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Abstract

Essays in Macroeconomics and Financial Frictions

by

Walker D Ray

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Yuriy Gorodnichenko, Chair

Recent economic experiences have demonstrated the importance of understand-
ing departures from frictionless markets and perfect information-processing for the
field of macroeconomics. The global financial crisis has highlighted the importance
of financial frictions for macroeconomic policy. With conventional monetary policy
unable to stabilize the economy in the wake of the global financial crisis, central banks
turned to unconventional tools. Understanding how these tools worked through in-
teractions with financial market disruptions is crucial for designing and implementing
policies to deal with the next crisis. The first two chapters show theoretically how
unconventional policy worked, and test these predictions in the data.

The rise of political polarization over the past decades raises important ques-
tions about how households form macroeconomic beliefs, and how this departs from
the typical rationality assumptions embedded in textbook macroeconomic models.
The final chapter shows theoretically how imperfect information-processing leads to
a divergence of macroeconomic beliefs across households. Empirically, growing dis-
agreement about macroeconomic outcomes is found in survey data; moreover, this
disagreement leads to differential consumptions decisions following political shocks.

Chapter 1 embeds a model of the term structure of interest rates featuring market
segmentation and limits to arbitrage within a New Keynesian model to study un-
conventional monetary policy. Because the transmission of monetary policy depends
on private agents with limited risk-bearing capacity, financial market disruptions re-
duce the efficacy of both conventional policy as well as forward guidance. Conversely,
financial crises are precisely when large scale asset purchases are most effective. Poli-
cymakers can take advantage of the inability of financial markets to fully absorb these
purchases, which can push down long-term interest rates and help stabilize output
and inflation.

Chapter 2 seeks to understand empirically the effects of large-scale asset purchase
programs recently implemented by central banks. In joint work with Yuriy Gorod-
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nichenko, we study how markets absorb large demand shocks for risk-free debt. Using
high-frequency identification, we exploit the structure of the primary market for U.S.
Treasuries to isolate demand shocks. These shocks are sizable, leading to large move-
ments in Treasury yields and impacting corporate borrowing rates. Informed by a
preferred habitat model of the term structure, we test for “local” demand effects and
find evidence consistent with theoretical predictions. Crucially, this local effect is
strongest when financial markets are disrupted. Our estimates are consistent with
the view that quantitative easing worked mainly via market segmentation, with a
potentially limited role for other channels.

Chapter 3 explores the role of political polarization in shaping the economic expec-
tations and consumption behavior of households. In joint work with Rupal Kamdar,
we first develop a rational inattention model in which heterogeneous households must
decide how to obtain information. Theoretically, we show there is a “paradox of infor-
mation” where falling information costs exacerbate disagreement. Next, using survey
data, we find evidence that political polarization has increased dispersion in macroe-
conomic beliefs. Disagreement is particularly acute following a general election when
the presidential party switches; moreover, this effect has been increasing since the
1980s. Finally, we also find that polarization feeds into consumption decisions. Using
high-frequency spending data at the zip code level in California, we find Republican-
leaning regions exhibit substantially larger consumption following the 2016 election.
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Chapter 0

Introduction

The past several decades have witnessed a secular change in the macroeconomic land-
scape of the United States and other developed countries. Most notably, the recent
global crisis underscores the role of financial frictions in shaping macroeconomic dy-
namics and propagating shocks. At the same time, the rise of political polarization
raises important questions about imperfections in how households process informa-
tion and form macroeconomic beliefs. Typically, macroeconomic models assume fric-
tionless financial markets and perfect information-processing. These essays develop
theoretical tools to study departures from these frictionless baselines, and show em-
pirically that these frictions matter for understanding macroeconomic dynamics and
designing policy.

From a policymaking perspective, the financial crisis saw the rollout of so-called
“unconventional” monetary policy tools. Conventional monetary policy, conducted
through changes in the short-term interest rate, proved unable to stabilize the econ-
omy. Central banks began providing forward guidance regarding the path of the policy
rate; later, they began a series of large-scale asset purchases (LSAP), the most salient
of which was the quantitative easing (QE) programs conducted by the Federal Re-
serve. Future deployment of these unconventional tools requires policymakers to move
beyond the “heat of the moment” policies. Hence, a central question for policymaking
and academic research is to develop theoretical models of how these policies work, and
to empirically demonstrate which of these theories is the key channel quantitatively.
Moreover, understanding how these tools worked through interactions with financial
market disruptions is crucial for assessing how shocks propagate through financial
markets to the broader economy.

Benchmark models are not amenable to studying these topics. Because of the
extreme forward-looking behavior of agents and the lack of any financial frictions
in baseline macroeconomic models, forward guidance policies are highly effective to
the point of implausibility. Conversely, LSAP policies are completely ineffective in
conventional models. These essays develop a macroeconomic model featuring limited
arbitrage and market segmentation to show how both conventional and unconven-
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tional policies interact with disruptions in financial markets, and empirically find
these frictions play a large role in how these policies affect the economy.

Another important departure from baseline macroeconomic models considered in
these essays relates to household expectation formation. Expectations play a central
role in nearly all macroeconomic models, but the standard approach is to assume
full-information rational expectations (FIRE) on the part of private agents. This
assumption is theoretically appealing and has proven to be a highly useful analytical
tool, but there are important questions about the empirical realism of the assumption.
The rise of political polarization over the past decades and the ensuing divergence
of macroeconomic expectations across households throws more water on the FIRE
assumption. Analyzing how households process economic information is important
not only for understanding how these agents form their macroeconomic expectations,
but also how this feeds into consumption and savings decisions.

Although these essays consider disparate topics and methodologies, the through
line is the importance of the frictions which agents face when making economic de-
cisions. Taken as a whole, these set of essays develop models for rigorously studying
these frictions, demonstrate theoretically why these frictions matter, and confirm
empirically that these predictions hold in the data.

The purpose of Chapter 1 is to analyze unconventional monetary tools within a
tractable, unified theoretical framework. In order to do so, a term structure model
featuring market segmentation and limits to arbitrage is embedded within a New Key-
nesian framework. In contrast to textbook macroeconomic models with frictionless
financial markets, the term structure is determined by participants who face limited
risk-bearing capacity and are susceptible to demand shocks (as in the preferred habitat
view of bond markets). Household borrowing depends not only on the policy rate but
also on the entire term structure of interest rates, and hence these financial frictions
feed into consumption and savings decisions in general equilibrium. The model is
used to study conventional and unconventional monetary policy, and in particular
how policy actions interact with disruptions in financial markets.

The implications of the model are important for understanding the efficacy of
monetary policy. When financial markets are healthy, so that marginal investors
in financial markets have high risk-bearing capacity, the “expectation hypothesis”
holds: long-term rates are entirely determined by the expected path of short rates.
In this case, conventional monetary policy (as well as forward guidance) are effective
at stabilizing the economy. Household borrowing responds strongly to shifts in the
path of the policy rate, leading to movements in output and inflation, and hence the
central bank can dampen macroeconomic fluctuations.

However, the link between expected short rates and the term structure is weakened
when financial distress is high. In equilibrium, the model shows that long-term rates
under-react to changes in the policy rate. Therefore, during a financial crisis, the
monetary authority will find it much more difficult to stabilize the economy using
only conventional tools.
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The implications are precisely the opposite for LSAPs. Purchases of long-term
bonds, as in the various rounds of QE, will have little to no effect on long-term rates
when financial markets are healthy. When financial markets are healthy, investors are
able to bear a large amount of risk, and so they do not require much excess returns
to hold long-term debt securities. Hence, while QE changes the portfolio allocation
of the marginal investors in the debt market, this will not have large effects on bond
prices and borrowing rates.

Conversely, as financial markets become unable to bear risk, these purchases mat-
ter more and more. By changing the riskiness of marginal investors’ portfolio alloca-
tions, QE leads to changes in equilibrium prices of bonds. The changes in borrowing
rates feeds back into the household borrowing decision. In general equilibrium, QE
can boost output and stabilize the economy. Note that investors still eliminate risk-
free arbitrage opportunities, so that there are no riskless trades left on the table. Any
deviations from the expectations hypothesis are due to the risky portfolio allocations
chosen by the marginal financial investors. Hence, the channel through which uncon-
ventional policies like QE can have aggregate effects is by changing the market prices
of risk.

The exact impact of LSAP programs depends on how the purchases are structured.
The amounts to be purchased, which maturities are targeted, and the duration of the
program all affect the interaction with the sources of risk in the economy and the
broader feedback mechanisms in the macroeconomy. As always, one fundamental
source of risk is the movement in the short (policy) rate that is set by the central
bank. All bonds are exposed to this risk, so as long as arbitrageurs are not perfectly
risk-neutral there will be deviations from the expectations hypothesis. All else equal,
arbitrageurs will require excess expected returns in order to take non-zero positions
in long-term debt. This effect weakens the strength of forward guidance, but opens
the door for LSAPs. The central bank is able to change the portfolio allocations of
arbitrageurs, which through changes in the price of risk lead to changes in interest
rates.

The final section of Chapter 1 estimates the model using U.S. data from before
and during the recent financial crisis. Quantitatively, the model predicts that the
aggregate output effects of the first round of QE were roughly 40% larger than a
50 basis point expansionary monetary shock during a period of relative financial
calm. Further, had the zero lower bound not been binding during the financial crisis,
additional rounds of rate cuts would have been 20% less effective than rate cuts during
normal times.

Chapter 2 undertakes a rigorous empirical assessment of how the Treasury market
responds to large bond purchase shocks such as QE. While QE was clearly successful
in reducing short- and long-term interest rates, the mechanisms behind this reaction
are still not agreed upon. Chapter 1 developed a rigorous theoretical model where the
key channel is market segmentation in bond markets, but other theoretical channels
have been proposed. For instance, QE could be effective because it signaled to the
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markets that the Fed is serious about keeping short-term interest rates low for a long
time (a commitment device for forward guidance). Another explanation is that the
Fed signaled to that the economy would remain subdued, which pushed interest rates
down. Given the paucity of QE events, it has proven remarkably hard to provide
clear empirical evidence for each theory, as well as to assess the relative contributions
of the proposed channels. Indeed, many channels were likely active during QE rounds
and the reactions to QE were observed in a particular state of the economy, which
potentially confounds identification and interpretation.

The objective of Chapter 2 is to unbundle QE by focusing on the market segmen-
tation and preferred habitat channel. The empirical approach is to identify shifts in
private demand for Treasuries that mimic QE, but are independent of other channels.
Chapter 1 showed that the key mechanism through which market segmentation and
preferred habitat forces operate is not the source of demand shifts per se, but rather
how marginal investors in the market for Treasury debt absorb these demand shocks.
Therefore, the best way to isolate and study the preferred habitat channel of QE is
to identify unexpected demand shifts that are unrelated to other possible channels.

This chapter constructs demand shocks with these properties by utilizing the
structure and timing of the primary market for Treasury securities. High-frequency
(intraday) changes in prices of Treasury futures in small windows around the close
of Treasury auctions are used to identify unexpected shocks to demand for Trea-
suries. The key for identification is that all of the “supply” information (e.g. security
characteristics such as the maturity, as well as the amount of newly offered and out-
standing securities) is known and priced in by the market. For small enough windows
around the close and release of the auction results, any price changes are reactions to
information regarding the demand for the Treasury securities from the given auction.

In sharp contrast to QE events, Treasury auctions are frequent. This allows for
crisper inference and to study state-dependence in the effect of targeted purchases of
assets (e.g. crisis vs. non-crisis states). Because QE events were both infrequent and
confounded with a massive financial crisis, having a long time series is instrumental
for understanding how QE-like programs can work in normal times. Importantly,
because Treasury auctions for specific maturities are spread in time, it is possible to
identify changes in demand for government debt of specific maturities. Hence it is
possible to trace how a shock in one part of the yield curve propagates to other parts
of the yield curve. These natural experiments mimic targeted purchases of the Fed
during QE programs. Hence, despite the apparent distance between QE programs
and unexpected movements in private demand during regular Treasury auctions, this
empirical strategy provides clean identification of demand shifts in order to map out
the impact of these shocks.

The results confirm the theoretical predictions of Chapter 1. QE programs can
be effective in influencing interest rates for debt at specific maturities when financial
markets are disrupted. On the other hand, QE programs are less likely to be effective
at this task in normal times when risk-bearing capacity of arbitrageurs is greater.
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Quantitatively, the results are consistent with the view that QE worked through a
preferred habit channel, with a small net effect of other channels.

Chapter 3 changes gears and explores theoretically and empirically how house-
hold beliefs and actions interact with political polarization. The chapter develops a
model where heterogeneous agents have imperfect information about the state of the
economy, and must choose how to acquire costly information in order to inform their
decision-making. This leads to a “paradox of information” whereby declining informa-
tion costs can actually increase ex-post disagreement about the economy; moreover,
disagreement persists even with arbitrarily small information costs.

This “paradox of information” can help rationalize the secular increase in political
polarization and the simultaneous increase in the ease of acquiring economic informa-
tion. A naive model would suggest that increased access to information should reduce
disagreement about economic fundamentals. The model shows that households are
able to learn about the economy more precisely as information costs fall. However,
they process information in the manner which is most advantageous for their own
idiosyncratic preferences. Since households are not identical, more information can
actually exacerbate ex-post disagreement about the economy.

Empirically, political polarization affects both household beliefs and actions. Sur-
vey data on U.S. consumer beliefs shows that households generally have persistent
and stable economic beliefs and forecasts. However, there are a few striking excep-
tions following elections where the White House changes party. During these periods,
households that were optimistic about economic conditions become more likely to
become pessimistic (and vice versa). This effect has been increasing since the 1980s,
with the largest impact coming after the 2016 election.

Theoretically, changes in expectations should lead to changes in shifts in con-
sumption and savings patterns. But empirically, the evidence demonstrating this
relationship is not as clear; this is particularly true when it comes to politically-
motivated changes in economic beliefs. However, the 2016 presidential election in the
U.S. shows that these shifts in economic beliefs translate into differential consumption
decisions. Disaggregated geographical spending data demonstrates that polarization
leads to differential changes in consumer spending: regions with a large Republican
voteshare exhibited substantially higher consumption in the wake of the 2016 election.
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Chapter 1

Monetary Policy and the Limits to
Arbitrage: Insights from a New
Keynesian Preferred Habitat Model

1.1 Introduction
Central banks responded aggressively to worsening financial conditions and growing
recessionary pressure during the global financial crisis of 2007-8. After steep cuts in
policy rates, central banks found themselves constrained by the zero lower bound,
and the crisis was followed by a deep recession. Not content to sit on their hands,
policymakers undertook various unconventional policy actions such as forward guid-
ance and large scale asset purchases, the most salient of which was the quantitative
easing programs carried out by the Federal Reserve.

What was the purpose of these unconventional policies? With policy rates con-
strained, the immediate goal was to push down long-term interest rates. But more
fundamentally, policymakers believed these actions would stimulate the economy by
boosting output and stabilizing inflation. As economic conditions have returned to
normal, pivotal questions for macroeconomics remain. The emerging view (though
not quite a consensus) in the empirical literature surrounding unconventional mon-
etary policies is that large scale asset purchases (LSAPs) were effective at reducing
long-term rates. On the other hand, the economy was not as sensitive to forward
guidance as implied by some workhorse models. Why was this? And what were the
feedback mechanisms of unconventional policy actions to the broader economy?

The purpose of this paper is to study these monetary tools within a tractable, uni-
fied framework. To this end, this paper embeds a model of the term structure featur-
ing market segmentation and limits to arbitrage within a New Keynesian framework.
There are two key departures from a benchmark model. First, borrowing depends not
only on the policy rate but also on the entire term structure of interest rates. Second,
the term structure is determined in financial markets whose participants face limited
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risk-bearing capacity and are susceptible to demand shocks, as in Vayanos and Vila
(2009). I use this model as a laboratory to study conventional and unconventional
monetary policy. Crucially, the analysis considers policy both during normal times
and over increasing degrees of financial crisis, and studies how policy actions interact
with disruptions in financial markets.

The empirical literature has highlighted the importance of financial frictions, and
in particular market segmentation, for understanding unconventional policy (for ex-
ample, D’Amico and King (2013), Hamilton and Wu (2012a), Gorodnichenko and Ray
(2017)). Assuming that all borrowing takes place frictionlessly at the short (policy)
rate is a useful simplification in many settings, but is too strong of an assumption
for the purposes of this paper. Adding segmented bond markets to a macroeconomic
model allows for more realistic and complicated dynamics in the determination of
the term structure of interest rates. This enables the model to accomplish two goals:
first, to match the relevant empirical findings regarding the term structure’s response
to demand shifts; and second, to study how these term structure changes interact
with aggregate outcomes in general equilibrium.

The implications of the model are important for understanding the efficacy of
monetary policy. When financial markets are healthy, so that marginal investors in
financial markets have high risk-bearing capacity, the “expectation hypothesis” holds.
That is, long-term rates are (roughly) the average of expected short rates. As a result,
both conventional monetary policy and forward guidance are effective at stabilizing
the economy. In this situation, household borrowing responds strongly to shifts in
the path of the policy rate, leading to movements in output and inflation.

However, the link between expected short rates and the term structure is weakened
when financial distress is high. As a result, long-term rates under-react to changes
in the policy rate. Therefore, the model predicts that during a financial crisis output
and inflation are less responsive to monetary shocks than usual.

Similar logic applies to LSAPs, but the implications are precisely the opposite.
Purchases of long-term bonds, as in the various rounds of quantitative easing (QE),
will have little to no effect on long-term rates when financial markets are healthy.
When the central bank purchases a large amount of debt securities on the secondary
market, the purchases change the portfolio allocation of the marginal investors in
the debt market. Effectively, QE purchases allow financial investors to offload a
source of risk from their portfolios. If financial markets are healthy, these investors
are not very concerned with this source of risk to begin with, and so they do not
require much excess returns to hold these securities. In this case, policies like QE
will have little effect. But as financial markets become unable to bear risk, these
purchases may matter a great deal. The shifts in the bond holdings alter the overall
riskiness of these portfolios. By changing the riskiness of marginal investors’ portfolio
allocations, QE leads to changes in equilibrium prices of bonds, which in turn feed
back into the household borrowing decision. This general equilibrium channel is akin
to the familiar household Euler equation; under the right conditions, QE can boost
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output and stabilize the economy.
Benchmark models are not amenable to studying unconventional policies. Be-

cause of the extreme forward-looking behavior of agents and the lack of any financial
frictions in such models, forward guidance policies are highly effective to the point of
implausibility. Conversely, LSAP policies are completely ineffective in conventional
models. The presence of limited arbitrage in my framework breaks this tight link.
But it will still be the case that the term structure is rendered arbitrage-free, so that
there are no riskless trades left on the table. Any deviations from the expectations
hypothesis are due to the risky portfolio allocations chosen by financial market ar-
bitrageurs (the marginal investors in the model). Hence, the channel through which
unconventional policies like QE can have aggregate effects is by changing the market
prices of risk.

As always, one fundamental source of risk is the movement in the short (policy)
rate that is set by the central bank. All bonds are exposed to this risk, so as long as
arbitrageurs are not perfectly risk-neutral there will be deviations from the expecta-
tions hypothesis. All else equal, arbitrageurs will require excess expected returns in
order to take non-zero positions in long-term debt. This effect weakens the strength
of forward guidance, but opens the door for LSAPs. The central bank is able to
change the portfolio allocations of arbitrageurs, which through changes in the price
of risk lead to changes in interest rates.

The exact impact of LSAP programs depends on how the purchases are structured.
The amounts to be purchased, which maturities are targeted, and the duration of the
program all affect the interaction with the sources of risk in the economy and the
broader feedback mechanisms in the macroeconomy. The model delivers interesting
and important interactions in general equilibrium. Because the policy rate responds
to shifts in output and inflation, the expected path of short rates is a function of future
expected output and inflation. When financial markets exhibit imperfect risk-bearing
capacity, there is not a perfect link between longer-term rates and the expected path
of short rates. Since these long-term rates affect household borrowing and hence in-
fluence output and inflation, the model exhibits rich feedback mechanisms; moreover,
the dynamics of the model depend crucially on the health of financial markets. On
the other hand, conditional on the term structure dynamics, the aggregate dynamics
of the model stay close to benchmark models. The model adds only a handful of
additional endogenous parameters which differentiate it from more familiar “three-
equation” New Keynesian models. Therefore, the model is amenable to closed-form
analysis.

I lay out the main building blocks of my “New Keynesian preferred habitat” frame-
work in Section 1.2. Section 1.3 considers the case where prices are fully rigid. This
is of course extreme and rules out important dynamics. However, many of the results
can still be obtained and this simplifying assumption allows for a clearer focus on the
intuition for the results. The main benefit is that this simplification rules out inter-
esting but tricky determinacy issues (to which I return to later). In the most basic
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setup, the central bank sets the policy rate according to a Taylor-type rule subject to
shocks. This is the only source of uncertainty. I then consider two extensions: first,
I study forward guidance by assuming the central bank announces a path of policy
rates; second, I study QE by allowing the central bank to directly purchase long-term
bonds in the secondary market. The analysis confirms the intuition described above:
conventional monetary policy and forward guidance become less effective as finan-
cial markets become disrupted (in the sense of both moving long-term rates and of
impacting output); while at the same time, LSAP policies become more effective.

Next, Section 1.4 allows for prices to be sticky but not fully fixed. The main results
go through here, but only if a determinacy condition is met. This condition is similar
to the standard Taylor principle in textbook models, but with a key difference: the
determinacy condition depends on the health of financial markets. A novel implication
is that as financial markets become more disrupted, the model moves toward the
region of indeterminacy. To the extent that model indeterminacy is either a proxy or
a cause of excess volatility, this result shows how a purely financial crisis can lead to
macroeconomy instability.

The focus of Sections 1.3 and 1.4 is delivering analytical results, but this comes
at a cost of empirical realism. Section 1.5 extends the model to allow for many
sources of aggregate and financial shocks in order to better match the data. In this
section I develop the tools to solve the model numerically and estimate the model
using U.S. data from before and during the recent financial crisis. The results confirm
the qualitative findings of the more parsimonious models: monetary policy becomes
less effective during financial crises; QE becomes more effective. Quantitatively, the
model predicts that the aggregate output effects of a policy like the first round of QE
were roughly 40% larger than a 50 basis point expansionary monetary shock during a
period of relative financial calm. Further, had the zero lower bound not been binding
during the financial crisis, additional rounds of rate cuts would have been 20% less
effective than rate cuts during normal times.

Section 1.5 also studies more complicated LSAP programs like Operation Twist
(where the Federal Reserve bought long-term debt and sold short-term debt). The
model predicts these policies may be effective, depending on which maturities are
targeted for purchase and the overall structure of risk in financial markets. In partic-
ular, when financial markets are relatively healthy, Operation Twist will have the net
effect of pushing down interest rates across the entire term structure. However, the
estimated model shows that when financial frictions are very high, Operation Twist-
style policies will push down long-term rates but push up short-term rates. To the
extent output is most sensitive to intermediate yields, this can have the net effect of
raising effective borrowing rates of households, leading to contractionary outcomes.

I also show how determinacy can be restored if the central bank follows an endoge-
nous rule for QE purchases. The main result is that, as financial frictions increase, the
standard Taylor rule is less effective at stabilizing the economy. Formally, a Taylor
rule eventually becomes unable to guarantee determinacy (for any parameterization).
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But the same forces that make standard policy ineffective also make a QE rule more
effective, hence this carries some of the weight of the determinacy issues and restores
stability. Finally, Section 1.5 also conducts optimal policy experiments and finds that
the endogenous policy response to inflation should become more aggressive in financial
crises. Section 3.5 discusses additional extensions of the model and concludes.

This paper makes a number of contributions to the literature. One theoretical
contribution is to extend the logic of Vayanos and Vila (2009) to a general equilib-
rium macroeconomic setting. This setup is amenable to analyzing state-dependent
responses to policy changes while maintaining a relatively tractable framework. The
paper adds to the large literature exploring the importance of macroeconomic factors
in explaining the term structure, such as Ang and Piazzesi (2003). Other papers
that tie reduced-form term structure modeling to New Keynesian macroeconomic
dynamics include Hördahl et al. (2006) and Rudebusch and Wu (2008). My model
contributes to this literature and can be viewed as a microfoundation for an affine
term structure in macroeconomic factors.

From a partial equilibrium perspective, preferred habitat models can rational-
ize the interest rate response of QE but are silent on the aggregate effects of QE
on inflation and output. Moreover and crucially, even the term structure response
is conditional on the path of the short rate and independent of all other possible
macroeconomic determinants of the term structure. My model is able to study both
the direct and indirect effects of QE on the term structure and the transmission chan-
nels to the aggregate economy. Beyond that, the model makes additional important
predictions: the frictions that imply QE is effective also imply that monetary policy
conducted through changes in the short rate is less effective, and leads to increased
aggregate instability. The model also highlights the centrality of these financial fric-
tions as opposed to the zero lower bound constraint on conventional policy. The zero
lower bound is neither necessary nor sufficient: QE is effective even away from the
ZLB, but only when financial markets are imperfect; conversely, even at the ZLB, if
financial markets are healthy then QE will have no effect.

From a theoretical perspective, this paper also introduces a relatively tractable
model in which aggregate demand explicitly depends on long-term rates, and demon-
strates how to solve the model with or without the expectations hypothesis. The
model is also one in which aggregate dynamics are approximated linearly while still
demonstrating sensitivity to risk.

I focus on limits to arbitrage and preferred habitat as important mechanisms
for understanding conventional and unconventional monetary policy, based not only
on empirical work looking at QE, but also studies of the determinants of the yield
curve more generally (e.g. D’Amico and King (2013), Hamilton and Wu (2012a),
Gorodnichenko and Ray (2017), Greenwood and Vayanos (2014), Beraja et al. (2015)).
In this way, my paper adds to the literature studying how market segmentation
interacts with unconventional monetary policy (e.g. Alvarez et al. (2002), Gertler
and Karadi (2013), Chen et al. (2012), Carlstrom et al. (2017)). This overcomes
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the irrelevance results derived in Wallace (1981) and contrasts with an alternative
view that treats QE as a signalling tool of the central bank (e.g. Christensen and
Rudebusch (2012), Bauer and Rudebusch (2014), or Bhattarai et al. (2015)).

In addition, I move beyond studying QE and explore the implications of bond
market frictions for monetary policy more broadly defined. Hence, the paper also
falls into a broad class of macroeconomic models focusing on financial frictions (for
a recent paper see Adrian and Duarte (2018); see Brunnermeier et al. (2012) for a
survey). The approach in this paper differs from recent work focusing on borrowing
constraints on the part of households (e.g. Kaplan et al. (2018)). The model also
has a similar flavor as recent work which focuses on breaking the tight link between
the path of future expected policy and current economic responses (e.g. McKay et al.
(2016), Farhi and Werning (2017), Gabaix (2016), Angeletos and Lian (2018)). These
papers make agents less responsive to expected future shocks. My approach has
similar implications, but the degree of under-reaction is governed by the risk-bearing
capacity of financial markets. In other words, the key frictions I focus on are those
which mitigate the transmission of monetary policy through financial markets to the
broader macroeconomy.

1.2 A New Keynesian Preferred Habitat Framework
I work with continuous time New Keynesian models that are largely characterized by
a Phillips curve (relating current inflation πt to current and future output gaps xt), an
IS curve (relating output growth to the real borrowing rate), and a monetary policy
rule that governs how the nominal policy rate rt reacts to macroeconomic variables.
The setup is similar to Werning (2011).

The key difference between my model and a textbook New Keynesian model is
that output depends on some “effective” nominal borrowing rate that depends not
only on short rates, but also on longer rates. Assume that there is a continuum of
zero-coupon nominal bonds with maturities τ ∈ (0, T ], with time t price Pt,τ and yield
given by

Rt,τ = − logPt,τ
τ

.

I assume that the effective nominal rate is

r̃t ≡
∫ T

0

η(τ)Rt,τ dτ (1.1)

where η(τ) is a positive but otherwise arbitrary weighting function. This is a flexible
way to allow for borrowing to depend explicitly on long-term interest rates. Assum-
ing that all borrowing takes place at the short rate is a useful simplification but is
too strong an assumption for the purposes of studying unconventional policies like
forward guidance and QE. My specification aims to capture aspects of investment
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and savings decisions that are typically abstracted away in simple models. Although
I do not explicitly model durable consumption or housing, in reality these are drivers
of household borrowing that depend a great deal on long-term interest rates. Capital
investment is also outside the model, but firm investment is similarly sensitive to
long-term interest rates.1

Formally, these weights may arise for lifecycle borrowing reasons, or due to house-
hold’s limited access to debt markets. Appendix A.3 presents microfoundations based
on the latter setup. I relegate the derivations to the appendix due to the similarity
with the derivation of a benchmark New Keynesian model and start the exposi-
tion with the familiar linearized aggregate equations governing the dynamics of the
macroeconomy. The IS curve is modified such that the output gap evolves according
to

dxt = ς−1 (r̃t − πt − r̄) dt (1.2)

where ς−1 is the intertemporal elasticity of substitution and r̄ is the “natural” real
borrowing rate (assumed constant in this model). As in a benchmark model, changes
in the output gap are increasing in the nominal borrowing rate and decreasing in
inflation. The only difference is that now the growth rate of output depends explicitly
on the entire term structure of interest rates.

The Phillips curve, relating current inflation to current and future output, is
unchanged relative to a standard New Keynesian model. The dynamics of inflation
are governed by

dπt = (ρπt − δxt) dt (1.3)

where ρ is the discount rate and δ governs the degree of price stickiness. δ → ∞
implies fully flexible prices, while δ → 0 implies fully rigid prices.

Finally, the central bank controls the instantaneous short rate rt (the policy rate).
At first, I will assume that this takes the form of a Taylor-type rule where the policy
rate reacts to current levels of output and inflation subject to shocks. When studying
forward guidance, I will also consider models in which the central bank announces a
path of the policy rate.

For modeling the macroeconomic data generating process, I attempt to stay as
close as possible to a benchmark “three equation” New Keynesian model for two
reasons. First, even in partial equilibrium solving the term structure model becomes
quite complicated. Embedding this setup in a dynamic general equilibrium model
adds to the complexity. Keeping the model tractable and deriving analytical results
is only possible if the underlying dynamics of the macroeconomy are kept simple.
Second, because the mechanisms of simple New Keynesian models are still present in

1See Kaplan and Violante (2014) for a discussion of household portfolio allocations across short-
and long-term securities in the United States. Note that I focus purely on maturity, rather than
differences between liquid and illiquid savings vehicles.
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more sophisticated models, it’s reasonable to expect that the findings of my model
will hold in more detailed extensions.

Before diving into the details, some intuitive results are immediate. The central
bank sets only the short rate, while the rest of the term structure of interest rates
is an equilibrium object. Since the effective borrowing rate depends on the entire
yield curve, specifying only a rule for the policy rate does not necessarily close the
model. However, if the expectations hypothesis holds, then long-term yields are fully
determined by the expected path of short rates. In this case, without fully solving the
model it’s possible to see how unconventional policies will work. Forward guidance is
powerful: by announcing a path of short rates, long-term rates will react immediately,
and therefore the effective borrowing rate will also move sharply. This implies that
consumption (and output) will also respond sharply. On the other hand, QE is
ineffective: purchases of long-term bonds have no effect on the path of short rates,
and hence do not change long-term yields.

But if the expectations hypothesis does not hold, a monetary policy rule no longer
closes the model and it becomes necessary to specify how the entire term structure
of interest rates are determined. For this purpose, I embed a “preferred habitat”
model of the term structure, as in Vayanos and Vila (2009). Interest rates are de-
termined by the interaction of two types of investors: clientele investors, who have
idiosyncratic demand for bonds of specific maturities, and arbitrageurs with limited
risk-bearing capacity, who integrate bond markets. The preferred habitat view of the
term structure has long been of relevance to practitioners, but less so in academic
models. Partly this is due to the fact that naïve forms of preferred habitat models
conflict with no-arbitrage conditions: if the term structure were determined only by
clientele investors with extreme preferences for bonds of specific maturities, bonds
that are close to one another in maturity space could have large price differences. By
allowing for arbitrageurs to integrate bonds of different maturities, the model avoids
the unrealistic outcome of extreme segmentation and ensures that no-arbitrage con-
ditions are satisfied. However, when arbitrageurs do not have perfect risk-bearing
capacity, deviations from the expectations hypothesis arise.

I follow Vayanos and Vila (2009) in setting up the preferences for arbitrageurs
and idiosyncratic preferred habitat investors. Arbitrageurs choose how much of each
bond to hold (denoted by bt,τ ) in order to maximize an instantaneous mean-variance
trade-off of the change in wealth, subject to their budget constraint:

max
bt,τ

Et dWt −
a

2
Vart dWt

s.t. dWt =

(
Wt −

∫ T

0

bt,τ dτ

)
rt dt+

∫ T

0

bt,τ
dPt,τ
Pt,τ

dτ .

By holding bt,τ of a τ bond, arbitrageurs receives the instantaneous return dPt,τ
Pt,τ

. The
remainder of their wealth not invested in long-term bonds is held at the risk-free rate
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rt (the short rate). The risk-aversion parameter a ≥ 0 is fixed, but should be thought
of as a proxy for limited risk-bearing capacity of financial markets.

The other side of the bond market is the demand from idiosyncratic clientele
preferred habitat investors, which is given by

b̃t,τ = α(τ)τ(Rt,τ − βt,τ ). (1.4)

The function α(τ) > 0 is the semi-elasticity of preferred habitat demand (note τRt,τ =
− logPt,τ ), and hence governs how sensitive these investors are to returns for τ bonds.
This function is otherwise unrestricted; but the sign restriction implies that demand
from preferred habitat investors is downward-sloping (increasing in yields). βt,τ is a
demand shifter, and can be thought of as a target yield. When rates are above the
target, a τ investor increases their demand for τ bonds; and vice versa for when rates
fall below the target. Note that, holding Rt,τ fixed, an increase in βt,τ implies that τ
investors reduce their holdings of τ bonds. I will consider different forms of this shifter
(both deterministic and stochastic) in later sections. In equilibrium, bond prices
must adjust so that arbitrageurs absorb the demand from preferred habitat investors
(bt,τ = −b̃t,τ ) while satisfying their mean-variance portfolio allocation problem.

This bond market setup is stylized: arbitrageurs are infinitesimally lived, and a
τ -bond preferred habitat investor cares only about a specific slice of maturity space.
Nevertheless, the model captures important facets of segmented markets, and how
limited arbitrage smooths out idiosyncratic demand shocks. The preferred habitat
setup is a natural way to study the affects of LSAP programs. Moreover, private
investors such as pension funds and insurance companies often have demand for
long-term bonds that arise from the need to match their long-term liabilities; these
important sources of demand are not captured by intertemporal consumption substi-
tution decisions that drive the term structure in more standard models. But these
investors are not the only participants; otherwise debt markets would exhibit extreme
segmentation. Arbitrageurs integrate debt markets and eliminate risk-free arbitrage
opportunities, but are risk-averse and face limits to their trading activities. How
conventional and unconventional policy affects the entire term structure will depend
heavily on the limits to arbitrageurs’ risk-bearing capacity.

In general, the term structure will be determined by complicated interactions
between these two classes of investors and the general equilibrium dynamics of the
macroeconomy. However, two limiting cases can be analyzed immediately. First, if
arbitrageurs are risk-neutral (a = 0, so they only care about expected returns), then
equilibrium can only be achieved if Et

[
dPt,τ
Pt,τ

]
= rt. And if expected instantaneous

returns of all bonds are equalized at the short rate, then risk-neutral arbitrageurs are
indifferent between any bond allocation. In this case, they will absorb any demand
shifts from preferred habitat investors without any equilibrium price changes. In
other words, idiosyncratic demand shifts will not affect the term structure of interest
rates.
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In the other extreme, if arbitrageurs abandon the bond market (allocating the
entirety of their wealth to the risk-free short rate), then equilibrium is only satisfied
(0 = bt,τ = −b̃t,τ ) if yields satisfy Rt,τ = βt,τ . This would imply that bonds of very
close maturity could have very different yields (and would potentially evolve unrelated
to the short rate). Again, note that in this extreme case an increase in the demand
shifter βt,τ would push up the τ -bond yield. But this extreme segmentation does
not occur in equilibrium because arbitrageurs do take non-zero positions in long-term
bonds. The impact of changes in preferred habitat demand (if any) will depend on
how arbitrageurs adjust their portfolio allocations. In turn, this will depend on the
equilibrium dynamics of the short rate and other macroeconomics variables.

