).

In our setup, we show that both the Grenander estimator with m = Q(n) and the
histogram estimator with m = Q(n?/?), based on {3;}7_,, have the same rate at O(n~'/3)
in L; distance (the Ly convergence of the histogram can imply the L; convergence). It
seems that the histogram estimator is more favorable than the other because it requires a
smaller binomial size. Nonetheless, we mention that the conditions for the convergence of
the two estimators are different. The Grenander estimator requires a bounded monotone
density, while the histogram requires a smooth density. If the density is monotone and has
an absolutely continuous derivative, the Grenander estimator requires m = Q(n'/?) less than
the histogram estimator, which is illustrated in Remark 1.

3.4 The U-shape Model

Now we have sufficient insights into the estimations of F' under various conditions in
the binomial mixture model (3.1.2). We are ready to cast our attention back to the cutoff
selection problem for the GeneFishing method, i.e., distinguishing the relevant genes from
the irrelevant ones. To answer this question, we leverage the observation that the histogram
appears to have a U shape for the number of times a gene is fished out in Figure 1.2. We
decompose the density or the pmf of F' into three parts: the first part decreases, the second
part remains flat, and the last part increases. The first part is assumed to be purely related
to the irrelevant genes; the second part is associated with the mixture of the irrelevant and
the relevant genes; the last part is purely corresponding to the relevant genes. Denote by ¢
and ¢, the transition points from the first part to the second part, and the second part to
the third part, respectively. Then the question is reduced to identifying ¢, and getting an
upper confidence bound on ¢,. In the sequel, we formally write this assumption when F' is
associated with a continuous random variable. The corresponding mathematical formulations
for the pmf are similar, so we omit them here.

Let f be the derivative of F', i.e., the probability density function. We assume f consists
of three parts:

filx) =a;-gi(z), ifzel0q

f(z) = ;::'L_icdl, if x € (¢, ¢

fr(x) = ap - g (x), ifxe(e,1]

where 0 < ¢; < ¢, < 1, g; is a decreasing function, g, is an increasing function such that

Iy a@)de =1, [ g.(x)de = 1, and o + @ + Qi = 1 with a;, @, upia > 0. For the
U-shaped constraint, we also need

min{fi(e ), fr(ef)} =

, (3.4.1)
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The shape constraint (3.4.1) is determined by six parameters {«y, a,, ¢, ¢, g1, g-}, but
they are not identifiable. Below is an example of such unidentifiability.

Example 1 (Identifiability Issue for (3.4.1))

AY— Xmid , - N —
o = o + e T QO = QO
o =cC + T, Cr = Cp
g g1 Oél/ONCl, fo S [Oacl] . g g
| — Qymid . 3 r — Yr
(er—ci)-dy? if € (a,a+T]

The parameters {&y, &, ¢, G, Gi, Gr } yield the same model as {y, o, ¢y ¢y g1, g} if T < ¢ — .

The identifiability issue results from the vague transitions from one part to the next adjacent
part in Model (3.4.1). To tackle it, we need to introduce some assumptions to sharpen the
transitions. For example, if f is smooth, then a sharp transition means the first derivative
of f, i.e., the slope, significantly changes at this point. In general, we do not impose the
smoothness on f and use the finite difference as the surrogate of the slope. To be specific,
suppose there exist d;,9, > 0 and neighborhoods around ¢; and ¢, with sizes 7; and 7, such
that
filxg) > fmid 46, (g —x), ifzelg—m,0)

— cr—q

frlz) > omid 6, - (x —¢.), ifz€ (e, e+ 1)
For the sake of convenience, we consider a stronger condition that drop off the factors ¢; — x
and x — ¢, which is called Assumption 2. It indicates that the density jumps at the

transition points ¢; and c,.
Assumption 2 There are two positive parameters 6; and 9, such that

fl(C;) > Smid + 51

— cr—q

filel) = £t + 6,

— cr—q

Together, we call the constraint (3.4.1) with Assumption 2 the gapped U-shape constraint.
And we refer to the Binomial mixture with the gapped U-shape constraint as the BMU
model.

3.5 Method

Let cl(o) and c” be the underlying ground truth of the two cutoffs in BMU. Our goal

is to identify the cutoff that separates the relevant genes and the irrelevant genes in the
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GeneFishing method. Specifically, we want to find an estimator ¢, for A and study the
behavior of P[¢, > cfno)].

Since we are working on §;’s rather than on s;’s, we denote oy(z) = P[§ < z] and
Ni(z) = Nj(z;{8;}},) for simplicity. Similarly, we can get simplified notation a,qa(x,y),
a(y)y Npmia(z,y), N.(y), N(x); see Section 3.2 for details. In the rest of the chapter, we
sometimes use ay, ., Qg for o), a,(¢;) and amia(c, ¢,) respectively if no confusion arises.

3.5.1 The Non-parametric Maximum Likelihood Estimation

To estimate the parameters in BMU, we consider the non-parametric maximum likelihood
estimation (NPMLE). We first solve the problem given ¢; and ¢,, then searching for optimal
¢; and ¢, using grid searching. The NPMLE problem is:

Hpu(cr, ¢p) := max Z log gi(5:) + Z log g,(3:) (3.5.1)
$i<q §;>cp
(7%}
+Ni(¢;) log a; + Nppia(cy, ¢;) log . dc + N.(¢,)log a,
r — U

c 1
s.t. / g =1, / gr = 1, g; decreasing , g, increasing
0 cr

Ay, Qpy Opid > 0,0él + Qp + Qg = 1
augiler) 2 G2+ di }

— cr—q

argr(cf) 2 o2t + dy

— cr—q

(3.5.2)

Here d; and d, are two parameters to tune, and we call the inequalities (3.5.2) the change-
point-gap constraint. Given ¢; and c,., the variables to optimize over are

S = {alvaragl(§1)7 ce 7gl('§il)agr(‘§ir)7 ce agr(gn)}a

where 7; := max; -I(8; < ¢), i, := min; -I(3; > ¢,). Since log z is continuous and concave w.r.t
x, and the feasible set is convex (it is easy to check that {(z,y,z) : 2y > z;2,y,2 > 0} is a
convex set), the problem (3.5.1) is one of convex optimizations with a unique optimizer.

There are mainly two difficulties for the optimization problem (3.5.1). First, the change-
point-gap constraint (3.5.2) complicates the monotone density estimation. Furthermore, it is
not easy to optimize over o, o, and g;, g, simultaneously.

3.5.2 Ucut: A simplified Estimator

Fortunately, we have the below observations that motivate us to think of a simplified
optimization problem.
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e Note that o; and «, are the population masses for < ¢; and x > ¢,, which can be well
estimated by the empirical masses &;(c;) = N;(¢;)/n, Gmia(cr, ¢r) = Npmia(cy, ¢)/n and

&, (¢;) = Ny(¢p) /n.

e If BMU is true with §;, > d; and 4, > d,., and the solution to the optimization (3.5.1)
without (3.5.2) at ¢ = cl(o), C = A0 is good enough, then the change-point-gap
constraint (3.5.2) is satisfied with high probability.

e From Figure 1.2, we can see that the flat region is wide. We can easily pick an interior
point within the flat region.

Inspired by these observations, we replace the population masses with the empirical masses
and drop off the change-point-gap constraint. We obtain the simplified objective function as
follows:

Hgimpiigica(ci, ¢) i=max Y loggi(3:) + Y log g-(3:) (3.5.3)
§iScl '§'L>C7‘

dmid (Cl ) Cr)

+Ni(er) log du(cr) + Noia(cr, ¢ ) log o —

+ N, (¢,)log a.(c;)

C] 1
s.t. / g =1, / g = 1, g; decreasing , g, increasing
0 Cr

where

_ #{i|8; < ¢}

n

ézl(cl) = NZ(CI)/TL
#{ila, < 8 < ¢}

Gmid(crs ¢r) = Npia(cr, ¢p) /n =

The problem (3.5.3) is reduced to two monotone density estimations, which the Grenander
estimator can solve. As we point out in the above observations, we can easily identify an
interior point p in the flat region. We fit an Grenander estimator for the decreasing g; on [0, ]
and an Grenander estimator for the increasing g, on (u, 1]. There are three advantages of
using the interior point p. First, it significantly reduces the computational cost by estimating
the two Grenander estimators just once, regardless of the choices of ¢; and ¢,. Second, it
bypasses the boundary issue of the Grenander estimators since we are mainly concerned with
the behaviors of the estimators at the points ¢; < p and ¢, > . Moreover, the usage of u
disentangles the mutual influences of the left decreasing part and the right increasing part;
thus, it makes the analysis of the estimators simple.
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Once we fit the Grenander estimator, we check whether the change-point-gap constraint
(3.5.2) holds for different pairs of ¢; and ¢,. Finally, we pick the feasible pair with the maximal
likelihood. We call this algorithm Ucut (U-shape cutoff), which is summarized in Algorithm
5.

Algorithm 5 Ucut: estimation of the BMU model by grid-searching the optimal cutoff pair.

Require: Data: {31,...,5,};
The density gaps: d;, d,;
The interior point p of the flat region; . .
The searching interval: [0, ™), and (™™ 1], where ™ < 1 and ™™
The unit for grid searching: ~.

Initiate ¢; = NULL, ¢ = NULL; ¢(¢f, ¢}) = —o0.

Estimate &;(u) = Ny(p)/n.