Intuitively, what does general equilibrium look like in this model? From the per-
spective of households, the key factor is how sensitive their effective borrowing rate
is to the short rate. The model reduces to a benchmark New Keynesian model when
these rates move one-for-one, but in general r̃t 6= rt. Suppose that the effective rate
is highly responsive to the policy rate. Then household borrowing is also highly sen-
sitive to the policy rate, and therefore the growth rate of consumption will also react
strongly to the policy rate. On the other hand, when the effective rate is insensitive
to the policy rate, the pass-through of changes in the policy rate to households is
weakened. Through the borrowing decisions of the household, the growth rate of
consumption is less responsive to the policy rate. That is,

∂ dxt
∂rt

∝ ∂r̃t
∂rt

and moreover, the sensitivity of the change in the output gap to the policy rate
will determine the equilibrium reversion rate of monetary shocks. The higher the
sensitivity, the quicker output gaps revert to steady state. Inflation will follow a
similar path since, due to standard Phillips curve dynamics, inflation is the present
discounted value of future output gaps. Thus, through the central bank’s endogenous
reactions to either output or inflation, the policy rate also reverts back to steady state
quickly.2

However, the sensitivity of the effective borrowing rate to the policy rate is an
equilibrium object, which also depends on financial markets. Bond prices will adjust
in order to achieve equilibrium in bond markets, such that arbitrageurs’ portfolio
allocation satisfies their mean-variance tradeoff while also clearing the market given
the demand from preferred habitat investors. In this model, arbitrage is imperfect
and the term structure will not be characterized by the expectations hypothesis ex-
cept under special circumstances. Therefore, it is the risk-adjusted dynamics of the

2The sensitivity of the change in the output gap to the policy rate plays a similar role as the
intertemporal elasticity of substitution (ς−1). In this case, the responsiveness of household borrowing
to the policy rate is governed by preferences, namely the willingness to tolerate large changes in
consumption across short periods of time. But the outcome is the same: when changes in the
output gap are sensitive to the policy rate, the equilibrium rate at which shocks dissipate is high.
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macroeconomy which determine bond prices in financial markets, rather than the ac-
tual dynamics of the short rate only. For example, in response to a monetary shock,
the response of the yield of a τ bond will be roughly equal to the risk-adjusted average
of the short rate over the life of the bond. Thus, if the short rate has a very high risk-
adjusted mean reversion rate, long-term bond yields will not respond much to shocks
to the short rate. This force implies that increases in the risk-adjusted reversion rate
of monetary shocks lead to decreases in the sensitivity of all bond yields to the policy
rate. In particular, the effective borrowing rate also becomes less responsive.

General equilibrium is obtained when these two forces balance. Thus, character-
izing equilibrium involves two key steps: first, understanding the differences between
the actual and risk-adjusted dynamics of the economy; and second, linking house-
hold savings and consumption choices with the bond prices determined in imperfect
financial markets.

1.3 A Rigid Price Model
This section simplifies the model by assuming prices are fully fixed. This is an ob-
viously extreme assumption, but many of the key results can still be obtained in
this case. The upside is that the solution is considerably simpler, and I can sidestep
determinacy issues that arise when prices can adjust. I return to these questions in
Section 1.4.

As discussed in Section 1.2, the difficulty in solving the model relative to standard
New Keynesian models is the mismatch between the effective borrowing rate and
the policy rate. The approach I take to solving the model is as follows. First, start
with the conjecture that bond prices are affine functions of the macroeconomic state
variables. This allows the macroeconomic dynamics to be transformed into a system
of linear differential equations. Next, conditional on the affine coefficients, solving
for the rational expectations equilibrium is straightforward. Then, I turn to solving
for these affine coefficients by solving the arbitrageur’s portfolio problem. Finally,
putting both sides of the model together, I characterize the unique general equilibrium
solution.

After solving the model, I explore the implications for monetary policy. First I
focus on conventional policy, where the central bank sets the policy rate through a
Taylor rule. Then I study forward guidance by assuming the central bank instead
announces a long-lived interest rate peg. Finally, I study LSAPs by allowing the
central bank to purchase longer-term bonds on the secondary market. Throughout,
I focus on how these policies affect the macroeconomic dynamics of the model, and
in particular how these effects depend on the risk-bearing capacity of investors in
financial markets.
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1.3.1 Macroeconomic Dynamics

Prices are fully fixed when the parameter δ → 0. In this case, eq. (1.2) is simply

dxt = ς−1 (r̃t − r̄) dt . (1.5)

Again, consumption (and output) growth is increasing in the borrowing rate, but now
borrowing depends on some weighted average of the term structure of interest rates,
given by eq. (1.1).

I assume the central bank follows a Taylor rule with persistence:

drt = −κr(rt − φxxt − r∗) dt+ σr dBr,t , (1.6)

where Br,t is a standard Brownian motion and σr governs the size of the shocks. For
now, I assume that changes in the short rate are the only source of uncertainty. φx
govern the feedback rule for changes in output to changes in the policy rate. κr is
a mean-reversion parameter; if κr → ∞, eq. (1.6) simplifies to a (non-stochastic)
Taylor rule with no gradual adjustments in the policy rate.3r∗ is the central bank’s
target policy rate, which it sets in order to deliver a steady state with zero output
gap. In a benchmark model where the borrowing rate is the same as the policy rate,
this is accomplished by setting r∗ = r̄, but in this setup the optimal target is more
complicated. I return to this in later sections.

Unlike a standard New Keynesian model, the interest rate rule does not close
the model; it is necessary to specify how the entire term structure of interest rates
is determined in equilibrium. I conjecture that the model features an affine term
structure (which I will confirm in the next section):

− logPt,τ = Ar(τ)rt + C(τ).

Bond prices are sensitive to changes in the short rate; the sensitivity of a τ -maturity
bond is governed by the coefficient function Ar(τ). Note this also implies the effective
borrowing rate can be written as

r̃t =

[∫ T

0

η(τ)

τ
Ar(τ) dτ

]
rt +

[∫ T

0

η(τ)

τ
C(τ) dτ

]
≡ Ârrt + Ĉ

and hence the IS curve given by eq. (1.5) becomes

dxt = ς−1
(
Ârrt + Ĉ − r̄

)
dt . (1.7)

3The inertia term is present because empirically, central banks rarely change the policy rate by
large jumps. Rather than assume that the policy rule is subject to long-lasting shocks, I instead as-
sume that the policymaker prefers to smooth out changes over time (see Coibion and Gorodnichenko
(2012) for an overview).
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In terms of the macroeconomic dynamics, the coefficients Âr and Ĉ are the only
difference between my model and a standard New Keynesian model; setting Âr = 1
and Ĉ = 0 recovers the standard dynamics. From the perspective of understanding
aggregate dynamics, it is seen from eq. (1.7) that Âr is the key determinant of the
responsiveness of consumption growth to the policy rate. Additionally, the coefficient
functions Ar(τ) and C(τ) are equilibrium objects which will depend on the interplay
of arbitrageurs and preferred habitat investors in imperfect financial markets. In
particular, Ar(τ) governs the sensitivity of the price of a τ -bond to short-rate. Since
the short rate is the only risk factor in the model, Âr is the weighted average of risk
sensitivity of the entire term structure. In general equilibrium, Âr will have to satisfy
both of these roles.

The affine functional form implies that the macroeconomic dynamics are governed
by a linear stochastic differential equation. I solve for the rational expectations equi-
librium following Buiter (1984), the continuous time analogue of Blanchard and Kahn
(1980). In general, let Yt = [yt xt]

T where xt are the “jump” variables and yt are
the state variables. Writing the model in general matrix form (in terms of deviations
from steady state) gives

dYt = −Υ
(
Yt −YSS

)
dt+ S dBt . (1.8)

Under certain determinacy conditions, the rational expectations dynamics are given
by

dyt = −Γ
(
yt − ySS

)
dt+ S dBt (1.9)

xt − xSS = Ω
(
yt − ySS

)
(1.10)

where Γ and Ω are given by eqs. (C10) and (C11).4
In the current rigid price model, the output gap xt is the only jump variable, while

the interest rate rule implies that rt is the only state variable. The dynamics matrix
Υ is given by

Υ =

[
κr −κrφx

−ς−1Âr 0

]
.

Then the rational expectations equilibrium is determinate if and only if Υ has one
stable eigenvalue λ1; the general equilibrium dynamics simplify to

drt = −λ1(rt − rSS) dt+ σr dBr,t

xt − xSS = ωx(rt − rSS).

The equilibrium mean-reversion properties of the short rate are governed by λ1, while
the equilibrium response of the output gap to changes in the short rate are charac-
terized by ωx. The following Lemma characterizes the conditions under which the

4With an abuse of notation, I use the same symbols for the shocks S and Bt in the general
dynamics eq. (1.8) and the state space representation eq. (1.9).
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model is determinate under rational expectations. Additionally, it characterizes the
relationship between Âr, λ1, and ωx. All proofs are in Appendix C.1.

Lemma 1.1 (Characterizing Âr, rigid prices). Consider the rigid price model.

1. Υ has exactly one eigenvalue with positive real part if and only if Âr > 0. Further,
this stable root is real: λ1 > 0.

2. Âr = h(λ1) where h : R+ → R:

h(λ) ≡ λ(λ− κr)
ς−1κrφx

. (1.11)

3. The output gap dynamics are given by

ωx = −ς
−1Âr
λ1

=
κr − λ1

κrφx
.

The first result in Lemma 1.1 says that the model is determinate when consump-
tion growth moves in the same direction as changes in the policy rate. This is a natural
conjecture, which I will confirm holds in general equilibrium. Since prices are fully
fixed, changes in the policy rate coincide with changes in the real short rate. There-
fore, through standard intertemporal decisions of the household, one would expect
that a higher real borrowing rate would lead to higher savings and thus increasing
consumption into the future. However, this result is not immediate in my model
because of the disconnect between the policy rate and the effective borrowing rate
(even when nominal and real rates coincide). To show that this result holds requires
explicitly determining the term structure of interest rates.

The second and third results characterize Âr and ωx in terms of the macroeconomic
parameters and the equilibrium eigenvalues of the model. Note that when the model
is determinate, ωx < 0; this says that a positive (contractionary) shock to the policy
rate leads to an immediate decline in the output gap.

As discussed previously, Âr is pulling double duty: it governs both the sensitivity
of the term structure to risk, as well as the sensitivity of changes in the output gap
to the policy rate. Lemma 1.1 characterizes Âr in terms of the latter interpretation.
Thus, the function h(·) should be thought of as a mapping between ∂dxt

∂rt
(how sensitive

the output gap is to the policy rate) and λ1 (the equilibrium mean reversion rate of
monetary shocks). This result, together with the results in the next section, are used
to solve for Âr in general equilibrium.

Focusing on the determinate case, a high degree of sensitivity of consumption
growth to the policy rate is associated with high mean reversion of the policy rate.
Intuitively, in this case borrowing decisions are highly responsive to the policy rate.
An increase in the level of the policy rate implies that households increase savings
significantly; this leads to an immediate drop in the level of consumption (hence
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output) and then a rapid increase in consumption growth leading back to steady
state. Through the endogenous response of the monetary rule, this implies that the
policy rate also quickly returns to steady state. That is, a high Âr is associated with
high λ1 and large (negative) ωx.

Conversely, as the sensitivity of output growth falls (Âr decreases towards zero), so
does the sensitivity of the level of the output gap (ωx approaches zero). Additionally,
the equilibrium reversion rate of the short rate λ1 approaches κr, the inertial term
of the Taylor rule. Note that h(λ1) is negative when 0 < λ1 < κr. That is, model
indeterminacy implies that in equilibrium monetary shocks mean revert slower than
the inertial term of the Taylor rule κr.

The general equilibrium value of the sensitivity of output growth and the mean
reversion rate of monetary shocks are of course endogenous. However, studying how
the dynamics of the model change as these parameters vary exogenously is illuminat-
ing. Because the model only features two macroeconomic variables, phase diagrams
can be used to study the aggregate dynamics.

Figure 1.1 plots phase diagrams of the rigid price models for different values Âr,
the sensitivity of changes in the output gap to the policy rate. This leads to variation
in the equilibrium mean reversion rate of monetary shocks λ1. First, I consider a
benchmark New Keynesian model where the Euler equation depends only on the
short rate. Equivalently, in my model this corresponds to Âr = 1; with the given
parameterization I consider this implies λ1 ≈ 0.9. This model is shown in Panel A.
Note that the stable arm (the solid blue line) slopes downwards; after a contractionary
monetary shock (increase in the short rate), the output gap jumps down and then
the economy moves along this arm back to steady state. The dashed and dot-dashed
lines show example (unstable) trajectories for the initial conditions r = −1, x = 0
and r = 0, x = 1.

What happens if Âr is higher than this benchmark case? This would mean that
in equilibrium, monetary shocks revert faster towards steady state. In Panel B, I set
Âr = 2.5, which implies from Lemma 1.1 that λ = 1.1. Now the stable arm (the
solid blue line) is much steeper (more negatively sloped) than the benchmark case,
meaning that monetary shocks move output more than the benchmark prediction.
The opposite is true when equilibrium monetary shocks mean revert slower: for Âr =
0.2 so that λ1 = 0.8 in Panel C, the stable arm is flattened.

Finally, at this point I cannot rule out the theoretical possibility that the model
is in the region of indeterminacy. In Panel D I set Âr = −0.3; that is, output growth
is decreasing as the policy rate increases. This implies that monetary shocks revert
towards steady state slowly (λ1 = 0.6). Now the “stable” arm is upward-sloping (which
would imply a contractionary monetary shock increases output), but note that this
is no longer the unique stable path. Any initial level of the short rate and the output
gap will return to steady state. The trajectories from initial conditions r = −1, x = 0
and r = 0, x = 1 shown by the dotted and dash-dotted lines are seen to return to
steady state, whereas in the previous examples these were unstable paths. This is
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Figure 1.1: Phase Diagrams, Varying Output Sensitivity to Policy
Rate

Notes: phase diagrams of the rigid price model (in terms of deviations from steady state).
The solid blue line is the stable arm, while dashed black lines correspond to the trajectory
of output and the policy rate given two different initial values. Each panel corresponds to
different values of Âr and λ1. Higher sensitivity of output to the policy rate (↑ Âr) implies
a faster mean equilibrium reversion of monetary shocks (↑ λ1, the stable eigenvalue). The
other parameters are set to κr = 0.7, φx = 0.25, and ς−1 = 1.
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because, when Âr is negative, household borrowing moves in the opposite direction
as the policy rate, leading to model indeterminacy.

Which of these cases will occur in general equilibrium? When I bring in the term
structure side of the model, it will turn out that the relevant parameter space is one
in which monetary shocks mean revert more slowly than a benchmark model (where
the effective rate and policy rate coincide), but will still guarantee determinacy. In
order to derive these results, I now turn to explicitly modeling the term structure.

1.3.2 Term Structure Determination

To study limited arbitrage, I embed a “preferred habitat” model of the term structure
based on Vayanos and Vila (2009). Interest rates are determined by the interaction of
two types of investors: clientele investors with idiosyncratic demand for bonds, and
risk-averse arbitrageurs.

Given the affine functional form conjecture, I derive the optimality conditions of
the arbitrageurs. Ito’s lemma allows for the calculation of the instantaneous return
of a τ bond, and hence the mean and variance of the change of arbitrageur’s wealth.
Arbitrageurs’ expectations are rational and hence in equilibrium they expect the state
variables to evolve according to eq. (1.9). For the case of a scalar state, the dynamics
are given by

drt = −λ(rt − rSS) dt+ σr dBr,t . (1.12)

In equilibrium it will be the case that λ = λ1, the (only) positive eigenvalue of
the matrix Υ described in the previous section. However, since arbitrageurs take as
given the dynamics of the short rate, it is useful to study how the term structure is
determined for arbitrary dynamics of the short rate, governed by any λ > 0.

Lemma 1.2 (Arbitrageur optimality conditions, scalar state). Suppose the short rate
is characterized by eq. (1.12) for some λ > 0. Then arbitrageurs choose a portfolio
allocation such that

µt,τ − rt = Ar(τ)ζt (1.13)

ζt ≡ aσ2
r

∫ T

0

bt,τAr(τ) dτ (1.14)

where µt,τ is the expected instantaneous return of a τ -maturity bond, given by eq.
(A1).

In this simple rigid price model, conditional on the dynamics of the policy rate
the optimality conditions are the same as in Vayanos and Vila (2009). What this says
is that a τ bond’s expected excess return, µt,τ − rt, is proportional to its sensitivity
to the short rate, as measured by Ar(τ). This measure of proportionality is the same
across all bonds, and follows solely from the absence of (risk-free) arbitrage.
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No-arbitrage implies that the amount of excess return per unit of risk is the
same for all bonds; this is ζt, the market price for risk. The expected excess return
compensates arbitrageurs for taking on additional risk, which in this case comes
from the short rate and so is fully characterized by the coefficient function Ar(τ).
This compensation is higher when risk aversion is high (a), volatility is high (σ2

r);
or their portfolio is already sensitive to risk (the integral term in eq. (1.14)). The
optimality conditions immediately imply that when arbitrageurs are risk neutral (a =
0), expected excess returns of all bonds are zero, and arbitrageurs are indifferent
between holding any amount of bonds.

Arbitrageurs must hold the opposite of preferred habitat investors, whose demand
is given by eq. (1.4). In this section, I assume that the demand shifter βt,τ is inde-
pendent of time and deterministic: βt,τ ≡ β̄(τ). I will relax this assumption in later
sections.

In equilibrium, prices must adjust such that arbitrageurs absorb the demand from
preferred habitat investors and satisfy their mean-variance tradeoff. When arbi-
trageurs are risk-neutral and only care about expected returns, they will want to
buy (sell) any bond with expected return greater than (less than) the risk-free rate.
In this case, in equilibrium all bonds will have expected excess returns of zero and
arbitrageurs will accomodate any shifts in demand from preferred habitat investors,
recovering the results of a standard model of the term structure. But when arbi-
trageurs are risk averse, arbitrageurs will require non-zero excess expected returns to
accomodate preferred habitat investors’ demand. In this case, prices will depend on
the arbitrageurs’ portfolio allocations.

Thus, when a > 0, their portofolio is endogenous. The demand for bonds from
preferred habitat investors along with the condition bt,τ = −b̃t,τ leads to equilibrium
conditions that characterize the coefficient function Ar(τ) and C(τ) in terms of the
dynamics of the short rate.

Lemma 1.3 (Affine coefficients, scalar state term structure). Suppose the short rate
is characterized by eq. (1.12) for some λ > 0. Then Ar(τ) is given by

Ar(τ) = τf (ν(λ)τ) (1.15)

where f(x) = 1−e−x
x

and

ν(λ) = λ+ aσ2
r

∫ T

0

α(τ)τ 2f (ν(λ)τ)2 dτ . (1.16)

C(τ) is given by eq. (A2). Then Âr = g(λ) where g : R+ → R

g(λ) =

∫ T

0

η(τ)f (ν(λ)τ) dτ . (1.17)

The exponential function f(x) = 1−e−x
x

is a common functional form which occurs
as solutions to differential equations such as these. The results from Lemma 1.3 help
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to characterize the responsiveness of the term structure to the policy rate. It follows
that Ar(τ) > 0, and moreover the affine functional form of bond prices implies the
following:

∂ logPt,τ
∂rt

= −Ar(τ) =
e−ντ − 1

ν
∂Rt,τ

∂rt
=

1

τ
Ar(τ) =

1− e−ντ

ντ

µt,τ − rt = Ar(τ)ζt =
1− e−ντ

ν
ζt.

Therefore, taking derivatives with respect to maturity τ gives:∣∣∣∣∂2 logPt,τ
∂rt∂τ

∣∣∣∣ > 0,
∂2Rt,τ

∂rt∂τ
< 0,

∣∣∣∣∂µt,τ − rt∂τ

∣∣∣∣ > 0.

That is, as maturity increases, bond (log) prices become more sensitive while bond
yields become less sensitive to the short rate. And as maturity increases, excess
expected returns grow in magnitude (the sign depends on ζt, the market price of
short-rate risk).

Recall that from the perspective of aggregate dynamics, Âr is the key determinant
of the sensitivity of output growth to the policy rate (determined by the function
h(·) derived in Lemma 1.1). Additionally, from the perspective of term structure
determination, Âr also governs the weighted average sensitivity of bond yields to
short-rate risk. Lemma 1.3 shows that this is determined by the function g(·).

The key to characterizing the behavior of g(·) is the parameter ν. Intuitively,
what is ν, and how does it compare to λ? λ governs the actual dynamics of the short
rate, while ν governs the dynamics of the short rate under the risk-neutral measure.
When risk aversion is non-zero, these parameters do not coincide. Eq. (1.16), which
determines the parameter ν, is a fixed point problem and so will not have a simple
solution except in the case when a = 0. But the proof of Lemma 1.3 shows that ν ≥ λ
and is increasing in λ, with equality if and only if a = 0. Since ν is increasing in λ,
it follows that g′(λ) < 0. That is, bond yields become less responsive to policy rate
movements when monetary shocks revert faster. Thus, the effective borrowing rate
also becomes less sensitive.

The fact that ν ≥ λ says that the risk-adjusted average of the short rate over the
life of a long-term bond is lower than the expected average short rate over the same
period. Thus

1

τ
Et

[∫ τ

0

∂rt+u
∂rt

du

]
= f(λτ) ≥ f(ντ) =

∂Rt,τ

∂rt
.

The expectations hypothesis implies that these two responses should be identical,
which occurs only when arbitrageurs are perfectly risk-neutral. Thus, this result says
that long-term yields under-react to changes in the short rate.
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Putting everything together, Lemma 1.3 shows how the interaction of arbitrageurs
and preferred habitat investors characterizes the term structure. The arbitrageur’s
portfolio problem leads to a disconnect between the actual and risk-adjusted dynamics
of the model. This leads to the under-reaction of longer-term rates (and therefore the
effective borrowing rate) to changes in the policy rate. Further, if monetary shocks
mean revert more quickly, then long-term rates are less responsive to the policy rate.
In turn, this implies that the response of the effective borrowing rate to the policy
rate is muted.

However, these are partial equilibrium results, which characterizes the affine coef-
ficients in terms of the parameters from the term structure side of the model, taking
as given the dynamics of the policy rate. The previous section documented a general
equilibrium effect: increases in the sensitivity of household borrowing to the policy
rate leads to longer-lasting monetary shocks. Formally, the results in these sections
imply that increases in λ1 lead to an increase in h(λ1) but a decrease in g(λ1). In
general equilibrium, it must be that Âr = h(λ1) = g(λ1), so these forces must balance.
The next section characterizes this interaction and solves for the general equilibrium
solution.

1.3.3 General Equilibrium Solution

The results of Lemma 1.1 and 1.3 lead to a solution for Âr, which characterizes
general equilibrium. In this model, household borrowing decisions depend on the
weighted average of longer-term yields. Hence consumption growth also depends on
the weighted average of longer-term yields. Therefore, the sensitivity of output growth
to the policy rate must coincide with the sensitivity of the effective borrowing rate
to the policy rate. When output growth reacts strongly to the policy rate, monetary
shocks mean revert quickly. On the other hand, due to the interaction of arbitrageurs
and preferred habitat investors in imperfect financial markets, short-lived monetary
shocks lead to a low degree of sensitivity of longer-term yields to the policy rate.

Recall h(·) determines the sensitivity of output growth to the policy rate, while
g(·) determines the sensitivity of longer-term yields to the policy rate. Both are a
function of the equilibrium rate of mean reversion of monetary shocks. In equilibrium,
Âr will have to satisfy both of these jobs. Prop. 1.1 characterizes λ1 and Âr.

Proposition 1.1 (General equilibrium, rigid prices). Consider the rigid price model.
There exists a unique positive eigenvalue of Υ λ1 > 0 for which g(λ1) = h(λ1), which
fully characterizes the model equilibrium. Further, this implies 0 < Âr < 1.

Figure 1.2 illustrates the equilibrium obtained in Prop. 1.1. In a benchmark New
Keynesian model, implicitly it is always the case that Âr = 1. This is because
household borrowing takes place entirely at the short rate, so through the lens of
my model the effective borrowing rate and the policy rate coincide. Once household
borrowing depends on longer-term rates, this one-to-one correspondence breaks down.
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Figure 1.2: Intersection of g(λ) and h(λ), rigid prices
Notes: intersection of the functions g(λ) and h(λ), which determine
λ1 and Âr in equilibrium. The black line is h(·); the dashed light
orange and dash-dotted dark teal lines are g(·) for low and high levels
of risk aversion, respectively. The dotted grey line is the equivalent
function g(·) for a benchmark New Keynesian model (fixed at unity).
The parameters are set to κr = 0.4, φx = 0.25, ς−1 = 1, T = 10,
α(τ) = e−0.1τ , σr = 0.1, η(τ) is the pdf of a (truncated) Gamma
distribution, and a ∈ {0, 5}.
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Figure 1.3: Rate Responses to Monetary Shock
Notes: responses of average short rates (solid lines) and spot rates (dotted
lines) in response to a unit policy rate shock. The first panel shows the
response when risk aversion is low (a = 1), while the second panel plots the
responses when risk aversion is high (a = 150).

In particular, since long-term rates respond less than one-to-one with short rates, then
Âr < 1. Figure 1.2 also shows that in equilibrium, monetary shocks last longer than
a benchmark model (lower λ1). Since monetary shocks move long-term rates (and
hence the effective borrowing rate) less than one-for-one, output also moves less.
This means that the endogenous response of the central bank is muted relative to the
benchmark, hence the shock mean reverts slower in equilibrium.

How does the sensitivity of long-term rates depend on the health of financial
markets? Figure 1.2 shows that Âr (the weighted sensitivity of long-term rates to
changes in the short rate) declines as risk aversion increases. In fact, the entire
curve g(λ) shifts down. Recall from the discussion of Lemma 1.3, there is a partial
equilibrium effect that leads to an under-reaction of long-term rates to changes in the
policy rate. Due to financial market imperfections, long-term rates under-react to
monetary shocks relative to the predictions of the expectations hypothesis. Moreover,
this under-reaction becomes more severe as the risk-bearing capacity of arbitrageurs
declines. What are the general equilibrium implications of this under-reaction?

Figure 1.3 plots of the responses the short rate and long-term rates to a mone-
tary shock, and explores the effects of increasing risk aversion graphically. Panel A
corresponds to a low level of risk aversion, while Panel B sets a higher value of risk
aversion. In both panels, the solid line is the average change in the average short
rate over the course of τ periods, while the dotted line is the immediate change in
the yield of a τ bond. Under the expectations hypothesis, the two responses would
be identical. Hence as expected, in Panel A when risk aversion is close to zero, the
responses are very similar. But in Panel B where risk aversion is high, the responses
differ by quite a bit. The immediate response of long-term rates lies well below the
expected path of average short rates (which is the response of long-term rates that
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would occur under the expectations hypothesis).
Interestingly, the response of the term structure under the expectations hypothesis

differs between the two experiments. This is due to the fact that the expectations
hypothesis implies that the response of long-term rates is solely determined by λ1, the
mean reversion of the short rate. But this is an equilibrium object, which depends
on the risk aversion of arbitrageurs. In the parameterizations considered in these two
experiments, in equilibrium λ1 = 0.74 when risk aversion is low vs. λ1 = 0.67 when
risk aversion is high. This can be seen comparing the solid lines in each panel: the
monetary shock lasts longer when risk aversion is high in the second panel compared
to the first.

1.3.4 Conventional Policy

What are the implications for monetary policy, and how do they differ from bench-
mark models? Note that (from Lemma 1.3), the parameters governing the macroe-
conomic dynamics (for example, κr and φx) only enter through the eigenvalue λ1.
Fixing λ, the term structure side of the model is independent of these parameters.
Similarly, from Lemma 1.1, the term structure parameters (for example, a and σ2

r)
only enter through the coeffcient function Ar(τ). Fixing Ar(τ), the aggregate dynam-
ics of the model are independent of these parameters. Hence, for comparative statics,
it is possible to make substantial progress despite the complexity of the model.

Corollary 1.1.1 (Comparative statics, rigid prices). Consider the rigid price model.
In general equilibrium:

1. ∂λ1
∂a

< 0, ∂Âr
∂a

< 0, ∂ωx
∂a

> 0. Moreover, Âr → 0, ωx → 0, and λ1 → κr as a→∞.
Further, if a 6= 0, the same results hold for σr.

2. ∂λ1
∂κr

> 0, ∂Âr
∂κr

< 0, ∂ωx
∂κr

> 0.

3. ∂λ1
∂φx

> 0, ∂Âr
∂φx

< 0, ∂ωx
∂φx

> 0.

4. Consider two different weighting functions ηs(τ) and η`(τ), such that for some T ∗,
ηs(τ) ≥ η`(τ) ⇐⇒ τ ≤ T ∗. Then λs1 > λ`1, Â

s
r > Â`r, ω

s
x < ω`x where superscripts

denote the equilibrium outcomes under the corresponding weighting functions.

Note that when household borrowing depends on long-term interest rates (so
η(τ) > 0 for some τ > 0) it will always be the case that Âr < 1. This is be-
cause the effective borrowing rate does not respond one-to-one with the policy rate.
Partly this is somewhat mechanical, and will be true even when arbitrageurs are risk
neutral. In this case, the response of long-term rates to a change in the policy rate
will be equal to the average change of expected future policy rates, and these shocks
to short rates are not permanent but instead mean-revert.
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The first result in Cor. 1.1.1 says something more interesting: as the risk aversion
of arbitrageurs increases, household borrowing becomes less responsive to changes in
the policy rate. That is to say, Âr is decreasing in the risk aversion of arbitrageurs.
This occurs because long-term rates under-react to shifts in the expected path of
short rates. In other words, now the response of long-term rates to a change in the
policy rate will be smaller than the average change of expected future policy rates.
This implies that current borrowing (and hence output) responds less than it would
when financial markets exhibit perfect risk-bearing capacity.

The fact that current macroeconomic outcomes are less responsive to future ex-
pected policy changes bears a similarity to recent work that derives a “discounted
Euler equation,” as in Gabaix (2016) or Farhi and Werning (2017). But the mech-
anism here is not that, for behavioral reasons, household forecasts deviate from the
actual paths of future outcomes. Rather, expected changes in policy are transmitted
through imperfect financial markets, which endogenously decreases the responsiveness
of current macroeconomic variables to future expected policy changes.

The model makes clear that monetary policy is effective only to the extent that
policy changes are transmitted through financial markets. In the model, the health
of financial markets is proxied by the risk aversion of arbitrageurs, which is a fixed
parameter. But more generally, risk aversion may increase during periods of financial
panics (e.g. as in Kyle and Xiong (2001a)). This implies that monetary policy becomes
less effective during financial crises.

The next result relates to the persistence of the central bank’s policy rule (governed
by the mean reversion in the Taylor rule, κr). This governs the level of inertia in the
central bank’s policy rate (a higher value implies the rate returns to the target rate
faster). Recall that λ1 determines the equilibrium mean reversion behavior of the
policy rate. So unsurprisingly, if the central bank reduces the inertia in its policy
rule (increases κr) then the policy rate in equilibrium mean reverts faster (higher λ1);
because policy rate gaps persist for less time, the effective borrowing rate responds
less to these monetary shocks (lower Âr).

The intuition regarding the central bank’s sensitivity to output (φx) is somewhat
similar to the inertia parameter. The central bank responds more forcefully to output
gaps, so in equilibrium the policy rate deviations subside faster (higher λ1). Because
they are shorter lived, output responds less as well.

How does the model depend on the weighting function, η(τ), that determines the
effective borrowing rate? The final result in Cor. 1.1.1 answers this question. The
two weighting functions correspond to two models where the effective borrowing rate
is more geared towards short-term rates (ηs) or long-term rates (η`). The results says
that as the effective borrowing rate becomes more dependent on long-term rates, the
model is less sensitive to the policy rate. Further, in equilibrium this implies that
monetary shocks persist longer.

29



1.3.5 Optimal Long-Run Monetary Target

Before turning to unconventional policy, I also solve for the “optimal” target in the
central bank’s policy rule r∗, which guarantees a steady state with zero output gap.
In a benchmark model the central bank simply sets r∗ = r̄, the natural short rate.
But when the effective borrowing rate depends on long-term rates, this is no longer
the case. The central bank still should set their target to the natural short rate; but
the natural short rate differs from the household’s natural effective rate. Moreover,
as with the transmission of monetary shocks, the optimal target also depends on the
risk-bearing capacity of financial markets.

Corollary 1.1.2 (Optimal long-run target, rigid prices). Consider the rigid price
model. Then the optimal target short rate that delivers xSS = 0 is the “natural” short
rate, given by

r∗ =
r̄ − Ĉ
Âr

. (1.18)

Further, when a > 0, a higher level of habitat demand β̄(τ) leads to decreases in the
optimal target.

Note that the natural effective borrowing rate (which is the steady state value
of the effective borrowing rate) is r̃SS = r̄ and is determined by factors outside of
the control of the central bank (assumed to be fixed in this model). The effective
borrowing rate is an affine function of the short rate (both in transition and in steady
state), and hence the natural short rate is the steady state value of the short rate
that delivers the natural effective rate:

r̃SS = r̄ = Ârr
SS + Ĉ.

When arbitrageurs are not perfectly risk-neutral, the constant term is affected by
shifts in habitat demand. Cor. 1.1.2 shows that as overall demand increases, the
optimal central bank target falls whenever arbitrageurs are not perfectly risk-neutral.

1.3.6 Forward Guidance

Given the key under-reaction result when financial markets exhibit limited risk-
bearing capacity, it is natural to expect that more explicit forward guidance poli-
cies will also prove less effective. This section studies this policy and confirms this
intuition.

Instead of following a Taylor rule for setting the short rate, suppose instead that
the central bank announces a target peg for interest rates r�, which will last for a set
period of time t� before returning to a standard Taylor rule. That is, the short rate
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evolves according to

drt =

{
−κ�r(rt − r�) dt+ σ�r dBr,t if 0 < t < t�

−κr(rt − φxxt − r∗) dt+ σr dBr,t if t ≥ t�

and initially, the short rate at t = 0 is at the peg: r0 = r�. Note that this setup
implies that the peg is the target, but the policy rate may deviate from this target.
The shocks to the short rate are again the only source of uncertainty in order to keep
the solution tractable.

The output gap still evolves according to eq. (1.5), but the dynamics of the effective
borrowing rate r̃t differ from the previous section. Conjecturing once again that bond
prices are affine implies

− logPt,τ =

{
A�r(τ)rt + C�(τ) if 0 < t < t�

Ar(τ)rt + C(τ) if t ≥ t�
=⇒ r̃t =

{
Â�rrt + Ĉ� if 0 < t < t�

Ârrt + Ĉ if t ≥ t�
.

Now there are two sets of affine coefficient functions to solve for, corresponding
to the two different monetary regimes. But note that after the peg ends (t ≥ t�),
the model reduces to the one considered in Section 1.3. Further, during the peg
(0 < t < t�), the results derived previously can be utilized to solve for the term
structure coefficients. Lemmas 1.2 and 1.3 still apply, with λ = κ�r.

With this characterization of the term structure during the two monetary regimes,
I now turn to solving for the rational expectations equilibrium dynamics, and in
particular the initial level of the output gap x0.

Proposition 1.2 (Forward guidance, rigid prices). Consider the forward guidance
rigid price model. In general equilibrium:

1. ∂x0
∂r�
≤ 0, is increasing in a, and approaches 0 as a→∞.

2. ∂2x0
∂r�∂t�

≤ 0, is increasing in a, and approaches 0 as a→∞.

As in a benchmark model of forward guidance, my model predicts that if the
central bank sets a very low interest rate peg, then the output gap falls (∂x0

∂r�
≤ 0),

and that this effect grows as the duration of the peg lengthens ( ∂2x0
∂r�∂t�

≤ 0). The more
interesting results from Prop. 1.2 is how these forces interact with the level of risk
aversion of arbitrageurs. The first result says that the current output gap becomes
less sensitive to the size of the forward guidance shock as the risk-bearing capacity
of arbitrageurs falls. Moreover, output eventually becomes completely insensitive
as arbitrageurs become infinitely risk averse. The second part of Prop. 1.2 is an
analogous finding for the interaction of the duration of an interest rate peg and risk
aversion. The effectiveness of lengthening the peg also diminishes as arbitrageur risk
aversion increases, eventually becoming completely ineffective.
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Figure 1.4: Output Responses to Forward Guidance
Notes: plots of ∂x0

∂r� (“level”; the interaction of the level of the peg
and output) and ∂2x0

∂r�∂t� (“length”; the interaction of the length of the
peg and output). These objects are plotted for various levels of risk
aversion (x-axis).

Figure 1.4 shows this graphically. The dark “level” line corresponds to ∂x0
∂r�

, while
the lighter “length” line corresponds to ∂2x0

∂r�∂t�
. As risk aversion increases, both of this

effects are mitigated.
Intuitively, when financial markets are disrupted, the sensitivity of output to for-

ward guidance falls. Note that in this model, households are still very forward-looking:
households are still very responsive to far-off changes in their borrowing rates, and
so conditional on the expected path of the effective borrowing rate the model deliv-
ers similar predictions as a benchmark New Keynesian model. The mitigating effect
comes from the mismatch between the policy rate and the effective borrowing rate,
which is bridged by imperfect financial markets.

1.3.7 Quantitative Easing

While forward guidance is less effective when financial markets are disrupted, this
imperfection opens the door to LSAP policies. Given that the expectations hypothesis
does not hold, purchases by the central bank may have price effects; moreover, it’s
natural to think that QE-type policies would push down long-term rates. This section
studies this policy and confirms this result.

I now suppose that in addition to setting the short rate, the central bank also
directly purchases longer term bonds through open market operations. In the model,
these purchases take place through the demand shifter βt,τ in preferred habitat in-
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vestor demand given by eq. (1.4). I assume that

βt,τ = β̄(τ) + θ(τ)βt

dβt = −κββt dt .
(1.19)

Note that this formulation treats LSAP programs as a zero-probability shock βt to
preferred habitat investor demand, which returns to zero at a rate according to κβ.
The function θ(τ) governs where in maturity space the purchases are targeted. To
capture the essence of a QE shock, I assume that θ(τ) ≥ 0 for all maturities (and
strictly positive for some maturities). This means that the central bank is only seeking
to purchase positive amounts of long-term bonds. This rules out LSAP programs like
Operation Twist; I return to this type of policy in an extension of the model in Section
1.5.5

Now the affine functional form of bond prices implies that

− logPt,τ = Ar(τ)rt + Aβ(τ)βt + C(τ)

=⇒ r̃t = Ârrt + Âββt + Ĉ,

which introduces a new coefficient function Aβ(τ).
This change complicates the model, because there are now two state variables.

However, monetary policy remains the only source of uncertainty, so solving the
model is similar to the previous case. First, I solve the macroeconomic dynamics,
taking as given the affine coefficients. Write the model in matrix form according to
eq. (1.8), where

Υ =

 κr 0 −κrφx
0 κβ 0

−ς−1Âr −ς−1Âβ 0

 .
Lemma 1.4 (Characterizing Âr and Âβ, rigid prices). Consider the rigid price QE
model.

1. Υ has exactly two eigenvalues with positive real part if and only if Âr > 0. Further,
these stable roots are real. One of these eigenvalues is κβ, the other is λ1 > 0.

2. Âr is given by eq. (1.11).
5Were the QE programs demand or a supply shocks? By treating the central bank as another

“preferred habitat” investor, the model implicitly assumes that the QE purchases are (positive)
demand shocks. But if the central bank is thought of as a conglomerate with the fiscal authority,
then QE purchases are perhaps more naturally thought of as (negative) supply shocks: by buying
bonds, the central bank acts on behalf of the fiscal authority and removes these bonds from the
secondary market. Whichever the preferred labeling, in either case the outcome is the same. As the
model makes clear, the effects are all about how the purchases impact the marginal investors, the
arbitrageurs. Whether QE is thought of as a demand or supply shock, the result is that QE leads
to changes in the portfolio allocation of arbitrageurs.
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3. The rational expectations equilibrium dynamic matrices (from eqs. (1.9) and (1.10))
are given by

Γ =

[
λ1

Âβς
−1κrφx

λ1+κβ−κr
0 κβ

]
(1.20)

Ω =
[
κr−λ1
κrφx

ς−1Âβ
κr−λ1−κβ

]
. (1.21)

Next, given how the state evolves in general equilibrium, I solve the arbitrageurs’
optimality conditions and equilibrium allocations, which solves for the affine term
structure coefficient functions.

Lemma 1.5 (Affine coefficients, demand factor term structure). Suppose the short
rate and demand factor are characterized by

drt = −
(
γ1(rt − rSS) + γ12βt

)
dt+ σr dBr,t

dβt = −γ2βt dt .

Then Âr is given by eq. (1.17) (and ν given by eq. (1.16)). Âβ is given by

Âβ =
ν12

ν − γ2

∫ T

0

η(τ)(f(ντ)− f(γ2τ)) dτ (1.22)

where the coefficient ν12 is given by eq. (A3).

Note that, conditional on the equilibrium value of λ1, Âr is the same as the baseline
rigid price model. This also implies that Âβ, the sensitivity of the effective borrowing
rate to QE shocks, does not affect the determinacy of the model. In fact, if βt = 0,
then the dynamics of the model are identical to the baseline rigid price model. This
is unsurprising, as in this case QE is a zero-probability shock and hence the model
evolves as if QE will never occur.

Proposition 1.3 (QE, rigid prices). Consider the QE rigid price model. Suppose
that θ(τ) ≥ 0. In general equilibrium:

1. Âβ ≥ 0 and ∂xt
∂βt
≤ 0, with equality if and only if a = 0.

2. Âβ → 0 as κβ →∞.

The coefficient Âβ determines the effects of QE in general equilibrium. The key
is under what conditions this coefficient is non-zero, and what sign. In words, Prop.
1.3 says: if arbitrageurs are perfectly risk-neutral (financial markets exhibit perfect
arbitrage), QE has no effect. This is the standard result: the expectations hypoth-
esis holds, and since QE purchases do not change the expected path of short rates,
there is no change in long-term rates. More explicitly, with perfect risk-neutrality,
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arbitrageurs (the marginal investors in bond markets) only care about expected in-
stantaneous returns. In equilibrium it therefore must be the case that these are
equalized for all bonds (and equal to the policy rate). When expected excess returns
are always zero, arbitrageurs are happy to accomodate any shifts in demand, hence
in equilibrium yields are unchanged. Since long-term rates are unaffected by QE
purchases, there is no direct effect on household consumption or savings decisions,
therefore no indirect effect on the expected path of the policy rate.

But whenever arbitrageurs are risk-averse, LSAPs push down interest rates and
boost output. It is still the case that QE purchases do not have a (direct) effect on the
expected path of the policy rate. But when arbitrageurs care about risk, expected
excess returns of long-term bonds are not necessarily zero. Arbitrageurs demand
compensation for taking on risk, and in equilibrium the market price of risk is not
zero. The price of risk depends on the portfolio allocations of arbitrageurs, so the
more concentrated the arbitrageurs’ portfolio is in risky long-term bonds, the higher
this compensation is required to be. By purchasing long-term debt, QE effectively
reduces the amount of risk arbitrageurs are required to hold, which puts downward
pressure on returns of all bonds.

This partial equilibrium effect is mitigated by a general equilibrium effect: when
long-term rates fall, so does the effective borrowing rate of households. Through
the standard Euler equation dynamics, this implies that consumption (hence output)
will rise. This indirect effect puts countervailing upward pressure on long-term rates,
as the expected path of short rates is higher than before. But since arbitrageurs
are risk-averse, this upward pressure is weakened relative to the predictions of the
expectations hypothesis. Prop. 1.3 shows that this indirect effect does not outweigh
the direct effect, and it will still be the case that in general equilibrium QE purchases
will push down effective borrowing rates, leading to an increase in output.

Together, these results show that the effectiveness of the two major unconventional
monetary policy tools are mirror images of one another. In either case, passthrough to
households only occurs to the extent that arbitrageurs respond to the policy changes.
For forward guidance, healthy financial markets are key as arbitrageurs only care
about the future path of the policy rate. But as financial markets become disrupted,
arbitrageurs become more concerned with risk and less responsive to future changes
in the short rate. Then this is precisely the time when LSAPs are most effective: by
removing risk from the portfolio of arbitrageurs, these purchases push down long-term
interest rates and boost output.

The second result in Prop. 1.3 shows that the effect of QE depends critically
on the mean reversion properties of purchases. Even when financial markets are
highly disrupted, the aggregate effects will be minimal if the purchases are undone
very quickly. While in the case of QE these purchases were not directly unwound
quickly, Greenwood et al. (2016) provide some evidence that Treasury actions had an
equivalent effect. While QE was removing long-term debt from private portfolios, the
Treasury was extending the average maturity of newly issued debt, perhaps partially
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offsetting the impact of QE.

1.4 Allowing for Sticky Prices
This section extends the analysis from Section 1.3 to allow for inflation. I confirm the
results in the case of fully rigid prices go through when prices are sticky but not fully
fixed. The main difference between the two models is the conditions for determinacy.
In the rigid price model, determinacy in general equilibrium was guaranteed. Once
prices are not fixed, determinacy is only guaranteed for some parameterizations of
the model.

This result is also present in a benchmark New Keynesian model, and is often
stated as the following: the central bank must move the nominal rate more than
one-for-one with inflation, in order to move real rates. In benchmark models this is
achieved by a simple inequality condition on the Taylor rule coefficients (frequently
φπ > 1). But because aggregate dynamics depend on the household’s real effective
borrowing rate, the determinacy condition involves the entire term structure of in-
terest rates. And since monetary policy is transmitted to the term structure through
imperfect financial markets, this condition will implicitly depend on the risk-bearing
capacity of arbitrageurs. As I will show, increasing limits to arbitrage moves the
model towards the region of indeterminacy.

1.4.1 Macroeconomic Dynamics

Now I assume that prices are not fully rigid, so δ > 0 and inflation and the output
gap evolve according to eqs. (1.2) and (1.3). The central bank follows a Taylor rule
with persistence:

drt = −κr(rt − φππt − φxxt − r∗) dt+ σr dBr,t (1.23)

where Br,t is a standard Brownian motion. φπ and φx govern the feedback rule for
changes in inflation and output to changes in the policy rate, and κr is the mean-
reversion parameter. r∗ is the central bank’s target policy rate, which is set to deliver
zero inflation and output gap in steady state.

Again start with the conjecture that the model features an affine term structure
in the state variables. Both inflation πt and the output gap xt are jump variables,
while as before the interest rate rule implies that rt is the only state variable, so the
term structure is characterized by two coefficient functions Ar(τ) and C(τ). Writing
the model in matrix form according to eq. (1.8) gives

Υ =

 κr −κrφπ −κrφx
0 −ρ δ

−ς−1Âr ς−1 0

 .
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The rational expectations equilibrium is determinate if and only if Υ has one
stable eigenvalue λ1; under rational expectations the dynamics of the short rate and
inflation and the output gap are given by:

drt = −λ1(rt − rSS) dt+ σr dBr,t

πt = ωπ(rt − rSS), xt = ωx(rt − rSS).

The following Lemma characterizes the equilibrium object Âr in terms of this
eigenvalue.

Lemma 1.6 (Characterizing Âr, sticky prices). Consider the sticky price model.

1. Υ has exactly one eigenvalue with positive real part if and only if

Âr >
δ

δφπ + ρφx
. (1.24)

2. Âr is given by the function h : R→ R:

h(λ1) =
(λ1 − κr)(λ2

1 + λ1ρ− ς−1δ)

ς−1κr (δφπ + ρφx + λ1φx)
. (1.25)

3. The inflation and output gap dynamics are given by

ωπ =
δ(κr − λ1)

κr (δφπ + ρφx + λ1φx)
, ωx =

(λ1 + ρ)(κr − λ1)

κr (δφπ + ρφx + λ1φx)
.

The macroeconomic dynamics continue to nest the benchmark New Keynesian
model, where the affine coefficients are simply Âr = 1 and Ĉ = 0. When this is
the case, if the central bank only cares about inflation (so φx = 0), the determinacy
condition eq. (1.24) simplifies to the standard condition that φπ > 1. But in this
model, Âr is a general equilibrium object which will depend on the risk aversion of
arbitrageurs. Thus, whether the model satisfies determinacy will also depend on the
level of risk aversion.

Note that as δ → 0, all the above results simplify to what was found in the case
of fully rigid prices studied in the previous section.

1.4.2 General Equilibrium Solution

The policy rate is the only state variable; hence, conditional on the equilibrium dy-
namics of the policy rate, the arbitrageur optimality conditions and the characteri-
zation of the affine coefficients is the same as when prices are fully fixed. Thus, the
results of Lemma 1.6 and 1.3 together solve for Âr and λ1 in general equilibrium.
This also allows for a characterization of when the model has a unique equilibrium.
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Figure 1.5: Intersection of g(λ) and h(λ), sticky prices
Notes: intersection of the functions g(λ) and h(λ), which determine λ1
and Âr in equilibrium. The black line is h(·); the dotted light orange
and dark teal lines are g(·) for low and high levels of risk aversion,
respectively. The dotted grey line is the equivalent function g(·) for a
benchmark New Keynesian model.

Proposition 1.4 (General equilibrium, sticky prices). Consider the sticky price
model.

1. There exists some positive eigenvalue of Υ λ1 > 0 for which g(λ1) = h(λ1).

2. If the model is determinate (the inequality in eq. (1.24) is satisfied), then Âr < 1
and is unique, which fully characterizes the model equilibrium.

Note that if eq. (1.24) is violated, there exists another eigenvalue λ2 > 0 such that
Âr = h(λ2). This implies the model is indeterminate. Âr may still be unique, but it
may also be the case that there is some 0 < λ′ < λ1 such that g(λ′) = h(λ′). Hence,
rather than attempting to define some selection criteria to re-establish determinacy,
I choose to only focus on models that satisfy the conditions for determinacy.

Figure 1.5 illustrates the equilibrium obtained in Prop. 1.4. The dotted light
orange and dark teal lines are g(·) for low and high levels of risk aversion, respectively.
Unlike the rigid price model, this plot illustrates that for some parameterizations (in
this case, when risk aversion is very high), equilibrium is no longer unique. Finally,
I also plots the equivalent function g(·) for a benchmark New Keynesian model (the
dotted grey line). Note that the determinacy condition of the benchmark model
depends only on the properties of the function h(·) (which is determined by the
macroeconomic parameters); financial frictions are not present.
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1.4.3 Conventional Policy

This section studies how conventional monetary policy works in the sticky price model.

Corollary 1.4.1 (Comparative statics, sticky prices). Consider the sticky price model.
In general equilibrium:

1. ∂λ1
∂a

< 0, ∂Âr
∂a

< 0, ∂ωπ
∂a

> 0, ∂ωx
∂a

> 0.

2. ∂λ1
∂κr

> 0, ∂Âr
∂κr

< 0, ∂ωπ
∂κr

> 0, ∂ωx
∂κr

> 0.

3. ∂λ1
∂φπ

> 0, ∂Âr
∂φπ

< 0, ∂ωπ
∂φπ

> 0, ∂ωx
∂φπ

> 0.

4. ∂λ1
∂φx

> 0, ∂Âr
∂φx

< 0, ∂ωπ
∂φx

> 0, ∂ωx
∂φx

> 0.

5. Consider two different weighting functions ηs(τ) and η`(τ), such that for some T ∗,
ηs(τ) ≥ η`(τ) ⇐⇒ τ ≤ T ∗. Then λs1 > λ`1, Â

s
r > Â`r, ω

s
π < ω`π, ω

s
x < ω`x where

superscripts denote the equilibrium outcomes under the corresponding weighting
functions.

The results in Cor. 1.4.1 confirm the results of the rigid price model carry over
to the case of sticky prices. The first result shows that the responsiveness of the
(nominal) effective borrowing rate to changes in the short rate declines as risk aversion
increases. In general equilibrium, when the model is determinate, this will imply that
the real effective borrowing rate also becomes less responsive, hence inflation and
output also respond less to changes in the short rate as risk aversion increases. This
also implies that monetary shocks become less persistent. The final result, which
shows what happens when household borrowing becomes more concentrated towards
long-term rates, has similar results. Borrowing becomes less responsive to the short
rate, and thus inflation and output also respond less to changes in the short rate. In
equilibrium, this implies that monetary shocks are not as persistent.

The other set of results relate to the central bank’s policy rule. Increases in the
mean-reversion parameter (κr), the sensitivity to inflation (φπ), and the sensitivity
to output (φx) all cause shocks to the policy rate in equilibrium to return to steady
state faster (higher λ1) and therefore the (nominal) effective borrowing rate responds
less to these monetary shocks (lower Âr). In general equilibrium when the model is
determinate, this also leads to smaller changes in inflation and output.

1.4.4 Determinacy

In the rigid price model, determinacy was guaranteed. This is no longer the case once
prices are not fixed. Moreover, the determinacy condition is more complicated than
a benchmark New Keynesian model.
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Corollary 1.4.2 (Determinacy, sticky prices). Consider the determinacy condition of
the sticky price model. If δ > 0, there exists some upper bound a such that, whenever
a > a, the model is indeterminate. Similarly, there are upper bounds for κr and σr
(if a 6= 0) above which the model is indeterminate. For φπ and φx there exists upper
bounds above which the model is determinate.

From a macroeconomic perspective, the reason for indeterminacy in this model
is analogous to a standard model. Suppose inflation increases. The central bank
responds by increasing the policy rate, but if the real borrowing rate faced by house-
holds does not rise then the policy response is unable to stabilize the macroeconomy.
This logic holds in my model, but the relationship between the policy rate and the
household effective borrowing rate is complicated by the fact that policy changes are
passed through by risk-averse arbitrageurs.

The first result in Cor. 1.4.2 says that if financial markets become severely dis-
rupted, the model moves into the region of indeterminacy. This is for the same
reason that conventional policy becomes less effective: the passthrough of policy rate
changes to the (nominal) effective borrowing rate becomes dampened, and this damp-
ening can become severe enough that the real effective borrowing rate no longer moves
to stabilize the economy.

On the other hand, the central bank can guarantee determinacy given any level of
(finite) risk aversion by responding more aggressively to inflation (or output). Also, if
the policy rule does not exhibit enough inertia (that is, the mean reversion rate κr is
very high), this can also induce model indeterminacy. This is perhaps one theoretical
reason why central banks seem to pursue inertial policy rules. A high degree of
monetary policy inertia implies that changes in the policy rate are endogenously
passed to long-term rates. When household borrowing depends on a mix of short-
and long-term rates, this leads to larger responses of output and inflation.

What does it mean in reality for a macroeconomic model to exhibit indetermi-
nacy? As discussed in e.g. Clarida et al. (2000), one practical way of thinking about
indeterminacy is that it induces excess volatility. When policy is such that it gives rise
to an indeterminate model, this opens up the possibility of self-fulfilling expectations.
This may increase the amount of volatility in the model.

In the model, the parameters governing both the central bank’s policy rule as well
as the risk aversion of arbitrageurs are fixed across time. But stepping outside the
model, what do the results in Cor. 1.4.2 say? One interpretation is that if financial
crises are thought of as large disruptions in financial markets, with big increases in risk
aversion of investors (or the risk-bearing capacity of investors), then financial crises
can lead to macroeconomic instability, even if the cause of the crises was unrelated
to the macroeconomy.

Central bankers can induce stability again, but they can do so by becoming more
aggressive. This runs counter to the idea that central banks should become more
passive in crises, and make up for it after the crisis passes.
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1.4.5 Forward Guidance

This section extends the previous analysis of forward guidance to the case of sticky
prices. As before, the central bank announces a target peg for interest rates r�, which
will last for a set period of time t� before returning to a standard Taylor rule. That
is, the short rate is evolves according to

drt =

{
−κ�r(rt − r�) dt+ σr dBr,t if 0 < t < t�

−κr(rt − φππt − φxxt − r∗) dt+ σr dBr,t if t ≥ t�

and initially, the short rate at t = 0 is at the peg: r0 = r�. Inflation and the output
gap still evolve according to eqs. (1.2) and (1.3).

Since the policy rate is the only state variable, the affine functional form is the
same as in the rigid price model. Using the same approach as before, I now turn
to solving for the rational expectations equilibrium dynamics and the initial level of
inflation π0 and the output gap x0.

Proposition 1.5 (Forward guidance, sticky prices). Consider the forward guidance
sticky price model. In general equilibrium:

1. ∂π0
∂r�
≤ 0 and ∂x0

∂r�
≤ 0. Both are increasing in a, and approach 0 as a→∞.

2. ∂2π0
∂r�∂t�

≤ 0 and ∂2x0
∂r�∂t�

≤ 0. Both are increasing in a, and approach 0 as a→∞.

Note that inflation and the output gap fall if the central bank increases the level
of the peg, and this effect grows with the length of the peg. So the first result of Prop.
1.5 says that current inflation and output become less sensitive to the size of the for-
ward guidance shock as the risk-bearing capacity of arbitrageurs falls, and eventually
become completely insensitive; while the second result says the same regarding length
of the peg.

Figure 1.6 shows the results regarding inflation and output graphically. The dark
“level” line in the first panel corresponds to ∂π0

∂r�
, while the lighter “length” line corre-

sponds to ∂2π0
∂r�∂t�

. The second panel plots the same objects for the output gap x0. As
risk aversion increases, both of this effects are mitigated.

1.4.6 Quantitative Easing

I now modify the sticky price model to allow for QE shocks. Suppose that the central
bank also purchases long-term bonds, so that the demand shifter in eq. (1.4) evolves
according to eq. (1.19).
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Figure 1.6: Inflation and Output Responses to Forward Guidance
Notes: panel A plots ∂π0

∂r� (“level”; the interaction of the level of the peg and
inflation) and ∂2π0

∂r�∂t� (“length”; the interaction of the length of the peg and
inflation). Panel B plots the corresponding level and length interaction terms
for output x0. These objects are plotted for various levels of risk aversion (x-
axis).

First, I solve the macroeconomic dynamics, taking as given the affine coefficients.
Write the model in matrix form according to eq. (1.8), where

Υ =


κr 0 −κrφπ −κrφx
0 κβ 0 0
0 0 −ρ δ

−ς−1Âr −ς−1Âβ ς−1 0

 .
Lemma 1.7 (Characterizing Âr and Âβ, sticky prices). Consider the sticky price QE
model.

1. Υ has exactly two eigenvalues with positive real part if and only if the condition eq.
(1.24) is satisfied. Further, these stable roots are real. One of these eigenvalues is
κβ, the other is λ1 > 0.

2. Âr is given by eq. (1.25).

3. The rational expectations equilibrium dynamic matrices are given by eqs. (A5) and
(A6).

Given the equilibrium value of λ1, Âr is the same as the sticky price model. The
determinacy condition is also equivalent. As in the rigid price model, this is because I
treat QE as a zero-probability event. Moreover, conditional on how the state evolves
in general equilibrium, the arbitrageurs’ optimality conditions and portfolio problem
is the same as considered in Lemma 1.5. Therefore, putting everything together shows
how QE shocks impact the economy in general equilibrium.
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Proposition 1.6 (QE, sticky prices). Consider the QE sticky price model. In general
equilibrium, the model is determinate then

Âβ ≥ 0 =⇒ ∂πt
∂βt
≤ 0,

∂xt
∂βt
≤ 0

with equality if and only if a = 0.

Prop. 1.6 confirms that in the sticky price model, when the determinacy condition
is satisfied QE works in the same way as in the rigid price model. Expansionary
QE shocks move both inflation and output in the same direction, but only when
arbitrageurs are not risk-neutral.

1.5 General Numerical Model
The analysis thus far has focused on delivering analytical results, but this comes at the
cost of realism. This section generalizes the model in order to move closer to the data
and allows me to take a first step towards quantifying the effects of unconventional
policies in and out of financial crises.

This section first extends the model to allow for a richer set of shocks and develops
the tools to solve the model numerically. Since this requires taking a stance on
parameter values, I next turn to estimating the model. I then use the estimated model
to quantify the effects of unconventional policies. The extended model allows for the
study of not only standard QE policies, but also more complicated LSAP programs
such as Operation Twist, where the Federal Reserve bought long-term bonds while
selling shorter term securities. I also study a counterfactual LSAP policy whereby the
central bank conducts QE endogenously according to a Taylor-type of rule. Finally,
I use the model to study optimal policy as a function of financial frictions.

1.5.1 Macroeconomic Dynamics and Term Structure Deter-
mination

I assume prices are sticky but not fully rigid. Besides monetary policy shocks, I
add demand shocks and cost-push shocks. I also include shocks that shift demand
for bonds coming from the idiosyncratic preferred habitat investors. This model
allows me to explore the robustness of the results in the previous section, as well as
explore the implications for unconventional monetary policy. Adding multiple demand
factors not only makes the model more realistic, but also allows me to explore more
complicated LSAP programs such as Operation Twist, where the Fed simultaneously
purchased and sold Treasuries of long- and short-term maturities, respectively.
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The aggregate dynamics of the extended model are as follows:

dπt = (ρπt − δxt − zπ,t) dt (1.26)
dxt = ς−1 (r̃t − πt − r̄ − zx,t) dt (1.27)
drt = −κr(rt − φππt − φxxt − r∗) dt+ σr dBr,t . (1.28)

The new aggregate variables are a cost-push shock to the Phillips curve (zπ,t) and a de-
mand shock to the Euler equation zx,t.These shocks follow simple Ornstein-Uhlenbeck
processes:

dzi,t = −κzizi,t dt+ σzi dBzi,t .

Additionally, I assume there are factors βk,t that affect the demand of preferred habitat
investors. These shocks also follow simple Ornstein-Uhlenbeck processes:

dβk,t = −κβkβk,t dt+ σβk dBβk,t .

This is the only change to the term structure side of the model: the demand shifter
βt,τ from idiosyncratic preferred habitat investors is given by

βt,τ = β̄(τ) +
∑
k

βk,tθk(τ)

where θk(τ) governs how shifts in the demand factor βk,t affects the level of demand
for τ bonds. Unlike the QE models explored in previous sections, the habitat demand
factors are now stochastic.

As before, start with the conjecture that bonds are affine in the state variables.
Now the state consists of the short rate rt, the demand shock and cost push shocks
zx,t and zπ,t, and the preferred habitat demand factors βk,t. If Yt is the vector of all
variables and the state is denoted by a vector yt, then effective rate is therefore also
affine in the state variables:

r̃t = yTt Â + Ĉ, (1.29)

and the preferred habitat demand shifter is

βt,τ = β̄(τ) + yTt Θ(τ)

where Θ(τ) is a vector of that collects the θk(τ) functions corresponding to each βk,t
demand shocks (and is zero for the other state variables).

Using matrix notation, the dynamics matrix from eq. (1.8) is a function of the
affine coefficients Â from eq. (1.29). Therefore, so is the state dynamics matrix
Γ(Â), given by eq. (C10). Prop. 1.7 characterizes the affine coefficients and general
equilibrium solution in this setup.

44



Proposition 1.7 (General equilibrium characterization). Suppose the aggregate econ-
omy evolves according to eq. (1.8), where the dynamics matrix is a function of affine
coefficients Â in eq. (1.29). Define the matrix

M = Γ(Â)T − a
[∫ T

0

α(τ) (τΘ(τ)−A(τ)) A(τ)T dτ

]
Σ (1.30)

as a function of Â. Letting e1 be the first standard basis coordinate vector, if M is
diagonalizable and invertible then A(τ) solves

A(τ) = GD−1 [I− exp(−Dτ)] 1 (1.31)

=⇒ Â = GD−1

∫ T

0

η(τ)

τ
[I− exp(−Dτ)] dτ 1 (1.32)

where D is the diagonal matrix of the eigenvalues of M, and G is the matrix of
corresponding eigenvectors, normalized such that G1 = e1, where 1 is a vector of
ones and e1 is the first standard basis coordinates. Then the general equilibrium
solution is a fixed point of the matrix function defined in eq. (1.30).

Note that the matrix M is nothing more than the multidimensional generalization
of the scalar ν from Lemma 1.3. Thus Prop. 1.7 is similar to the fixed point problem
which defines the parameter ν, but is now complicated by the fact that the problem
is no longer scalar-valued. Except in special cases such as when a = 0, the problem
no longer lends itself to tractable solutions but instead must be solved numerically.
An algorithm for solving the model is described in Appendix A.2.

1.5.2 Calibration

In order to implement the numerical solution method I need to parameterize the
model. I calibrate the model by separating the parameters into two groups: the
macroeconomic dynamics parameters and the term structure preferred habitat pa-
rameters. The macroeconomic parameters consist of: the weighting function in the
effective borrowing rate (η(τ)); the preference parameters (ρ and ς−1); nominal rigid-
ity (δ); the Taylor rule coefficients (φπ and φx); the mean reversion of monetary
shocks, cost-push shocks, and demand shocks (κr, κzπ , and κzx); and the volatility
of these shocks (σ2

r , σ2
zπ , and σ2

zx). The term structure parameters consist of: ar-
bitrageur risk aversion (a); preferred habitat demand elasticities (α(τ)); the number
and location of demand factors (θk(τ)); and the mean reversion and volatility of these
demand factors (κβk and σ2

βk
).6

6The remaining parameters β̄(τ), r̄, and r∗ affect the steady state but play no role governing
the dynamics of the model; I focus on equilibrium dynamics linearized around a zero steady state.
Formally, I assume that given any parameterization, the central bank sets the target rate r∗ to
deliver a zero steady state as discussed in Cor. 1.1.2.
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I estimate the first group of parameters using data from the U.S. from 1985-2007.
Since 1985-2007 was largely a period of financial calm in the U.S., I estimate these
parameters by assuming a ≈ 0. Given estimates of the macroeconomic parameters,
I estimate the term structure parameters in a second step by focusing on the term
structure response to QE during 2009.

Effective Borrowing Rate Weights

A key input is the weighting function in the effective borrowing rate η(τ). This
function governs the household allocation of borrowing across the term structure,
and therefore the sensitivity of the effective borrowing rate is to short- and long-term
rates.

I set η(τ) to match the average maturity structure of outstanding U.S. Trea-
sury Bills, Notes, and Bonds from 1985-2007; data is from the monthly CRSP U.S.
Treasury database. While it would be possible to match this distribution non-
parametrically, as explained in Appendix A.2 the numerical algorithm to solve the
model requires being able to solve closed-form solutions to many integral expressions
involving η(τ). To that end, I assume that η(τ) is equal to the probability density
function of a (truncated) Gamma distribution with shape parameter 2 and rate pa-
rameter η1 (or scale parameter 1/η1), so η(τ) ∝ τ exp(−η1τ). I estimate the rate
parameter η1 in order to minimize the distance between the parameterized η(τ) and
the distribution of outstanding U.S. Treasuries.

Macroeconomic Parameters

In order to estimate the parameters governing the macroeconomic dynamics, I take
a moments-matching approach. I target 9 moments in the data: the variance of
the short rate, inflation, and the output gap; the respective covariances; and the
respective one-year autocovariances. I use data from the U.S. from 1985-2007. For
the short rate I use the 3-month Treasury Bill rate; for inflation I use PCE; and for
the output gap I use the CBO’s nominal potential GDP. The data series are from
FRED.

I choose the period 1985-2007 because this was largely a period of financial calm.
Hence, I solve the model and compute the model analogues of the variance-covariances
assuming that risk aversion a = 0. This also allows me to defer estimating many of
the parameters from the finance side of the model. I additionally set ς−1 = 1 and the
discount factor ρ = 0.04. This leaves 9 parameters to be estimated: the inertia terms
κr, κzπ , and κzx ; the Taylor rule coefficients φπ and φx; the nominal rigidity term δ;
and the shock variances σ2

r , σ2
zπ , and σ

2
zx .

Since I have 9 parameters to estimate, the model is able to match the target 9
moments perfectly. Although each moment is sensitive to each parameter, intuitively
it is useful to discuss which moments respond most strongly to which parameters.
The auto-covariances are largely dependent on the inertia terms, while the overall
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volatility of the economy is a function of the volatility of the fundamental shocks.
Finally, the covariances between the short rate, inflation, and the output gap depend
on the degree of nominal rigidity and how the central bank changes the policy rate
in response to deviations in inflation and output.

Term Structure Parameters

The other set of parameters to estimate come from the preferred habitat side of the
model. I estimate these parameters in order to match the change in the yield curve
following the FOMC announcement regarding QE1 on March 18, 2009. Since the
model makes predictions about zero-coupon yields, the response I target is the daily
change in zero-coupon yields as taken from Gurkaynak et al. (2007).

Before estimating the model, I make some simplifying assumptions. First, I as-
sume that there are two demand factors βs,t and β`,t that are otherwise identical (same
inertia parameter κβ and variance σ2

β) but concentrated at short and long maturities
(different functions θs(τ) and θ`(τ)). I assume that these functions are entirely con-
centrated at maturities of length 2 and 10 years, respectively.7 Second, I assume
that the preferred habitat demand elasticities α(τ) are constant across maturities.
Since the risk aversion coefficient a always enters multiplicatively with α(τ), I nor-
malize α(τ) = 1. Hence, the estimated coefficient a should be interpreted as a mix of
both the arbitrageur’s preferences for risk as well as the preferred habitat investor’s
sensitivity to price movements. The remaining parameters to be estimated are the
inertia parameter κβ, variance σ2

β, and the risk aversion term a. In the model, I as-
sume that QE1 was a ten standard deviation shock; this coincides with the findings
in Gorodnichenko and Ray (2017) that QE purchases were roughly ten times larger
than typical private demand shocks for long-term Treasuries.

Calibration Results

Table 1.1 summarizes the results of the calibration. In this section I briefly discuss
the results in more detail.

During 1985-2007, on average roughly 40% of Treasury debt was less than one
year, 35% was between 1 and 5 years, and the remaining 25% was between 5 and 30
years. Targeting these moments, I estimate that the rate parameter in the (truncated)
Gamma distribution is η1 ≈ 1.7. As Figure 1.7 shows, the model analogue matches
the short end of the distribution but somewhat understates the fraction of long-term
debt. Although the concentration is highest for shorter maturities, the weighting
implies that over 60% of the distribution of borrowing is weighted towards maturities
over 1 year. This will imply substantial deviations from benchmark models where
borrowing is entirely concentrated at the short rate.

7Formally, I assume that the functions θs(τ) = δ(τ − 2) and θ`(τ) = δ(τ − 10), where δ(·) is
the Dirac delta function. The Dirac delta function can be interpreted as the limit of a mean=zero
normal distribution as the variance approaches 0.
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Table 1.1: Calibration Results

Parameter Value Description Target

Effective Borrowing Rate

η1 1.7069 Weight Scaling Factor Treasury Maturity Distribution

Macroeconomic Dynamics
ρ 0.0400 Discount Factor Long-Run Interest Rate
ς−1 1.0000 Intertemporal Elasticity Balanced Growth
κr 0.9473 Monetary Policy Inertia Cov[rt, rt−1] = 3.5013

κzπ 0.5863 Cost-Push Shock Inertia Cov[πt, πt−1] = 0.9141

κzx 0.2554 Demand Shock Inertia Cov[xt, xt−1] = 2.2908

φπ 2.0420 Inflation Taylor Coeff. Cov[rt, πt] = 1.0006

φx 0.9709 Output Taylor Coeff. Cov[rt, xt] = 0.7722

δ 0.0459 Nominal Rigidity Cov[πt, xt] = −0.3015

σr 0.0116 Monetary Shock Vol. Var[rt] = 2.7066

σzπ 0.0068 Cost-Push Shock Vol. Var[πt] = 0.5097

σzx 0.0126 Demand Shock Vol. Var[xt] = 1.5192
Term Structure
θs(τ) δ(τ − 2) Short Factor Location LSAP Targets
θ`(τ) δ(τ − 10) Long Factor Location LSAP Targets
α(τ) 1.0000 Habitat Elasticity Normalized
κβ 0.1710 Habitat Factor Inertia QE1 Yield Curve Response
σzβ 0.0142 Habitat Factor Vol. QE1 Yield Curve Response
a 1559.7 Risk Aversion QE1 Yield Curve Response

Notes: results of the calibration exercise. The effective borrowing weight term η1 is the rate
factor in a (truncated) Gamma distribution: η(τ) ∝ τ exp(−η1τ). For the macroeconomic
dynamics coefficients, each parameter is listed alongside the covariance target which is most
sensitive to changes in the given parameter; however, the parameters are jointly estimated in
order to match all the target moments. Variances and covariances are expressed in percentage
points. The short and long demand factor location functions are Dirac delta functions δ(·).
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Figure 1.7: Estimated Borrowing Weights η(τ)
Notes: the estimated effective borrowing weights η(τ) and the distribution
of outstanding Treasury debt in the data.

Figure 1.8 compares the yield curve response to QE1 in the data vs. the model.

1.5.3 Responses to Conventional and Unconventional Mone-
tary Shocks

Using the estimated parameters, I now explore the implications for monetary policy
in general equilibrium. I study the model for varying degrees of risk aversion; from
very low a ≈ 0 to even higher than the the level estimated during the QE1 period, in
order to understand how policy interacts with different degrees of financial crisis.

Expansionary Monetary Shock

I first study the macroeconomic response to a standard monetary shock. The shock
is a 50 basis point fall in the policy rate (an expansionary shock).

The first panel of Figure 1.9 plots the immediate response of the yield curve (in
terms of deviations from steady state). Lighter lines plot the response for low levels
of risk aversion; the darker lines correspond to high levels of risk aversion. When
risk aversion is very low, the entire yield curve shifts down significantly. But as
risk aversion increases, the darker lines begin to move closer to zero. While short-
term rates still respond strongly, long-term rates become nearly unresponsive. The
expected path of the policy rate is not that different, but arbitrageurs do not equalize
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Figure 1.8: Yield Curve Response to QE1, Model vs. Data
Notes: the estimated yield curve response to a QE shock as compared to
the actual response.

the expected returns of all bonds and hence long-term rates under-react to the change
in the policy rate.

The bottom panels of Figure 1.9 plot the immediate responses of output and
inflation, with the level of risk aversion on the x-axis. These results show that as
risk aversion increases, the immediate macroeconomic effects of a monetary shock
fall. This follows from the results regarding the yield curve. Since the entire yield
curve becomes less responsive to a given monetary shock, the household effective
borrowing rate similarly responds less. Hence the consumption response (and output
gap response) is smaller. Smaller output gaps into the future imply that inflation also
responds less.