Fit the Grenander estimator on [0, ] to get ¢, and on (p, 1] to get g,.

for ¢, € {0,7,29,.. (max } do

for ¢, € {™™ ¢ (mm) v, ™ 42y 1} do

Estimate amzd(cl, ), and Ozmld(,u, ).

amzd(cl lu‘) — a’mld(iu‘ CT) dT
Let dy = Zestitts + 2, dr = 3fies + gy
Let (¢, cr) be the correspondlng H gimpiifica(ci, ¢r) defined in the problem (3.5.3).

Let flag =1[gi(c;) > d; and G(c,) > d,].
if flag and ((c;,c.) > U(c}, ) then
(¢, cr)  (a, cr).
end if
end for
: end for
. if U(cf, ¢f) > —oo then
Return: ¢, ¢, g, G-, qi(p), €(cf, k).
: else
Return: False.
. end if

>

e e e o T e T e T s T o O = S
© 0 NPTy o

3.5.3 Analysis of the Simplified Estimator

For Algorithm 5, the question arises whether (Cz( ) 7(n0)) is a feasible pair for the change-

point-gap constraint (3.5.2). Theorem 21 answers thls question by claiming that there exist
¢ in a small nelghborhood of cl ) and ¢ in a small neighborhood of cr ) such that ala) >4
and g.(c.) > d, for appropriate choices of d; and d,. This implies that we can safely set aside
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the constraint (3.5.2) when solving the problem (3.5.3). The proof of Theorem 21 is deferred
to Appendix B.7.

Theorem 21 (Feasibility of Gap Constraint for (cl(o), c,(ao))) Suppose f is a distribution
satisfying the constraint (3.4.1) and Assumption 2, with amid(cl(o), © ) >0, fumax < 00. If
m>C} - maX{Nl(cl(O)), Nr(cgo))}, and d; < 6;, d, < 6,, there exist ¢; and ¢, such that

g < cl(o) with |¢; — cl(o)\ <Cy- NZ(CZ(O))%

and 1
cr > 07("0) with |c, — C,EO)\ <Cs- Nr(cq(p))ig

such that g;, gy, d; and d, produced by Algorithm 5 satisfy g;(c;) > d; and gr(cr) > d,, provided

the input p € (Cz( ) 0 )) Furthermore, the resulting density estimator fmn satisfies

b

CM\»—I

[ Vi = £l < Co {4 el

Here C,Cy, Cs, Cy are positive constants that only depend on f.

Besides knowing there are some feasible points near cl(o) and 07(«0), we want to have a clear
sense of the optimal cutoff pair produced by Algorithm 5. Theorem 22 says that the optimal
cutoff for the left (right) part is smaller (larger) than cl(o) (0510)) with high probability.

Theorem 22 (Tail Bounds of Identified Cutoffs) Suppose (¢, ¢,) is the identified opti-

(0) (0))

mal cutoff pair produced by Algorithm 5, provided an input p € (¢; ', ¢ ). Under the same

assumptions as Theorem 21, particularly n — oo, m/ maX{Nl(cl(O)), Nr(cgo))} — 00,

A d
Ple, > ¢V <PIS o () > \/N(c?) . ——~ —
[G>¢] < [ch la) =z i(q) () 1],
and J
Pler < %] < PIS, o (e®) 2 /(%) - =5 = -l
Cr —

where Cy, Cy are positive constants, and Cy only depends on ai(p), di, Cy only depends
on a, (@), dr; Sap(t) is the slope at F(t) of the least concave majorant in [F(a), F(b)] of a
standard Brownian Bridge in [0, 1].

(0)
1

or ¢, < ¥ does not satisfy the change-point-constraint with high probability. Since g, and g,

The proof of Theorem 22 is in fact reduced to proving any cutoff pair (¢, ¢,) with ¢; > ¢
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estimated in Algorithm 5 are decreasing and increasing respectively, if ¢; > cl(o) (or ¢, < cﬁo))
violates the constraint, then ¢, (or ¢.) will violate it with high probability if ¢, > ¢ (or
¢ < ¢). So it is reduced to considering the smallest ¢; > cl(o) and the largest ¢, < 65«0) in the
grid searching space of Algorithm 5. Then the result can be concluded using Theorem 20.
The detail is deferred to Appendix B.8.

Finally, we show in Theorem 23 that the identified ¢, converges to % at the rate of
O([Nr(cg) )]73) if m = Q(n). And the estimated density also converges to the true one at

the rate of O(max{[N,(c!")]"3 5, [Ni(q ))]_%}). The proof can be found in Appendix B.9.

Theorem 23 (L; Convergence of Identified Cutoff) Suppose f is a distribution satis-
(0) (0)

fying the constraint (3.4. 1) and Assumption 2, with qumia(c;”,¢r’) > 0, fimax < 00. Let
A =c¢ — cl(o), A, =c¢ — cr . If we have
m > Cy - max{Nl(cl(O)), N, (¢},

T

then

1

1A < Co-Ni(@?)75, |A] < CaN, ()73,

where ﬁl ~and ﬁr are associated with ¢ and ¢, output by Algorithm 5. Furthermore, the
resulting f,.m satisfies

Here Cy,Cy, Cs,Cy are positive constants that do not depend on n, Nl(cl(o)) and Nr(cgp)).

=

Ef/ o) = F(@)ldz < Oy - { M) + N(0)

Remark 2 We want to point out that Theorem 21, Theorem 22 and Theorem 23 are based on
the assumption that the underlying density f in BMU is bounded, thus we require m = Q(n).
If we further assume f is smooth we might relax the conditz’on onm = Q(n) to m = Q(/n).
The reason is that we can get a = rate rather than a —= rate on the truncated K-S distance
of the CDF of §;’s and the CDF of s;’s when f is assumed to be smooth; see Proposition 12.
This is an improved version of Proposition 8, which is the foundation of Theorem 19 and
Theorem 20 that are used to prove the three theorems in this section.
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3.6 Numerical Experiments

3.6.1 Data generating process

To confirm and complement our theory, we use extensive numerical experiments to
examine the finite performance of Ucut on the estimation of ¢,. We study a U-shape model
that is comprised of linear components. Specifically, the model consists of three parts with
boundaries ¢; and ¢,. The middle part is a flat region of height §,,. The left part is a segment
with the right end at (¢, 0,, + ;) and slope s; < 0 while the right part is a segment with
the left end at (¢, d,,, + 9,) and slope s, > 0; see Figure 3.2 (a) for illustration. We call it
the linear valley model. We normalize the linear valley model to produce the density of
interest. We call the normalized gaps 51 and ST.

A A
slope: s; slope: s;
slope: s,
S A N W U W U N W A
< N

1 1 Iy i ST M,
0 C] Cr 1 C] Cr 1

(a) original model (b) two-group model

Figure 3.2: The linear valley model.

The linear valley model depicts the mixture density of the null distribution and the
alternative distribution. We only assume that the left part ahead of ¢; purely belongs to the
null distribution while the right part ahead of ¢, purely belongs to the alternative distribution.
The null and the alternative distributions can hardly be distinguished in the flat middle
part. To understand the linear valley model from the perspective of the two-group model, we
assume that 75 X 100% of the middle part belongs to the null distribution while the remaining
belongs to the alternative model. In Figure 3.2 (b), the part in left slash corresponds to the
null density fy while the part in right slash corresponds to the alternative density f;. Let
7 be the area in the left slash divided by the total area. Then the marginal density can be
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written as f = mfo + (1 — mo) f1. Since any 7y € [0, 1] gives the same f, the middle part is
not identifiable. So it is necessary to estimate and infer the right cutoff ¢,, so that we can
safely claim all the samples beyond ¢, are from the alternative distribution.

By default, we set ¢ = 0.3, ¢, = 0.9, 6,, = 1, 6 = 0.5, 6, = 0.5, s, = =3, s, = 1.
We sample n = 10,000 samples {s1,...,s,} from the linear valley model. Then for each
i€ {l,...,n}, we get the observations §; ~ Binom(m, s;) independently, where m = 1,000
if it is not specified particularly. The value of 7y does not affect the data generation but it
affects the FDR and the power of any method that yields discoveries.

Finally, the left part and the right part are not necessary to be linear. To investigate the
effect of general monotone cases and misspecified cases (e.g., unimodal densities), we replace
the left part and the right part with other functions; see Section 3.6.5.

3.6.2 Robustness to model parameters

When using Algorithm 5, we use the middle point y = 0.5, the left gap parameter
d; = 0.8 - 0;, the right gap parameter d, = 0.8 - §,, the searching unit v = 0.001. We first
investigate how the binomial size m affects the estimation of ¢.. Using the default setup as
described in Section 3.6.1, we vary the binomial size m € {10%,103,2 x 10%,5 x 10%,10%, Inf},
where Inf refers to the case that there is no binomial randomness and we observe s;’s directly.
As shown in Figure 3.3, ¢, converges to the true A as m grows. When m = 103, the
estimated ¢, is as good as that of using s;’s directly. Note that in the linear setup, even with
m = 10?%, ¢, is larger than true % with large probability. It implies that Ucut is safe in the
sense that it will make few false discoveries by using ¢, as the cutoff.

In the sequel, we stick to m = 103 since it works well enough for the linear valley model.
We investigate whether the width of the middle flat region affects the estimation of ¢.. We
consider ¢; = 0.5 — w/2, ¢, = 0.5+ w/2 with w € {0.6,0.4,0.2,0.1,0.} while other model
parameters are set by default. In Figure 3.4, the estimation of ¢, is quite satisfying when the
width is no smaller than 0.2. When the width drops to 0.1 or smaller, the estimation is not
stable but still conservative in the sense that ¢, > ¢, in most cases.