The exercise in Figure 1.9 also allows for a quantification of the relative effective-
ness of monetary policy in and out of financial crises. Comparing the output response
to a monetary shock during normal times (a ≈ 0) to periods of high financial distress
(the dotted black line, corresponding to the estimated value of risk aversion a), output
responds by about 20% less to a monetary shock in a financial crisis than out. As
risk aversion increases, the effectiveness falls even further. This suggests that had the
zero lower bound on the policy rate had not been binding (or alternatively, had the
Fed pursued a policy of negative rates), monetary policy still would have struggled
to boost output during the recent financial crisis.

50



Figure 1.9: Monetary Policy Shock
Notes: Panel A is the contemporaneous response of the yield curve to a
50 basis point monetary policy shock. Responses are plotted as deviations
from steady state, in terms of basis points. The x-axis is maturity. Lighter
lines correspond to models where risk aversion is low; darker lines to models
with high risk aversion. Panels B and C are the contemporaneous response
of inflation and the output gap to the same shock. Responses are plotted
as deviations from steady state, in terms of percentage points. The x-axis
is level of risk aversion. The dotted black line corresponds to the estimated
level of risk aversion.
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QE Shocks

I now study the response to two types of QE shocks. In the model, these correspond
to shocks to the demand factors which I label as βs,t (short-term shock, purchases
concentrated at 2-year maturities) and β`,t (long-term shock, purchases concentrated
at 10-year maturities).

Figure 1.10 plots the response to a shock to the short demand factor βs,t. The top
panel plots how the yield curve changes immediately, where darker lines correspond
to increasing levels of risk aversion. The bottom panels plot immediate responses of
output and inflation (with the level of risk aversion on the x-axis).

When risk aversion is very low, there is little to no response to a QE shock.
This is because arbitrageurs are able to fully absorb the purchases without requiring
any changes in the returns of their portfolio. This implies that there is very little
reaction in the yield curve, hence there is little feedback to household borrowing.
But as risk aversion increases, the effects increase. Again this is due to the behavior
of arbitrageurs. QE purchases offload some risk from the portfolio of arbitrageurs.
Hence, they require smaller excess returns to hold other bonds, which pushes down
interest rates. This leads to a decline in the effective borrowing rate of households,
which boosts consumption (and hence output) on impact.

Figure 1.11 repeats the above exercise for shocks to the long demand factor β`,t.
Once again, there is nearly no response when arbitrageurs are close to risk neutral; as
risk aversion increases, so too does the magnitude of the response of the yield curve
and macroeconomic variables.

The intuition is similar for both “short” and “long” QE shocks, but comparing the
differential impacts also reveals interesting results. Studying the yield curve responses
in Figures 1.10 and 1.11 reveals that there are four “regimes” where the yield curve
responses are qualitatively different. The first regime corresponds to very low levels of
risk aversion, where QE shocks have essentially no effect. In the second regime, when
financial markets are somewhat disrupted, both QE shocks put downward pressure
on interest rates but the response of the yield curve to both short-term and long-
term purchases is very similar in shape. The response is hump-shaped, with the peak
response occurring at shorter to intermediate maturities, and pushes both short- and
long-term spot rates in the same direction. Only the magnitude differs, with the
long-term shock leading to somewhat larger responses.

However, when risk aversion becomes sufficiently high, the effects become more
localized. This is the third regime, when financial markets start to become severely
disrupted; this regime corresponds to the level of risk aversion estimated from the QE1
data. In this case, both long and short QE shocks push down all interest rates, but
now short-term QE purchases have larger effects on short-term yields than long-term
QE purchases. Finally, the fourth regime corresponds to extreme levels of financial
crisis (higher than what was estimated). The localization of demand shocks becomes
so extreme that long-term demand shocks actually lead to increases in short-term
rates, while short-term demand shocks also put upward pressure on long-term rates.
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Figure 1.10: QE Shock (short-term purchases)
Notes: Panel A is the contemporaneous response of the yield curve to a QE
shock, where purchases are concentrated at shorter term bonds. Responses
are plotted as deviations from steady state, in terms of basis points. The
x-axis is maturity. Lighter lines correspond to models where risk aversion
is low; darker lines to models with high risk aversion. Panels B and C are
the contemporaneous response of inflation and the output gap to the same
shock. Responses are plotted as deviations from steady state, in terms of
percentage points. The x-axis is level of risk aversion. The dotted black
line corresponds to the estimated level of risk aversion.
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Figure 1.11: QE Shock (long-term purchases)
Notes: Panel A is the contemporaneous response of the yield curve to a QE
shock, where purchases are concentrated at longer term bonds. Responses
are plotted as deviations from steady state, in terms of basis points. The
x-axis is maturity. Lighter lines correspond to models where risk aversion
is low; darker lines to models with high risk aversion. Panels B and C are
the contemporaneous response of inflation and the output gap to the same
shock. Responses are plotted as deviations from steady state, in terms of
percentage points. The x-axis is level of risk aversion. The dotted black
line corresponds to the estimated level of risk aversion.
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The increasing localization of demand shocks is a key partial equilibrium result
from Vayanos and Vila (2009); this exercise shows that the finding holds in general
equilibrium. What causes this localization? Intuitively, consider the limiting case
when arbitrageurs only want to minimize the variance of the change in their wealth.
Hence they allocate their entire portfolio to the short (risk-free) rate, taking no posi-
tions in any other longer-term bonds. In response to a long-term demand shock from
preferred habitat investors, arbitrageurs would be unwilling to make any changes
their portfolio allocation to accomodate the shift. The only way for the net supply
condition to be satisfied is if the prices of the bonds that are affected by the demand
shock respond. Moreover, these are the only bonds that see price changes. In other
words, the demand shock has only local effects.

Of course, even when arbitrageurs are very risk-averse, the bond market will not
exhibit this type of extreme segmentation. But the qualitative behavior of the term
structure response is different for low and high levels of risk aversion. When risk
aversion is low, demand shocks have a (small) effect, but the location of the shock does
not matter. A the key source of risk that arbitrageurs are concerned with is short-rate
risk. Every bond has some sensitivity to this source of risk, hence shifts in demand
from preferred habitat investors change the portfolio allocations of arbitrageurs. Thus
this changes the market price of short-rate risk, and as this impacts all bonds this
has a global effect regardless of where the demand shock originates. For example, in
response to positive demand shifts, arbitrageurs sell bonds, reducing their exposure
to short-rate risk. Hence they require lower expected returns to hold bonds, pushing
down rates. The bonds that respond the most are those most sensitive to short-rate
risk, which does not depend on the location of the shock, but only on the stochastic
(mean-reversion) properties of the shocks.

But when risk aversion is very high, the location of the shock matters. When risk
aversion is very high and there are multiple sources of risk (short-rate risk, multiple
demand factors, and other structural shocks), arbitrageurs try to limit their exposure
to these sources of risk. This means that demand shocks must have mostly local
effects, since otherwise arbitrageurs would be exposing themselves to other sources
of risk. In other words, if a demand shock for long-term debt had big effects on
short-term debt, this would be because arbitrageurs were making large changes to
their holdings of short-term debt. But this changes their exposure to other sources
of risk. Hence they choose not to integrate the markets across maturities, and the
shocks stay more localized.

Operation Twist Shock

Next, I look at a policy mimicking “Operation Twist,” where the Federal Reserve
purchased long-term securities and sold short-term securities. To model this, I analyze
the effect of a simultaneous increase in long-term purchases (β`,t) and decrease in
short-term purchases (βs,t). Figure 1.12 plots the yield curve and real responses.
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Figure 1.12: QE Shock (long-term purchases)
Notes: Panel A is the contemporaneous response of the yield curve to an
Operation Twist shock, where longer term bonds are purchased and shorter
term bonds are sold. Responses are plotted as deviations from steady state,
in terms of basis points. The x-axis is maturity. Lighter lines correspond
to models where risk aversion is low; darker lines to models with high risk
aversion. Panels B and C are the contemporaneous response of inflation
and the output gap to the same shock. Responses are plotted as deviations
from steady state, in terms of percentage points. The x-axis is level of risk
aversion. The dotted black line corresponds to the estimated level of risk
aversion.
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The previous QE exercises showed that when risk aversion is low, the yield curve
reacts similarly to the short and long demand factors; the only difference is the mag-
nitude of the response to the long demand factor is larger. When the two shocks
are combined but with opposite signs, this implies that the long demand factor dom-
inates, leading to a decline in the term structure. The macroeconomic response is
thus a similar but muted version of the QE responses observed previously.

Recall that in the calibration, the effective borrowing rate is weighted mostly
towards maturities between 1 and 5 years; there is little weight on interest rates 10
years and above. However, when financial markets are relatively healthy (“regime
2” discussed above), it is still the case that QE purchases concentrated at long-term
rates is more effective at push up output than short-term purchases.

But as can be seen in Figure 1.12, when risk aversion is high enough, the short and
long demand factors have differential impacts on the yield curve. The combination of
the two shocks leads to declining long-term rates, but at some point leads to increasing
short-term rates. For intermediate values of risk aversion, real effective borrowing
rates still fall, leading to increases in output and inflation. However, as risk aversion
continues to increase, the magnitude of the macroeconomic effects declines. For high
values of risk aversion, the sign eventually flips: after the Operation Twist shock,
both inflation and the output gap actually decline.

The exercise implies that if Operation Twist had taken place during March 2009
when risk aversion was very high (the dotted black line in the bottom panels of Figure
1.12), the aggregate effect would have actually been contractionary. Moreover, the
actual yield curve responses around September 21, 2011 (when Operation Twist was
announced by the FOMC) saw long-term rates fall while short-term rates increased
slightly. While financial market disruptions in 2011 had subsided relative to the peak
of the crisis, this suggests that financial frictions were still high. Hence, the aggregate
effects of Operation Twist were likely muted at best.

One key result in all of these exercises is that the transmission of these policies
depends crucially on the health of financial markets. As with conventional monetary
policy explored in previous sections, the effectiveness of QE policies varies with the
level of risk aversion of arbitrageurs. But the interaction is the opposite of conven-
tional policy. QE has no effect when arbitrageurs are risk neutral; as risk aversion
increases, QE becomes more and more effective at moving the yield curve and hence
boosting output.

Policies like Operation Twist may have more ambiguous effects. When financial
markets are highly disrupted, bond markets become much more segmented. Targeted
buying and selling of securities throughout the term structure will have highly local-
ized effects. Depending on which maturities are the most important for household
borrowing, this could end up having the opposite of the intended effect, leading to
falling consumption.
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1.5.4 Can LSAPs Be Stabilizing? Endogenous QE Rules and
Determinacy

The results above show that, under the right financial conditions, QE can move
output and inflation. A separate question is: can the central bank use QE to achieve
determinacy and stabilize the economy?

Suppose that the central bank conducts QE operations in a similar manner to
how it sets the policy rate. I study this by modifying the idiosyncratic demand factor
from eq. (1.19) so that it endogenously reacts to inflation:

dβt = −κβ
(
βt − φβππt

)
dt . (1.33)

To simplify, I assume this is the only demand factor. Further, I assume that the central
bank does not react to the output gap (φx = 0). This will imply that the model moves
towards the region of indeterminacy for intermediate to high levels financial frictions.
However, by choosing φβπ > 0, it is possible to re-establish determinacy.

Figure 1.13 shows how the determinacy condition varies with different levels of risk
aversion (a) and QE responsiveness to inflation (φβπ). When risk aversion is very low,
the model is determinate for all values of φβπ. Moreover, changes in the responsiveness
to either inflation or output have no effect on the determinacy condition (the value
of the unstable eigenvalues). As risk aversion increases, the baseline model with no
endogenous QE responses quickly moves towards the region of indeterminacy. But
allowing for a stabilizing QE policy that reacts to inflation (φβπ > 0) moves the
model back towards the region of determinacy. For strong enough responses of QE
to inflation, the model regains determinacy.

Intuitively, an endogenous QE rule works by picking up the slack left by conven-
tional policy. When financial markets are healthy, a standard Taylor rule is stabilizing.
As financial frictions increase, the pass-through of conventional policy deteriorates.
If this is the only policy rule, then eventually the model becomes unstable. However,
as seen above, QE becomes more effective as financial frictions increase. Hence, just
as conventional policy is failing, the endogenous QE rule becomes more and more
effective.

1.5.5 Optimal Policy

A full treatment of a planner’s optimal policy problem is beyond the scope of this
paper. Allowing for the central bank to choose a path of the policy rate that differs
from the Taylor-type rules considered in this paper will in general lead to bond prices
that are not affine functions of the state variables. Instead, I consider a simpler
optimal policy problem. This section analyzes how the central bank would choose to
set the response to inflation φπ and the inertia term κr optimally, as a function of
financial market health (and further simplifies the problem by assuming no response
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Figure 1.13: Regions of Determinacy
Notes: the heatmaps show the region of determinacy (lighter regions, upper left) and inde-
terminacy (darker regions, lower right). The x-axis is the level of risk aversion a, and the
y-axis is the level of the parameter φβπ, which governs how strongly QE reacts to inflation.
The values correspond to the smallest unstable (real) eigenvalue; the model is determinate
when this is negative. The dotted black line delineates the region of indeterminacy from
determinacy.
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Figure 1.14: Optimal Response to Shocks
Notes: optimal policy coefficients as risk aversion increases. The planner weights are set
to wπ = 1, wx = 0.02. Panel A plots the optimal Taylor rule coefficient on inflation (φπ),
while Panel B plots the optimal inertia term (κr). The response Taylor rule coefficient on
output (φx) is set to 0. The dotted black line corresponds to the estimated value of risk
aversion.

to output: φx = 0). I assume a quadratic loss function for the planner, given by

min
φπ ,κr

E0

∫ ∞
0

e−ρt
(
wππ

2
t + wxx

2
t

)
dt

where wπ ≥ 0 and wx ≥ 0 are the weights that the planner assigns to inflation and
output, respectively. Appendix A.3.4 derives the general expression for this present
discounted value of future second moments of the jump variables in this class of
models.

Figure 1.14 plots the optimal coefficients φπ (Panel A) and κr (Panel B) as a
function of risk aversion. I suppose that the planner cares more about inflation
relative to output by setting the planner weights as wπ = 1, wx = 0.02.8

The optimal response to inflation is increasing (higher φπ) as arbitrageur risk
aversion increases (higher a). Further, optimal inertia is also increasing (lower κr).
Since monetary policy relies on the pass-through provided by financial markets, as the
risk-bearing capacity of arbitrageurs becomes disrupted, monetary policy efficacy is
weakened. Moreover, as financial market disruptions increase, the economy becomes
less stable and the output and inflation responses to these shocks increase. In order
to effectively stabilize the economy (minimize the volatility of inflation and output),
the optimal response becomes more agressive and longer-lasting.

8Note that in a full optimal policy experiment, the quadratic loss function is an approximation
to the welfare loss function, and the planner weights would be derived from this welfare function.
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1.6 Concluding Remarks
This paper studies conventional and unconventional monetary policy through the lens
of a general equilibrium “preferred habitat” New Keynesian model. When output
depends on both short- and long-term borrowing rates, the transmission of monetary
policy to the macroeconomy depends on imperfect financial markets. As a result,
standard monetary policy becomes less effective when financial markets are disrupted.
For the same reason, the efficacy of forward guidance is weakened. However, financial
crises open the door to other unconventional policies such as quantitive easing, which
can push down long-term rates and stabilize output and inflation.

The framework considered in this paper suggests promising avenues for future
work. The results relating financial health and the determinacy of the model are
important for understanding how policymakers can achieve macroeconomic stability.
The model suggests revisiting the empirical work studying the stability properties
of central bank policy rules, as the requirements for stability are state-dependent.
Furthermore, the findings provide a possible justification for macro-prudential poli-
cies. The model assumes that risk aversion is fixed, but in reality the risk-bearing
capacity of financial markets is endogenous. When this capacity is too low, the result
is macroeconomic instability. If investors in financial markets do not internalize this,
then there is an externality that can be addressed by policy. Extending the model
to allow for endogenous risk-bearing capacity is useful for understanding how such
macro-prudential policies should be carried out.

The model can also be extended to allow for a more realistic treatment of house-
hold borrowing. For example, the model does not allow for default risk, but in reality
the key borrowing rates for households will not be default-free. Moreover, a major
part of some QE programs was targeting mortgage-backed securities. The localiza-
tion results suggest that during financial disruptions, LSAP programs will be most
effective when they target borrowing markets in which households are most active.
But the sensitivity of real activity to different borrowing rates, and the stability of
this relationship over time, is an open empirical question.

This paper shows that LSAPs should be a tool in central bankers’ arsenal to sta-
bilize the economy during financial crises. However, the predictions of the model are
not only dependent on the health of financial markets but also sensitive to interac-
tions with the location of the purchases in maturity space, how long the purchases
last, how sensitive the real economy is to long-term rates, and the structure of the
other fundamental shocks in the economy. Policymakers are likely to face a great deal
of uncertainty about these factors, which raises the possibility that a better approach
may be to target specific long-term rates and allow for flexibility in the open-market
operations used to achieve these targets. More generally, the model should serve as
the basis for more quantitative analysis in order to design optimal policies.
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Chapter 2

Unbundling Quantitative Easing:
Taking a Cue from Treasury Auctions

2.1 Introduction
Demand for safe assets, and U.S. Treasuries in particular, plays a central role in the
macro-financial landscape.1 To offset the negative effects of the recent financial crisis,
central banks have implemented various large scale asset purchases, representing a
sharp increase in demand for these assets. The most salient of these is the quanti-
tative easing (QE) programs carried out by the Federal Reserve, which involved two
trillion dollars of Treasury security purchases. Apart from the massive scale of these
purchases, the Federal Reserve disproportionately bought long-term government debt,
thus departing from the practice of having the distribution of its portfolio close to
the distribution of outstanding debt (Figure 2.1).

While evaluating the program, Ben Bernanke, the chair of the Fed at the time,
observed, “The problem with QE is it works in practice but it doesn’t work in theory.”
Indeed, QE was successful in reducing short- and long-term interest rates, but the
mechanism behind this reaction is still not well understood. For example, standard
macro-financial models imply that the demand for assets such as Treasuries is deter-
mined solely by economic agents’ intertemporal consumption decisions, which does
not capture the sources of demand shifts initiated by the Fed. Although the workhorse
macroeconomic models cannot readily explain the workings of the QE, several expla-
nations have been put forth. For instance, QE could be effective because it signaled
to the markets that the Fed is serious about keeping short-term interest rates low
for a long time (forward guidance). Or, perhaps the Fed exploited frictions (limited
arbitrage and market segmentation) in the financial markets by purchasing securities
in a particular segment. Finally, by buying assets on a massive scale, the Fed could
signal a poor state of the economy which pushed interest rates down (“Delphic” effect;

1This chapter is based on my joint paper with Yuriy Gorodnichenko.
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see Campbell et al. (2012) for more details).
Future deployment of unconventional tools such as QE requires policymakers to

move beyond the “heat of the moment” policies, and hence a central question for
policymaking and academic research is which of these theories is the key channel.
But given the paucity of QE events, it has proven remarkably hard to provide clear
empirical evidence for each theory, as well as to assess the relative contributions of
the proposed channels. Indeed, many channels were likely active during QE rounds
and the reactions to QE were observed in a particular state of the economy, which
potentially confounds identification and interpretation.

The objective of this paper is to unbundle QE by focusing on one channel: market
segmentation and preferred habitat, which posits that certain investors have prefer-
ences for specific maturities. Our approach is to identify shifts in private demand
for Treasuries that mimic QE, but are independent of the other channels discussed
above. The key mechanism through which market segmentation and preferred habitat
forces operate is not the source of demand shifts, but rather how marginal investors
in the market for Treasury debt absorb these demand shocks. Therefore, the best way
to isolate and study the preferred habitat channel of QE is to identify unexpected
demand shifts that are unrelated to other channels of QE.

In order to construct demand shocks with these properties, we utilize the struc-
ture and timing of the primary market for Treasury securities. Similar to the em-
pirical monetary policy literature (e.g., Bernanke and Kuttner (2005), Gurkaynak
et al. (2007), Gorodnichenko and Weber (2016)), we look at high-frequency (intra-
day) changes in prices of Treasury futures in small windows around the close of
Treasury auctions to identify unexpected shocks to demand for Treasuries. The key
for identification is that all of the “supply” information (e.g. security characteristics
such as the maturity, as well as the amount of newly offered and outstanding secu-
rities) is known and priced in by the market. For small enough windows around the
close and release of the auction results, any price changes are reactions to information
regarding the demand for the Treasury securities from the given auction. We inter-
pret these price changes as demand shocks. Utilizing high-frequency changes in asset
prices along with the timing of Treasury auctions in this manner allows us to rule out
confounding factors and identify unexpected shifts in demand in a model-free way.

Treasury auctions have a number of properties that can help us understand the
workings of QE. First, although the auctions are not as large as the QE rounds,
the Treasury sells about $150 billion in notes and bonds per month in recent years.
Because the primary market for Treasuries is a convenient venue for investors who
wish to purchase large amounts of government securities, the release of Treasury auc-
tion results can reveal potentially large shifts in demand for Treasuries. The surprise
movements in the yields are reasonably large: a typical (one standard deviation) shock
is equivalent to a yield change of roughly 2 basis points, which is much larger than
similar changes on non-auction dates. For comparison, Chodorow-Reich (2014) esti-
mates that the first round of the QE program in the U.S. cut Treasury rates (five-year
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maturity) by 9 basis points following the announcement from Chairman Bernanke on
December 1, 2008.

Second, we document that demand shocks are driven by institutional investors
such as foreign monetary authorities, investment funds, insurance companies and the
like. Moreover, these shocks are not driven by changes in expectations about infla-
tion, output, or other broad market conditions. Therefore, variation during Treasury
auctions can help us to isolate the effect of idiosyncratic purchases in specific asset
segments on the level and shape of the yield curve, which is difficult to achieve by
examining only QE events.

Finally, in sharp contrast to QE events, Treasury auctions are frequent and infor-
mation is available back to 1979. This gives us an opportunity for crisper inference
and to study state-dependence in the effect of targeted purchases of assets (e.g., crisis
vs. non-crisis states). Because QE events were both infrequent and confounded with
a massive financial crisis, having a long time series is instrumental for understanding
how QE-like programs can work in normal times.

Importantly, because Treasury auctions for specific maturities are spread in time,
we can identify changes in demand for government debt of specific maturities. As a
result, we can trace how a shock in one part of the yield curve propagates to other
parts of the yield curve. In this sense, we have natural experiments which can mimic
targeted purchases of the Fed during QE programs. Hence, despite the apparent
distance between QE programs and unexpected movements in private demand dur-
ing regular Treasury auctions, this empirical strategy provides clean identification of
demand shifts and allows us to map out the impact of these shocks.

Although we do not have a structural interpretation of unexpected changes in
demand, we can still use shocks in demand for specific maturities of government debt
to investigate how these shocks spread to other maturities. Specifically, we examine
reactions across maturities through the lens of a formal preferred habitat theory of
the term structure. Building on Vayanos and Vila (2009), we present a series of
numerical simulations to provide qualitative predictions about how the location of
the shock in maturity space affects the relative change in the term structure and how
the reaction depends on the risk-bearing capacity of marginal investors. Informed by
theory, we test these predictions using daily changes in spot rates for government debt
in response to our measures of surprise movements in private demand at particular
maturities. We find evidence consistent with our theoretical predictions.

Our results suggest that QE programs can be effective in influencing interest rates
for debt at specific maturities when financial markets are disrupted. On the other
hand, QE programs are less likely to be effective at this task in normal times when risk-
bearing capacity of arbitrageurs is greater. In this case, demand shocks at a specific
maturity likely move the whole yield curve rather than a specific segment, and the
response may peak at a maturity other than the targeted maturity. Furthermore, if
the Fed attempts to use purchases of debt with specific maturities to shift down the
whole yield curve during a crisis, this exercise may be ineffective and the Fed should
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intervene at multiple maturities.
Furthermore, our results provide a quantitative sense of how much QE programs

could influence interest rates through the preferred habitat channel. Specifically, us-
ing our regression estimates, we show that the amount of government debt purchases
during the QE1 program should generate declines in yields similar to what was ob-
served in the data. In other words, given the reaction of yields to surprise movements
in private demand during Treasury auctions, we can account for most of the market
reaction to QE1 announcements. This result is consistent with the view that QE
worked mainly via market segmentation and preferred habit, and that the net effect
of other channels was small.

Our study contributes to several strands of previous research. First, we provide
new evidence to the literature examining theoretically (e.g., Vayanos and Vila (2009))
and empirically (e.g., Greenwood and Vayanos (2014), Krishnamurthy and Vissing-
Jorgensen (2012), Hamilton and Wu (2012b)) determinants of demand for government
debt. In particular, we add to the literature departing from the “expectations hypoth-
esis” (e.g., Kuttner (2006)) of the term structure of interest rates, and provide evidence
for alternative explanations such as limited arbitrage and market segmentation. Our
findings are complementary to Lou et al. (2013) and Fleming and Liu (2016) who
also utilize Treasury auctions to explore how supply shocks interact with these forces.
Second, we contribute to the rapidly growing literature studying the effects of QE
programs in the U.S. and other countries (see Martin and Milas (2012) for a survey)
and in particular the literature studying how market segmentation interacts with QE
programs (e.g. ?). While most of these studies focus on market movements around
QE announcements (e.g., Krishnamurthy and Vissing-Jorgensen (2012), Chodorow-
Reich (2014)), we instead focus on market movements around Treasury auctions that
can also give us an opportunity to investigate market reactions to unexpected changes
in demand for government debt not only in crisis but also in normal times. Third, our
paper is methodologically related to earlier studies (e.g., Kuttner (2001), Bernanke
and Kuttner (2005)) utilizing high-frequency data to construct surprise movements in
policy. Although we do not measure unexpected movements in policy, we construct
shocks in private demand that inform us about how markets can react to changes in
policy.

2.2 Data and Institutional Details
In this section we describe the primary sources of our data and present basic statis-
tics. First, we describe the U.S. Treasury auctions for U.S. government notes and
bonds (coupon-bearing nominal securities). Second, we describe the details of futures
contracts for these Treasury securities.
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2.2.1 Primary Market for Treasury Securities

The Treasury sells newly issued securities to the public on a regular basis through
auctions. Currently, 2-, 3-, 5- and 7-year notes are auctioned monthly. 10-year
notes and 30-year bonds are auctioned in February, May, August and November with
reopenings in the other 8 months. The frequency of auctions evolved over time. For
example, 30-year bonds were not issued between 1999 and 2006 and were issued only
twice a year between 1993 and 1999.

There are two types of bids: noncompetitive and competitive. Noncompetitive
bidders agree to accept the terms settled at the auction, and are typically limited
to $5 million per bidder. Competitive bidders submit the amount they would like
to purchase and the price (the interest rate) at which they would like to make the
purchase. For each competitive bidder, the submitted amount cannot be greater than
35% of the amount offered at the auction.

Auction participants include primary dealers, other non-primary brokers and deal-
ers, investment funds (for example, pension, hedge, mutual), insurance companies,
depository institutions, foreign and international entities (governmental and private),
the Federal Reserve (System Open Market Account), and individuals. These partici-
pants are classified into three groups. The first group is Primary Dealers (brokers and
banks) that trade on their accounts with the Federal Reserve Bank of New York. This
group typically buys the largest share of auctioned debt and is required to participate
in every Treasury auction. The second group is Direct Bidders: non-primary deal-
ers submitting bids for their own proprietary accounts. The third group is Indirect
Bidders who submit competitive bids via a direct submitter, including Foreign and
International Monetary Authorities placing bids through the Federal Reserve Bank
of New York.2

Additionally, the Treasury divides investors into the following classes: Investment
Funds (mutual funds, money market funds, hedge funds, money managers, and invest-
ment advisors); Pension and Retirement Funds and Insurance Companies (pension
and retirement funds, state and local pension funds, life insurance companies, casualty
and liability insurance companies, and other insurance companies); Depository Insti-
tutions (banks, savings and loan associations, credit unions, and commercial bank
investment accounts); Individuals (individuals, partnerships, personal trusts, estates,
non-profit and tax-exempt organizations, and foundations); Dealers and Brokers (pri-
mary dealers, other commercial bank dealer departments, and other non-bank dealers
and brokers); Foreign and International (private foreign entities, non-private foreign

2Additionally the Federal Reserve System purchases securities for its System Open Market Ac-
count (SOMA). Starting in 1997, the SOMA amount was changed from being listed within the
announced offering amount to being additions to the announced offering amount. That is, if the
Treasury auctions $15 billion in bonds and the Federal Reserve would like to purchase $1 billion in
the auction, the Treasury issues $16 billion in bonds. This change was made so that the Treasury
would be able to provide better information to the market about the amount of securities actually
available for sale to the public.
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entities placing tenders external of the Federal Reserve Bank of New York (FRBNY),
and official foreign entities placing tenders through FRBNY); Federal Reserve System
(the Federal Reserve Banks System Open Market Account (SOMA)); Other (repre-
sents the residual from categories not specified in investor class descriptions above).
Fleming (2007) describes in greater detail the breakdown by types and class of bid-
ders.

As detailed in Figure 2.2, there are four stages of a Treasury auction:3

1. Announcement : A few days before an auction, the Treasury releases all the per-
tinent information regarding the upcoming auction. An announcement includes
security information (maturity, CUSIP identifier, schedule of coupon payments,
etc.) as well as the amount offered, the bidding closing times, which class of
bidders can participate, and other information describing the rules of the auction.

Figure 2.3 presents a typical announcement. At this auction, the Treasury offers
$16 billion in 30-year bonds. This is a new auction (that is, the Treasury does not
reopen a previous auction) with the maximum award (that is, maximum allocation
to a bidder) of $5.6 billion.

2. Bidding : After the announcement, individuals and institutions may submit bids up
until the closing times of the auction. The announcement in Figure 2.3 stipulated
that non-competitive bids should be submitted by 12:00 p.m., while the deadline
for competitive bids is 1:00 p.m.

3. Results : Most Treasury note and bond auctions close at 1:00 p.m. Competitive
bids are accepted in ascending order (in terms of yields) after the auction closes
until the quantity meets the amount offered minus the amount of non-competitive
bids. All bidders receive the same yield as the highest accepted bid.4 Once the
auction closes and the winning bids are determined, the information regarding the
results is released immediately. Besides the winning yield, the Treasury announces
various aggregate statistics regarding the bidding. Beginning in the early 2000s,
auction results are released within minutes of the close of the auction (see Garbade
and Ingber (2005)).

Figure 2.4 presents a typical announcement about auction results, which cor-
responds to the auction announcement presented in Figure 2.3. The demand
(tendered) for the security was $33.3 billion, most of the bids came from pri-
mary dealers ($23.7 billion), $489.9 million was bought by the Federal Reserve
(SOMA), and a relatively low amount was bought via non-competitive bids ($14.8
million). The “bid-to-cover”, the ratio of all bids received to all bids accepted, was
3See Driessen (2016) for details on the design of Treasury auctions. Garbade (2007) provides

historical details regarding the manner in which the Treasury has conducted auctions.
4Between 1970 and 1992, Treasury did not charge a uniform price. Instead, allocation of bonds

was made at the individual yields stipulated by the bidders.
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$33.3/$16.0=2.08. The interest rate, corresponding to the winning yield, was set
at 3.75 percent per year.

4. Issuance: A few days after the close of an auction, the Treasury delivers the
securities and charges the winning bidders for payment of the security. At this
point the winning bidders can hold the security to maturity and receive coupon
payments, or sell the security on the secondary market.

Data from the announcements and results of every auction since late 1979 are
available from TreasuryDirect.gov. Data regarding amounts accepted and tendered
by bidder type (Primary Dealer, Direct, and Indirect) are available starting in 2003.
Additionally, the Treasury provides information regarding allotment by investor class
(Investment Funds, Individuals, etc) starting in 2000.

2.2.2 Treasury Futures

We use Treasury futures prices in order to construct market-based measures of de-
mand surprises occurring during Treasury auctions. Treasury futures are standardized
contracts that obligate the seller to deliver a valid Treasury security to the buyer at
a later date. Futures contracts for 30-year Treasury bonds were introduced in 1977,
followed later by 10-year, 5-year, and 2-year Treasury note futures. Treasury futures
currently trade on the Chicago Mercantile Exchange (CME), and intraday tick-level
data are available starting in 1995. The market for Treasury futures is deep: the
average daily volume of trade in 2012 was more than 2 million contracts with more
than $100 billion of notional value.

The futures contracts close in March, June, September, and December. We focus
on the “closest” contract, i.e. the contract that closes within 1-3 months as these are
by far the most traded. For example, in February we use the March expiry, while in
March we use the June expiry. Although contracts that close in a given month can
still be traded, the volume of trades is substantially lower.

Note that futures are not tied to any specific bond issue (CUSIP). Each futures
contract allows for a range of deliverable Treasury securities. 2-year futures contracts
allow for delivery of Treasury notes with remaining maturity between 1-year 9-months
to 2 years; 5-year futures allow for remaining maturity between 4-year 2-months to 5-
year 3-months; 10-year futures allow for remaining maturity between 6-year 6-months
to 10-years; and 30-year futures allow for delivery of Treasury bonds with remaining
maturity of at least 15 years.5 In principle any permissible Treasury security can

5The 30-year futures contract is also known as the “classic T-Bond” future. This contract orig-
inally allowed for delivery of bonds with remaining maturity between 15 years and 30 years. In
2009, the CME Group introduced “Ultra T-Bond Futures” which uses Treasury bonds with remain-
ing maturity of at least 25 years but no more than 30 years, and changed the range of deliverable
maturities to the classic contract to bonds with remaining maturity between 15 years and 25 years.
While the “Ultra” futures contract provides a better match for long maturities, the time series for
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be delivered into a futures contract, but as explained in Lauszweski et al. (2014) in
practice a so-called “cheapest to deliver” (CTD) security emerges for a given futures
contract. Although which Treasury security is used for payment can vary over time,
this variation happens at relatively low frequencies (weekly or monthly) and therefore
our analysis at high frequencies should not be materially affected by this peculiarity
of Treasury futures contracts.

Because futures cannot be matched to a specific CUSIP, we link a given auction to
Treasury futures using the maturity offered in the auction. For example, if the Trea-
sury auctions 7-year notes, we use the 10-year futures contract which allows delivery
of securities maturing in at least 6.5 years years and no more than 10 years. While
this linking introduces a mismatch in terms of maturities, the difference between the
maturity of matched futures contracts and the maturity of the auctioned government
debt is relatively small.

We use Treasury futures prices for a number of reasons. First and foremost,
Treasury futures provide a natural market-based measure of unexpected shifts in
Treasury prices. Further, Treasury futures trade on a standardized exchange rather
than over the counter. Another option would be to use “when-issued” prices of the
Treasury securities being auctioned. Although this option has the benefit of matching
perfectly the security being auctioned, the downside is that the when-issued market
systematically trades at lower yields than the winning yield at the auction (see e.g.
Fleming and Liu (2016)).6

2.2.3 Summary Statistics

In our analysis we focus on Treasury note and bond auctions. We exclude infla-
tion protected securities (TIPS), floating rate notes (FRNs), cash management bills
(CMBs), and callable bonds (the last of which was issued in 1984), because these se-
curities have different structural arrangements than simple coupon-bearing nominal
securities. We also exclude Treasury bills (zero-coupon securities with maturity one
year or less) because the QE programs mainly bought long-term nominal U.S. gov-
ernment debt.7 Further, Treasury futures contracts exist for 2-year, 5-year, 10-year,
and 30-year nominal Treasury notes and bonds, but not for shorter term bills.

Figure 2.5 plots the number of note and bond auctions per year in our sample,
broken up by term length. The number of auctions is relatively stable throughout
the 1980s to mid 1990s. In the face of declining government debt, the number of
auctions temporarily fell in the late 1990s and early 2000s, which also coincides with

the contract is relatively short and the volume of trades is small relative to the other longer-running
futures. For these reasons we use the “Classic T-Bond Futures” to ensure consistency over time.

6In 2015, the U.S. Department of Justice launched a probe to investigate whether various financial
companies (most of them are primary dealers of U.S. Treasury securities) participated in a conspiracy
to manipulate the “when issued” market for Treasuries.

7For example, between November 3, 2010 and June 29, 2011 (QE2), the Fed bought $750 billion
in Treasury securities, of which TIPS purchases were only approximately $26 billion.
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the termination of new issuances of 30-year bonds. After the Great Recession, the
number of auctions increased significantly.

Table 2.1 presents summary statistics for note and bond auctions between 1979
and 2015, and the subsample 1995-2015 for which we have intraday Treasury futures
prices. Since 1995, a typical offering is about $20 billion which generates more than
$50 billion in demand so that the bid-to-cover ratio is approximately 2.6. The largest
source of demand for Treasuries is primary dealers (their bid-to-cover ratio is ≈2)
but other types of bidders also account a large fraction of auction offerings. Primary
dealers purchase approximately 60 percent of auctioned Treasuries with the rest split
equally between investment funds and foreign buyers.