Finally, we examine how the gap size influences the estimation of ¢,. We take §; =
{0.5,0.3,0.20.1,0.01} and ¢, = {0.5,0.3,0.20.1,0.01}. Figure 3.5 shows that the estimation
of ¢, is robust to the gap sizes as long as the input d; and d, are smaller than the true gaps.
This gives us confidence in applying Ucut to identify the cutoff even when there is no gap,
which is more realistic.

3.6.3 Sensitivity of the algorithm hyper-parameters

Algorithm 5 (Ucut) mainly have three tuning parameters: the middle point p, the left gap
d; and the right gap d,. For practical use, the three tuning parameters may be misspecified.
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Figure 3.3: The convergence of ¢, with respect to m.
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Figure 3.4: The estimation of ¢, with respect to the width of the middle flat region.
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Figure 3.5: The estimation of ¢, with respect to the gap sizes.

For example, the middle point is not easy to spot, or the left gap and the right gap are too
small. We use the default model parameters as specified in Section 3.6.1. Let d; and d, be
0.8 times the true normalized gaps &; and 4, respectively. We vary the choice of the middle
point u. Figure 3.6 shows that the estimation of ¢, is not sensitive to the choice of u as long
as it is picked within the flat region [0.3,0.9]. If u is picked left to the flat region, the ¢, has
a larger variance but it is more conservative in the sense that ¢, > % in most cases. If Wis
picked right to the flat region, the ¢, tends to be min{u, cro)}.

Next, we fix © = 0.5 but consider d; = kX & and d, = Kk X ST, where xk € {1,0.9,0.8,0.5,0.2,
0.1,0.01}. We do not consider x > 1 because there might not exist feasible (¢, ¢,) that
satisfies the gap constraint. Figure 3.7 shows that when & is Within [O 5, 1] the estimation is
satisfying. The estimated ¢, can be slightly smaller than the true " when k < 0.5 but in a
tolerable range.

In a nutshell, the choices of i, d; and d, are crucial to Algorithm 5. But the sensitivity
analysis indicates that it is not necessary to be excessively cautious. In practice, picking

these parameters by eyeballs can give a safe estimation in most cases.

3.6.4 Comparison to other methods

To examine the power and the capacity of controlling FDR of Ucut, we consider the
two-group model as specified in Figure 3.2 (b). The middle part is not identifiable, which
means that the samples of the alternative distribution can not be distinguished from those
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Figure 3.6: The estimation of ¢, with respect to the choice of the middle point .
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d; = k x §; and d, = Kk X §,, where k is a ratio of the normalized ¢§’s.
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Figure 3.8: FDR and power of Ucut and other competing methods.

of the null distribution. To reflect this point, we arbitrarily set the proportion of the null
distribution in the middle part 79. The goal is to identify the right cutoff ¢, but not =
because it is impossible to infer 7.

We compare Ucut to the other four methods that are studied in Gauran et al. (2018),
i.e., ZIGP (Zero-inflated Generalized Poisson), ZIP (Zero Inflated Poisson), GP (Generalized
Poisson) and P (Poisson). These four methods are used to make decisions on the cutoff for
zero-inflated discrete mixture distributions.

Figure 3.8 shows that GP and P use rather small cutoffs and have too large FDRs. ZIGP
and ZIP are over-conservative if the target FDR level is too low at 0.005 or 0.01, thus having
quite low power. They perform better when the target FDR level is set to be 0.05. On the
other hand, Ucut can control FDR at 0.01 if we directly use ¢, as the cutoff. The associated
power is better than those of ZIGP and ZIP. In order to loosen the FDR control and get
higher power, it is fine to use a slightly smaller cutoff than ¢,. From this result, we confirm
that Ucut is a better fit for the scenario where the middle part is not distinguishable.

3.6.5 More simulation studies

Besides the linear valley model specified in Section 3.6.1, we also consider a non-linear
model and a misspecified model.

For the non-linear model, we replace the left linear part in the linear valley model with an
unnormalized decreasing function f; = Beta(x/c;;0.5,1.5)/¢;-3/20, x € [0, ¢;]. We replace the



CHAPTER 3. BINOMIAL MIXTURE MODEL WITH U-SHAPE CONSTRAINT 85

right linear part with an unnormalized increasing function f, = Beta(z/(1 — ¢,);2,0.8)/(1 —
¢) - 1/20, x € (¢, 1]. Here Beta(x;«, 3) is a density of Beta distribution with parameters
a and . In this case, we use m = 10*. Applying Ucut to the synthetic data generated by
this model, we observe similar results as those from the linear valley model. It indicates that
Ucut can detect the cutoff in a satisfying range as long as the underlying model satisfies the
gapped U-shape constraint. Ucut is particularly useful when the the middle part is “uniform”
and not easy to tell apart the samples of the alternative distribution from those of the null
distribution.
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Figure 3.9: The convergence of ¢, with respect to m on the non-linear decreasing-uniform-
increasing model.

For the misspecified model, we replace the left linear part with an unnormalized unimodal
function f; = Beta(z/c;;1.5,5)/c; - 3, x € [0,¢]. We replace the right linear part with an
unnormalized unimodal function f, = Beta(z/(1 — ¢,);2.5,1.5)/(1 — ¢,), x € (¢, 1]. In this
case, the estimated ¢, is not satisfying until m attains 10%; see Figure 3.15. So in the other
experiments, we use m = 10%. We find that although the variance of ¢, becomes larger than
the estimate for the correctly specified model, the detected cutoff tends to be larger than the
truth. It implies that if the model does not align with the gapped U-shape constraint, Ucut
is still useful because it is conservative.
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Figure 3.10: The estimation of ¢, with respect to the width of the middle flat region on the
non-linear decreasing-uniform-increasing model.
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Figure 3.11: The estimation of ¢, with respect to the gap sizes on the non-linear decreasing-
uniform-increasing model.
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Figure 3.12: The estimation of ¢, with respect to the choice of the middle point p on the
non-linear decreasing-uniform-increasing model.
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Figure 3.13: The estimation of ¢, with respect to the choice of the input d; and d, on the
non-linear decreasing-uniform-increasing model.. Here d; = k x ¢; and d, = k X 9,, where &
is a ratio of the normalized ¢’s.



CHAPTER 3. BINOMIAL MIXTURE MODEL WITH U-SHAPE CONSTRAINT 88

method — c¢_r — Ucut — ZIGP — ZIP — GP — P

FDR level = 0.005 |FDR level = 0.01| FDR level = 0.05
g W

da4

\
(|
\

Jamod

logl0 scale
0-001. Qqu 0‘100, 1-000. 0‘001, o-oJQ O»JOQ g,

0.10.20.30.40.50.60.70.80.9 0.10.20.30.40.50.60.70.80.9 0.10.20.30.40.50.60.70.80.9

To

Figure 3.14: FDR and power of Algorithm 5 and other competing methods on the non-linear
decreasing-uniform-increasing model.
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Figure 3.15: The convergence of ¢, with respect to m on the misspecified model.
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Figure 3.16: The estimation of ¢, with respect to the width of the middle flat region on the
misspecified model.
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Figure 3.17: The estimation of ¢, with respect to the gap sizes on the misspecified model.
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Figure 3.18: The estimation of ¢, with respect to the choice of the middle point p on the
misspecified model.
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Figure 3.20: FDR and power of Algorithm 5 and other competing methods on the misspecified
model.
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3.7 Application to Real Data

We further demonstrate the performance of Ucut on the real datasets used in Liu et al.
(2019). To be specific, we apply the GeneFishing method to four GTEx RNAseq datasets,
liver, Artery Coronary, Transverse Colon, and Testis; see Table 3.1 for details. We leverage
the same set of 21 bait genes used in Liu et al. (2019). The number of fishing rounds is set to
be m = 10, 000.

Table 3.1: Details of GTEx RNAseq datasets.

# samples | # genes
Liver 119 18,845
Artery-Coronary 133 20,597
Colon-Transverse 196 21,695
Testis 172 31,931

Once the CFRs are generated, we apply Algorithm 5 with the middle point u = 0.5,
d; = 0.1 and d,, = 0.01. We take d; to be ten times d, because there are much more zeros than
ones in CFRs. As shown in Section 3.6, Ucut is not sensitive to the three parameters. The
change of these parameters lays little influence on the results. Table 3.2 shows that for each
tissue Ucut gives the estimator of ¢, that yields 50 to 80 discoveries. We estimate the false
discovery rate using the second approach in Liu et al. (2019). Note that for Artery-Coronary,
the estimated ¢, = 0.972 by Ucut (which gives FDR ~ 1073) is less extreme than simply

using 0.990 (which gives FDR ~ 10™%). It implicates that Ucut adapts to the tissue and can
pick a cutoff with a reasonable false discovery rate.

Table 3.2: Estimation of ¢, by Algorithm 5 on four tissues, where pu = 0.5, d; = 0.1 and

d, = 0.01. The second column is the estimated ¢, using bootstrap by sampling 70% of the
CFRs.

¢ | bootstrapping estimation | # discovery (use ¢,) FDR
Liver 0.995 0.993(0.005) 52 1.4 x 1073
Artery-Coronary | 0.972 0.976(0.009) 85 5.7 x 1073
Colon-Transverse | 0.989 0.991(0.049) 57 1.2 x 1074
Testis 0.993 0.992(0.001) 73 0.010

In addition, we also apply the GeneFishing method to a single-cell data of the pancreas
cells from Tabula Muris'. It contains 849 cells from mice and 5, 220 genes expressed in enough

Thttps://tabula-muris.ds.czbiohub.org
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Figure 3.21: The CFRs of the single cell data of the pancreas tissue.

cells out of about 20,000 genes. We find out 9 bait genes based on the pancreas insulin
secretion gene ontology (GO) term.

Unlike Figure 1.2, the CFRs of this data set do not appear in a U shape. Instead, we
observe a unimodal pattern around zero and an increasing pattern around one (Figure 3.21).
Nonetheless, it does not hinder us from using Ucut to determine the cutoff, since we are mainly
concerned about the right cutoff and Section 3.6 demonstrates that Ucut is conservative even
if the model is misspecified. By using = 0.5, d; = 0.1 and d,, = 0.01, Ucut gives 0.994 as
the estimation of the right cutoff, which discovers 77 genes. By doing the GO enrichment
analysis, we find out that these identified genes are enriched for the GO of response to ethanol
with p-value 0.0021, the GO of positive regulation of fatty acid biosynthesis with p-value
0.0055, and the GO of eating behavior with p-value 0.0079. These GOs have been shown to
relate to insulin secretion in literature (Huang and Sjoholm, 2008; Nolan et al., 2006; Tanaka
et al., 2003), which indicates the effectiveness of Ucut.

3.8 Discussion

In this work, we analyze the binomial mixture model (3.1.2) under the U-shape constraint,
which is motivated by the results of the GeneFishing method (Liu et al., 2019). The
contributions of this work are two-fold. First, to the best of our knowledge, this is the
pioneering work that investigates the relationship between the binomial size m and the
sample size n for the binomial mixture model under various conditions for F'. Second, we
provide a convenient tool to help the downstream decision-making of the GeneFishing method.

Despite the identifiability issue of the binomial mixture model, we show that the estimator
of the underlying distribution deviates from the true distribution, in some distance, at most
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a small quantity that depends on m. The implication is that to have the same convergence
rate as if there is no binomial randomness, we need m to be at the same order as n for
the empirical CDF and the Grenander estimator when the underlying density is bounded.
However, when the underlying density is smooth, the simulation studies and the theoretical
results imply that the condition can be relaxed to m =< n'/? while the histogram estimator
requires m =< n?/3. It is of great interest to further investigate how the minimal m hinges on
the smoothness of the underlying distribution, e.g., studying the kernel density estimator
and the smoothing spline estimator under the binomial mixture model.

To answer the motivating question of how large the CFR should be so that the associated
sample can be regarded as a discovery in the GeneFishing method, we propose a U-shape
model to depict the underlying distribution and an NPMLE method Ucut to determine the
cutoff. This estimator comprises two Grenander estimators, thus having a cubic convergence
rate as the Grenander estimator when m is large enough. We also show that the estimated
cutoff is larger than the true cutoff with high probability. The simulation studies indicate that
Ucut is robust to the three hyper-parameters, even if the model is misspecified. Therefore,
we recommend Ucut as a cost-effective and robust tool for the downstream analysis of the
GeneFishing method.
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Appendix A

Appendix of Chapter 2

A.1 Proof of Theorem 4

Proof The simplest case is a graph with only one chain, and the theorem obviously
holds for this case. Next, suppose there are two chain branches, Xy — ... = X(,) and
Y1) = ... = Y, both of which share the same parent node in P,. Directly merging
these two chain branches by Algorithm 1 yields an ordering denoted as oxy. Now given an
arbitrary ordering o4 of all the n nodes in the entire graph, which respects the tree hierarchy.
Denote by p; the first position of the nodes among X Ei)s and Y(’j)s within 04, and denote all
the nodes, other than X(’i)s and Y(’j)s and located after the p; position, by W, ..., W,
(the position of W, is ahead of that of Wy in 04 if I < I'). We want to show that

Lemma 24 There exists a topological ordering o4 of G that is at least as good as 04, in

terms of CATCH, such that (*) Node B is located ahead of Node C' in o4 if it is the case in
oxy, where B, C are two distinct nodes among X (’i)s and Y(’l.)s.

Lemma 24 implies that in order to figure out the optimal ordering of the original tree structure,
it boils down to replacing the two branches X(y), ..., X(,) and Y, ..., Y, by a single chain
characterized by oxy and seeking the optimal ordering of the new structure. The ordering
o4 mentioned above can be constructed easily with two constraints:

(i) Fixing the nodes located ahead of the position p; as well as their ordering as in 04.
(ii) The position of W, is ahead of Wy if I <1, as in o4.

The first constraint is straightforward, and the second constraint can be satisfied by applying
Algorithm 1 to X(1),..., X(m), Yy, ..., Yo and Wiy, ..., Wi,y Here, we take Wy, ..., W
as a chain, regardless of their original structure. Without loss of generality, we assume the
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first chain branch with the maximal average score value figured out by Algorithm 1 is
Xay, .-, X@), t <m (we can skip the case that Algorithm 1 first picks a part of W;)’s since

it does not affect (*)) In order to prove Lemma 24, it is reduced to showing that

Lemma 25 Conditional on (i) and (ii), the ordering with the maximal CATCH puts
X(), .-, X at the position py,...,p; +t — 1 respectively.

The detailed proof of Lemma 25 is deferred to Appendix A.1.1. Note that X(j),..., X must
be located in the first place in the ordering oxy. Therefore, by applying Lemma 25 in an
inductive way (exclude X (1)s - - - X(¢) and apply the same argument on the remaining nodes),
we can conclude the constructed o4: is at least as good as 04 and satisfies (*) Here, we
need to clarify the point that putting X(i),..., X in such place does not violate the tree
hierarchy since X Ei)s and Y(’j)s are the children chains of the same node, and none of W(’l)s
can be an ancestor of X(; s or Y/;s (otherwise 04 is not a valid ordering). Thus the proof is
completed. [

A.1.1 Proof of Lemma 25

Proof
Let a denote the average of these t values, i.e., a := 2221 X(x)- For the sake of simplic-
ity, we further assume p; = 1 and simply denote by Z,..., Z;—+ the combination of

Xg1)s -+ Xm)s Y(’j)s and W(’l)s. Let the ordering o4 be as follows:

Zay - Za-y Xy Zay oo Za-ny X@) Za-n) - Loy
21—1 Zl Zl+1 Zt—l Zt Zt_'_l n

where i, is the position of X(.), ¢ = 1,...,t. Note that i.4; > i. + 1. Denote by oar the
ordering of (X, ..., Xw) +0a/(Xq),..., X)), that is, move (X, ..., X)) to the head of
04. The difference in the value of the objective function (OF) between 04, and 04 can be
written as follows:

t n—t

OF of o4y =» (n—i+ D)X+ Y (n—t—j+1)Z;

i=1 j=1
OF of oA :(n — 11+ 1)X(1) + ...+ (TL — 1+ 1)X(t)
i1—1 n—t

+Y =i+ D24+ Y =+t +1)Z

7=1 Jj=tt—t+1
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11—1 it—t
OF of OA/ OF of 0op = [ Zl — 1 Z(k) + ...+ (Zt — t)X(t) Z(k)
k=1 k=1
B i1—1 1 it —t
(i = 1) | Xq) — D Zw| et =) [ Xog— —— > Zw
I Zl_lk:l W=t
B i1—1
= (’Ll — 1) (X(l) — a) + (a — 1 Z(k)) + ..
L “ k=1
ltft
+ (i — 1) [(X(w —a)+ (a - Z%))
b " k=1

It remains to prove both the first term and the second term on the right side are non-
negative:

o The first term. We can rewrite the sum

(il — 1) (X(l) —(l) + ...+ (it —t) (X(t) —CL)

as follows

~
~+

(h—1)) Xw—a) + (a—i—1)Y (Xgy—a)+...4 (i — i1 — 1)( X — a).
k=1 k=2

The first sum Y, _, (X — a) = 0 since a is the average. The other sums being
nonnegative follows from the fact that a must be at least as large as the smaller averages
in the chain, i.e. a > %22:1 X(x) where 1 < ¢ <. In detail, we know that

X(C_H)—i-...—i—X(t):ta—[X(l)—i-...—}-X(c)], 1<e<t—-1
>ta—ca = (t —c)a.
SO (X(C+1)—a)++(X(t)—a,) ZO
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Therefore, each sum

~

(X —a) =20, c=1,...,t (A.1.1)
k=c

It is clear that the expression

~
~

(h—=1)) Xpy—a) + (a—ir—1)) (X —a)+...+ (i —ir-1 — 1)(X) —a)
k=1 k=2

is exactly zero only when each X = a.

e The second term. We claim that each term in the expression

(21—1< 7 “ZIZ ) Zt—t< - >

must be nonnegative, and equality holds only if there is a tie. To see this, we notice
that Z;j;f Z(1) can be separated as three sums: ZZ’;HI X S Y(x) and S, Wik,
where tx < m, ty <m/, tyy <n' and ¢ = tx — t + ty + ty. In terms of the procedure
of Algorithm 1, it follows that

ty tw
ZY(k) Sty%l and ZW(k) Stw-a.
= k=1

For the same reason, ZZ’;H Xy < (tx — t)a, otherwise we have i S X > a
and it violates the condition that a is the average of the chain branch with the largest
average score . So we have

ie—cC

kt—l—l k=1

A.2 Proof of Theorem 5

Proof To establish the bridge between HierRank (Algorithm 2) and Algorithm 4, we start
from a simple case, i.e., a tree consisting of multiple chains with the same root (the root is in
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Ps). Specifically, denote by R the root and these children chain by C, := {Xl(s), X ,Ej)},
s =1,...,v, where v is the number of chains, and k; is the length of the s;, chain. Without
loss of generality, suppose T} := Cy(hy) = {Xfl), o ,X}(LP} is the first supernode that has
been condensed to R, if R has not been taken off, or the first to be taken off after R. We
claim that

Lemma 26 When merging C,...,C,, Algorithm 1 puts Ty in the first place.