There is considerable variation in the offered amounts (standard deviation is ≈$9
billion) as well as the level and composition of demand (standard deviation for the
bid-to-cover ratio is ≈0.5 and the standard deviation of bid-to-cover ratio for primary
dealers is 0.35). In our sample of Treasury note and bond auctions, the median matu-
rity is 5 years. The winning yield (“high yield”) is on average close to 3.2 percent per
year with standard deviation of 1.9 percentage points. The distribution of submitted
bids tends to be fairly compressed: the high-median yield spread is approximately 3
basis points with standard deviation of 2 basis points. However, on some occasions
the spread can be as high as 10 basis points.8

2.3 Quantifying Demand Shocks
In this section, we describe how we measure the surprise movements in prices of
Treasure futures around Treasury auctions and document properties of these sur-
prises. Our key assumption is that within small enough windows around the close
and release of Treasury auction results, shifts in the prices of Treasury futures reflect
unexpected changes in market beliefs about the demand for Treasuries with a spe-
cific maturity. Indeed, since the Treasury announces an offered amount well before
an auction happens thus fixing supply, between the announcement and close of the
auction futures prices should move only in response to changes in demand conditions.
By focusing our analysis on a narrow window around the close time of an auction,
we likely isolate variation only due to unexpected shifts in demand for this specific
auction. As a result, we can identify a demand shock for a specific maturity and then
use this shock to trace the reaction of Treasury futures prices for the given maturity
and for other maturities as well as reactions for other parts of the financial market.

8Between 1999-2015 when the data is available, the Fed purchased Treasuries through SOMA
in approximately two thirds of auctions; when doing so they purchased an average of $2.3 billion
(standard deviation of $2 billion).
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2.3.1 Shock Construction

Let P (m)
t,pre, P

(m)
t,post be the futures prices before and after the close of the auction on date

t with maturity m = 2, 5, 10, 30. We measure the surprise movements in the futures
prices as:

D
(m)
t = logP

(m)
t,post − logP

(m)
t,pre. (2.1)

These surprises are computed for all maturities at date t irrespective of what maturity
is being auctioned on date t. In other words, we compute D(2Y )

t (surprise movement
in the 2-year Treasury futures) not only for auctions that offer 2-year government
notes but also for auctions that offer Treasuries with other maturities.

For all auctions, Pt,pre is the last price observed 30 minutes before the close of the
auction. For auctions taking place between 1995 and 1999, Pt,post is the first price
observed 1.5 hours after the close of the auction; after 2000, we use the first price
observed 30 minutes after the close of the auction. The Treasury began releasing
results much faster in the early 2000s, but in the 1990s auction results frequently
took over an hour after the close of the auction to be released. Unlike the close of the
auction, the time at which the results are released is not reported by the Treasury.
However, wire reports from Bloomberg allow for an upper bound on the release time.
Note that we use small symmetric windows around the events to eliminate predictable
movements in prices identified in Lou et al. (2013) and Fleming and Liu (2016).
Indeed, Fleming and Liu (2016) show that these predictable movements extend to
the hours before and after the auction, but near the close of the auction and release
of the results the price movements are reactions to the surprises regarding the demand
observed at the auction. Hence, the use of small intraday windows is key to identifying
unanticipated demand shocks.

Figure 2.6 plots the time series of our constructed shock measures, with summary
statistics presented in Table 2.2. Panel A of Table 2.2 reports summary statistics for
D

(m)
t shocks during auction dates (our main sample). The mean values of the shocks

are close to zero suggesting that surprises are not systematic and do not contain
predictable movements. The standard deviation of D(m)

t increases in maturity m.
To verify that these shocks are not spurious we also report (Panel B of Table 2.2)
movements in futures prices on non-auction days (for days without auctions, the same
“pre” and “post” windows are used as auctions in the same year). In all cases, the
variance of the shocks on auction dates is larger than on non-auction dates. This
pattern is consistent with auction results indeed influencing futures prices.

The table also reports moments for the zero lower bound (ZLB) and pre-ZLB
periods. The variability of surprises for short maturities is considerably smaller during
the ZLB period (December 2008 to the end of our sample) than outside the ZLB period
(1995 to December 2008). For longer maturities, the volatility is similar for ZLB and
pre-ZLB periods. However, these statistics mask important heterogeneity. As seen
in Figure 2.6, during the Great Recession the volatility of surprises was elevated but
then we observe strong compression for short maturities since the economy enters
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recovery. This finding is consistent with Swanson and Williams (2014) documenting
that while the Fed’s policies during the Great Recession compressed fluctuations of
short-term rates, the behavior of long-term rates is still relatively normal.

Note that the shocks are in terms of futures (log) prices. Although futures con-
tracts do not have a natural definition of yield, an approximate yield can be computed
using the Treasury securities delivered at the end of the contract. Using this approxi-
mation, a one standard deviation change in the log price of each contract is equivalent
to a 2.0 to 2.5 basis point change in yield for each contract.9

Additionally, Table 2.2 documents that price changes of Treasury futures strongly
comove across maturities, with the strongest correlations between adjacent maturities.
For example, on auction dates the correlation between D

(10Y )
t and D

(30Y )
t is 0.922

while the correlation between D(2Y )
t and D(30Y )

t is 0.672. Note that the correlations
are generally stronger between short (D(2Y )

t ) and longer maturities during the non-
ZLB period than during the ZLB period. At the same time, the comovement of D(5Y )

t ,
D

(10Y )
t and D(30Y )

t does not appear to be materially influenced by the binding ZLB.
These correlations suggest that shocks to a given segment of the maturity spectrum
generally affect not only prices of that particular segment but also prices in other
parts of the spectrum, but there is heterogeneity across time in the strength of the
correlation. This is a key result, which we explore in detail in Section 4.

2.3.2 Narrative Evidence

To provide a better understanding of what forces are behind these surprise movements,
we plot the 30-year Treasury futures price during two 30-year Treasury bond auctions
(Figure 2.7). The first is from an auction on August 11, 2011. Futures prices were
relatively stable in the lead up to the close of the auction, but after the close and
release of the auction results prices dropped sharply and immediately. The Financial
Times wrote:

“An auction of 30-year US Treasury bonds saw weak demand...bidders
such as pension funds, insurers and foreign governments shied away. ‘There’s
not too many ways you can slice this one, it was a very poorly bid auc-
tion.’ ”

The second is from December 9, 2010. This auction was a reopening of previously
issued 30-year bonds from the month prior. Once again, the futures prices are rela-
tively stable in the lead up to the close of the auction. After the auction closes and
results are released, prices immediately spiked up. The Financial Times wrote:

“Large domestic financial institutions and foreign central banks were big
buyers at an auction of 30-year US Treasury bonds on Thursday. ‘In-
vestors weren’t messing around...You don’t get the opportunity to buy

9For details on how to convert between Treasury futures prices and the yield on the corresponding
“cheapest-to-deliver” Treasury security, see Lauszweski et al. (2014).
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large amounts of paper outside the auctions and ‘real money’ were ag-
gressive buyers.’ ”

We interpret the two example auctions as follows. Before the auction closes, the
market information set consists of all the supply information, both for outstanding
securities as well as the amount on offer for the current 30-year auction. The 30-year
futures prices reflect beliefs about the expected path of short-term interest rates, in-
flation expectations, and demand for long-term Treasury securities. After the auction
closes and the results are released, the only update to the information set is the news
regarding the bidding that took place in the auction, which solely reflects demand
for Treasury debt. The change in the 30-year futures price reflects this unexpected
shift in beliefs about Treasury demand. The contemporaneous articles in the financial
press further suggest that the important driver of the demand shifts arise from foreign
and domestic institutional investors. The last example also highlights why auctions
can have important elements of price discovery: when investors have to purchase large
amounts of Treasuries to meet their needs, they may prefer to use auctions rather
than attempting to make substantial transactions on the secondary market. As a
result, auctions reveal new information about demand.10

2.3.3 Demand Determinants

Our assumption is that D(m)
t captures unexpected shifts in the demand for Treasuries.

We further hypothesize that these shocks are particularly driven by demand shifts
arising from institutional investors. Figure 2.7 and the corresponding reporting in
the financial press provided some narrative evidence in this direction. However, D(m)

t

is a market-based measure and hence is an equilibrium response to the underlying
shifts in demand. Because the mapping from shifts in demand to changes in futures
prices may be complex, it is important to establish that the market interpretation of
changes in demand is actually related to observable movements in demand.

One of the most commonly reported statistics in the financial press is the bid-
to-cover ratio. It is a natural measure of the demand at a given auction (the higher
is the bid-to-cover ratio, the higher is demand). The bin scatter plot in Figure 2.8
shows that the bid-to-cover ratio (after controlling for its four own lags) is a strong
predictor of our measure of demand shocks. Table 2.3 presents more formal evidence
by regressing our shocks on measures of demand reported at the auction:

D
(m)
t = α(m) + β(m)X

(m)
t + ε

(m)
t (2.2)

This specification is estimated separately for auctions corresponding to the Treasury
futures maturity groups in columns (1)-(4). For example, column (1) restricts the

10We could not find any reference in the press about monetary policy (or leaked information about
future monetary policy) being a source of unexpected movements. Consistent with this observation,
we do not find any statistical power of surprise movements in Treasury futures around Treasury
auctions to predict future monetary policy.
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sample to include only auctions of 2-year notes and column (2) restricts the sample
to include only auctions of notes with (2,5] year maturity. Column (5) reports results
when we pool across maturities and impose that β(m) is the same across maturities m.
To facilitate the comparison of the results, we standardize D(m)

t in these regressions
to have zero mean and unit variance.

Panel A of Table 2.3 estimates equation (2.2) using the current bid-to-cover ra-
tio as well as four lags of the bid-to-cover ratio (winsorized at the 1% level). These
coefficients may be interpreted as the reaction of D(m)

t surprises to an innovation in
the bid-to-cover ratio, and correspond to the slopes of the regression lines in Figure
2.8. The results show that the bid-to-cover ratio is positively associated with D

(m)
t

and the effect of an increase in the bid-to-cover ratio is statistically and economically
significant. For example, a one standard deviation (0.5) increase in the bid-to-cover
ratio (after controlling for its own four lags) in a Treasury auction for 30-year bonds
raises the price of the 30-year Treasury futures by 2.119 × 0.5 = 1.06 standard de-
viations (this corresponds to a 0.26 log point increase in the price of the Treasury
futures or an approximate change of 2.5 basis points in the yield).11

Panel B repeats the regressions from Panel A, but explicitly decomposes the bid-
to-cover ratio into “expected” and “surprise” components. For these regressions, we
first estimate a univariate AR(4) model of the bid-to-cover ratio, separately for each
maturity group. We then construct the fitted (expected) and residual (surprise)
values of the bid-to-cover ratio, and regress D(m)

t on these expected and surprise
components. We find that the variation in our demand shocks is determined by the
surprise component of the bid-to-cover ratio, and is unaffected by expected movements
in the bid-to-cover ratio.

In order to assess sensitivity of futures prices to changes in demand by bidder type,
Panel C reports estimates of equation (2.2) using the bid-to-cover ratio of Indirect
Bidders, Direct Bidders, and Primary Dealers. The sensitivity of surprises D to
unexpected demand of indirect bidders increases with maturity. For example, a unit
increase in the bid-to-cover ratio for indirect bidders raises the price of 2-year Treasury
futures by 2.7 standard deviations and the price of 30-year Treasury futures by 8.5
standard deviations. For direct bidders, the sensitivity is highest for short maturities.
The sensitivity to changes in the bid-to-cover ratio coming from primary dealers for
2- and 5-year Treasury futures is smaller than the sensitivity for 10-year Treasury
futures and greater than the sensitivity for 30-year Treasury futures. When we pool
across maturities, demand of direct and especially indirect bidders generates ceteris
paribus more variation in futures prices than demand of primary dealers.

Panel D uses additional investor allotment data from the Treasury to break down
the amount accepted by types of bidders: Investment Funds, Foreign, Dealers, and
Miscellaneous. Since the fractions by group add up to one, we set Dealers as the
leave-out category. The estimated coefficients suggest that as the fraction accepted

11We found that controlling for other variables (e.g., policy uncertainty constructed in Baker et al.
(2016)) in equation (2.2) does not materially change our estimates.

74



for investment funds and foreign buyers increases, D(m)
t increases too. The coefficients

for the Miscellaneous category are generally smaller and less robust.
These results indicate that, indeed, a key determinant of D(m)

t surprises is move-
ments in demand conditions as proxied by the bid-to-cover ratio. Furthermore, we
observe that the demand from institutional investors is important in accounting for
variation in D

(m)
t . In subsequent analyses, we will use this strong relationship to

instrument D(m)
t with unexpected movements in the bid-to-cover ratio so that for our

estimates we exploit variation due to changes in demand rather than variation due
to fluctuations in market conditions.

2.3.4 Comovement Across Markets

We now turn to analyzing how our demand shocks for Treasuries propagate across
other financial markets. Given the relatively high degree of correlation across our
demand shocks, in the following analysis we will find it useful to compress D(m)

t into
a single summary statistics: the first principal component of D(m)

t . This time series
captures the general movement of the yield curve in response to demand shocks for
government debt with various maturities. The first principal component explains 88
percent of variation in our shock measures. We denote the first principal component
by Dt, which has zero mean and unit variance.

We measure the impact of demand shocks on other asset prices by running simple
bivariate regressions:

yt = γ + φDt + ut (2.3)

where yt is the change in the price or yield of some asset on auction date t. Where
available, we use intraday changes within the same time window as our shocks Dt.
However we also examine changes at the daily frequency, partly due to data limitations
but also because daily changes may pick up responses in other asset markets that
don’t occur immediately. A strong correlation between Dt and yt signals either that
Dt and yt have a common determinant (e.g., changes in inflation expectations alter
the behavior of bids in Treasury auctions and change prices of inflation swaps) or that
yt is a channel of propagation for Dt shocks (e.g., unexpected prices in an auction
result in repricing of Treasuries in the secondary market). To preserve space, we
focus on the OLS estimates of equation (2.3) and report very similar instrumental
variable estimates (using unexpected changes in the bid-to-cover ratio as instrumental
variables) in Appendix Table B1.

Panel A of Table 2.4 reports results for debt markets. The dependent variable
in the first two rows are the intraday change in the Exchange Traded Funds (ETF)
“TLT” and “SHY”, which track Barclays Capital U.S. 20+ Year and 1-3 Year Treasury
Bond indices, respectively. The third row of the panel is the intraday change in the
ETF “LQD”, which tracks the iBoxx Liquid Investment Grade Index. The coefficient
should be interpreted as the impact in log points of a one standard deviation change
in Dt. In all cases we observe a strong reaction to the Treasury demand shock,
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accounting for more than 50 percent of variation observed in these ETF prices during
the short windows around the close and release of the Treasury auction results.

The final row reports the results for the daily change in corporate bond yields, as
measured by Moody’s Aaa corporate yields. Consistent with the intraday results, the
negative coefficient implies that an increase in the price of Treasury futures (which
means that the yield on Treasuries falls) is associated with a decrease in the Aaa
bond yields. Specifically, a one standard deviation shock to Dt decreases the Aaa
bond rate by 2.3 basis points. However, using daily rather than intraday changes as
the dependent variable leads to a decline in R2s, which underscore the benefits of
using intraday data.

As expected, yields in the secondary market react strongly to the demand shock.
Furthermore, this reaction is persistent in spite of the fact that our shocks are con-
structed from intraday movements. Figure 2.9 plots the contemporaneous reaction of
10-year Treasury spot rates (top panel) and the Aaa corporate bond yields (bottom
panel) to our shocks Dt, as well as the reactions up to 60 days in the future. The
reaction remains strongly statistically significant nearly 1 month later, while the point
estimate is remarkably stable even 2 months later.

Panel B of Table 2.4 reports results for equities. Rows 1 and 2 report the results
for the intraday change in ETFs tracking the S&P 500 and the Russell 2000 indices.
Rows 3 and 4 are for the daily changes in these indices. Although the estimated slope
is generally negative, the quantitative significance of shocks on equities is small: these
shocks account for a tiny share of variation in equities.

Panel C of Table 2.4 presents results for inflation expectations and commodities.
Rows 1 and 2 report the results for the daily change in inflation expectations implied
by inflation swaps at the 10-year and 2-year horizon. We observe that demand shocks
for Treasuries do not generate significant movements in inflation expectations. To
explore the robustness of this finding, we examine price reactions of two additional
assets which are often used to hedge against inflation. The dependent variable in row
3 is the intraday change in the ETF “GLD,” which tracks the price of Gold Bullion.
Row 4 reports results for the daily change in the S&P Total Commodity Index. For
neither of these variables do we find a significant correlation with Dt. To further
explore sensitivity of inflation expectations to demand shocks Dt, we plot reactions
of inflation swap rates at all available maturities in Appendix Figure B1. We find
that the change in the inflation expectation “yield” curve exhibits little reaction to
Dt. We find a similar lack of sensitivity of inflation expectations when we use specific
D

(m)
t instead of summary series Dt. These results suggest that the demand shocks

we measure at auctions are not driven by some underlying change in inflation expec-
tations. Moreover, these shifts in demand do not propagate to changes in inflation
expectations. This result is intuitive, as changes in demand of institutional investors
or foreign monetary authorities are unlikely to generate future fluctuations in the rate
of U.S. inflation.

Panel D of Table 2.4 reports results for various bond spreads and credit default
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swaps. The first row reports results for the daily change in the Moody’s Baa-Aaa
corporate yield spread. Rows 2 and 3 use daily changes in two CDS indices from
Credit Market Analysis (CMA) that track the automotive industry (a highly cyclical
industry) and banks (a proxy for the financial sector). These three measures proxy for
expectations about future output and market conditions. We find that surprise move-
ments Dt have no tangible effect on these measures, consistent with the view that Dt

shocks do not capture superior information of Treasury auction bidders about future
recessions and the like. In row 4, we document that Dt shocks are not associated with
VIX (a measure of market perceptions about future volatility). Hence, it is unlikely
that there is a common force that moves Dt and volatility or that Dt shocks propagate
via volatility. Finally, we find (row 5) that Dt shocks are not significantly related to
the 3-month LIBOR-Overnight Index Swap (OIS) spread (a measure of short-term
liquidity risk) so that liquidity fluctuations are unlikely channels or determinants of
Dt. In short, as with the case of inflation expectations, these null results suggest that
our demand shocks are not being driven by changes in expectations regarding output,
liquidity, default risk, or volatility

The results of Tables 2.3 and 2.4 allow for some broad observations. First, given
our high-frequency approach and the structure of Treasury auctions, we know that
our constructed shocks are only driven by new information regarding the demand side
of the market. Second, these shifts are largely driven by shifts in the demand that
arises from institutional investors. Third, as expected these demand shocks from the
primary market propagate not only to the secondary market, but also to the corporate
debt market. Finally, these demand shifts are not driven by some underlying shift in
macroeconomic expectations (flight to quality, inflation expectations, etc.) that may
move demand for Treasuries at all maturities. But it still remains the case that a
variety of factors can generate movements in D(m)

t and one should not interpret D(m)
t

as structural shocks.12 Despite this limitation, the properties of D(m)
t shocks allow

us to study how unexpected demand interventions at specific maturities propagate to
other maturities.

2.4 Channels of Treasury Demand Shocks

Although demand shocks D(m)
t strongly comove with one another, the responses are

not uniform across maturities. To see the heterogeneity in reactions, we use daily
changes in zero-coupon spot rates as constructed in Gurkaynak et al. (2007), which

12To highlight this caveat, we plot sensitivities for select asset prices estimated over rolling windows
in Figure B2. The sensitivity of LQD prices, Aaa interest rates, and Baa-Aaa spread is relatively
stable over time. On the other hand, the sensitivity of S&P500 flips sign from positive in the late
1990s to generally negative since the early 2000s, which is consistent with Campbell et al. (2014).
Although we do not have long-time series of inflation expectations (or assets used for hedging against
inflation), we observe that during the Great Recession in the U.S., inflation expectations and Dt

moved in opposite directions while in normal time these two series are approximately uncorrelated.
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provide more granularity to the analysis (recall that we have only four maturities in
Treasury futures contracts while the yield curve utilizes information for many more
maturities but is available only at the daily frequency). Figure 2.10 plots “responses”
of changes in the yield curve for auctions on two dates. On the first date (August
11, 2011), there was unexpectedly weak demand (as measured by changes in futures
prices) during an auction of 30-year Treasuries. We observe that, although the whole
yield curve shifted up, the strongest reaction was at long maturities. On the second
date (February 6, 2007), there was an auction of 3-year government notes, and demand
during this auction was unexpectedly strong. The whole yield curve shifted down, but
the strongest reaction was at the 8-year maturity. These two cases illustrate that the
“propagation” of demand shocks across maturities does not amount to simple upward
or downward shifts.

This raises the question: to what extent do Treasury demand shocks have local
effects? In other words, does the location of the demand shock in maturity space
matter? And are the impacts state-dependent? The two auctions in Figure 2.10
provide suggestive evidence that the location can in fact matter. In order to better
characterize the impact of these demand shocks, we now examine the impact on the
term structure of Treasury rates through the lens of the preferred habitat model of
investor demand. The key idea is the existence of “clientèle” investors who have
idiosyncratic demand for Treasuries of specific maturities. The other side of the
market are risk-averse arbitrageurs, who smooth out these demand shocks. Using a
version of the model from Vayanos and Vila (2009), we create qualitative predictions
of what happens to the term structure when hit with demand shocks to various parts
of the maturity space during different economic regimes.

2.4.1 Preferred Habitat – Numerical Exercise

In our numerical exercises, we consider a “three-factor” version of the Vayanos and
Vila (2009) model consisting of the instantaneous rate, and two demand factors that
are otherwise equivalent, but are located in the “short” and “long” ends of the maturity
space. We then solve the model and study the impact of each demand shock. A key
element of the model is the level of risk aversion of the arbitrageurs, hence we study
the reactions as risk aversion increases from very low to very high. We consider the
case where the “short” shock is concentrated at the 3-year maturity, while the “long”
shock is at 20 years (corresponding to the average length of short-term and long-term
auctions in our empirical section). See Appendix A for details regarding the model
and parameterization.

Figure 2.11 shows the change of the term structure in response to the short (top
panel) and long (bottom panel) demand factors, as the risk aversion of arbitrageurs
increases from low (lighter lines) to high (darker lines). In the case of low risk aversion,
the impact is very similar: rates fall across the entire term structure, but the impact
peaks at the short end of the yield curve, then drops off as the maturity increases.
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The only difference between the impacts of the short and long shocks is that the long
shock has a larger impact; but the shape of the response is nearly identical.

However, as risk aversion increases, the responses become quite different depending
on the location of the demand shock. A shock to the short demand factor sharply
decreases short-term rates; but this impact dies off quickly and even turns slightly
positive at the long end of the term structure. On the other hand, the long demand
factor decreases both short and longer term rates, but the impact is much stronger
in the long end of the term structure.

These results confirm that some of the findings of Vayanos and Vila (2009) for the
limiting cases of no risk aversion and infinite risk aversion also hold for intermediate
cases of risk aversion. As they explain, the intuition for these results is as follows:
when arbitrageurs are perfectly risk-neutral, demand shocks have no impact as the
expected path of the instantaneous rate is the only determinant of the term struc-
ture. As arbitrageurs become somewhat risk averse, shocks to the instantaneous rate
continue to be much more influential than demand shocks. But now arbitrageurs are
concerned about instantaneous rate risk. Every bond is sensitive to instantaneous
rate risk, and the market price of this source of risk is determined in equilibrium
by the portfolio allocations of arbitrageurs. Because demand shocks from preferred
habitat investors cause changes in these portfolios, even in cases of very low risk
aversion these demand shocks do affect the term structure by altering the price of
instantaneous rate risk.

What is the impact of the location of the demand shock? Consider an increase
in preferred habitat demand. Regardless of the location of the shift, this causes
arbitrageurs to sell bonds, reducing their exposure to instantaneous rate risk. Hence
they require lower expected returns to hold bonds, pushing down rates. The location
of the demand shock determines which bonds arbitrageurs sell; since these bonds
have different sensitivity to instantaneous rate risk, this determines the magnitude
of the overall reduction in rates. But regardless of the location of the demand shift,
the bonds that respond the most are those most sensitive to instantaneous rate risk,
which depends only on the stochastic properties of the instantaneous rate and demand
shocks. In other words, when arbitrageurs have low risk aversion, the relative impact
of short and long demand shocks to the term structure is roughly the same; only the
overall size of the impact is affected by the location of the demand shock. In our
calibration, for low values of risk aversion this leads to the peak impact occurring
around m ≈ 4. This could be lower or higher with different parameterizations, but
remains largely independent of the location of the shock in maturity space.

As arbitrageur risk aversion increases, demand shocks become more prominent as
additional sources of risk. Arbitrageurs try to limit their exposure to these sources
of risk, leading to less propagation from the location of the demand shock to other
parts of the term structure. This implies that the term structure response is more
localized to each demand shock as arbitrageurs choose not to integrate bond markets
across maturities. For example, following a demand shock for short-term bonds, all
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else equal arbitrageurs would like to buy longer term bonds to hedge the risk arising
from the short demand shock, leading to upward pressure on prices (and downward
pressure on spot rates). But this changes their exposure to the long demand shock
as well, and this countervailing force leads arbitrageurs to sell sufficiently long-term
bonds. As seen in the top panel of Figure 2.11, when risk aversion is sufficiently high
this countervailing force can become strong enough to lead to an increase in rates for
very long-term bonds.

In summary, this illustrative exercise indicates several qualitative predictions.
When risk aversion is low, the impact of an increase in demand for either short-
term or long-term debt causes a decrease in rates everywhere. Moreover, while the
magnitude may differ, the response to both demand factors are similarly shaped,
peaking at intermediate maturities and declining for very long-term maturities. Con-
versely, when risk aversion is high, demand factors have a stronger local component:
increases in demand for short-term debt will have a maximal impact on shorter-term
maturities, while long-term shocks will peak at long-term maturities. Additionally,
the response of long-term (short-term) rates to long (short) demand shocks increases
as risk aversion increases, respectively. Finally, although the magnitude of responses
is more ambiguous, when risk aversion is high we expect the response of short-term
rates to short demand shocks will be larger than to long demand shocks; and vice
versa for responses of long-term rates.

2.4.2 Empirical Results

Comparing the theoretical results from Figure 2.11 with Figure 2.10 suggest that, at
least during the auction in Panel A, the preferred habitat model with relatively high
risk aversion does a good job explaining the response of the term structure; Panel B
is more ambiguous. We now take a more rigorous approach to testing the predictions
of our numerical exercise.

A key variable is a measure of risk aversion of arbitrageurs. We proxy this using the
measure of financial crises in the United States from Romer and Romer (2017).13 The
crisis index is a continuous measure derived from narrative sources to identify periods
of financial distress (higher values correspond to periods of more extreme financial
crisis). Besides identifying financial distress during the recent financial crisis, the
measure also identifies periods of distress in 1986, the early 1990s, and 1998 (Figure
B3 in the Appendix).

13He and Krishnamurthy (2013), Kyle and Xiong (2001b) and others show how risk aversion
can be endogenously higher in times of crises. Note that in contrast to other popular measures of
financial stress (e.g., the Federal Reserve Board staff’s Financial Stress Index), the Romer-Romer
index does not use yields on Treasuries (outcome variables in our excercise) to identify stress/non-
stress periods. Additionally, rather than using a narrative measure of financial distress, we used a
market-based proxy for arbitrageur risk aversion. We define high risk aversion periods as those in
which the “intermediary capital ratio” described in He et al. (2016) is low (Appendix Figure B4),
and find similar results.
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In order to measure the impact of demand shocks on the entire term structure,
we estimate the following regression equations

∆R
(m)
t = Ct

(
α(m,H) + β(m,H)D

(m′)
t

)
+ (1− Ct)

(
α(m,L) + β(m,L)D

(m′)
t

)
+ ε

(m)
t (2.4)

for each maturity m = 1, . . . , 30. ∆R
(m)
t is the daily change in the zero-coupon spot

rate for the given maturity as measured by Gurkaynak et al. (2007). Ct is an indicator
variable that is equal to 1 when the Romer and Romer (2017) measure of financial
crisis is non-zero. The coefficients β(m,L) capture the impact of demand factor D(m′)

t

at maturity m′ (our normalized intraday futures price shocks) during periods of low
risk aversion; similarly β(m,H) capture the impact during periods of high risk aversion.
While our shock measure is constructed at a higher intraday frequency, in order to
capture the full extent of how markets absorb these shocks we prefer to use these
daily estimates of the yield curve. To the extent that shocks are absorbed completely
within smaller windows than a day, using daily changes as an outcome variable simply
adds noise to our estimates, but shouldn’t result in any bias.

A straightforward way in which to test the predictions of the preferred habitat
model is to estimate equation (2.4) in two separate subsamples: i) days with short
auctions; ii) days with long auctions. In our baseline regression we break up auctions
into 2-7 years and 10-30 years. We choose the 10-year cutoff for long vs. short
rather than 30-year in order to have a more balanced sample; the results are robust
to choosing different cutoffs.14 Breaking up the auctions in this manner allows us to
more closely pinpoint the location of the demand shock in the maturity space, and
ties closely with the numerical exercise above.

For our measure of demand shocks D(m′)
t on the right-hand-side of equation (2.4),

in our baseline results we take the same approach above and match each auction with
the (normalized) futures surprises of closest maturity (e.g. for 5-year auctions, use
the 5-year futures surprise). The β coefficients should be interpreted as the response
of spot rates for maturity m to a one standard deviation demand shock at maturity
m′ on the day when maturity m′ is auctioned.

Figure 2.12 plots the low and high coefficients from the two subsamples (Appendix
Figure B5 plots p-values testing for equality of the coefficients). During periods of
low risk aversion, the impact of short and long demand shocks on the term structure
closely mirror one another. Both shocks decrease spot rates across the entire term
structure, and are hump-shaped. But when risk aversion is high, the short and long
demand shocks have differential impacts. Both shocks exhibit stronger local effects.
For the long shock, the impact is no longer hump-shaped as the impact continues to
remain large as the maturity increases. The magnitude is also considerably larger
than the corresponding responses during periods of low risk aversion. The impact
of the short demand shock peaks at intermediate rates and then begins declining;

14Consistent with our exercise in Section 4.1, the average maturities of “short” and “long” auctions
are 3 and 20 years respectively.
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further, the magnitude is larger than the corresponding response in periods of low
risk aversion. Finally, when risk aversion is high, the response of short-term rates to
short demand shocks is larger than their response to long demand shocks; and vice
versa for the response of long-term rates.15

These results confirm the key predictions of our numerical exercise: during periods
of low risk aversion, short and long demand shocks have relatively similar impacts;
and these impacts peak at short to intermediate maturities. During periods of high
risk aversion, the impacts are more localized: the impact of short demand shocks peak
at short maturities, while the impact of long demand shocks peaks at the long end
of the term structure. This local effect is particularly strong for long-term demand
shocks. We also find that the peak responses for both short and long demand shocks
are larger during periods of high risk aversion than during periods of low risk aversion.

As discussed above, the shocks D(m′)
t are equilibrium reactions of market prices to

changes in demand for Treasuries. As a result, these reactions may depend on market
conditions (specifically on whether financial markets are disrupted) so that measured
responses combine reactions to changes in demand and to how futures prices react
to changes in demand. To isolate the effect of changes in demand for Treasuries,
we employ unexpected changes in the bid-to-cover ratios for Treasury auctions as
instruments for D(m′)

t in equation (2.4). That is, we instrument Ct × D
(m′)
t and

(1−Ct)×D(m′)
t with Ct× bst and (1−Ct)× bst , where bst is the surprise movement in

the bid-to-cover ratio for a Treasury auction at date t (as in Panel B of Table 2.3).
This approach permits state-dependent mappings from demand shocks to futures
prices. Consistent with our earlier results, we find that the unexpected changes in
the bid-to-cover ratios are strong instruments for Dt (first-stage F-statistics above
10). The IV estimates of estimated reactions of spot rates (Figure 2.13) are similar
to the OLS estimates (if anything, the responses during periods of financial distress
are larger in magnitude, although confidence bands are wider) thus reassuring that
our shocks Dt are good measures of the underlying demand shifts and hence the OLS
estimates are capturing the response of the yield curve to these demand shifts.

As a robustness check, rather than use demand shocks as identified by intraday
Treasury futures changes, we can also use the surprise component of the bid-to-
cover ratio directly as a proxy of demand shocks from the auctions themselves. We
re-estimate equation (2.4) using bst in place of our demand shocks. Although the
surprise component of the bid-to-cover ratio is not as clean a measure of demand
shocks, this allows us to check the robustness of our results, as well as to expand the

15A downside of using the yield curve data from Gurkaynak et al. (2007) is that idiosyncratic
changes along portions of the yield curve may be smoothed out. To address this concern, we repeat
our empirical exercise but use security-level yield changes in the secondary market for Treasuries.
In place of the Gurkaynak et al. (2007) rate changes, we use the daily changes in the yields for
Treasury notes and bonds in the secondary market from CRSP. We can no longer trace out changes
to zero-coupon rates at all points along the maturity space, but by grouping together Treasuries of
similar maturities we can test for local demand shocks more directly. Appendix Table B3 confirms
the findings from Figure 2.12.
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sample period to 1979-2015. Appendix Figure B7 plots the results using the same
sample 1995-2015 as in Figure 2.12, while Appendix Figure B9 uses the entire sample
1979-2015 (p-values are in Appendix Figures B8 and B10, respectively). As expected,
the standard errors are a bit wider, but the qualitative responses are generally similar.

We also tried a number of additional empirical exercises, and find our results are
robust to a variety of different specifications, including different cutoffs for short-term
and long-term auctions and using different subsamples.16

2.5 Implications for QE
The responses of the yield curve to unexpected movements in demand during Treasury
auctions offer several lessons for how one should understand the workings of QE
programs implemented by the Fed and other central banks. For example, if the Fed is
trying to decrease long-term Treasury rates relative to shorter-term rates, our results
suggest that QE policies that directly purchase long-term Treasuries should be highly
effective during financial crises. But if the Fed is trying to move the entire term
structure of interest rates, during periods of high financial distress the Fed will have
to be active in purchasing Treasuries throughout the yield curve. Thus, programs
in spirit of “Operation Twist” may be an option because a central bank actively
intervenes in multiple segments of the yield curve during a crisis.

As we move away from the most recent crisis, there have been discussions (see
Blinder et al. (2016)) about whether central banks will continue to use unconventional
policies in the future. Our results suggest that the impact of QE-style policies during
non-crisis periods will likely differ greatly from those observed during the crisis. To the
extent risk aversion is low and debt markets are more integrated, QE-type programs
that attempt to move long-term rates relative to short-term rates may fail. During
“normal” times of low risk aversion, the overall response of interest rates is less tied
to the location of the shifts in demand. While we still expect targeted purchases of
long-term Treasury debt from the Fed to reduce long-term rates, the largest declines
may be for shorter term maturities that are not directly purchased by the Fed.

16Dropping auctions that occurred during the weeks of QE announcements leads to nearly identical
results. In a handful of cases, auctions occur on the same days as FOMC announcements. Although
our intraday windows do not overlap with the FOMC announcements, we also re-did our regressions
dropping these dates, which leaves our results unchanged.
We additionally highlight one more robustness specification which more closely matches our nu-

merical exercise. We take the first two principal components of our intraday shocks, D`
t and Ds

t ,
rotated such that Ds

t is uncorrelated with D(30Y )
t and normalized to have zero mean and unit vari-

ance. The first two principal components explain 97 percent of variation in our shocks. For long-term
auctions the shock is D`

t ; similarly short-term auctions use Ds
t . In this way we have two distinct

“short” and “long” demand factors, which more closely matches our numerical exercise. Appendix
Figure B11 plots these results (p-values in Appendix Figure B12), and finds very similar results as
the baseline specification. The only difference is the response of long-term rates to short demand
shocks falls more closely to zero.
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Interestingly, our results suggest that the Fed may have a menu of options in
terms of where it can intervene in the maturity space to hit the yield at a target
maturity. For example, suppose the Fed wishes to decrease 30-year Treasury rates by
purchasing $30 billion of notes and bonds. What is the benefit to targeting purchases
in the longer end of the term structure? If the economy is not in a crisis and financial
markets are healthy, the answer is not much. Given the size of a typical Treasury note
auction in recent years, these $30 billion purchases represent a unit increase in the
bid-to-cover. Our estimates imply that if the purchases were for short-term securities
(2-7 years), we would expect to see an increase in our normalized demand shocks of
1.43 (standard error 0.19) and an ensuing decrease in secondary market 30-year rates
of -1.84 basis points (0.36). If instead these purchases were of long-term securities
(10-30 years), we would expect to see an increase in our normalized demand shocks of
1.90 (0.22) and a corresponding decrease in secondary market 30-year rates of -3.03
basis points (0.48). However, if these purchases took place in a period of financial
turmoil, the purchases in the long end of the term structure relative to the short end
become more effective. In this case, short-term security purchases lead to an increase
in our normalized demand shocks of 1.39 (0.31) and a decrease in secondary market
30-year rates of -2.78 basis points (0.75). But long-term purchases lead to increase in
our normalized demand shocks of 2.26 (0.38) and an ensuing decrease in secondary
market 30-year rates of -7.22 basis points (0.86).