To show Lemma 26, we only need to show hll Zkecl(hl) Sy > %L ZkeCs(h) Sk, Vhe{l,... ks},
s € {1,...,v}. The detailed proof is deferred to Appendix A.2.1. Inductively, it implies that
the ordering given by Algorithm 4 on such simple case is the same as HierRank. Furthermore,
any complicated structure boils down to the above simple case, since we can inductively
merge the sub-chains starting from a root in Py using Algorithm 1. This completes the proof
showing that the results of HierRank and Algorithm 4 are the same. [ ]

A.2.1 Proof of Lemma 26

Proof We show the proof in three steps:

(i) Along the chain C, all the sub-chains starting from X 1(1) with larger length than 7}

have at most as large average score as 77, that is, Zl,h < Z1,h17 Vhy < h < k. In terms
of the procedure of Algorithm 4, all the mean score values in the supernodes following
T; is no larger than ¢y 4, .

(ii) Along the chain Cy, all the sub-chains starting from X 1(11 with smaller length than T3
have at most as large average score as 71, that is, £;, < {1, V1 < h < hy. Otherwise,

suppose h} < h; s.t. Xfl), e, X ,(L? is the sub-chain with the largest average score and

Uiy >l - By Eq. (A.1.1), we know that Z?ic(Xi(l) —liw) 20, c=1,...,h}. So

to make any supernode right behind the one ending with X (}1) merged with its former

h
supernode, the average score value of this supernode must be at least £ ;. Thus, we

can inductively conclude that E_th > E_l,h/l , which is a contradiction.

(iil) lop < gy, Yh € {1,...,ks},s € {1,...,v}. Otherwise, without loss of generality,
suppose X{Q), e ,X}(i) is the sub-chain with the largest average score and [72,;12 > El,hl-

By Eq. (A.1.1), any super node ending with X }(3 has an average score of at least 5727}@.
Then it contradicts with the assumption that 7} is the first supernode that will be
merged with R, if R has not been taken off, or by the time 7} is taken off.
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Appendix B

Appendix for Chapter 3

B.1 Proof of Proposition 9

Proof Suppose
flz) =18 -I(x €]0,1/2]) + 0.2 - I(z € (1/2,1]).

Note that

P(s < k/m)—TP(s < k/m)
— /Ok/m du—Z/ ( ) (1 —w)™" f(u)du
_ /01 (]I[u < kfm] - ; (:’f) (1 — u)mT> F(w)du (B.1.1)

Decompose f(x) = fi(x)+ fa(x), where fi(z) = 1.6-I(z € [0,1/2]), fo(z) = 0.2. The previous
example shows that the difference for the f; part in Equation (B.1.1) is at most n%r So we
only need to take care of the f; part in Equation (B.1.1), i.e.,

1.6 x /01/2 (]I[u < kfm) =" (T) (1 — u)m—f) du = 1.6 x /01/2 By (m, u)du,

provided k/m < 1/2. Here By(m,z) =Y 1", (7)a"(1 — 2)™". Define

Ag(m,z) = [(TIZ) 21— )" [(k+1)/(k+1— (m+1))].



APPENDIX B. APPENDIX FOR CHAPTER 3 109

Bahadur (1960)[Theorem 1| indicates that 1 < Ay(m,x)/Bi(m,z) < 1+ 272 where z =
(k —mz)/(maz(1 — x))2. Let x = 1/2 — e. By Stirling’s formula and Taylor expansion on
log(1 + €), we can obtain

1
\V2mm

—2me2
eme7

Am/g(m, 1/2 —€) ~

and we can rewrite

o y/me
V1/4—e
So we have

o —2me? —2me?
By (i 12— ) > Apya(m,1/2 —€) N 2\/mee > 2/mee |
1+ 272 4m —1)e2 +1 4me? + 1

Then it follows that

1/2 1/vm Qﬁee—Qme 1 9e—2u? 081
Brj2(m, 1/2 — €)de > e 1 de = \/_ 1 UNW.
0 0

Together, we have P(s < 1/2) —P(s < 1/2) > \ﬁ +¢e-m~!, where ¢ is a residual term with

le] < K, C and K are positive constants. [ ]

B.2 Proof of Proposition 12

Proof The proof of this theorem follows from that of Theorem 13, so we defer most details
to the proof of the latter.
From Equation (B.3.5), we know that

P

—
V2R

1 € B(z)) — P(s; € B(x))

NNgE

[P(3; € B(z),s1 € B(x+d-h)) —P(s; € B(x),$ € Blx+d-h))]

Q.

+Z (5, € B(x),s, € B(x —d-h)) —P(s; € B(x),5, € B(x —d - h))]

—HP’(§1EB(:C),sleB(x—i—d-h).dzD+1ord§—D—1)
VP(s; € B(z),81 € Bz +d-h):d>D+1ord<—D—1),
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where B(z) is still defined as the bin that contains = among [0, k], (h, 2h],..., (1 —h,1]. Note
that

P(s; <z)—P(s; < )

= P& <x,8 >2) =P8 >uz,5 <)
= P(5 € B(x),s1 € B(z),5 <z,5 >x) —P(5 € B(x),s1 € B(x),8 >z,5 <x)
+ > [P(3 € B(x —dh), s, € B(zx +d'h)) — P(31 € B(z +dh),s; € B(x — d'h))].
d=1,2,...
d'=1,2,...

= IP’(é € B(x), 81€B( )51 <, 81 >x)—P(8 € B(x),s1 € B(x), 81 >x,8 <x)
Z Z P(s; € B(x — dh),s; € B(x +d'h))
ld—d/|<D  |d—d'|>D

—P(8, € B(x +dh), s, € B(x —d'h))].

Following the proof of bounding P($; € B(x),s1 € B(x +d-h):d>D+1ord<—-D —1)
in Theorem 13, we can bound

| Y [P(s1 € Bz —dh),s; € B(z +d'h)) —P(3) € B(x +dh), s € B(x — d'h))|
|d—d’|>D
2fmax

< 2fmax - eXp(—ZmDQhQ) =
m

where D = [y/28m]

2mh?
Following the proof of bounding | 7 | [P(4, € B(z),s; € B(z +d - h)) — P(s; € B(x),4 €
B(z 4+ d - h))]| in Theorem 13, we can bound

|P(s, € B(x),s1 € B(z),$ <x,51>x)—P(5 € B(x),s1 € B(x),5 > x,5 <z

fmax'h fmax h - !
< l( max 5
—1(\/m+m+\/m)+||’

where |€] < K, - (WWE‘X + h2 frnax + f’;“nﬂ) for some constant K5 that only depends on a.
To bound

| > [P(51 € B(x — dh),s1 € B(z + d'h)) —P(3) € B(x +dh), s € B(x — d'h))|,

|d—d'|<D

we still follow the proof of bounding | Zfl):l[ﬂ”(él € B(z),s1 € B(x+d-h))—P(s; € B(x), 8 €
B(x +d - h))]| in Theorem 13. The problem is that there are D? terms instead D terms. By
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carefully arranging the D? terms, and using the fact that > °  exp(—Cpd?) < oo for any
positive Cy, it can be easily seen that we still get the same bound as above. In total, we have

B(51 < 2) — B(s1 < )| < Ky (fu + Fwe) - (o 124 ),

vm m
where K3 is some constant that only hinges on a. To minimize the upper bound, take h = \/—%
Thus, it follows that
m C
sup |F"(z) — F(z))]

)
z€la,1—d] m

IN

where C' is some constant that only depends on f and a.

B.3 Proof of Theorem 13

Theorem 13 relies on the the local limit theorem of binomial distribution, as follows.

Lemma 27 Suppose X ~ Binom(m,s), with 0 < s < 1. For any a < b such that A :=
max{|£ — s|,|Z — s|} = 0 as m — oo, then

ms(l—s) ].

- - - a—ms \/ 27r

exp(—t2/2)dt| (14 1) + &2,

where g1 is the error from the Gaussian approrimation to Binomial point mass function, and
€9 1S the error from the summation series approximating the integral. Specifically, we have

|€1‘ SKA,

exp(—md?) N b—a
vm vm
1

where § 1= Min, o b |s — x|, K and C are two positive constants that depend on s via A=)

leaf <€ - A - exp(—md?)],

The detailed proof of Lemma 27 can be easily obtained by adapting that of Dunbar (2011).
Now we prove Theorem 13:

Proof Denote by R, = E(f(x) — fum(2))? the risk at a point z. We decompose the risk
into the variance and the bias square as follows.

Ry = 0r{ fom () + (Efum(x) — f(2))2 (B3.1)
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For the variance part, denote by p; = P(m - §; € B;). We have

l1—a
A pi(1 —pz 1
dx L
/a Uar(fn,m(x)) /Bl nh’

aL<l< 1—a)L

where K is a positive constant that relies on a > 0. For the bias part, since
(B fum(@) = f(2))* < 2B fum(®) — Efu())” + 2(Efu(2) — f(2))?,

and it is well known that

/0 (Ef(x) — f(0)de < Ky - 1,

112

(B.3.2)

(B.3.3)

(B.3.4)

where K is positive constant that only relies on f. We only need to consider E fnm(x) —Ef,(z).

By definition,
]Efn,m(x) - Efn(x)

_ %[IP(Q € B(z)) — P(s; € B(x))]
= L [P(51 € B(x), 5 & B(x)) ~ Blsy € B(x), 61 & B())
1 ;
= {2 [PG1 € B € Bla+d-h) ~Pos € Bla),51 € Blo+d- 1))

—1—2 (8, € B(z),s1 € Blx —d-h)) —P(s; € B(x),5 € B(x —d-h))]

=1
—|—(A B(z),s1 € Blx+d-h):d>D+1lord<—-D—1)

+P(sy € B(z),81 € B(x+d-h):d>D+1ord<—-D—1)}.
By McDiarmid’s inequality, it follows that
P(s; € B(z),$1 € Blx+d-h):d>D+1ord<—-D—1)

= / [El(s; € B(x+d-h):d>D+1ord<—D —1|s1)]f(s1)ds1
s1€B(z

IA

/ (|31 — 1] > D - hls1)f(s1)ds:
s1€B(x

IN

/ exp(—2mD?*h?) f(s1)ds;
s1€B(z

< fmax - h- exp(—2mD2h2),

(B.3.5)
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where fiax is the maximal value of f in [0,1]. Take D = [ lﬁi—h"ﬂ, i.e., the least integer that

log m

is not smaller than . Then we have

P(s; € B(x),$1€ Blx+d-h):d>D+1ord<-D—-1)< K3 fmax'h, (B.3.6)
vm
where K3 is a universal positive constant. Similarly, we can show that P($; € B(x),s; €
B(x+d-h):d>D+1lord<-D-1)<Ky- fm‘”‘ for some positive constant K,. Next, we
investigate P($; € B(x),s; € B(x +d-h)) — P(sl € B(z),5 € B(x +d - h)). Denote by l( )
and r(z) the left boundary and the right boundary of the interval B(z). By Lemma 27, it
follows that

P(s; € B(x),5 € Blz+d-h))

/5163

B / [/teB +d-h) % eXP(_%Mt (I+e5-(d+1)h)

(st sons

kil eB x+d-h)

J/

exXpl—m|r\x
+ &g - p(

N

+er- vmh - [r(z) + dh — s] - exp(—=m|r(z) + (d — 1)h — s]i f(s)ds,
(1)

where |e5| < K5, |g6] < K, |e7] < K7 and K35, K¢, K7 are positive constants that only depend
on a. We consider the summation of the D error terms in P(s; € B(x),$ € B(x +d - h)),
d=1,...,D:
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()

D

; /sGB(m)

/ vm it =s ))dt] Ks(d+ 1)hf(s)ds
teB(z+d-h)

21s(1 —s)  2s(1—

D -
m(t—s 2
< Keh? e+ > Ko / / Ji(d+ 1)k e B dt] F(s)ds
d—3 s€B(x) LJteB(z+d-h)
D -
< Khfu+ > Ky / / Ji(d+1)h - e—m<t—s>2dt] F(s)ds
d=3 s€B(z) LJteB(z+d-h)
D -
< Ksh® foax + > Ko / / 2v/m(d — 1)h - e_m(t_s)zdt} f(s)ds
d—3 s€B(z) LJteB(z+d-h)
D -
< Ksh? finax + Z Kg/ / 2v/m(t — s) - em(ts)th} f(s)ds
d—3 s€B(z) LJteB(z+d-h)
= K8h2fmax
2Ky [ m(r(@)—s+HEd-DR)? _ g-m(r(a)- +dh>2]
mir\x S _em’r‘x S f(s)ds
Z \/_ s€B(x)
h fimax

= K8h2fmax + Kg \/m

where Kg, Ko, Ko are positive constants that only depend on a.

(1I)
D exp(—m[r(z) + (d — 1)h — s]?)
-1 /seB(:w fo- Jm - f(s)ds
(D-1)h
< K- ffm _/D U (i)t
0
< f(6 . frnax7
m

where Kg is a positive constant that only depends on a.
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(ITD)
D
Z/ K7 - /mh - [r(z) + dh — 5] - e r@+EDh=s 6y
(z)

_ 2/ Ko -/mh - [r(@) + (d — 1)h — 5 + h] - e r@+@Da=s? )4

hfmax D —m(d—1)2h2 —md2h2
h fmax Z[e (@=1)%h —¢€ dh]}

d=1

h - fmax . [1 o emDth]}

3

h- fmax
Jm

where K7 > 0 only depends on a.

< K-

fmax

IA
= /—H/—/H
3

We call the summation of the D error terms by £, which satisfies |E| < K- (hfﬁ + 12 frnax +

%), where K7y > 0 only depends on a. Similarly, for the summation of the D error terms
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EinP(5 € B(z),s, € B(x+d-h)),d=1,...,D, we have the same rate. Now we consider

M

P(5, € B(x),s1 € Blx+d-h)) —P(s; € B(x),51 € B(x +d-h))]

1

1=
WER

m(t—s 2
/ / VM T )
= JseB() JieB(atdn) [/ 2ms(1 — 5)
_m(sft)Q ~
_Le 20 ()| dtds + |E] + |€]
2rt(1 —t)

|2§ — m% (t — 5)3 m(t—s)2

1] _mes?
. e 25(1-5) S
1—3)35  2V/2r f&)

dtds

—~
=0

BN

~

D
dz:; /sEB(z) /tEB(x+d-h)

D 25—1]  mi(t—s) _mes?
+ / / . e 20-9 f(§)|dtds
dzz; seB(x) JteB(a+dh) | (1 — s)%ég 22w
D 1
1 mz(t—s) _me-—s? .
+ / / e =09 f(3)| dtds + |E| + ||
Z €B(z) JteB(z+d-h) (1 — 3)% 53 V2T

dtds

D
Z 3 2
= ‘Kll ) fmax -m?2 (t — S)3€—m(t_s)
d=1 /SEB /tEB(x+d.h)

+Z/ / [ Kro - (s + ) -3 (= 5)e™ O dtds + €] + 1)
d=1 v s€B(z) JteB(z+d-h)

w max ° h max h - r,nax 5

W Ry (fme oy Toa B iy gy ) (B.3.7)

Vmoomom

where K71, Kio, K13 are positive constants that only depend on a. Equation (i) uses the
Fubini’s theorem; Inequality (ii) applies the mean value theorem to the function g(s) =
ﬁexp(—ﬁ)]‘(s), where A is a constant; Inequality (iii) holds since 0 < a < s <

§<t<1-ac<1, thus ﬁ is bounded, and exp(— 2((’;‘2)2
5 = 1/2; Inequality (iv) is obtained via integral by part. Similarly, 327 [P(3, € B(z), s, €
B(x —d-h)) —P(s; € B(x),8 € B(x —d-h))] has the same rate as (B.3.7). Putting
(B.3.5)(B.3.6)(B.3.7) together, we have

) attains the maximal when

|Efn,m(x) - ]Efn(x” S K14 : (fmax + fllnax) . (\/—1— -+ h + %) (B38)
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where K14 is some constant that only depends on a. Combining Inequalities (B.3.1)(B.3.2)
(B.3.3)(B.3.4) and Inequality (B.3.8), it follows that

1 1 1
2
R(a,l—a)gCl‘(h +E+Th2 E)’

The minimal risk is no larger than Cj - n_g, which is attained when h = C5 - n_%, m > Cy-ni.
Here C, Cy, C5, Cy are positive constants that only depend on a and f. [

B.4 Proof of Theorem 14

Proof Note for the point mass function (3.3.1), we have an additional information that only
hold for the discrete case but not for the density case,

1 1
Juax |o — o = (d+3)- &
We follow the proof of Theorem 13 and can show that
1 1 K?
Rla,1—a)<Ci - (—4+ —+ —).
(a, a) < 1(n+m+m2)

When m > Cs - y/nmax{K,/n}, we have R(a,1 —a) < C5 - . Here where C,C5,C5 > 0
do not depend on n, m and K. [ ]

B.5 Proof of Theorem 19

We first define a few concepts. Let J denote the interval [a,b), where a =0 and b =1 in
our setup. We set

1) =b—a, () = / F()dt, AF(T) = () — f(a),

bi(J) = / PO — F(0)dt.

Any finite increasing sequences {z; }o<z,<q With zo = a, x, = b generates a partition P of J
into intervals J; = [x;_1,2;), 1 <7 < ¢. When no confusion arises, we put f; for f(.J;), Af;
for Af(J;) and so on. Set a functional L(P, f, z) defined for positive z by

q q

L(P. f.2) =Y (i) + 2(F ()2 =D _[ofi + £,

i=1 i=1
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Before proving Theorem 19, we state the needed lemma, which is adapted from Lemma 1
in Birge (1989). The proof also follows that of Lemma 1 in Birge (1989).

Lemma 28 Let P = {J;}1<i<q be some partition of J, F' an absolutely continuous distribution

function, F, ,, the corresponding empirical c.d.f based on §; and me = Fﬁ]m: FZ = FJ

the related Grenander estimators defined on the associative intervals. Define

q
= Z Frz;,m(x)]ll‘eji’
=1

with f and fnm to be the respective derivatives of F' and me. Then

B | [ 1nnto) - fa)lts] <B | [ 1amlo) - S|

In the proof, there are many similar notations that might be confusing. I list all of them
below for clarity and the convenience of reference.

o Let F™(z) :=P(4; < z), i.e. the c.d.f of 5. Let f(™ be the derivative of F}, ,.
e For any interval J, F/ (z) = 237" 1(8 < ;8 € J), F(z) = L 30  I(s; < w385 €

n =1 =1

J). Fom and F, correspond to F;/ (x) and F;/(z) with J = [0,1] in our setup.

. F’;l] ., and F are the respective least concave majorants of F;,, and F}] condition on
the interval J. Let f;{m and fﬁ] be the derivatives of Fﬁ]m and Fn‘] Fn,m, Fn and fmm,
fu correspond to F/, (z), E/(x) and f; ., f..

e For any partition P = {J;}1<i<y, let fam be the derivative of F,,,,(z) = Y.L I(z €

o I(J)=b—a, f(J)= [, f(t)dt, Af(J) = f(b) = f(a), bF(J) = [, [f(])/U(J) — f(t)|dt.