We can also use our results to assess what fraction of the market response to QE1
can be explained directly by shifts in demand for Treasury debt arising from the Fed.17

To summarize the timeline of the Fed’s actions, there were five announcements during
QE1, four of which mentioned purchasing long-term Treasury securities. November
25, 2008: the Fed announced purchases of $100 billion in GSE debt and $500 billion in
MBS. December 1, 2008: Chairman Bernanke stated that the Fed could purchase long-
term Treasuries. December 16: the FOMC announced possible purchases of long-term
Treasuries. January 28, 2009: the FOMC announced it is ready to expand agency
debt and MBS purchases, and to begin purchasing long-term Treasuries. March 18,
2009: the FOMC announced it will purchase $300 billion in long-term Treasuries,
along with an additional $750 billion in agency MBS and $100 billion in agency debt.

Using small intraday windows around the time of the four announcements which
mentioned Treasury purchases, Chodorow-Reich (2014) estimates the 5-year Treasury
rate reacted by -9.2, -16.8, 3.1, and -22.8 basis points, respectively. For the same
dates but using larger 2-day windows to account for the possibility of slow responses
due to liquidity effects, Krishnamurthy and Vissing-Jorgensen (2011) estimates the
announcements moved the 5-year Treasury rate by -28, -15, 28, and -26 basis points
respectively; additionally, they find the 5-year rate moved by -23 basis points after
the initial November 25 announcement.18 This gives a range of cumulative decline of

17We focus on QE1 since the surprise component of QE2 and QE3 was likely smaller than that of
QE1.

18Chodorow-Reich (2014) drops the November 25, 2008, announcement because it occurred after
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between 45 and 74 basis points. Note that, because QE1 set the stage for subsequent
QE programs, this decline could combine the promise to purchase $300 billion in
Treasuries in QE1 with the possibility of additional rounds of quantitative easing
that would entail buying more government debt. In other words, the 45-74 basis
point decline could overstate the response of the markets relative to a response one
could have observed in the case when the Fed credibly committed to spend only $300
billion to purchase government bonds during the entirety of all its quantitative easing
programs.

With this caveat in mind, we can carry out a back-of-the-envelope calculation to
assess how much of the response of yields is due purely to the shift in demand for
Treasuries from the Fed. The large majority of the Fed Treasury purchases during
QE1 were concentrated in the 2-7 year range, and the magnitude of purchases would
correspond to a ten-fold increase in the bid-to-cover ratio observed during auctions
over the same period. During this period of financial distress, our estimates imply that
we should expect a shock of this size to decrease 5-year secondary market spot rates
by 44 basis points (95% confidence interval of 29–59 basis points). Our estimate is
close to the estimates from ?, reporting that Treasury purchases during QE1 reduced
yields by about 30 basis points.

Although this exercise represents a very large out-of-sample forecast for our data,
it shows that the actual market reaction to QE1 announcements is consistent with the
predictions of a preferred habitat model and the behavior of the market in response
to observed shifts in private demand for Treasuries. Since the mechanism for the
market segmentation channel is the same regardless of the source of demand shifts
(recall that market segmentation is about how private arbitrageurs absorb these shifts
rather than the source of the demand shocks), this finding implies that the net effect of
other channels of QE (e.g., inflation expectations, forward guidance, signaling) could
be smaller than thought before. Consistent with this observation, Krishnamurthy and
Vissing-Jorgensen (2012) document that there was little movement in 5-year inflation
expectations in response to QE1 announcements.

2.6 Concluding Remarks
Quantitative easing (QE) was a massive policy experiment which likely influenced the
economy via multiple channels. To understand how QE worked, we need to unbundle
these channels so that future policy can be designed to maximize the effectiveness of
QE-like tools in crisis and non-crisis times. In this paper, we focus on the “preferred
habitat” channel, which posits that, because of market segmentation and limited arbi-
trage, interest rates for a given maturity range may be influenced by targeted buying
or selling of assets within this range. We utilize Treasury auctions of government debt

trading hours. In addition, the positive response to the January 28, 2009, announcement seems to
be because markets were expecting a concrete statement about purchases.
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to identify Treasury demand shocks arising from changes in institutional investor de-
mand to study how shocks in one maturity segment propagate to other segments, and
how this propagation is affected by the condition of financial markets.

While these shocks do not have structural interpretation, they provide us with
variation that is not related to some prominent theories of how QE works (inflation
expectations, forward guidance, signaling) and instead allow us to focus attention on
the role of preferred habitat mechanisms. Crucially, these mechanisms are dependent
on how private agents in the market for Treasury debt absorb these demand shocks,
regardless of the source of these shocks. Therefore, we can use this variation to
examine whether preferred habitat theory can rationalize responses of interest rates
to unexpected changes in demand for government debt with specific maturities during
regular Treasury auctions and, by extension, QE rounds.

We find a strong local component of demand shocks (i.e., with some oversimplifi-
cation, purchases of assets in a particular segment move prices more strongly in that
segment), but the local concentration is decreasing in risk-bearing capacity. That is,
local effects are stronger when markets are segmented (e.g. due to a crisis) than when
markets are integrated. The magnitude of the responses during Treasury auctions is
large enough to account for a large part of interest rate movements in response to
QE announcements, consistent with the view that QE programs worked mainly via
market segmentation. Our analysis suggests that QE can be an effective policy tool
in crises, but will be less powerful in moving specific segments of the debt market
in normal times. Finally, the net contribution of other hypothesized channels of QE
propagation may be quantitatively less important than thought before.
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Figure 2.1: Volume and composition of SOMA’s holdings of U.S.
Government Debt
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Notes: QE1(T) denotes time when the Fed announced its decision to
buy U.S. Treasuries as a part of the first round of quantitative easing.
QE2 denotes the announcement of the second round of quantitative
easing. QE3(T) denotes the time when the Fed announced its pur-
chases of U.S. Treasuries as a part of the third round of quantitative
easing. OT denotes the announcement of “Operation Twist”. Source:
FRED database.

87



Figure 2.2: Auction Timing
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Figure 2.3: Example of an Auction Announcement

1Governed by the Terms and Conditions set forth in The Uniform Offering Circular for the Sale and Issue of Marketable Book-Entry Treasury Bills, Notes, and Bonds
(31 CFR Part 356, as amended), and this offering announcement.
2Must be expressed as a yield with three decimals e.g., 7.123%.
3FIMA up to $1,000 million in noncompetitive bids from Foreign and International Monetary Authority not to exceed $100 million per account.

Embargoed Until 09:00 A.M. CONTACT: Office of Financing
August 03, 2011 202-504-3550

TREASURY OFFERING ANNOUNCEMENT 1

Term and Type of Security 30-Year Bond
Offering Amount $16,000,000,000
Currently Outstanding $0
CUSIP Number 912810QS0
Auction Date August 11, 2011
Original Issue Date August 15, 2011
Issue Date August 15, 2011
Maturity Date August 15, 2041
Dated Date August 15, 2011
Series Bonds of August 2041
Yield Determined at Auction
Interest Rate Determined at Auction
Interest Payment Dates February 15 and August 15
Accrued Interest from 08/15/2011 to 08/15/2011 None
Premium or Discount Determined at Auction

Minimum Amount Required for STRIPS $100
Corpus CUSIP Number 912803DT7
Additional TINT(s) Due Date(s) and August 15, 2041
CUSIP Number(s) 912834KP2

Maximum Award $5,600,000,000
Maximum Recognized Bid at a Single Yield $5,600,000,000
NLP Reporting Threshold $5,600,000,000
NLP Exclusion Amount $0

Minimum Bid Amount and Multiples $100
Competitive Bid Yield Increments 2 0.001%
Maximum Noncompetitive Award $5,000,000
Eligible for Holding in Treasury Direct Systems Yes
Eligible for Holding in Legacy Treasury Direct No
Estimated Amount of Maturing Coupon Securities Held by the Public $24,430,000,000
Maturing Date August 15, 2011
SOMA Holdings Maturing $2,205,000,000
SOMA Amounts Included in Offering Amount No
FIMA Amounts Included in Offering Amount 3 Yes

Noncompetitive Closing Time 12:00 Noon ET
Competitive Closing Time 1:00 p.m. ET
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Figure 2.4: Example of an Auction Result Announcement

1 All tenders at lower yields were accepted in full. 5 Awards to combined Treasury Direct systems = $5,358,600.
2 50% of the amount of accepted competitive tenders was tendered at or below 6 Primary dealers as submitters bidding for their own house accounts.

that yield. 7 Non-Primary dealer submitters bidding for their own house accounts.
3 5% of the amount of accepted competitive tenders was tendered at or below 8 Customers placing competitive bids through a direct submitter, including

that yield. Foreign and International Monetary Authorities placing bids through the
4 Bid-to-Cover Ratio: $33,320,655,600/$16,000,015,600 = 2.08 Federal Reserve Bank of New York.

For Immediate Release CONTACT: Office of Financing
August 11, 2011 202-504-3550

TREASURY AUCTION RESULTS

Term and Type of Security 30-Year Bond
CUSIP Number 912810QS0
Series Bonds of August 2041

Interest Rate 3-3/4%
High Yield1 3.750%
Allotted at High 41.74%
Price 100.000000
Accrued Interest per $1,000 None

Median Yield2 3.629%

Low Yield3 3.537%

Issue Date August 15, 2011
Maturity Date August 15, 2041
Original Issue Date August 15, 2011
Dated Date August 15, 2011

Tendered Accepted
Competitive $33,305,800,000 $15,985,160,000
Noncompetitive $14,855,600 $14,855,600
FIMA (Noncompetitive) $0 $0
Subtotal4 $33,320,655,600 $16,000,015,6005

SOMA $489,928,400 $489,928,400

Total $33,810,584,000 $16,489,944,000

Tendered Accepted
Primary Dealer6 $23,734,000,000 $10,921,532,000

Direct Bidder7 $6,567,000,000 $3,119,654,000

Indirect Bidder8 $3,004,800,000 $1,943,974,000
Total Competitive $33,305,800,000 $15,985,160,000
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Figure 2.7: 30-year Auctions

Notes: 30-year Treasury futures prices on August 11, 2011. An auction for
30-year Treasury bonds closed at 1:00pm (first vertical line), and results
were released shortly after (second vertical line). Immediately following
the release, Treasury futures prices dropped sharply.

Notes: 30-year Treasury futures prices on December 9, 2010. An auction
for 30-year Treasury bonds closed at 1:00pm (first vertical line), and results
were released shortly after (second vertical line). Immediately following the
release, Treasury futures prices rose sharply.
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Figure 2.9: Long-Difference Responses to Shock Dt
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Notes: responses of 10-year Treasury spot rates (top panel) and Moody’s
Aaa yields (bottom panel) to a unit shock in the first principal component
Dt. Spot rates come from Gurkaynak et al. (2007), estimated from daily
prices from the secondary market for Treasuries. The regressions are “long-
difference” regressions: on an auction date t, the dependent variable is
Rt+h − Rt−1, i.e. the change (in terms of basis points) h days after the
auction relative to the day before the auction. We plot the coefficients
from regressions for h = 0, . . . , 60. The solid line plots the point estimates,
while dashed lines plot two-standard deviation (Newey-West) confidence
bands.
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Figure 2.10: Changes in yield curves on select Treasury auction days
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Notes: the figure plots changes in spot rates after 30-year auction on August
11, 2011 (top panel) and 3-year auction on February 6, 2007. The dashed
vertical line shows the “location” of the auction in the maturity space.
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Figure 2.11: Numerical Exercise
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Notes: Numerical exercise studying the change in term structure of spot
rates in response to one-standard deviation positive demand shocks, as risk
aversion increase from low (lighter) to high (darker). The top panel is the
impact of a short demand shock, and the bottom panel is the impact of a
long demand shock.
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Figure 2.12: Rate Responses (intraday Futures surprises)
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Notes: Plots of the regression coefficients on the demand shocks D(m′)
t from regression

equation (2.4). For each auction the demand shock D(m′)
t is the normalized futures sur-

prise that most closely corresponds to the maturity of the auction (e.g. a 5-year auction
corresponds to D(5Y )

t ). Each curve is from the subsample combinations: short-term and
long-term auctions; and periods of high and low risk aversion. 2 standard error (Newey-
West) confidence intervals are included.
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Figure 2.13: Rate Responses (IV specification)
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Notes: Plots of the regression coefficients on the demand shocks D(m′)
t from regression

equation (2.4), instrumented by the surprise component of the bid-to-cover ratio. Each
curve is from the subsample combinations: short-term and long-term auctions; and periods
of high and low risk aversion. The first-stage F-statistic for the short-term auctions is 10.16,
while for the long-term auctions the F-statistic is 17.58. 2 standard error (Newey-West)
confidence intervals are included.
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Table 2.1: Auction Summary Statistics

Panel A: 1979-2015

Mean Median Std. Dev. Min Max
Offering Amount (billions) 17.08 14.00 10.13 1.50 44.00
Total Tendered (billions) 47.44 36.38 31.97 2.37 160.96
Bid-to-Cover 2.60 2.57 0.52 1.22 5.88
Term (Years) 7.46 5.00 8.08 2.00 30.25
High Yield 5.39 4.77 3.66 0.22 16.28
High-Median Spread 0.03 0.03 0.02 0.00 0.14

Panel B: 1995-2015

Mean Median Std. Dev. Min Max
Offering Amount (billions) 22.03 21.00 9.36 5.00 44.00
Total Tendered (billions) 61.46 52.98 32.04 11.35 160.96
Term (Years) 7.83 5.00 8.42 2.00 30.25
High Yield 3.26 3.20 1.91 0.22 7.79
High-Median Spread 0.03 0.03 0.02 0.00 0.13
Bid-to-Cover 2.62 2.60 0.49 1.22 4.07
Bid-to-Cover by type]

Direct Bidders 0.24 0.25 0.18 0.00 0.84
Indirect Bidders 0.50 0.50 0.16 0.03 1.02
Primary Dealers 1.98 1.92 0.35 0.97 3.12

Fraction Accepted†
Depository Institutions 0.01 0.00 0.02 0.00 0.32
Individuals 0.01 0.00 0.02 0.00 0.19
Dealers 0.58 0.58 0.14 0.20 0.98
Pensions 0.00 0.00 0.01 0.00 0.21
Investment Funds 0.20 0.18 0.13 0.00 0.64
Foreign 0.20 0.19 0.09 0.00 0.61

Other 0.00 0.00 0.00 0.00 0.03

Notes: Summary statistics for Treasury note and bond auctions. † indicates that the
moments are computed for 2000-2015, the period for which these data are available. ]

indicates that the moments are computed for 2003-2015, the period for which these data
are available.
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Table 2.2: Treasury Futures Shocks Summary Statistics

Mat. Mean Med. SD. N Corr.
D

(2Y )
t D

(5Y )
t D

(10Y )
t D

(30Y )
t

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Auction
D

(2Y )
t -0.000 0.000 0.034 871 1.000

D
(5Y )
t 0.002 0.000 0.092 871 0.866 1.000

D
(10Y )
t 0.007 0.007 0.143 871 0.782 0.958 1.000

D
(30Y )
t 0.006 0.000 0.245 871 0.672 0.848 0.922 1.000

Pabel B. No auction
D

(2Y )
t -0.000 0.000 0.031 4031 1.000

D
(5Y )
t -0.001 0.000 0.072 4096 0.862 1.000

D
(10Y )
t -0.002 0.000 0.107 4100 0.794 0.945 1.000

D
(30Y )
t -0.005 0.000 0.172 4099 0.674 0.830 0.905 1.000

Panel C. Auction, non-ZLB period
D

(2Y )
t -0.002 0.000 0.043 424 1.000

D
(5Y )
t -0.005 -0.007 0.099 424 0.922 1.000

D
(10Y )
t -0.005 0.000 0.143 424 0.866 0.962 1.000

D
(30Y )
t -0.016 -0.026 0.223 424 0.778 0.878 0.933 1.000

Panel D. Auction, ZLB period
D

(2Y )
t 0.002 0.000 0.022 447 1.000

D
(5Y )
t 0.009 0.007 0.083 447 0.811 1.000

D
(10Y )
t 0.018 0.014 0.143 447 0.736 0.960 1.000

D
(30Y )
t 0.027 0.023 0.263 447 0.642 0.840 0.918 1.000

Notes: On auction dates, shocks D(m)
t = logP

(m)
t,post− logP

(m)
t,pre are the log intraday change

in Treasury futures prices before and after the close of an auction, for each contract
m = 2, 5, 10, 30 years. For non-auction dates, the shocks are the log intraday changes
in Treasury futures prices using the same window. Binding zero lower bound (ZLB)
period covers 2008M12-2015M12. Non-ZLB period covers 1995M1-2008M11. Statistics in
columns (1)-(3) are reported in log points.
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Table 2.3: Demand Shocks and Measures of Demand

Panel A: Total bid-to-cover ratio

(1) (2) (3) (4) (5)
D

(2Y )
t D

(5Y )
t D

(10Y )
t D

(30Y )
t Pool Dt

Bid-to-Cover 1.441*** 1.399*** 2.099*** 2.119*** 1.645***
(0.240) (0.230) (0.216) (0.565) (0.142)

Observations 238 306 227 100 871
R2 0.156 0.201 0.302 0.270 0.215

Panel B: Expected and Unexpected bid-to-cover ratio

(1) (2) (3) (4) (5)
D

(2Y )
t D

(5Y )
t D

(10Y )
t D

(30Y )
t Pool Dt

Bid-to-Cover (exp.) 0.031 -0.041 -0.454* -1.374 -0.076
(0.113) (0.120) (0.239) (1.654) (0.081)

Bid-to-Cover (unexp.) 1.382*** 1.374*** 2.113*** 2.157*** 1.645***
(0.242) (0.236) (0.216) (0.634) (0.142)

Observations 238 306 227 100 871
R2 0.124 0.189 0.294 0.215 0.198

Panel C: Total bid-to-cover ratio by bidder type

Indirect Bidder 2.716*** 3.664*** 4.528*** 8.532*** 4.451***
(0.366) (0.667) (0.493) (1.235) (0.436)

Direct Bidder 2.236** 1.026 0.295 1.145 1.173***
(1.034) (0.702) (0.956) (0.951) (0.448)

Primary Dealer 0.831** 0.762** 1.517*** 0.057 0.887***
(0.387) (0.316) (0.317) (0.536) (0.178)

Observations 138 228 187 80 633
R2 0.350 0.309 0.383 0.650 0.370

Panel D: Fraction accepted by bidder type

Investment Funds 4.800*** 3.401*** 4.563*** 6.436*** 4.749***
(0.908) (0.854) (0.902) (1.462) (0.494)

Foreign 2.797** 3.604*** 5.173*** 7.974*** 4.393***
(1.162) (0.847) (1.220) (2.404) (0.676)

Misc 4.815* 2.506** 0.034 0.853 2.353**
(2.614) (1.203) (3.713) (5.119) (1.193)

Observations 174 241 201 84 700
R2 0.214 0.128 0.287 0.391 0.191
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Notes: Regressions of demand shocks D(m)
t on the bid-to-cover ratio, total and broken up by

bidder type (winsorized at 1% level). Four lags of bid-to-cover ratios (or fractions accepted) are
included but not reported. Column (1) restricts the sample to include only auctions of 2-year notes.
Column (2) restricts the sample to include only auctions of notes with (2,5] year maturity. Column
(3) restricts the sample to include only auctions of notes with [7,10] year maturity. Column (4)
restricts the sample to include only auctions of bonds with (10,30] year maturity. Shocks D(m)

t are
standardized to have zero mean and unit variance. Newey-West standard errors in parentheses.
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Table 2.4: Reaction of market to surprises at Treasury auctions

Dep.variable: asset type
Estimate N R2 Sample(s.e.)
(1) (2) (3) (4)

Panel A. Debt
TLT 0.312*** 662 0.679 2002-2015

(0.016)
SHY 0.022*** 662 0.528 2002-2015

(0.001)
LQD 0.110*** 662 0.544 2002-2015

(0.008)
Aaa† -2.295*** 871 0.173 1995-2015

(0.212)

Panel B. Equities
SPY -0.020 871 0.005 1995-2015

(0.018)
IWM -0.081*** 706 0.034 2000-2015

(0.024)
SP500† -0.072 871 0.004 1995-2015

(0.064)
Russell 2000† -0.169** 871 0.013 1995-2015

(0.069)

Panel C. Inflation expectations and commodities
10Y Inflation Swap† -0.172 618 0.003 2004-2015

(0.131)
2Y Inflation Swap† 0.044 618 0.000 2004-2015

(0.229)
GLD 0.021 595 0.004 2004-2015

(0.015)
GSCI† 0.008 871 0.000 1995-2015

(0.056)

Panel D. Spreads and credit default swaps
Baa-Aaa† -0.056 871 0.001 1995-2015

(0.074)
Auto CDS† -3.254 627 0.000 2004-2015

(5.796)
Bank CDS† 0.426 627 0.004 2004-2015

(0.450)
3-month LIBOR-OIS† -0.002 630 0.006 2003-2015

(0.002)
VIX† 0.058 871 0.001 1995-2015

(0.082)
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Notes: The table reports estimates φ̂ from regression equation (2.3). Assets with † are measured
at the daily frequency; other price changes are measured over the intrady window corresponding
to what we use to construct surprises. The intraday changes are from ETFs that track various
underlying securities or indices: TLT (long-term Treasuries); SHY (short-term Treasuries); LQD
(corporate debt); SPY (S&P 500); IWM (Russell 2000); GLD (gold bullion). For the daily series:
Aaa and Baa (Moody’s corporate debt yields); SP500 (daily equity index); Russell 2000 (daily equity
index); GSCI (S&P Total Commodity Index); Auto and Bank CDS (indsutry credit default swaps
indices); LIBOR-OIS (3-month USD LIBOR-Overnight Index Swap spread); VIX (daily implied
volatility index). Newey-West standard errors in parentheses.

105



Chapter 3

Polarized Expectations

3.1 Introduction
Political polarization is rising.1 Much of the discussion in the political sphere has been
concerned with how polarization undermines political discourse, leading to a lack of
compromise and endless government gridlock.2 But an equally important question
is how polarization interacts with the economic beliefs and actions of households.
Paradoxically, growing polarization has occurred contemporaneously with an increase
in the accessibility of economic information. The proliferation of media and news
sources makes economic information easier to consume than ever before, and yet
polarization shows no signs of abating.

This paper explores theoretically and empirically how household beliefs and ac-
tions interact with political polarization. We first present a model where heteroge-
neous agents have imperfect information about the state of the economy, and must
choose how to acquire costly information in order to inform their decision-making. We
derive a “paradox of information” whereby declining information costs can actually
increase ex-post disagreement about the economy; moreover, disagreement persists
even with arbitrarily small information costs.

This “paradox of information” can help rationalize the secular increase in political
polarization and the simultaneous increase in the ease of acquiring economic informa-
tion. A naive model would suggest that increased access to information should reduce
disagreement about economic fundamentals. Our model shows that, while households
are able to learn about the macroeconomy more precisely, they process information in
the manner which is most advantageous for satisfying their idiosyncratic preferences.
When households are not identical, this implies that more information can actually
exacerbate ex-post disagreement about the economy.

Empirically, we confirm that political polarization affects both household beliefs
1This chapter is based on my joint paper with Rupal Kamdar.
2Among others, Pew Research Center (2014) has documented a long-term increase in negative

views of the opposing party or ideology within the U.S.
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and actions. Using survey data on U.S. consumer beliefs, we find that households
generally have persistent and stable economic beliefs and forecasts. However, there
are a few striking exceptions: household belief persistence breaks down following
elections where the White House changes party. During these periods, households that
were optimistic about economic conditions become more likely to become pessimistic.
Similarly, pessimistic households are more likely to become optimistic about economic
outcomes following the election. This effect has been increasing since the 1980s, with
the largest impact coming after the 2016 election.

Of course, changes in expectations should theoretically lead to changes in actions,
such as shifts in consumption and savings patterns. But empirically, the evidence
demonstrating this relationship is not as clear. We use the 2016 election to test
whether these shifts in economic beliefs translate into differential consumption de-
cisions. Using disaggregated geographical spending data, we find that polarization
leads to differential changes in consumer spending: regions with a large Republican
voteshare exhibited substantially higher consumption in the wake of the 2016 election.

We present a multi-dimensional rational inattention model in Section 3.2. Starting
with a model of identical agents, we show that falling information costs eventually lead
to ex-post agreement amongst agents regarding the realization of the state. However
and more surprisingly, in general agents do not perceive the state accurately, even
when information costs are arbitrarily small. We show analytically that mispercep-
tions of the state persist as information costs fall to zero; this is because agents do not
necessarily require perfect perception of the state in order to make optimal decisions.
We then extend the analysis to the case of heterogeneous agents. Solving for the dis-
tribution of beliefs as a function of information costs, we derive two main analytical
results: first, when information is very costly, falling information costs will actually
increase the dispersion of beliefs across agents; and second, ex-post disagreement
about the state may persist even in the limit as information costs fall to zero.

We then explore our theoretical results numerically with a simple two period
model where agents differ in their level of risk aversion, and face uncertainty regarding
income and prices. In response to a policy shock where the government levies a payroll
tax to fund a retirement program, we find that highly risk-averse agents believe that
prices will rise while less risk-averse agents believe prices will fall. Further, this
disagreement persists even as information costs fall to zero. This stylized model shows
that how agents perceive the economy in response to a policy change fundamentally
depends on their preferences.

After presenting our general theoretical results, we turn to testing these stylized
predictions empirically. In Section 3.3, we utilize survey data of U.S. consumers to
show that political polarization affects macroeconomic beliefs. We show that be-
liefs tend to be persistent: people who think unemployment will fall tend to feel the
same way when asked again in the future. A striking exception is following the 2016
presidential election, when this pattern reverses. Individuals who believed unemploy-
ment would rise before the election become more likely to say that unemployment
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will fall following the election. We observe an identical switch in beliefs for individ-
uals who believed unemployment would fall before the election; after the election,
these individuals believe that unemployment will rise. Similar patterns hold for other
macroeconomic beliefs.

We then show that households’ beliefs and forecasts about macroeconomic con-
ditions as well as their own financial situation are almost entirely determined by a
single component from a factor analysis. We show that this component is a measure
of economic sentiment. There is widespread dispersion of sentiment across individuals
at any point, but for a given individual we show that sentiment is highly persistent.
Since 1980, the only exceptions are following presidential elections when the White
House changed parties. During these periods, previously optimistic individuals are
more likely to become pessimistic, and similarly pessimistic individuals are more
likely to become optimistic. Moreover, this decline in persistence following elections
has grown over time, with the most striking change in persistence coming after the
2016 presidential election.

There is a strong theoretical link between beliefs and economic actions, but it is
an open question if this connection exists empirically. Section 3.4 demonstrates em-
pirically that political polarization does lead to differential consumption responses.
We combine disaggregated consumption data with voting data from California at the
zip code level to study consumption responses in the weeks surrounding the 2016 elec-
tion. We find that areas with a higher Republican voteshare exhibited substantially
higher consumption in the weeks following the outcome of the 2016 election. Section
3.5 concludes and discusses avenues for future work.

This paper contributes to three literatures: (i) models of rationally inattentive
agents that can choose the form of their signal, (ii) survey-based empirical investi-
gations into macroeconomic beliefs, and (iii) the rise of polarization. First, we build
upon the existing rational inattention literature to develop new theoretical results.
The rational inattention framework, which was first proposed in Sims (2003), posits
that agents do not observe economic variables perfectly, but instead must acquire
costly information. Rational inattention can help explain the sluggish response to
macroeconomic shocks, as in Maćkowiak and Wiederholt (2009). Kőszegi and Matějka
(2018) generalizes the rational inattention methodology to analytically solve multi-
dimensional rational inattention problems. They show that in general, agents choose
to learn about combinations of variables rather than learning about economic vari-
ables independently. Learning about each economic variable independently is costly,
and so optimal information-gathering implies that agents choose to learn about the
economy in a manner which is most useful for deciding the agent’s optimal course of
action. Our model contributes to the rational inattention literature by studying what
optimal information-processing implies for the dispersion of beliefs across agents. We
derive new analytical results regarding the dispersion of beliefs across heterogenous
agents, and how belief dispersion interacts with the cost of acquiring information.

Second, there is a growing literature that utilizes survey data to better under-
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stand the economic beliefs of individuals. Coibion et al. (2018) provide a summary
of recent papers that demonstrate deviations from full-information rational expecta-
tions (FIRE). Our theoretical focus is on rational inattention, but other papers have
also proposed other explanations for the failure of FIRE (e.g., Malmendier and Nagel
2016 and Kuchler and Zafar 2015 propose that lived experiences lead to deviations
from rational expectations). But there is limited work on how consumer beliefs are
tied to actions. Theoretical models in macroeconomics would suggest economic ex-
pectations (e.g., inflation and income expectations) should affect the today’s actions
(e.g., consumption and savings decisions). However, there is little empirical work
done to establish this relationship. Furthermore, this empirical work has delivered
mixed results. For example, survey-based confidence indices contain significant, but
very small, predictive power for future aggregate consumer expenditure (e.g., Carroll
et al. 1994, Bram and Ludvigson 1998, and Ludvigson 2004). Additionally, infla-
tion expectations have been shown to affect household spending decisions, but the
direction of the relationship has varied across environments and individuals studied
(e.g., Bachmann et al. 2015, D’Acunto et al. 2016, and D’Acunto et al. 2018). In a
political context (and empirically most similar to this paper) Mian et al. (2018) and
Gillitzer and Prasad (2018) show that economic sentiments can change in the wake
of elections in the U.S. and Australia, respectively. However, they have different re-
sults when it comes to consumption response to a positive political shock. Mian et al.
(2018) find no effects on household spending, whereas Gillitzer and Prasad (2018) find
a positive response in consumption. Our results support the view that households’
macroeconomic expectations do play a role in their actual consumption decisions.

Third, there has been much discussion over the secular rise in polarization of the
political discourse. In the context of U.S. politics, polarization has been particularly
stark during and after the 2016 presidential election. Bartels (2002) demonstrates
that party identification affects voter’s interpretation of objective events. In addition
to voters, this polarization exists amongst lawmakers. Andris et al. (2015) document
a steady decline in cooperation and increase in partisanship amongst U.S. legislators
in the post-war era. We add to this literature by demonstrating that both economic
beliefs and actual consumption decisions are sensitive to the rise in political polariza-
tion.

3.2 A Rational Inattention Framework
This section explores theoretically how imperfect information-processing on the part
of agents leads to disagreement about macroeconomic fundamentals. We start with a
general multivariate rational inattention setup, as originally explained in Sims (2003)
and generalized in Kőszegi and Matějka (2018). Suppose an individual has quadratic
preferences over actions y ∈ RN and states x ∈ RJ :

U(x,y) = −yTCy + xTBy (3.1)
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where B ∈ RJ×N and C ∈ RN×N , and is positive definite: C � 0.
The individual does not observe x perfectly, and obtaining signals about the state

is costly. The cost of information is the Shannon mutual information times a scaling
parameter, λ ≥ 0. The Shannon mutual information is the expected reduction of
entropy (a measure of uncertainty) from the prior to the posterior. It is commonly
used in the rational inattention literature as a cost of information. Intuitively, the
more precise the posterior, the higher the Shannon mutual information. We scale the
Shannon information by λ for flexibility. In particular, if λ = 0, information is free,
and the individual can costlessly obtain perfect information about the realization of
the state. If λ is very high, the agent decides to avoid gathering any new information.
Accordingly, the agent’s beliefs do not change from the prior. For intermediate values
of λ > 0, the agent collects some information, but will not learn about the state
perfectly.

For simplicity, assume a mean-zero and i.i.d. prior x ∼ N(0, σ2
0I). To briefly

review known results, as shown in Kőszegi and Matějka (2018) the agent’s optimiza-
tion problem from Eq. (3.1) and the information problem given cost of information
parameter λ > 0 can be rewritten as

max
Σ
− E

[
(x̃− x)TΩ(x̃− x)

]
+
λ

2
log |Σ|

s.t. σ2
0I−Σ � 0

where Ω =
1

4
BC−1BT

x̃ is the agent’s posterior mean and Σ is the posterior variance. The loss matrix Ω
characterizes how costly it is for the agent to misperceive the state. This character-
ization recasts the problem as one in which the agent optimally chooses to reduce
uncertainty about the realization of the state by choosing the posterior variance Σ.
The restriction that σ2

0I − Σ is positive semidefinite ensures that the agent cannot
choose a posterior variance which is less precise than the prior; that is, the agent does
not discard information. Note that when λ > 0, the agent will never learn about any
aspects of the state perfectly (in which case the posterior variance is singular, and
hence |Σ| = 0) because the cost of acquiring such information grows without bound.

Lemma 3.1 (Optimal Signal Solution). Take the eigendecomposition of the loss ma-
trix Ω = VΛVT where V is a matrix of orthonormal eigenvectors and Λ is a diagonal
matrix of non-negative eigenvalues ordered Λ1 ≥ . . . ≥ ΛJ . Define

Sii =

{
λ

2Λi
if 2Λiσ

2
0 > λ

σ2
0 otherwise

ξi = 1− Sii
σ2

0
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and let S = diag(Sii) and Ξ = diag(ξi) be diagonal matrices. Then the optimal
choice of posterior variance is Σ = VSVT . The posterior mean and optimal action
is a function of the realization of the state x and independent standard normal noise
e ∼ N(0, I):

x̃ = W1x + W2e (3.2)
y∗ = Hx̃ (3.3)

where W1 ≡ VΞVT , W2 ≡ σ0V (Ξ(I−Ξ))1/2, and H ≡ 1
2
C−1BT .

Lemma 3.1 characterizes the solution to this optimal signal problem. All proofs
are in the Appendix. Essentially, the agent chooses to receive a signal that reduces
uncertainty about the state in a manner which is most helpful for choosing an optimal
action (subject to the cost of reducing uncertainty). The eigenvectors V govern which
directions of the state are most important. The eigenvalues Λ govern how important
this information is. Hence, each element of the diagonal matrix Ξ determines how
much the agent reduces uncertainty about each direction of the state relative to the
prior belief.

The matrices W1 and W2 in Eq. (3.2) characterize how the agent’s beliefs respond
to changes in the state and the noise in the signal, respectively. Perfect information
implies that W1 = I and W2 = 0. When information is costly, the full-information
signal structure is impossible to achieve. This leads to two key difference between
beliefs under costly relative to full information. First, beliefs are less responsive to
realizations of the state and sensitive to noise in the signals. Formally, this arises from
the fact that the elements of Ξ are less than one. Second, beliefs about one state
variable may react to realization of another state variable. As long as the loss matrix
Ω is not diagonal, this arises mathematically due to the fact that the eigenvector
matrix V 6= I. Intuitively, this is because in general the agent chooses to learn
about combinations of variables, which are more useful when it comes to choosing
optimal actions, as this is less costly than learning about each element of the state
independently form an information-acquisition perspective.

The optimal choice of action is given by Eq. (3.3). Note that the only difference
between the optimal actions under full information and the solution with imperfect
information is the difference in posterior beliefs. Because the agent has quadratic
preferences, the optimal choice of action under perfect information takes the same
form as Eq. (3.3). In this case x̃ = x and y∗ = Hx.

One key insight is that an agent does not generally learn about each state variable
equally. In fact, when the loss matrix Ω is not full rank (so some eigenvalues Λi = 0),
the agent never chooses to learn about some directions of the state. Moreover, the
manner in which the agent learns about the state is directly tied to how fundamental
preferences (the matrices B and C) interact with the costs of information. Preferences
therefore fundamentally affect how an agent views the economy, regardless of the cost
of acquiring information.
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3.2.1 Distribution of Beliefs

What does this optimal information processing imply about the distribution about
beliefs? We characterize the distribution of misperceptions of the state across indi-
viduals with identical preferences following a realization of the state in the following
Proposition. Further, we show how these moments vary with information costs λ.

Proposition 3.1 (Distribution of Belief Errors and Information Costs). Conditional
on a realization of the state x, the errors in posterior beliefs x̃ − x have mean and
variance:

E
[
x̃− x

∣∣x] = V(Ξ− I)VTx (3.4)
Var

[
x̃− x

∣∣x] = VΞSVT (3.5)

These moments are functions of the cost of information λ: ∂
∂λ

Var
[
x̃− x

∣∣x] is neg-
ative semidefinite whenever 2Λ1σ

2
0 > λ > Λ1σ

2
0 and positive semidefinite whenever

λ < ΛNσ
2
0.

Further, as λ→ 0

E
[
x̃− x

∣∣x]→ V(ĨN − I)VTx

Var
[
x̃− x

∣∣x]→ 0

where ĨN = diag
[
IN 0J−N

]
, with the zeros correspond to the zero eigenvalues of Λ

(if they exist).

Declining information costs implies that the individual’s signal can be made more
precise. That is, the noise in the signal becomes smaller and smaller. However,
this does not mean that declining information costs always leads to a decline in the
variance of belief errors. The first result in Prop. 3.1 shows that for high enough levels
of information costs, declining information costs actually increases the (conditional)
variance of belief errors.3 This is because, when information costs are extremely high,
the agent chooses to receive no signal (more precisely, the signal noise has infinite
variance and so the agent completely ignores the signal). Once information costs fall
below a certain threshold, the agent chooses to pay attention to the signal. But the
noise in the error has very high variance, and hence this leads to large differences in
signals received between agents. Individuals know that their signal is noisy and so
do not update their prior too much, but this is still enough to increase the ex-post
disagreement between individuals.

Eventually, once information costs are beneath another threshold (which depends
on the smallest non-zero eigenvalue ΛN), the conditional variance of belief errors

3Suppose the derivative of a variance-covariance Φ with respect to information cost λ is positive
semidefinite ( ∂

∂λΦ � 0). Then for two values of information cost λ1 < λ2, Φ2 − Φ1 � 0. In other
words, an increase in information costs implies an increase in the variance matrix Φ. The opposite
logic applies for negative semidefinite derivative matrices.
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begins to decline as information costs fall. Because the variance of the signal noise
for each individual is now very small, signals are more similar across individuals.
Hence, ex-post disagreement across individuals declines.

In the limit of zero information costs, the signal can be made arbitrarily precise.
Since agents are identical, they choose the same signal structure. Unsurprisingly,
when the noise in the signal falls to zero, there is no ex-post disagreement about the
realization of the state. Hence, the conditional variance of belief errors approaches
zero.

When λ = 0, the agent can learn the exact realization of the state costlessly.
But surprisingly, it turns out that for arbitrarily small costs of acquiring information,
the agent’s beliefs do not necessarily approach the true state: in general, posterior
belief errors do not vanish even as λ → 0. Belief errors only vanish when the loss
matrix Ω is full rank, but this condition will fail if the number of actions is smaller
than the number of states (N < J). When Ω is not full rank, the agent will never
choose to learn about certain directions of the state so long as information costs are
not exactly zero. When information costs are actually zero, the agent is indifferent
between learning perfectly the true state and learning about the subset of directions
of the state that matter most to informing the optimal action.

The reason for this somewhat paradoxical result is that the agent is able to perform
the optimal action without learning the state perfectly. By extracting information
optimally, any additional information is not informative about the optimal action. As
shown in Cor. 3.1.1, in the limit as information costs fall to zero, the agents’ optimal
choice (based on beliefs about the state) converges to the optimal choice under perfect
information.

Corollary 3.1.1 (Optimal Actions and Information Costs). For any Ω, the agent’s
actions approach the optimal choice under full information. That is, as λ→ 0,

y∗ → Hx

3.2.2 Belief Errors and Heterogeneous Agents

Now we suppose that there is a distribution of agents with heterogeneous preference.
They all face the same information acquisition problem but have different preferences:

Uk(yk,x) = −(yk)TCkyk + xTBkyk

where superscript k indexes the individuals. These agents are distributed according
to some distribution k ∼ F .

Assume that individuals all have the same common prior, x ∼ N(0, σ2
0I). Then

the individual k problem is the same as the previous section, and hence the posterior
mean and variance of individual k are the same as from Lemma 3.1:

x̃k = Wk
1x + Wk

2ek

Σk = VkSk(Vk)T
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However, heterogeneity in preferences will lead to differences in the distribution of
beliefs relative to the case of homogeneous individuals.

Proposition 3.2 (Heterogeneous Belief Errors). Given a realization of the state x,
define W̃k

1 ≡Wk
1 − W̄1 and W̄1 =

∫
k
Wk

1 dF (k), and

ΣW̃1W̃1|x ≡
∫
k

W̃k
1xxT (W̃k

1)T dF (k)

ΣW2W2 ≡
∫
k

Wk
2(Wk

2)T dF (k)

Then the errors in posterior beliefs x̃k − x have conditional mean and variance:

E
[
x̃k − x

∣∣x] = (W̄1 − I)x (3.6)
Var

[
x̃k − x

∣∣x] = ΣW̃1W̃1|x + ΣW2W2 (3.7)

Choose λ̄ such that

∀k, i : λ̄ ≥ 2Λk
i σ

2
0

∃k′, i : λ̄ = 2Λk′

i σ
2
0

Then ∂
∂λ

Var
[
x̃k − x

∣∣x] is negative semidefinite at λ̄. Further, as λ→ 0,

E
[
x̃k − x

∣∣x]→ ∫
k

Vk(ĨN − I)(Vk)T dF (k) x

Var
[
x̃k − x

∣∣x]→ ∫
k

W̃k∗
1 xxT (W̃k∗

1 )T dF (k)

where

W̃k∗
1 = VkĨN(Vk)T −

∫
k

VkĨN(Vk)T dF (k)

As in the case of homogeneous agents, at very high levels of information costs, de-
clining information costs lead to a higher degree of dispersion of beliefs. The choice of
λ̄ in Prop. 3.2 is the smallest cost of information for which some agents are indifferent
between reducing uncertainty about the state and not updating their prior. This is
the point where falling information costs induce some set of agents to begin paying
attention to their signal. Because the signal is imprecise, this increases disagreement
amongst individuals about the realization of the state. The disagreement depends
on how differently individuals respond to changes in the state relative to the average
change in beliefs; W̄1 is the average response of beliefs to a given change in the state
x and W̃k

1 is how individual k differentially responds compared to the average.
In contrast to the case of homogenous agents, this “paradox of information” con-

tinues even as information costs fall. Heterogeneity across preferences implies that
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large belief disagreements can persist even as information costs approach zero. As
explained in the previous section, in general an individual will not choose to learn
about all directions of the state regardless of how cheap information is. But with
heterogeneous preferences, the directions that matter the most differ across individu-
als. Hence, even for very low information costs, different individuals receive different
signals. These signals become arbitrarily precise, but beliefs of different agents do not
approach the same value. Because agents have different preferences, they also choose
different optimal actions; thus, they choose to learn about the state differently. Hence
for arbitrarily small information costs, large ex-post disagreement still exists.

In the context of the secular changes observed in political polarization, this stylized
model helps interpret how belief formation may have changed as the accessibility
to information has increased. Over the past several decades, the ease of acquiring
information regarding macroeconomic outcomes has increased substantially. This is
due to the proliferation of print and televised media sources, as well as the creation
and increased accessibility to the internet for most households across the developed
world. It is now easier than ever to not only find information quickly, but also to find
sources of information and news that are more tailored to an individual’s tastes.

A naive model of information acquisition would suggest that increased access to
information should reduce the degree of belief polarization across households. The ra-
tional inattention model described in this section shows that even though households
are able to learn about the macroeconomy more precisely, this leads to increased
disagreement about macroeconomic outcomes. Because households are not identi-
cal, households process information in the manner which is most advantageous for
satisfying their idiosyncratic preferences.

3.2.3 A Two-Period Model

This section lays out a concrete partial equilibrium two-period model, where house-
holds choose how much to consume and save while young and old. The household
problem is

U(C1, C2) = uk(C1) + βuk(C2)

P1C1 + S ≤ (1− τ)Y

P2C2 ≤ RS + τY

The agent chooses how much to consume of a single good while young and old (C1

and C2). Labor is supplied elastically, and they receive a nominal after-tax income
(1− τ)Y . Whatever is saved S earns a gross (nominal) return R.

Finally, the government may tax income in order to fund a retirement-savings
program. The amount taxed, τY is returned to the agent while old (period 2). The
return on the government savings program is smaller than the return on private
savings; for simplicity, this government savings return is normalized to 1 while the
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private savings is R = 1
β
. The price of the good in both periods, P1 and P2, is

uncertain, as is the period 1 income Y and net tax rate 1− τ .4
Individuals differ in their per-period utility function:

uk(C) =
C1−ηk

1− ηk

Each agent has per-period CRRA utility, but differ across their relative risk aversion
ηk.

In order to apply the rational inattention tools developed in Section 3.2.2, we take
a log quadratic approximation of the household problem. Appendix C.2 shows that
the approximation around the steady state means the problem can be re-written in
the form of Eq. (3.1). The choices, states, and preference matrices are given by

yk = c1, Ck =
(1 + β)η

k
ηk

2β

x =


y

1− τ
p1

p2

, Bk =



(1 + β)η
k
ηk

β
(1 + β)η

k
ηk(1− β)

β

−(1 + β)η
k
(β + ηk)

β
(1 + β)η

k
(1− ηk)


Note that the agent’s budget is always exhausted (the budget constraint holds with
equality), hence the agent only has one active choice. We write the model in terms
of the choice of period-1 consumption. Since Ck is a scalar, this implies that the loss
matrix is given by

Ωk =
1

4Ck
Bk(Bk)T

Hence Ωk is a rank-one matrix. Thus Bk is the only eigenvector (up to a normaliza-
tion) associated with the non-zero eigenvalue:

Λk
1 =

1

4Ck
(Bk)TBk

Further, the responsiveness of beliefs to changes in the state is governed by the matrix
Wk

1 , which is proportional to Bk(Bk)T . These objects, which govern how households
optimally obtain and react to information, depend crucially on the risk aversion term
ηk.

4Allowing for uncertainty regarding the return on savings does not affect the theoretical results,
so to keep the size of the state smaller we assume that the return is known.
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Figure 3.1: Importance of Information Across Agents

Notes: Plots of the non-zero eigenvalue Λk1 of the loss matrix Ωk across individu-
als, who differ in their risk aversion parameter ηk (x-axis). This eigenvalue along
with the prior variance σ2

0 governs how much each individual is to willing to pay
in order to reduce uncertainty.

Figure 3.1 shows how the single non-zero eigenvalue Λk
1 changes with different

values of risk aversion ηk. As ηk → ∞ or ηk → 0, this eigenvalue grows without
bound. What this means is that individuals with either very high or very low levels
of risk aversion are more willing to pay a high cost for obtaining information. However,
there is a fundamental difference between the type of information individuals with
high and low levels of risk aversion choose to obtain. Figure 3.2 plots the components
of the associated eigenvector Vk,1 ∝ Bk for different values of risk aversion. First,
when ηk → 0 so that the household has nearly linear preferences, the only information
the agent cares about is (relative) prices. Second, there is a difference for agents with
ηk above and below one. This determines whether the income or substitution effect
dominates when considering a change in the real return.

What does this mean for how beliefs respond to changes in the shock? That is,
how does ∂x̃k

∂xT
≡Wk

1 vary across individuals? If agents observed the state perfectly,
then of course ∂x̃ki

∂xj
= 0 if i 6= j and 1 otherwise for all agents. Figure 3.3, which plots

Wk
1 for different values of risk aversion, shows that the model deviates significantly

from perfect information. Note that Wk
1 is a function of household preferences as

well as the cost of information λ. For simplicity, we plot the limit as λ→ 0; however,
for λ > 0, the elements of Wk

1 are proportional but smaller than in Figure 3.3).
It is clear that even in the limit of costless information, the response of beliefs to

changes in the state do not approach the case of full information. First, beliefs about
a given variable x̃i respond significantly less than one-for-one with actual changes in
the state variable xi. Second, beliefs regarding a given variable x̃i respond to changes
in the realization of other state variables xj. Finally, this imperfect information-
processing differs across individuals. Individuals with nearly linear preferences (ηk →
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Figure 3.2: Information Directions Across Agents

Notes: Plots of the elements of the eigenvector associated with the non-zero
eigenvalue of the loss matrix Ωk across individuals, who differ in their risk aversion
parameter ηk (x-axis). This eigenvector determines the direction in which each
individual reduces uncertainty regarding the state. Each panel is the element of
the eigenvector associated with the given state variable.

0) are unresponsive to changes in income or taxes, but instead only pay attention to
changes in prices. Further, in response to an increase in period-2 prices, agents with
risk aversion ηk < 1 reduce their posterior belief regarding period-1 prices; conversely,
agents with ηk > 1 increase their period-1 price beliefs.

We now explore more explicitly how this heterogeneity in preferences affects the
distribution of beliefs numerically. We assume that individual risk aversion parame-
ters are distributed uniformly in [0.5, 1.5]. We set β = 0.7 and normalize σ2

0 = 1. Note
that with this range of ηk, agents with a higher degree of risk aversion will always
have a higher willingness to pay for information. This can be seen in Figure 3.1: for
ηk > .5, Λk

1 is increasing in risk aversion.
The experiment we consider is a percentage point increase in the retirement tax

τ (a decrease in the net tax rate 1− τ). Figure 3.4 plots the average error in beliefs
across the population. When information costs are very high (λ > 15), no individual
chooses to reduce uncertainty about the state at all, and hence beliefs stay at the
prior. This means that all agents are mistaken about their beliefs regarding the tax
rate, but in this case correctly believe that prices and income remain at their steady
state.

As information costs fall (λ declines, moving from right to left on the x-axis), some
agents with high risk aversion (ηk > 1) begin to learn about the shock. Unsurprisingly,
these agents begin to reduce their misperceptions about the tax rate, and hence the
avergage misperception about 1 − τ falls (upper left panel). But due to how agents
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with ηk > 1 optimally process information, these agents also begin to update their
beliefs regarding income and prices, incorrectly inferring that prices and income have
all increased. Hence, average misperceptions regarding income and prices also rise.

As information costs continue to fall, more and more agents find it optimal to begin
learning about the state. In particular, for low enough information costs, agents with
risk aversion ηk < 1 also begin to pay attention to their signal. Like agents with
ηk > 1, agents with low risk aversion also incorrectly infer that income and period-
1 prices have increased. Therefore, falling information costs increase the average
misperceptions regarding these economic variables. However, agents with ηk < 1
incorrectly infer that period-2 prices have fallen. This means that on average, falling
information costs begin to decrease average misperceptions. But for low enough
information costs, the misperceptions of period-2 prices from agents with ηk < 1
begin to dominate. Hence, average misperceptions about period-2 prices eventually
become negative when information costs λ→ 0.

The distribution of misperceptions across agents can be seen more clearly in Figure
3.5, which plots the variances and covariances of beliefs as a function of information
costs. Falling information costs increase ex-post disagreement when information costs
are high. Moreover, even in the limit of costless information, posterior beliefs do
not approach the truth. Declining information costs allow agents to obtain precise
signals, which eventually allows individuals to reduce their own uncertainty regarding
the state. However, so long as information costs are not exactly zero, it is always
optimal to learn about the state in a manner which is most informative for optimal
actions (in this case, the optimal level of consumption). Hence, individual agents
never learn about the state perfectly. Because agents with heterogeneous preferences
make different choices even under perfect information, optimal information-processing
implies that disagreements about the state persist for any level of information costs.

3.3 Empirical Evidence: Beliefs
The previous section showed how imperfect information and heterogeneity in pref-
erences lead to ex-post disagreement about macroeconomic fundamentals following
a policy shock. Moreover, falling information costs may actually exacerbate belief
polarization. This section provides empirical evidence that political polarization does
in fact play a role in how individuals form macroeconomic beliefs.

3.3.1 Data

We use the Michigan Survey of Consumers (MSC) to measure consumer beliefs. The
MSC is a rotating panel survey of approximately 500 consumers per month. The
survey began in 1978 and is still running today, which provides us with a long time
series dimension to utilize. The MSC asks a variety of questions. For example,
questions include: beliefs about current economic policy, expectations about future
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personal financial conditions, perceptions about past personal financial conditions,
and inflation expectations.

For all questions that we use, the MSC solicits a categorical response from the
consumer. The consumer has three choices of response, which fall broadly into an “op-
timistic” response, a “stay the same/neutral” response, and a “pessimistic” response.
For example, in response to the question “As to the economic policy of the govern-
ment – I mean steps taken to fight inflation or unemployment – would you say the
government is doing a good job, only fair, or a poor job?” consumers may respond
either “good job,” “only fair,” or “poor job.” Similarly, for the question on 12 month
unemployment expectations relative to today, the consumer chooses if they believe
unemployment will “rise,” “stay about the same,” or “fall.”

Based on these responses, the MSC also publishes a widely reported aggregate
measure of consumer sentiment. Hence, an obvious first pass to assess whether po-
litical shocks affect consumer beliefs is to simply study the time variation in this
measure. Figure 3.6 plots the MSC sentiment measure during the months before and
after the recent 2016 presidential election.

At first glance, Figure 3.6 seems to suggest that consumer sentiment did not react
strongly despite the polarizing presidential campaign and election. The consumer
sentiment measure does appear to jump up slightly following the campaign. But this
variation is well within normal fluctuations, and below particularly large changes (e.g.
during recessions).

However, the theoretical results above show that focusing on average beliefs across
heterogeneous agents is not sufficient to understand how polarization affects belief
formation. Figure 3.7 bears this out. Here we plot the fraction of people whose answer
regarding government policy was more optimistic than the answer they gave 6 months
previously (green line). Similarly, the orange line is the fraction of people whose
answer became more pessimistic. Usually, these two lines are negatively correlated:
periods in which more people become optimistic about government policy are the
same times in which fewer people are becoming pessimistic.

However, this pattern does not hold during the 6 months immediately following
the 2016 election. During this period, the fraction of people becoming more pes-
simistic and more optimistic both increased. Note that during this 6 month period,
individuals’ previous answers in the MSC came before the outcome of the 2016 elec-
tion.

3.3.2 Belief Responses to Political Shocks

The previous results are suggestive that political shocks differentially affect con-
sumers’ beliefs. However, government policy is directly related to the outcome of the
presidential election, so it is perhaps not surprising to see sharp responses of beliefs
regarding economic policy following a highly contentious and unexpected election.
In this section we more formally explore whether the 2016 election had differential
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affects on beliefs. We also extend the analysis and compare the 2016 election with
previous elections to see if these patterns have changed over time.

First, we more precisely estimate the transition probabilities surrounding the 2016
election. For a broader set of questions and using a multinomial logit estimation
model, we examine the conditional probability that individuals answer optimistically
or pessimistically, given that they previously answered optimistically, neutrally, or
pessimistically.

Figure 3.8 plots these estimates for each month. The three columns correspond
to estimated probabilities for three questions regarding government policy, expected
business conditions, and expected unemployment. The top row plots the conditional
probabilities for individuals answering optimistically, while the bottom row plots cor-
responds to pessimistic individuals.

The results show that usually, beliefs tend to be unchanged: people who had a
positive view of government policy 6 months previously tend to think the same today.
Similarly, people who previously believe business conditions will improve, or unem-
ployment was declining, tend to feel the same way today. A handful of individuals who
felt neutral will switch to positive, but very few people who felt negatively switch to a
positive view. Similarly, those with pessimistic views of government policy, business
conditions, or unemployment tend to continue to remain negative.

The major exception is the 6 months following the 2016 election. During this
period, the pattern is exactly the opposite. Those who had a negative view of govern-
ment policy 6 months ago (before the election) are now actually slightly more likely
to have a positive view of government policy. Moreover, those who previously held a
positive view of policy 6 months ago (before the election) are now unlikely to hold a
positive view of policy. The results are the same for those who view policy negatively
following the election. Additionally, the patterns for feelings about government policy
are strikingly similar for other macroeconomic beliefs as well.

As argued in Kamdar (2018), when using consumer survey beliefs in a compo-
nent analysis the first component explains the large majority of the variation in
consumer beliefs. Furthermore this component can be viewed as a measure of op-
timism/pessimism. In order to more parsimoniously explore the behavior of expec-
tations over time, we collapse the responses to a single component of a multiple
correspondence analysis (MCA).

The results of the MCA estimation are in Figure 3.9.5 The standardized coordi-
nates of the first dimension are on the x-axis, while the second dimension corresponds
to the y-axis. The first component explains over 87% of the inertia in the responses,
while the second component only explains an additional 3%. Each different marker
type corresponds to a question, while the colors correspond to the possible responses.
Blue markers are for the pessimistic response, yellow is for the neutral response, and
green is for the positive response.

5Note: the MCA is estimated on additional questions which include more than three categories;
for readability, questions with more than three categorical answers are not included in the plot.
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The estimated MCA corrdinates imply that the crucial first component acts like
a measure of sentiment. Note that the coordinates of the first component are ordered
such that pessimistic responses are less than neutral responses, which in turn are
smaller than the optimistic responses (the blue scatter points fall to the left of the
yellow points, which fall to the left of the green scatter points). The only slight ex-
ception is the question regarding interest rates (square markers). However, while the
other responses can be unambiguously mapped to optimistic, neutral, and pessimistic
responses, the change in interest rates is more ambiguous. Therefore, we interpret
this component as a general measure of the sentiment of the consumer (see Kamdar
(2018) for additional component analyses and robustness exercises).

Interestingly, the second dimension seems to correspond to a measure of change.
The coordinates of the second dimension are ordered such that neutral responses
are less than both optimistic and pessimistic responses (the yellow scatter points fall
below both the blue and green scatter points). However, the first component explains
the vast majority of inertia in the data, while the second component adds very little.
Hence, we focus on the first component only.

We use the MCA to construct a measure of economic sentiment fi,t for each
individual across time. From the results in Figure 3.9, we see that consumers who
respond positively to any of the questions end up with a higher level of the first
component. We use this sentiment measure to study how beliefs react over time to
political shocks.

Figure 3.10 shows how the distribution of sentiment across individuals has changed
over time. The solid line is our median economic sentiment measure across individuals
in a given month. As expected, this measure is related to the business cycle, falling
during recessions and increasing during booms. However, the dotted lines (plotting
the 90-10 percent distribution) show that there is substantial variation across indi-
viduals regarding economic sentiment during booms and busts. For instance, even
during the 2009 recession, more than 10% of individuals exhibited positive economic
sentiment.

To explore how sentiment varies across individuals, we estimate the following
regression

fi,t = αt + βtfi,t−6 + εi,t (3.8)

The variable fi,t is the first component from the MCA analysis for an individual i at
time t. We regress this on the individual’s previous response 6 months prior, fi,t−6.
Hence, the coefficient βt in Eq. (3.8) measures how persistent is individuals’ sentiment
measure over time. We estimate Eq. (3.8) period by period, pooling over individuals.

Figure 3.11 plots the estimated coefficients β̂t. The shaded regions correspond to
the 6 month period following the outcome of presidential elections. In these periods,
fi,t is determined by responses given after the outcome of the election, while fi,t−6 is
determined by responses from before the election. Hence, in the shaded regions Eq.
(3.8) regresses responses following an election on the same individual’s responses that
were given before the election.
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In general, sentiment is highly persistent: individuals who were optimistic 6
months prior tend to be optimistic today; similarly, pessimistic individuals remain
pessimistic. Virtually the only exception to this is during certain presidential elec-
tions. Moreover, these elections where the persistence falls is exactly the elections
where the White House changed party: 1980, when Reagan (R) replaced Carter (D);
1992, when Clinton (D) replaced Bush Sr. (R); 2000, when Bush Jr. (R) replaced
Clinton; 2008, when Obama (D) replaced Bush Jr., and 2016, when Trump (R) re-
placed Obama. Further, the fall in persistence has been increasing over time. The
2016 election is the most striking, with an estimated negative coefficient. This con-
firms the individual question analysis from the previous section: individuals who were
pessimistic before the 2016 election tend to become optimistic following the election,
and vice versa for optimistic individuals.

3.4 Empirical Evidence: Actions
The theoretical results of Section 3.2 imply a tight connection between agent’s beliefs
and actions. Hence, the results in the previous section suggest that political shocks
should lead to large changes in consumption. This section provides empirical evidence
that political polarization during the 2016 presidential election played a crucial role
in how individuals make spending decisions.

3.4.1 Data

We use the Nielsen Homescan data to study the response of consumption and spend-
ing to the outcome of the 2016 presidential election.6 Nielsen Homescan is a panel
dataset which measures U.S. consumer behavior. Panelists use scanners to record
all purchases of products tracked by Nielsen in food and non-food categories. The
dataset tracks when, where, and how much of each product a given panelist purchases
across time. Nielsen also records demographic and geographical information on the
panelists. Since 2007, the Homescan data includes roughly 60,000 households.

Using the Nielsen Homescan data, we construct a high-frequency measure of con-
sumption spending at the 5-digit zip code level. In order to more precisely study
the effects of the 2016 election, we aggregate spending to the weekly frequency; since
presidential elections fall on Tuesdays, our weekly measure starts on Wednesday and
runs to the following Tuesday.

6Researcher(s) own analyses calculated (or derived) based in part on data from The Nielsen
Company (US), LLC and marketing databases provided through the Nielsen Datasets at the Kilts
Center for Marketing Data Center at The University of Chicago Booth School of Business. The
conclusions drawn from the Nielsen data are those of the researcher(s) and do not reflect the views
of Nielsen. Nielsen is not responsible for, had no role in, and was not involved in analyzing and
preparing the results reported herein.
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We map our consumption data to voting data at the zip code level. Voting data
is recorded at the precinct level, which is not observed in the Homescan dataset (and
in general is not a common regional measure outside of elections). Instead, we use
geographical shape data to allocate precinct-level voting data to zip codes. Precincts
are smaller geographical areas than zip codes, and most precincts fall entirely within
zip codes. For precincts that fall within multiple zip codes, we allocate votes propor-
tionally to each zip code based on geographical size overlap.

Our voting and geographical precinct data is from the Statewide Database main-
tained by Berkeley Law; however, this data is restricted to the state of California.
As an example of our zip code voting data, Figure 3.12 plots the vote shares by zip
code in Orange County. Orange County voted for Clinton by a margin of 8%, but
as the Figure shows this does not imply that votes were uniformly distributed across
precincts.

We then merge our consumption panel data with the California zip code voting
data. We focus on zip codes with at least 1,000 recorded votes. This leaves us with
1,046 zip codes. The median number of votes in our sample is roughly 12,000, with the
largest made up of about 35,000 votes. The voteshare of the election in the median
zip code median in our sample was 62% for Clinton. The largest and smallest zip
code vote share for Clinton in our sample is 93% and 19%, respectively.

3.4.2 Event Study Results

In order to assess how spending reacted to the 2016 election, we estimate the following
event study regression:

cz,t = αz + γt +
T∑

k=−T

βkv
16
z · It=t∗+k + εz,t (3.9)

The outcome variable cz,t is (log) consumption in zip code z at week t. v16
z is the

Trump vote share in zip code z in the 2016 election. t∗ is the week in which the
2016 presidential election took place; we set T = 7 in order to study consumption
patterns in the 7 weeks before and after the election. The regression equation Eq.
(3.9) also includes zip code and time fixed effects. Hence, the coefficient βk represents
the predicted percentage increase in consumption in a zip code with 1 percentage
point higher Trump voteshare in the 2016 election.

Figure 3.13 plots the estimated β̂k from the event study in Eq. (3.9). The increase
in consumption is large and statistically significant in the weeks immediately following
the election. In contrast, the estimates for the weeks preceding the election are small
and not significantly different from zero; this shows there was no differential time
variation in consumption patterns related to voting propensities in the lead-up to the
election. The lack of pre-trends is reassuring that the change in consumption is in
fact a response to the election.
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Further, although the standard errors are large, the point estimate remains quite
large for most of the weeks in the sample period following the election. Economi-
cally, our estimates are large: a zip code with 1 percentage point higher Republican
voteshare is associated with a 0.5 percent increase in consumption over the weeks fol-
lowing the election. To put this in perspective, consider two hypothetical zip codes:
the first voted 75% for Clinton while the second voted 75% for Trump. Then the
Trump zip code is predicted to have 25% higher consumption relative to the Clinton
zip code in response to the election outcome.

As a placebo, Figure 3.14 plots the same event study but using the equivalent
timeframe in 2015. Since no election or other major political shock took place during
this time period, we would not expect to see differential consumption patterns. The
results in Figure 3.14 show that this is the case. None of the estimated coefficients
are significantly different from zero. Further, the point estimates are never as large
as the estimates we find following the 2016 election. This allows us to rule out any
differential consumption patterns in zip codes that have a higher propensity to vote
Republican for reasons unrelated to political shocks (e.g. different seasonal patterns
in consumption).

Our empirical consumption results are in line with the results from a similar
empirical design in Australia, as shown in Gillitzer and Prasad (2018). In the context
of the U.S., our results contrast with the findings in Mian et al. (2018), who find
little evidence that political shocks lead to differential consumption responses. This
is likely due to two factors. First, we use voting data at the zip code level, which
allows for a much tighter link between voting propensity of a given region and the
consumption responses. Second, we use a higher-frequency measure of consumption.
This allows us to pick out possibly shorter-lived consumption responses (note that
while our estimates are economically large, they are only significantly different from
zero at the 5% level for the two weeks following the election). However, one downside
is the consumption data is largely composed of nondurable consumption. To the
extent that durable consumption is a more important part of households’ overall
consumption spending, our results may miss a big part of the story.

3.5 Concluding Remarks
This paper argues that political polarization plays a large role in how individuals
learn about the macroeconomy, and that these polarized expectations lead to differ-
ential consumption decisions. We first demonstrate theoretically that heterogeneous
preferences lead to differential information-processing in a rational inattention model.
Moreover, we show that declining information costs actually exacerbate the degree
of ex-post disagreement about macroeconomic fundamentals under very general con-
ditions. This “paradox of information” can help explain the secular increase in po-
larization: as information about the economy becomes easier to access, individuals
rationally choose to seek out more and more precise information that is most useful
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to inform their actions. But when individuals differ in what is most important to
them, this leads to individuals learning about the economy in fundamentally different
ways. Hence, falling information costs may lead to larger ex-post disagreement about
the macroeconomy.

We then use survey data of U.S. consumers to show that political shocks do lead
to differential changes in expectations. We first construct an individual sentiment
measure, which explains the vast majority of consumer’s beliefs regarding not only
current and future macroeconomic conditions, but also current and future personal
financial conditions. This sentiment measure is highly persistent for a given indi-
vidual, with the crucial exception of periods following presidential elections when the
White House changed parties. During these periods, previously optimistic individuals
are more likely to become pessimistic, and similarly pessimistic individuals are more
likely to become optimistic. Moreover, the effect of presidential switches has been
growing since the 1980s.

Finally, using the recent presidential election, we show that political shocks do
lead to differential changes in consumption. Using a weekly measure of consumption
spending at the zip code level tied to California voting records, we find that a 1
percentage point increase in the Republican voteshare of a zip code implies an increase
of 0.5% in the weeks following the election.

The theoretical results in our model hold for general preferences, but our modeling
framework still contain certain limitations. One important extension for future work
is to allow for an infinite-horizon dynamic problem, along the lines of Maćkowiak
et al. (2018). Empirically, extending the analysis to the entire U.S. is an important
next step, though geographically precise precinct voting data is not readily available.
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Figure 3.3: Belief Response Across Agents

Notes: Plots of the elements of the matrix Wk
1 in the limit as information costs

λ → 0 across individuals, who differ in their risk aversion parameter ηk (x-
axis). This matrix determines how each individual changes their belief regarding
a variable (panel rows) in response to a unit change in the realization of another
state variable (panel columns); note the matrix is symmetric. For instance, the
third row and second column panel is the response of beliefs about period-1 prices
p1 in response to a unit increase in income y.
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Figure 3.4: Average Beliefs and Information Costs: Tax Shock

Notes: plots of the mean error of beliefs across individuals as a function of infor-
mation costs λ (x-axis). This experiment is conditional on a unit increase in the
tax τ .
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Figure 3.5: Belief Variances and Information Costs: Tax Shock

Notes: plots of the variance-covariance of belief errors across individuals as a
function of information costs λ (x-axis). This experiment is conditional on a unit
increase in the tax τ). Variances are on the diagonal panels; covariances are on
the off-diagonal panels.
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Figure 3.6: Consumer Sentiment

Notes: level of the Consumer Sentiment Index as published by the Michigan
Survey of Consumer. Monthly data, from 2015-2019.

Figure 3.7: Government Policy Beliefs

Notes: the green line plots the fraction of individuals who become more optimistic
about government policy relative to their previous response; the orange line plots
the fraction of individuals who become more pessimistic. Monthly data, from
2015-2019.
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Figure 3.9: MCA Coordinates

Notes: selected coordinates for the first dimension (x-axis) and second dimension
(y-axis) of a multiple correspondence analysis (MCA). Green points correspond
to optimistic responses; orange points to neutral responses; and blue points to
pessimistic responses. Each marker type corresponds to different questions from
the MSC.

Figure 3.10: Sentiment Distribution Across Time

Notes: time series of the first component fi,t from an MCA analysis. The solid
line is the median value of sentiment, while the dotted lines are the 90-10 percent
distribution.
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Figure 3.11: Sentiment Autocorrelation

Notes: coefficient from period-by-period regressions pooled across respondents
fi,t = αt + βtfi,t−6 + εi,t. fi,t is the first component from an MCA analysis.
Shaded regions correspond to 6-month periods following presidential elections.
Dotted lines represent 2-standard error bands.

Figure 3.12: Orange County Votes by Zip Codes

Notes: vote shares in the 2016 presidential election in Orange County, California,
at the zip code level. Precinct votes were allocated to the zip codes based on
overlapping area.
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Figure 3.13: Event Study of the Consumption Response

Notes: β̂k from event study described in Eq. (3.9) in the weeks preceding and
following the 2016 presidential election. Vertical lines represent 95% confidence
intervals. Standard errors are clustered at the zip code level.

Figure 3.14: Placebo Event Study of the Consumption Response

Notes: β̂k from event study described in Eq. (3.9) in the weeks preceding and
following the week in 2015 one year prior to the 2016 presidential election. Vertical
lines represent 95% confidence intervals. Standard errors are clustered at the zip
code level.
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Appendix A

Monetary Policy and the Limits to
Arbitrage

A.1 Proofs
Proof of Lemma 1.1. The results follow from analyzing the characteristic poly-
nomial of Υ:

c(λ) = λ2 − κrλ− ς−1κrφxÂr

1. Note that c(λ) is increasing iff λ > 1
2
κr. Additionally, c(λ) → ∞ whenever λ →

±∞. Note

c(0) = c(κr) = −ς−1κrφxÂr

Hence if Âr > 0, the expression above is negative which implies c(λ) has two roots:
λ1 > κr and λ2 < 0.

2. Setting c(λ) to zero and solving for Âr gives eq. (1.11). Note that h(λ) is a positive
quadratic with zeros at λ = 0 and λ = κr; for λ ∈ (0, κr), h(λ) is negative.

3. The eigenvector associated with λ1 is

q1 ≡
[
− λ1
ς−1Âr

1

]
In this case Ω, the matrix governing the equilibrium dynamics of the jump variables
in eq. (1.10), is simplify a scalar, given by ωx ≡ q21

q11
. Substituting the solution for

Âr gives the result.
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Proof of Lemma 1.2. This result is the scalar counterpart of the optimality
conditions derived in Prop. 1.7. The expected instantaneous return simplifies to

µt,τ = A′r(τ)rt + C ′(τ) + λ(rt − rSS)Ar(τ) +
1

2
σ2
rAr(τ)2 (A1)

Proof of Lemma 1.3. The functional forms of Ar(τ), C(τ), and ν are again
the scalar analogues of the results in Prop. 1.7. In this case, M ≡ ν and simplifies to
eq. (1.16) so C(τ) simplifies to

C(τ) = n1(τ)ZC −
1

2
σ2
rn2(τ) (A2)

where

ZC =
aσ2

rN2 + λrSS

1 + aσ2
rN1

n1(τ) =

∫ τ

0

Ar(u) du

n2(τ) =

∫ τ

0

Ar(u)2 du

N1 =

∫ T

0

α(τ)Ar(τ)n1(τ) dτ

N2 =

∫ T

0

α(τ)Ar(τ)

(
β̄(τ)τ +

1

2
σ2
rn2(τ)

)
dτ

If a = 0 it immediately follows that ν = λ, so throughout assume that a > 0. In
this case, solving for ν is a fixed point problem. Since α(τ) > 0 ∀τ , this implies

aσ2
r

∫ T

0

α(τ)τ 2f(ντ)2 dτ > 0

Hence, the right-hand-side of eq. (1.16) is strictly greater than λ.
Next, note

∂f(ντ)2

∂ν
= 2τf(ντ)f ′(ντ)

f(·) is a strictly decreasing, convex function, approaching 0 as x → ∞. So the
above expression is negative. This implies the right-hand-side of eq. (1.16) is strictly
decreasing in ν. Further, as ν →∞, if τ > 0 then f(ντ)→ 0. Thus∫ T

0

α(τ)τ 2f(ντ)2 dτ → 0
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which implies the right-hand-side of eq. (1.16) approaches λ as ν →∞.
Hence there exists a unique ν ∈ (λ,∞) such that eq. (1.16) is satisfied. Treating

ν as a function of λ, I derive some additional properties. Recall ν(λ) > λ. Further,

∂f(ντ)2

∂λ
= 2τf(ντ)f ′(ντ)

∂ν

∂λ

=⇒ ∂ν

∂λ
=

(
1− 2aσ2

r

∫ T

0

α(τ)τ 3f(ντ)f ′(ντ) dτ

)−1

Also note α(τ)τ 3f(ντ) ≥ 0 and f ′(ντ) ≤ 0, so

0 <
∂ν

∂λ
< 1

Fixing λ, note that

∂ν

∂a
=

σ2
r

∫ T
0
α(τ)τ 2f(ντ)2 dτ

1− 2aσ2
r

∫ T
0
α(τ)τ 3f(ντ)f ′(ντ) dτ

Hence ν is increasing in a.
Finally, Âr is given by

Âr ≡
∫ T

0

η(τ)

τ
Ar(τ) dτ

eq. (1.17) is obtained by substituting eq. (1.15). If η(τ) is the Dirac delta function,
then g(λ) = 1 ∀λ. Otherwise,

g′(λ) =

∫ T

0

η(τ)τf ′(ντ) dτ
∂ν

∂λ

hence g′(λ) < 0 and additionally g(λ)→ 0 as λ→∞.