[ FOl“ any partition P = {Ji}lgigqa LJ(P, f, Z) = gzl[bf(Jz) -+ Z(f(Jl))l/Q] = le[bfz -+
2fM?. LI(f, 2) = infp LY (P, f, 2).

o M = fo fP(t)dt for some p > 2; H := lim,_,, f(x).
e For an interval I := [al, '),

— Let N and N,, be the number of s;’s and §;’s that fall in I, respectively.

— Define G and G to be the respective conditional c.d.f’s of the s,’s and §;’s that
fall in I, g and ¢ their derivatives.
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— Define Gy(z) = >0 I[s; <z;s; € 1), Gy, (x) == 0 1[5 < ;8 € 1.
— Define G Nyn,m and G ~ be the respective least concave majorants of Gy, and Gy

conditional on I. Let gu,, ., and gy be derivatives of G Noom and Gy respectively.

Proof
We want to show that

E; [/\f — fom(@)|dx| <3L(f,K -n"2 +C-m™7),

where K,C are universal constants. Then, the L; convergence of fnm only hinges on the
characteristics of f. For example, when f is a decreasing function on J = [0, 1] such that

M fo fP(t)dt < 400 for some p > 2 and H = lim,_,, f(x) > 0, then Proposition 4 of
Birge (1989) shows that

2PLY(f2) < 3/2(H/(H — b)) (bMH* ™7 /(p — 2))'7%, (B.5.1)

where h? = 226 2MH?*P/(p — 2) and M 22 < (p — 2)b>HP*'. Tt implies that f,,, has an L,
convergence rate at L7 (f, K -n~2 +C -m™2) < (Cy -n~2 + Cy - m~2)%/3_ where C, Cy are
some positive constants.

By Lemma 28 it is sufficient to prove that for any partition P = {J;}1<;<, of J, we have

By U‘f ~ Jam( Ndw}éiﬂZ[bm Jio (Kb 4 Como)),
i=1

where f,,, is the derivative of F, () = > %, F;L]m(x)]l(x € J;). This is certainly true if for
any arbitrary sub-interval I = [al,b") of J, the below inequality holds

]Ef{/l|f(:v)—nm\dx]<3[bf D+ VD) -(K-n3+C-m3)].

In order to prove this inequality, we assume there are N s;’s and NV, §;’s falling in the interval
I respectively. Here, N has a binomial distribution Binomial(n, f(I)) and N, has a binomial
distribution Binomial(n, f(I)), where f(™ is the derivative of the c.d.f F™ = P[3; < z].
Then with fnm = fI

n,m?’

/|f — Jam(@)|dz < bF(I) +|f(I) = N/n| + |N/n = Ny /0| + bfum(D).  (B.5:2)

The only difficulty comes from the last term. Define G and G(™ to be the respective
conditional c.d.f’s of the s;’s and §,’s that fall in I, g and ¢U™ their derivatives. Then

Ef(m) [bfn,m(1)|Nm] = Nm/nEg(m) [ngm,m(I”Nm]
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because the joint distribution of the N,, §;’s falling in I given N,, is the same as the
distribution of N,, i.i.d variables from GU™. If U(z) is the uniform c.d.f on I, then

1/2bG5, (1) 2 sup|Gy, m(z) — U(2)]

zel

2 sup[Gu,, (z) — U(x))

< ilél?[GNm (z) — G(x)] + igl?[G(fU) — U(x)]
< SL;I?[GNm(I) — G(x)] +1/2bg(1).

Here Equation (a) holds because this is an equivalent expression of the total variation for
Gn,, m(x) with a non-increasing derivative and U(x) with a flat density. Equation (b) holds
because

e G, .m(x) > Gy, () for any z and the equality occurs when the derivative of Gy, m
changes.

o Gy, m(z)—Ulz) attains the maximum at a point which corresponds to a change of
the derivative of G, .

Since bf (1) = f(I)bg(I), we get

E f(m) [0f ()| N < Ny /1 {QEQW [sup(G,,(2) — G())|Ny] + bf([)/f([)] ;

zel

and using Corollary 11,

E oo b (1)|Nor] < N/ [ (ot ) bf(f)/fm] ,

where K > 1. Plug in this result into the inequality (B.5.2), and with the Cauchy-Schwarz
inequality, we have

IE"f/|f fnm )|dx
< bf(I)+E|f(I)— N/n|
+EA\ O (D) fn+ K - f [ m+bf (1) - fO(I)/ (1) + E[N/n— Ny /nl.

By the Cauchy-Schwarz inequality, it follows that

BIH(D) - Nl < \/f(f)(ln— 1)
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Note that

F) = ENy/n

EN/n + E[N,, — N]/n

f(I)+ E|N,, — N|/n

£(I) + E[E[| Ny, — N|/n|N]
F)+ E[(%) N/n)

= fD(1+C-m )

IN

INZ

where the Inequality (c) holds because of Proposition8 with C' > 0 (note that N,,/n =
Fom (b)) — F,m(al), and N/n = F,(b') — F,(a')). Thus, for m > C, it follows that

Ef/|f (@) < 31 + /T

e

where K and C are positive constants. Finally, as Proposition 4 in Birge (1989), we construct
the partition P = {J;};<i<, of J where j is the integer such that jh < H < (j + 1)h,
J, = {z|f(x) > q}, J; = {z|f(x) < (j + 1)h}, and J; = {z|ih < f(z) < (i + 1)h} for
q > 1> j. Since fmae < 00, there is only finite number of intervals. It can be shown that
when ¢ is the smallest integer that is larger than f,.., this partition can give the inequality
(B.5.1). u

),

B.6 Proof of Theorem 20

B.6.1 Local Inference of F,,,, when [F' is absolutely continuous

Theorem 10 shows that the empirical CDF F,, ,, is a consistent estimator of the population
CDF. We also want to understand the uncertainty of the empirical CDF. The Komlés-Major-
Tusnady (KMT) approximation shows that v/n(F,(z) — F(z)) can be approximated by a
sequence of Brownian bridges { B, (z),0 < z < 1} (Komlos, Major, and Tusnady, 1975). This
result can be extended to the empirical CDF based on §;’s; see Theorem 29. The proof is
similar to Theorem 10 by splitting F, () — F(z) into F,, ,,(z) — F™(z) and F™ (z)— F(z).
The former can be bounded by the original KMT approximation and the latter one can be
bounded using Proposition 8.
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Theorem 29 (Local inference of F, ,,) Suppose F' corresponds to a density f on [0,1]
With fumax < 00. There ezists a sequence of Brownian bridges {B,(z),0 < x < 1} such that

’ {02131:21 Vi(Fun(@) = F(2)) = Ba(F(2))] > 2\/§\f/r{% S + al\(;%n + t} < eV

for all positive integers n and all t > 0, where a, b and ¢ are positive constants.

B.6.2 Proof of the local asymptotics
This proof is adapted from Wang (1992). Define
Upm(a) =sup{z : F,, ,(x) — ax is maximal }.
Then with probability one, we have the switching relation
Fam(t) < a s Unla) <t. (B.6.1)

By the relation (B.6.1), we have

P(V1(fam(to) = f(to)) < @) = P(Unm(f(to) + 1 22) < to).

From the definition of U, ,,, it follows that

Unm(f(to) + n_%@ = sup{s: F,m(s) — (f(to) + n_%x)s is maximal }
= sup{s: Vn(Fnom(s) — F(s)) + vVn(F(s) — f(to)) — xs is maximal }

By Theorem 29,

vn logn

Vit Fyn = F(s) = Bo(F(5) + O(¥5) + 0,5

where {B,,,n € N} is a sequence of Brownian Bridges, constructed on the same space as the

F,. So the limit distribution of U, (f(to) + n~2z) is the same as that of the location of the

maximum of the process { B, (F(s)) + v/n(F(s) — f(to)(s) — xs,s > 0}. Note that F(s) is
concave and linear in [a, b], then

),

F(s) = F(a) + f(to)(s — a) for s € [a, b],

and

F(s) — f(to)(s —a) < F(a) for s & [a,b].
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Hence the location of the maximum of {(B,,(F(s)) ++/n(F(s) — f(to)s) — xs,s > 0} behaves
asymptotically as that of

{B(F(s)) —xs,a <s <b}={B(F(a) + f(to)(s —a)) — zs,a < s < b},
where B is a standard Brownian bridge in [0, 1]. Thus,

P(ﬁ(fn,m@()) - f(tO)) < ZE) -
P( the location of the maximum of {B(F(s)) —xs,a < s < b<ty})
= P(Sap(to) < ),

by the definition of S. That completes the proof of Part (A). The proof of Part (B) follows
in a similar manner.

B.7 Proof of Theorem 21

Proof Let &;(c;), Gr(cy), Gmia(cr, cr), Gi(cr), Gr(cy) be the output of Algorithm 5 with the
input ¢, ¢, and d;, d,. The corresponding estimator of f is termed as f,,,,. For simplicity,
we consider ¢\ = 1, i.e., the case where there is only the decreasing part and the flat part.

For a general case where 0 < 1, we just need to focus on [0, pl.
1

© -
By Theorem 19, we know that By [V |fom(z) — f(2)|dz < Ky - Ni(c (0))‘§ when m >

Ch- Nl(cl ) for some positive constants K; and C; that only depend on f. For ¢; > Cz( ), it is

easy to see that lim,_,(,)_ fonm(z) = lim,_, @)+ frn(z) =€ N( ) 172 where ¢ is a residual
term with || < K, for some positive constant K5, because the estlmator of the flat region
converges at a square-root rate (Wang, 1992). In other words, it is unlikely to find a desired

gap beyond cl(o)

AXmi C(
If lim () fnm( ) > % + d;, we select the desired ¢; = Cz . Otherwise, define
G

c < CZ(O)

t be the maximal ¢; such that ~
Fam(r) > 22D

Then Vt < ¢; < cl(o), it follows that

. . Qmia(c® 1)
fla) = fam(c) = fla)— lim  f(z) = (fam(c) — ——"L5—)
z—>(cl(0))+ — Cl( )
& C( )
bl f() - (il 1)

)
ac—>(c ))+ 1-— Cl(o)

o —d — Ky - (Nmid(cl(O)a 1)_%%

v



APPENDIX B. APPENDIX FOR CHAPTER 3 124

When d; < ¢, it implies that

(0)
< -
&/ f(2) = Fum(@)|dz > (6 — di — Ko - Npialc}”, 1)”
t

[NIE

) (¢ —1).

Since the L; distance between f and fnm reduces at a cubic-root rate, it follows that

cgo) —t < (Cy- Nl(cl(o))_l/?’ for some positive constant Cy. So ¢ = t is the desired cutoff.
Finally, we have that

(0)

[ Vnnt) = s@lie = [Vt s+ [ 122288 pya
o [ s

1—-t¢

IN

[ e = F@de + (1 + )67

amid(ty 1) N amid(cl( )7
1—1 1— cl(o)

S C{4 ((0)) 1/3a

1
- )

+| G

where the last inequality holds because |clo) —t] < Cy- Nl(cl(o))*l/ 3 and f is bounded can

imply |Qma®:D) a’”lld C(ZO)’ | < Ky - Ny(¢”)~1/3. Here Cy, K are two positive constants that

only depend on f. [ ]

B.8 Proof of Theorem 22

Proof By considering the interior point g in the flat region, the left decreasing part and the
right increasing part are disentangled. Therefore, we only need to consider the left side, and
the right side can be proven in the same way. A necessary condition for ¢; being identified as
feasible for the change-point-gap constraint in Algorithm 5 is that

Omid ( Ci, M) d

MO Z G el

where &piq(cr, t) = Npia(er, ) /n and & (@) = Ny(p)/n. Tt is easy to see that

[

~

ay(p) = ag(p) +e1-n"2,
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and 1
Gmid(Cr 1) = Qmia(cy, 1) + €2 - 172,
where o;(p) = Eqy(p) and apia(c, 1) = BEdmia(cr, 1); €1 and ey are residual terms with

max(|eq], |e2]) < K for some universal positive constant K by McDiarmid inequality. So the
necessary condition is

o=

Amid\Ci, d _

alci, 1) L tesonE, (B.8.1)
a(p) - (p—a)  oulp)

with |e3] < C for some constant C' that only depends on a;(i), p — ¢; and d;. If ¢, > cl(o)
and the constraint is violated at ¢;, then for any ¢; > ¢; the constraint is violated at ¢; with

high probability since §,(¢;) > §,(¢]) and 2zmalers) amid.(cﬁ“ ) (¢; and ¢, are both in the flat
! ar(p)-(u—cr) — eu(p)-(n—cp) !
l
(0) (0)

region). Therefore, to see if ¢, > ¢, ', we only need to investigate the smallest ¢; with ¢; > ¢
that is in the searching space of Algorithm 5. By Theorem 20, when m/ - Nl(cl(o)) — 00, it
follows that

ai(c) >

W) - o 4 5 e

By the necessary condition (B.8.1), then asymptotically we have

. mid(ci; 1) dy Ni(p)
Plo > "] < P VNi(p)(@ile) - > \/Ni(n) - +25-
o> cf”) ((6(a) — ont Gy > NG - s e[
: dy Ni(p)
~ P|S >/ N(p) - —— .
() =V Ni(p) ) T -
. d N,
S P S (0) (CZ) Z Nl(Cl(O)) . l — C . l(,ll)) .
A0tV = N a(p) n
: oy &
< > : _c).
= ]P) (SCZ(O),,LL(Cl) - Nl (cl ) o (ll,) C)
~ ; (0)y < )y, D _
P (Scl(o),#(cl ) = Nl(cl ) CVZ(,“) C) :
where the last approximation holds because ¢; is the smallest one searching candidate with
c > cl(o), so it is very close to cl(o). [ ]

B.9 Proof of Theorem 23

Proof Let ai(c), ér(c,), dmia(c,cr), Gilcr), g-(c;) be the output of Algorithm 5 with
the input ¢, ¢, and d;, d,. The corresponding estimator of f is termed as f,,,. Let
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H(ey, e, fnm) be the log likelihood function associated with the optimization problem (3.5.3),
and N(z) = #{8; : 5, = x}. It follows that

1 ; 1 o
~EfH(ct, ¢, fam) = By Zlog Frm(34)

Ef 1Og fn,’ﬂz(él)
_KL(f||fn,m) + C:

where C' = E¢log f(51). From the relations between total variation, Kullback-Leibler diver-
gence and the x? distance,

TV(P,Q) < VKL(P||Q) < VX*(P|IQ),

we have
1 - -
EEfH(Clacmfn,m):_EfKL(f||fn,m)+C S _Ef/ |f fnm )|dl’>2+0

< ]Ef/ ‘f fnm )‘dx)2—|—0,

where the last inequality uses the Jensen’s inequality. On the other hand, it follows that

1 ~ -
EE]‘H(CbCr:fmm) = _]EfKL(f||fn,m)+C

> _E, / (f(2) = Fam(@))?/ f(2)da + C
> —E / (F(@) = Fon(@)*/ frinda + C

>

&y [ 150) -~ Fantod? + C

Then the problem is reduced to bound Ey fol |f(2) = fom(z)|dz. From Theorem 21, we know
that when m > C - maX(Nl(cl(O)), N, (cﬁo) )), there exist ¢; and ¢, in the neighborhoods of cl(o)
and c\”) respectively, such that the resulting estimator Fom satisfies B f01 | f(2) = fm () |dz <
Ky - (N(c?)71/3 4 N, () =1/3) for some positive constants C; and K;. Along with Lemma
30, we conclude the desired result.

u
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Lemma 30 Let fnm be the solution by Algorithm 5 with input ¢; and ¢, and the corresponding
flag = True. Assume foax < 00 and fmm > 0. If m > C; - maX(Nl(cl(O)),Nr(cfno))), then
1A < Cy - Nl(cl(o))_l/?’, A < Cs - Nr(cio))—1/3 is a necessary condition for

Ef/ £(2) = fam(@)lde < Cy- (N )71 4 Ny (e2)7179),

where Cy, Cy, C3, Cy are four constants depending on dy, d,, fuax and fmin; A = ¢ — cl(o),

A, =c — 9.
Proof For simplicity, we consider c,(no) =1, i.e., the case where there is only the decreasing
part and the flat part. For a general case where 0 < 1, we just need to focus on [0, u]. If

(0)

¢ < ¢, the Ly distance between fnm and f is

Ef/mm ~ f(@)lde
(0)

= By [ anla) = f@ldr + By [ Vun(o) — Flo)lds

IVE

1
Ky Nile) Py [ (i)  Fla)ldo

—
S
N

. 0)
o fam(z)da 1= oL f(x)dx

1—
—K - NJ(CZ)_l/?’ + Ey| 1— ¢ 1_ O
Y

(1 — )

(e

~

(0)
1— [T f@)de 1— [ f(x)d
0)\— 0
— K- Ni(ef”) 7P 4 | - (14"
l

B I—q 1—c¢
At (1—e) [V fa)de+ A [ fla)de
—4y —a) |, !
= —Ky Ni(f”) M 4| — - |
(0)
B AN — (1 =) Ay + A [ f(x)dx
— Ky N0y 2 ( l)ll_CZ ot f(@) |

= —Ky Ni(¢”)"V? 4+ KA,

where K; and K, are two positive constants that only depend on f, min Clersel®)] flx) <
(0)

<0>}f( )7 K = |1+1 LR (G

1—¢

| < o0 since fpax < 00. The inequality

(a) and the equatlon (c) are obtained using Theorem 19. The equation (b) makes use of
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assumption that the right hand side is a flat region. Then, if there exists C; > 0 such that
E; fol | fom(z) — f(2)|dz < Oy - Nl(cl(o))*l/g‘, then |A)] < Cy - Nl(cl(o))*l/g‘, for some positive
constant Cl.

Next, we investigate the case when ¢ > cl(o). Denote a := lim,_, () fnm( ), b=

limg (e, fnm f(()) ~nm Jdx, and o = f(x)(when z > c( )) It is easy to check that

a
e=al- | < [ | 1fam(o) = alde.
G
Using the Ly convergence of the Grenander estimator, it follows that
ca 1
Ale=al +(L=elb=al £ [ Vomlz) = alds+ (1= c)lp=al £ [ Fun(e) - Flo)lde.
G 0

If there exists Cy > 0 such that fol | frm(z) — f(z)]|dz < Cy - Nl(cl(o))*l/g, we have

lgla=t < T lgle—d
< 'Al'(o)| ~al+ %\a—m
1@'0— ()
If the output flag of Algorithm 5 is True, a — b > ;%’Z((ff‘;)) + az(u) + K5 -n~'/2 for some

positive constant K3. Then it must follow that |A;| < Cy - Nj(c\”)~/3, where Cy > 0. So far,
we have proven the lemma for the left hand side. For the right hand side, it can be proven
similarly. ]