Proof of Prop. 1.1. In general equilibrium, λ1 and Âr are determined by the
intersection of eqs. (1.17) and (1.11). Recall from the proof of Lemma 1.3, for λ > 0,
g(λ) is strictly positive, decreasing, and approaches 0 as λ → ∞. From the proof
of Lemma 1.1, h(λ) is negative for 0 < λ < κr, but is strictly increasing and grows
without bound when λ ≥ κr. Hence there exists a unique λ1 > κr > 0 such that
g(λ1) = h(λ1). Figure 1.2 plots examples of the intersection of g and h.

Given any value of r∗, the steady state is

rSS =
r̄ − Ĉ
Âr

xSS =
r∗ − rSS

φx
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Proof of Corollary 1.1.1. Recall from Prop. 1.1 that Âr (and the associated
eigenvalue λ1) are determined by the intersection of a downward sloping curve g(λ)
and an upward sloping (in the neighborhood of the intersection λ1) curve h(λ). And
while these curves depend on the parameters of the model, the parameter dependence
is disjoint: g(·) only depends on the parameters governing the term structure side
of the model, while h(·) depends on the macro parameters. This greatly simplifies
studying comparative statics.

1. The proof of Lemma 1.3 showed that ν is increasing in a. Then

∂g(λ)

∂a
=

∫ T

0

η(τ)f ′(ντ) dτ
∂ν

∂a

which implies that for any given λ, an increase in a leads to a downward shift in
g(λ). Since h(λ) is unchanged, this implies that the point of intersection shifts
downward and to the left.
Further, note that as a→∞, ν →∞. To see why, suppose instead that ν → ν∗ <
∞. Then f(ντ)→ f(ν∗τ) > 0. But then

aσ2
r

∫ T

0

α(τ)τ 2f(ντ)2 dτ →∞

and therefore the right-hand side eq. (1.16) grows without bound, a contradiction.
This immediately implies that f(ντ)→ 0 and therefore so too does g(λ) for λ > 0.
As before, this says that the point of intersection of g and h continues shifting
downward and to the left until Âr = 0 and λ1 = κr.
Note that if a = 0, g(λ) is independent of changes in σr. But when a 6= 0, the
same arguments above show that

∂Âr
∂σr

< 0,
∂λ1

∂σr
< 0

lim
σr→∞

Âr = 0, lim
σr→∞

λ1 = κr

2. Differentiating eq. (1.11) with respect to κr gives

− λ2

ς−1κ2
rφx

< 0 ∀λ

Hence the intersection shifts down and to the right.

3. Differentiating eq. (1.11) with respect to φx gives

−λ(λ− κr)
ς−1κrφ2

x

which is negative whenever λ > κr. Hence the intersection shifts down and to the
right.
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4. Note for arbitrary functions f and g, where f and g satisfy the following:

f(x) > 0, f ′(x) < 0

g(x) > 0 ⇐⇒ x < x∗,

∫
g(x) dx = 0

Then
∫
f(x)g(x) dx > 0. So set f(ντ) as f , and ηs(τ)− η`(τ) as g, which gives∫ T

0

(ντ)ηs(τ) dτ >

∫ T

0

(ντ)η`(τ) dτ

which says that gs(λ) > g`(λ) (using the notation from a previous Lemma). In
other words, g shifts down moving from the ηs weights to the η` weights. Since h
is unchanged, the equilibrium results follow.

Proof of Corollary 1.1.2. The expression for the optimal target eq. (1.18)
follows from the steady state results derived in the proof of Prop. 1.1.

Next, consider demand functions β̄h(τ) ≥ β̄h(τ). Letting superscripts h and `
denote the equilibrium outcomes under β̄h(τ) and β̄`(τ), note that the coefficient
function Ahr (τ) = A`r(τ), so the only difference comes about due to changes in the
constant function. Then note that

Ĉh − Ĉ` = −Âr(r∗h − r∗`)

=⇒ r∗h − r∗` = − aσ2
r n̂1(Nh

2 −N `
2)

λn̂1 + Âr(1 + aσ2
rN1)

where the second line follows from eq. (A2), and the expressions defined in the proof
of Lemma 1.3. Then, since β̄h(τ) ≥ β̄`(τ),

Nh
2 −N `

2 =

∫ T

0

α(τ)τAr(τ)
(
β̄h(τ)− β̄`(τ)

)
dτ > 0

=⇒ rh∗ ≤ r`∗

where the inequalities are strict whenever a > 0.

Proof of Prop. 1.2. To solve for x0, for t ≤ t� the dynamics of the policy rate
under the peg imply that

E0rt = r� + e−κ
�
rt(r0 − r�)

=⇒ E0rt� = r�
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In order to satisfy transversality conditions, once the central bank returns to a Taylor
rule, the output gap must satisfy xt� = ωx(rt� − rSS). Thus,

E0xt� = ωx(r
� − rSS)

Solving for E0xt� given x0 gives

E0xt� = x0 + t�ς−1(Â�rr
� + Ĉ� − r̄)

Hence,

∂x0

∂r�
= ωx − t�ς−1Â�r

∂2x0

∂r�∂t�
= −ς−1Â�r

Then the result follows since

∂Â�r
∂a

< 0,

∣∣∣∣∂ωx∂a

∣∣∣∣ < 0

Proof of Lemma 1.4. Following the same steps as in Lemma 1.1:

Âr =
λ1(λ1 − κr)
ς−1κrφx

Substituting this into Υ, the eigenvalue decomposition is

Λ =

λ1 0 0
0 κβ 0
0 0 −λ1 + κr


Q =


κrφx
−λ1+κr

κrφx
κr−κβ

κrφx
λ1

0
κ2β−κβκr−λ

2
1+λ1κr

(κr−κβ)ς−1Âβ
0

1 1 1


Solving for the rational expectations equilibrium gives

Γ =

[
λ1

κrφxς−1Âβ
λ1−κr+κβ

0 κβ

]
Ω =

[
−λ1+κr
κrφx

−ς−1Âβ
λ1−κr+κβ

]
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Proof of Lemma 1.5. This follows from the general case in Prop. 1.7, where

Γ =

[
γ1 γ12

0 γ2

]
, Σ =

[
σ2
r 0

0 0

]
=⇒ M =

[
ν 0
ν12 γ2

]
and the elements of M are given by

ν = γ1 + aσ2
r

∫ T

0

α(τ)Ar(τ)2 dτ

ν12 = γ12 + aσ2
r

∫ T

0

α(τ) [Aβ(τ)− τθ(τ)]Ar(τ) dτ

The eigenvector decomposition gives

D =

[
ν 0
0 γ2

]
, G =

[
1 0
ν12
ν−γ2

ν12
γ2−ν

]
and thus

A(τ) = GD−1 [I− exp(−Dτ)] 1

=⇒ Ar(τ) = τf(ντ)

Aβ(τ) =
ν12

ν − γ2

τ(f(ντ)− f(γ2τ))

Hence, rewriting the expression for ν gives

ν = γ1 + aσ2
r

∫ T

0

α(τ)τ 2f(ντ)2 dτ

which is equivalent to eq. (1.16).
Substituting the solution for Aβ(τ) into the expression for ν12 and solving gives

ν12 =
γ12 − aσ2

r

∫ T
0
α(τ)τ 2f(ντ)θ(τ)

1− aσ2
r

ν−γ2

∫ T
0
α(τ)τ 2(f(ντ)− f(γ2τ)) dτ

(A3)

Thus, integrating and weighting by η(τ)
τ

gives

Âr =

∫ T

0

η(τ)f(ντ) dτ

Âβ =
ν12

ν − γ2

∫ T

0

η(τ)(f(ντ)− f(γ2τ)) dτ

and hence, since the fixed point problem that solves ν is equivalent to the baseline
rigid price model, so is the expression for Âr.
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Proof of Prop. 1.3. 1. Combining the coefficients used in Lemmas 1.4 and 1.5:

γ1 = λ1

γ2 = κβ

γ12 =
κrφxς

−1Âβ
λ1 − κr + κβ

=
κrφxς

−1

λ1 − κr + κβ

(
ν12

ν − γ2

∫ T

0

η(τ)(f(ντ)− f(γ2τ)) dτ

)
Substituting these expressions into eq. (A3) and rearranging gives

ν12 =
−aσ2

rN1

1− φxκrς−1

(λ1−κr+κβ)(ν−κβ)
N2 − aσ2

r

ν−κβ
N3

(A4)

where N1, N2, N3 are integral expressions:

N1 =

∫ T

0

α(τ)τ 2f(ντ)θ(τ) dτ

N2 =

∫ T

0

η(τ)(f(ντ)− f(κβτ)) dτ

N3 =

∫ T

0

α(τ)τ 2(f(ντ)− f(κβτ)) dτ

First, focusing on the denominator of eq. (A4),

ν > κβ ⇐⇒ f(ντ) < f(κβτ)

hence the denominator is strictly positive. Then, since by assumption θ(τ) ≥ 0,
the numerator of eq. (A4) is negative (strictly if a > 0). Therefore, ν12 ≤ 0 and
Âβ ≥ 0 (with strict inequalities when a > 0).

2. Taking the limit as κβ →∞, from eq. (A4) the limiting value of ν12 is

ν12 → −aσ2
r

∫ T

0

α(τ)τ 2f(ντ)θ(τ)

Since ν is independent of κβ, this limit is bounded. Further, f(κβτ) → 0 as well.
Hence, taking the limit of eq. (1.22) gives

ν12

ν − κβ

∫ T

0

η(τ)(f(ντ)− f(κβτ)) dτ → 0
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Proof of Lemma 1.6. 1. The characteristic polynomial of Υ is

c(λ) ≡ λ3 − (κr − ρ)λ2 − ς−1(Ârκrφx + δ + κrρς)λ− ς−1κr(Âr(δφπ + ρφx)− δ)

Hence:

lim
λ→+∞

c(λ) = +∞

lim
λ→−∞

c(λ) = −∞

c(κr) = −ς−1κrÂr(κrφx + δφπ + ρφx) < 0

Hence there is some (real) λ1 > κr > 0 such that c(λ1) = 0. For the other two
roots, note

c′(λ) = 3λ2 − 2(κr − ρ)λ− ς−1(Ârκrφx + δ + κrρς)

c(0) = −ς−1κr(Âr(δφπ + ρφx)− δ)
c′(0) = −ς−1(Ârκrφx + δ + κrρς)

So c′(0) < 0. If c(0) > 0, since c(κr) < 0 there will be another value λ2 ∈ (0, κr)
such that c(λ2) = 0. Hence c(0) < 0 is necessary for determinacy. This is satisfied
iff eq. (1.24) holds.

To see that this condition is sufficient, since c′(0) < 0, c(λ) has a local maximum
for some λ < 0, denoted c(z) = y. If y > 0 then there are two real negative zeros,
one less than z and one greater than z. If y = 0 then there are two duplicated real
negative zeros (equal to z). Finally, if y < 0 then there are two conjugate complex
zeros. The line that intersects (λ1, 0) and is tangent to c(λ) is upward sloping, and
is tangent to c(λ) at a point (M,H) where M < z. The real components of the
complex zeros is given by M .

2. Setting c(λ) to zero and solving for Âr gives eq. (1.25). The fact that h(λ) → ∞
as λ→∞ follows for the sign restrictions on the parameters.

Note that the zeros of h(λ) are{
κr,

1

2

(
−ρ±

√
ρ2 + 4δς−1

)}
so there are two positive (real) zeros, and one negative (real) zero. Order these
z1 > z2 > 0 > z3. Then z2 + z3 ≤ −ρ < 0 (equality holds if z1 = κr). Write

h(λ) =
(λ− z1)(λ− z2)(λ− z3)

ς−1κr (δφπ + ρφx + λφx)

Differentiating with respect to λ gives

h′(λ) = h(λ)

[
1

λ− z1

+
1

λ− z2

+
1

λ− z3

+
−φx

δφπ + ρφx + λφx

]
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If λ ∈ [0, z2), then h(λ) > 0 while the first and fourth terms in brackets are
negative. Then

1

λ− z2

+
1

λ− z3

=
2λ− (z2 + z3)

(λ− z2)(λ− z3)
< 0

since z3 < 0 < λ < z2 by assumption, and z2 + z3 < 0. Hence for λ ∈ [0, z2),
h′(λ) < 0 and hence h(0) is the maximum in this range.

Finally, h(λ) > 0 whenever λ > z1. The second and third in brackets are positive,
while

1

λ− z1

− φx
δφπ + ρφx + λφx

=
δφπ + ρφx + z1φx

(λ− z1)(δφπ + ρφx + λφx)
> 0

hence for λ > z1, h(λ) is a positive strictly increasing function.

Also, note that the condition for determinacy is equivalent to

Âr > h(0)

3. Substituting the expression for Âr into Υ and carrying out the eigenvalue decom-
position and solving for Ω gives the result

Proof of Prop. 1.4. 1. In general equilibrium, Âr is determined by the inter-
section of eqs. (1.17) and (1.25). Recall that for λ ≥ z1 where z1 is the largest root
of h, h is strictly increasing and grows without bound. Further, g is a positive,
strictly decreasing function approaching 0. Hence there exists a unique λ1 ≥ z1

such that
Âr = g(λ1) = h(λ1)

2. For uniqueness, since g is defined for positive values only I show that there is no
other λ′ ∈ [0, z1] such that g(λ′) = h(λ′). From Lemma 1.6, h(0) > h(λ′) in this
range. Additionally, Lemma 1.3 says that g(λ) is decreasing, so that g(λ1) > g(λ′).
If the model is determinate, then the condition from Lemma 1.6 gives g(λ1) > h(0).
So g(λ′) > h(λ′) for all λ′ ∈ [0, z1]. Hence Âr is unique. Figure 1.5 plots examples
of intersections of g and h.

Proof of Corollary 1.4.1. The proofs are similar to Cor. 1.1.1.

Proof of Corollary 1.4.2. Since δ > 0, the right hand side of the inequality
from eq. (1.24) is strictly greater than zero. Then since Âr → 0 as a → ∞, there is
some a for which a > a implies

Âr <
δ

δφπ + ρφx
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Proof of Prop. 1.5. When the determinacy condition eq. (1.24) is satisfied, the
proof is the same as in Prop. 1.2. The result follows since

∂Â�r
∂a

< 0,

∣∣∣∣∂ωπ∂a
∣∣∣∣ < 0,

∣∣∣∣∂ωx∂a

∣∣∣∣ < 0

Proof of Lemma 1.7. The proof is the same as Lemma 1.4, except that the
rational expectations equilibrium matrices are now more complicated. The rational
expectations dynamics matrices are given by

Γ =

[
λ1 γ12

0 κβ

]
(A5)

Ω =

[
δ(−λ1+κr)

κr(φπδ+φx(λ1+ρ)
ω2,1

(λ1+ρ)(−λ1+κr)
κr(φπδ+φx(λ1+ρ)

ω2,2

]
(A6)

where γ12, ω2,1 and ω2,2 are rational functions of the eigenvalue λ1.

Proof of Prop. 1.6. Given the determinacy condition is satisfied, the the proof
is similar to Prop. 1.3.

Proof of Prop. 1.7. Given the affine functional form assumption, I use Ito’s
Lemma to compute instantaneous returns. Write Pt,τ explicitly as a function of time
t and variables yt:

P (t,y) = exp
{
−yTA(τ(t))− C(τ(t))

}
Note that the dependence on the first argument t comes through τ in the coefficient
functions A(τ) and C(τ). Of course dτ

dt
= −1, which implies

∂P

∂t
= Pt,τ

(
yTt A′(τ) + C ′(τ)

)
The gradient and Hessian with respect to y are

∇yP = −Pt,τA(τ)

HyP = Pt,τ
(
A(τ)A(τ)T

)
Therefore, Ito’s Lemma implies the instantaneous return is

dPt,τ
Pt,τ

= µt,τ dt−A(τ)TS dBt (A7)

µt,τ = yTt A′(τ) + C ′(τ) + [Γ(yt − y)]T A(τ) +
1

2
Tr
[
ΣA(τ)A(τ)T

]
(A8)
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The arbitrageur’s optimality conditions are given by:
∂Et dWt

∂bt,τ
=
a

2

∂V art dWt

∂bt,τ

Use eq. (A7) to compute the expectation and variance of the change in arbitrageur
wealth:

Et dWt =

[(
Wt −

∫ T

0

bt,τ dτ

)
rt +

∫ T

0

bt,τµt,τ dτ

]
dt

=⇒ ∂Et dWt

∂bt,τ
= (µt,τ − rt) dt

and the variance is

V art dWt =

(∫ T

0

bt,τA(τ)T dτ

)
Σ

(∫ T

0

bt,τA(τ) dτ

)
dt

=⇒ ∂V art dWt

∂bt,τ
= 2

(∫ T

0

bt,τA(τ)T dτ

)
ΣA(τ) dt

Note that

bt,τ = −b̃t,τ = α(τ)
[
yTt (Θ(τ)τ −A(τ)) + β̄(τ)τ − C(τ)

]
(A9)

Substitute eq. (A9) into the optimality conditions derived above. Equating the coef-
ficients on yt terms (and assuming that rt is ordered first) gives:

A′(τ) + MA(τ)− e1 = 0

where M is defined by eq. (1.30). Note that since M is itself a function of integral
terms involving A(τ) this is a fixed point problem with no simple solution. However,
treating M as fixed, with initial conditions A(τ) = 0 the general solution is given by
eq. (1.31).

Suppose M is diagonalizable, with M = GDG−1. Normalize G such that G1 = e1

(that is, its first row sum is 1, and all other rows sum to 0). Then∫ τ

0

exp(−Ms) ds e1 = G

∫ τ

0

exp(−Ds) ds G−1e1

= G

∫ τ

0

exp(−Ds) ds 1

and if M is invertible then eq. (1.31) is obtained.
Again substitute eq. (A9) into the optimality conditions. Equating constant co-

efficients gives:

C ′(τ)− (Γy)TA(τ) +
1

2
Tr
[
ΣA(τ)A(τ)T

]
= aA(τ)TΣ

∫ T

0

α(τ)
(
τ β̄(τ)− C(τ)

)
A(τ) dτ
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Define the vector

ZC ≡ aΣ

∫ T

0

α(τ)A(τ)
[
τ β̄(τ)− C(τ)

]
dτ + Γy (A10)

Imposing the initial condition C(0) = 0 and integrating, the solution for C(τ)
given by

C(τ) = n1(τ)TZC −
1

2
Tr [Σn2(τ)] (A11)

n1(τ) =

∫ τ

0

A(u) du (A12)

n2(τ) =

∫ τ

0

A(u)A(u)T du (A13)

Substitute C(τ) from (A11) into (A10) and solve for ZC :

ZC = [I + aΣN1]−1 [aΣN2 + Γy] (A14)

where I is the identity matrix and

N1 =

∫ T

0

α(τ)A(τ)n1(τ)T dτ (A15)

N2 =

∫ T

0

α(τ)A(τ)

(
β̄(τ)τ +

1

2
Tr [Σn2(τ)]

)
dτ (A16)

A.2 Numerical Solution Algorithm
This section describes the numerical solution method used to solve the generalized
model. This also requires obtaining closed-form solutions to a number of integral
expressions.
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A.2.1 Closed-Form Integral Expressions

Define the (scalar) functions:

φ0(ν, τ) ≡
∫ τ

0

uf(νu) du

=
τ

ν
(1− f(ντ))

φ1(ν, τ) ≡
∫ τ

0

u2f(νu) du

=
τ

ν2

(
exp(−ντ)− f(ντ) +

1

2
ντ

)
φ2(νi, νj, τ) ≡

∫ τ

0

u2f(νiu)f(νju) du

=
τ

νiνj
(1− f(νiτ)− f(νjτ) + f((νi + νj)τ))

For any function F (τ), define

F̃ ≡
∫ T

0

η(τ)F (τ) dτ , F̂ ≡
∫ T

0

η(τ)

τ
F (τ) dτ

In particular, define

f̃(ν) ≡
∫ T

0

η(τ)f(ντ) dτ

Recall
∫ T

0
η(τ) dτ ≡ 1. Therefore,

φ̂0(ν, τ) =
1

ν
(1− f̃(ν))

φ̂2(νi, νj, τ) =
1

νiνj
(1− f̃(νi)− f̃(νj) + f̃(νi + νj))

For the integral terms involving α(τ), define

φα0 (ν, τ) ≡
∫ τ

0

α(u)uf(νu) du

φα1 (ν, τ) ≡
∫ τ

0

α(u)u2f(νu) du

φα2 (νi, νj, τ) ≡
∫ τ

0

α(u)u2f(νiu)f(νju) du

For the integral terms involving θk(τ), define

φα,θk1 (ν, τ) ≡
∫ τ

0

α(u)u2θk(u)f(νu) du
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Since η(τ) is proportional to the pdf of a truncated Gamma distribution, this term
can be written as

f̃(ν) =

(∫ T

0

τ exp(−η1τ) dτ

)−1
(ν exp(η1T )− η1 − ν + exp(−νT )η1) exp(−η1T )

(νη1(η1 + ν))

Further, I consider a more general form of α(τ), given as follows:

α(τ) = α0e
−α1τ

In the estimation, I simplify by setting α1 = 0 and α0 = 1.
Note that this implies

α(u)f(νu) =
α0

ν
[(α1 + ν)f((α1 + ν)u)− α1f(α1u)]

Therefore the integral expressions become

φα0 (ν, τ) =
α0

ν
[(α1 + ν)φ0(α1 + ν, τ)− α1φ0(α1, τ)]

φα1 (ν, τ) =
α0

ν
[(α1 + ν)φ1(α1 + ν, τ)− α1φ1(α1, τ)]

φα2 (νi, νj, τ) =
α0

νi
[(α1 + νi)φ2(α1 + νi, νj, τ)− α1φ2(α1, νj, τ)]

For θk(τ), I assume
θk(τ) = δ(Tk − τ)

where Tk ∈ [0, T ], and where δ is the Dirac delta function. Therefore, when τ > Tk,

φα,θk1 (ν, τ) = α(Tk)T
2
k f(νTk)

Also, note that τ 2f(ντ)→ 0 as τ → 0. Hence if Tk = 0, φα,θk1 (ν, τ) = 0.
Next, extend these scalar functions to their multi-dimensional components.

F(x) = x−1
(
I− e−x

)
1

This implies the coefficient function can be written

A(τ) = GτF(Dτ)

where
[F(Dτ)]i = f(νiτ)

since D = diag [ν1, . . . , νJ ].
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Φ0(T ) =

∫ T

0

τF(Dτ) dτ

Φ1(T ) =

∫ T

0

τ 2F(Dτ) dτ

Φ2(T ) =

∫ T

0

τ 2F(Dτ)F(Dτ)T dτ

For integral terms involving the function α(τ), define

Φα
1 (T ) =

∫ T

0

α(τ)τ 2F(Dτ) dτ

Φα
2 (T ) =

∫ T

0

α(τ)τ 2F(Dτ)F(Dτ)T dτ

For integral terms involving the function Θ(τ), define

Φα,θ
1 (T ) =

∫ T

0

α(τ)τ 2Θ(τ)F(Dτ)T dτ

For integral terms involving the function η(τ), define

F̃ =

∫ T

0

η(τ)F(Dτ) dτ

Φ̂0 =

∫ T

0

η(τ)

τ
Φ0(τ) dτ

Φ̂2 =

∫ T

0

η(τ)

τ
Φ2(τ) dτ

Therefore, all the vector functions can be written as

n1(τ) = GΦ0(τ)

n2(τ) = GΦ2(τ)GT

M = ΓT − a
[
Φα,θ

1 −GΦα
2

]
GTΣ

N1 = G [Φα
1 1−Φα

2 ] D−1GT

N2 = G

[
Φα,β

1 +
1

2
Φα

3 vec
[
GTΣG

]]
Â = GF̃

n̂1 = GΦ̂0

n̂2 = GΦ̂2G
T
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I compute these integral vectors and matrices element by element, using the scalar
functions above.

[Φ0]i = φ0(νi, T )

[Φ1]i = φ1(νi, T )

[Φ2]i,j = φ2(νi, νj, T )

For α(τ) integrals:

[Φα
1 ]i = φα1 (νi, T )

[Φα
2 ]i,j = φα2 (νi, νj, T )

For η(τ) integrals: [
F̃
]
i

= f̃(νi)[
Φ̂0

]
i

= φ̂0(νi, T )

For θk(τ) integrals: [
Φα,θ

1

]
k,i

= φα,θk1 (νi, τ)

A.2.2 Equilibrium Algorithm

This section describes a solution method for solving the fixed point problem described
in Prop. 1.7. Define the function

F (M) = Γ(Â)T − a
[∫ T

0

α(τ) (τΘ(τ)−A(τ)) A(τ)T dτ

]
Σ−M

Equilibrium is defined as a root of this function: F (M) = 0.
The following algorithm is used to compute F . Given some initial value of the

matrix M:

1. Solve the eigen-decomposition to get D, G, which gives the implied A(τ) and
Â.

2. Construct the implied dynamics matrix Υ(Â) and solve for the rational expec-
tations equilibrium matrix Γ(Â) (assuming stability conditions are met).

3. Using the integral expressions derived above, solve for F (M).
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Using the above algorithm, standard root-finding algorithms can be used to solve
for the equilibrium (note that while D and G may contain complex values, M and F
will always be real-valued).

For the dynamics matrix functions Υ(Â) considered in Section 1.5, when a = 0
the equilibrium is unique. However, for generic dynamics matrix functions Υ(Â)
and when a > 0, multiple equilibria are possible. In order to rule out pathological
equilbiria, I focus on the equilibrium which approaches the a = 0 equilibrium as
a→ 0.

A.3 Microfoundations
This section describes the model from first principles. Time is continuous. The
model consists of households, firms, arbitrageurs, and a government. The government
conducts monetary policy (changes in policy rate), passive fiscal policy (changes in
taxes, which play no role), and QE (changes in holdings of long-term bonds).

Households face radically incomplete markets: they can only borrow through a
passive mutual fund offering an instantaneous return which is a weighted average of
all yields. Infinitesimally-lived arbitrageurs are the marginal investors in financial
markets.

The short rate is the main policy tool, and as in Woodford (2003) I consider a
“cashless limit” economy.

A.3.1 Households and Firms

An infinitely-lived representative household seeks to maximize expected utility by
choosing consumption, labor, and savings. The household problem is standard, except
they are restricted to borrowing at an effective rate r̃t. The household problem is

max
{Ct,Nt}

E0

∫ ∞
0

e−ρt

(
C1−ς
t

1− ς
− N1+ξ

t

1 + ξ

)
dt (C1)

s.t. dWH
t ≤

(
r̃tW

H
t − PtCt + wtNt − THt

)
dt (C2)

lim
T→∞

Et[Q
H
t,TW

H
T ] = 0 (C3)

eq. (C2) is the household’s flow budget constraint; eq. (C3) is a transversality condi-
tion. The parameter ς is the coefficient of relative risk aversion; ξ is the labor supply
elasticity; ρ is the discount rate. WH

t is household nominal wealth; Ct is consumption
of composite good; Nt is labor; wt is nominal wage; THt is the net taxes and transfers
to households.

QH
t,T is the household’s discount factor, given by

QH
t,T = exp

[
−
∫ T

t

(r̃s − πs) ds

]
(C4)
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Note that markets are not complete (and so eq. (C4) is not the relevant discount factor
for pricing securities), but eqs. (C2) and (C3) can be replaced with an equivalent single
intertemporal budget constraint

WH
0 = E0

∫ ∞
0

QH
0,t

(
PtCt − wtNt + THt

)
dt (C5)

where WH
0 is given.

Then the intra-temporal optimality condition determining labor supply is

Cς
tN

ξ
t =

wt
Pt

(C6)

and linearized intertemporal optimality conditions give

dct = ς−1 (r̃t − πt − ρ) dt (C7)

Firms face Rotemberg (1982) pricing adjustment costs, and their problem is un-
changed relative to benchmark New Keynesian models.

A.3.2 Arbitrageurs and Preferred Habitat Investors

Arbitrageurs face a mean-variance trade-off in their wealth:

max
bt,τ

Et dWA
t −

a

2
V art dWA

t

subject to their flow budget constraint

dWA
t =

(
WA
t − TAt −MA

t −
∫ T

0

bt,τ dτ

)
rt dt+

∫ T

0

bt,τ
dPt,τ
Pt,τ

dτ

+MA
t r

M
t dt (C8)

This is the same as the one considered in the main text, with the exception that arbi-
trageurs can also hold monetary balances MA

t (with a return rmt , which must satisfy
rt ≥ rmt with equality if money supply is non-zero), and they face taxes/transfers TAt .

The “preferred habitat” investors are aggregated into a single passive mutual fund,
which offers households the effective borrowing rate, and invests the rest of its wealth
in long-term bonds. The flow budget constraint is thus

dW F
t = −WH

t r̃t dt+

∫ T

0

b̃t,τ
dPt,τ
Pt,τ

dτ +

(
W F
t −WH

t − TGt −
∫ T

0

b̃t,τ dτ

)
rt dt (C9)

and also face taxes/transfers.
The demand for bonds b̃t is given by eq. (1.4). Thus the demand from the mutual

fund for long-term bonds is reduced-form. Demand of this form could additionally be
derived by adding another set of finite-lived, infinitely risk-averse investors as in the
appendix of Vayanos and Vila (2009). When studying QE, I assume that the demand
shocks operate through the preferred habitat investors. In this case, it may be useful
to view this mutual fund as a type of government sponsored entereprise.
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A.3.3 Rational Expectations Equilibrium

Assuming that all of the profits from the arbitrageurs and mutual funds are transfered
lump-sum to the households, the log-linearized solution is the same as a benchmark
model but with the effective rate r̃t in place of the short rate rt in the IS curve.

After linearizing around the steady state and imposing affine functional forms
to the term structure, the aggregate dynamics can be written in matrix form as in
eq. (1.8). The solution to the rational expectations equilibrium is found by follow-
ing Buiter (1984), the continuous time analogue of Blanchard and Kahn (1980). In
general, let Yt = [yt xt]

T where xt are the “jump” variables and yt are the state vari-
ables. Assuming that Υ is diagonalizable, partition the eigenvalues and eigenvectors
as follows:

Υ = QΛQ−1

Λ =

[
Λ1 0
0 Λ2

]
, Q =

[
Q11 Q12

Q21 Q22

]
where the partitions correspond to the state and jump variables. If the number of “sta-
ble” eigenvalues (non-negative real parts) equals the number of state variables, then
given some transversality conditions the rational expectations equilibrium dynamics
are given by eq. (1.10), with

Γ = Q11Λ1Q
−1
11 (C10)

Ω = Q21Q
−1
11 (C11)

A.3.4 Conditional and Unconditional Distributions

The conditional distribution of the state variables yt given initial state y0 is normal:

yt|y0 ∼ N (µt,Σt)

The conditional mean is
µt = ySS + e−Γt(y0 − ySS)

The conditional variance-covariance is

Σt =

∫ t

0

eΓ(u−t)ΣeΓT (u−t) du

where again Σ = SST . Then this simplifies to

vec Σt =

(∫ T

0

e(Γ⊕Γ)(u−t) du

)
vec Σ

= (Γ⊕ Γ)−1
(
I− e−(Γ⊕Γ)t

)
vec Σ
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where⊕ is the Kronecker sum. Taking the limit as t→∞, the unconditional variance-
covariance is given by

vec Σ∞ = (Γ⊕ Γ)−1 vec Σ

and the present discounted value is computed as

Σ̃∞ ≡
∫ ∞

0

e−ρtΣt dt

vec Σ̃∞ = (Γ⊕ Γ)−1(ρI + Γ⊕ Γ)−1 vec Σ

Then from eq. (1.10), the conditional distribution of the jump variables xt given
initial state y0 (recall the initial values x0 are endogenous) is normal:

xt|y0 ∼ N
(
Ω(µt − ySS) + xSS,Σx

t

)
and the equivalently defined covariances for the jump variables are easily computed
as

Σx
t = ΩΣtΩ

T

Σx
∞ = ΩΣ∞ΩT

Σ̃
x

∞ = ΩΣ̃∞ΩT

Hence if xSS = 0, E0

[
xtx

T
t

]
= ΩΣtΩ

T .
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Appendix B

Unbundling Quantitative Easing

B.1 Numerical Exercise Details
In this section we briefly describe the model and calibration of our numerical exercise.
For more details regarding the model setup, see Vayanos and Vila (2009).

B.1.1 Numerical Exercise Model

There is a continuum of zero-coupon bonds with maturities m ∈ (0, T ] in zero net
supply. A bond with maturity m has a time t price of Pt,m and pays $1 at time t+m.
The spot rate is Rt,m which is given by

Rt,m = − logPt,m
m

There are two types of investors: idiosyncratic/clientèle investors and arbitrageurs.
By assumption idiosyncratic demand takes the following form:

yt,m = α(m)m(Rt,m − βt,m)

where βt,m is a demand shifter which responds to K demand factors:

βt,m = β̄ +
K∑
k=1

θk(m)βk,m

Arbitrageurs choose how much of each bond to hold (denoted by xt,m). Their
budget constraint is:

dWt =

(
Wt −

∫ T

0

xt,mdm

)
rtdt+

∫ T

0

xt,m
dPt,m
Pt,m

dm
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where rt is the instantaneous rate: limm→0Rt,m = rt. Arbitrageurs maximize an
instantaneous mean-variance trade-off:

max
x

EtdWt −
a

2
V artdWt

where the parameter a governs the level of risk aversion. In equilibrium, we have
yt,m = −xt,m.

We assume the instantaneous rate and demand factors are stacked in a K + 1
vector Y which follows an Ornstein-Uhlenbeck process:

dYt = −Γ(Yt −Y)dt+ SdBt

where Bt is a vector of Brownian motions.
It turns out that the above is consistent with bond prices that are affine in the Y

factors:
− logPt,m = YT

t A(m) + C(m)

We are interested in the response of the term structure to shocks to the demand
factors, and hence need to solve the model for the coefficient functions A(m). Using
the arbitrageur FOCs and taking into account the zero net supply condition, these
functions must satisfy the system of differential equations

A′(m) + ΓTA(m)− e1 = aMA(m)

where e1 is the first coordinate vector (assuming rt is ordered first in Y), and

M =

(∫ T

0

α(m) [mΘ(m)−A(m)] A(m)Tdm

)
SST

Solving the above differential equation is made more difficult by the presence of
the integral terms in M. Vayanos and Vila (2009) solves the model for the limiting
case when the risk aversion parameter a → 0 or a → ∞ (and the particular case
when Γ and S are diagonal), but for intermediate values a solution must be found
numerically. For details regarding the solution algorithm, see Ray (2017).

B.1.2 Numerical Exercise Calibration

For our numerical exercise, we take the number of demand factors to be K = 2. We
will interpret the first demand factor as a “short” demand factor denoted by βt,s. The
second factor is taken to be a “long” demand factor denoted by βt,`. We assume

Γ =

κr 0 0
0 κs 0
0 0 κ`
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and set these mean reversion parameters to imply that shocks to the instantaneous
rate have a half-life of approximately one year, while shocks to the demand factors
have a half-life of 2.5 years.

For simplicity we also assume uncorrelated shocks, and that the size of the inno-
vations for each factor is equal, i.e. S = σI. We set σ = .01.

θs(m) and θ`(m) govern where the demand shocks are located in maturity space.
Although not realistic, we set these as Dirac delta functions, so that the short demand
shock is entirely concentrated at idiosyncratic investors whose habitat is at m = 3
years; similarly for the long demand shock we choose m = 20 years. These maturities
roughly correspond to the average maturity of the short-term and long-term auctions
in the empirical counterpart. We could have instead assumed these functions have
non-zero values for a continuum of bonds, but still concentrated at the long and short
end of the maturity space. This complicates the numerical solution algorithm, but
leads to largely similar results.

α(m) governs the sensitivity of idiosyncratic investors to changes in the price of
bonds within their habitat. We don’t have priors for this parameter, and for simplicity
assume the function is constant. We set this value to match the following empirical
counterpart: a standard deviation increase in our demand shock Dt is associated
with an increase of 0.15 in the bid-to-cover ratio during short-term auctions. Given
our parameterization above, a one-standard deviation positive short demand shock
increases idiosyncratic demand by 3ασ. Equating these values implies α = 5.

Finally, we let the risk aversion parameter vary from 0 to 500. The upper limit
is ad-hoc; the value was chosen as the response of spot rates at this point begins to
stabilize.

Appendix Table B4 summarizes the parameter calibration. The spirit of the nu-
merical exercise is not to match the data perfectly, but rather to gain some qualitative
predictions for intermediate levels of risk aversion. Finally, it is important to note
that the parameters a, α, and σ in this specification enter multiplicatively. Hence an
appropriate rescaling of these values will give numerically identical responses.
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B.2 Additional Figures and Tables

Figure B1: Response of Inflation Swap Rates to Shock Dt
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Notes: the figure plots responses of inflation swap rates across different
maturities to a shock in the first principal component Dt. The solid line
plots the point estimates, while dashed lines plot two-standard deviation
(Newey-West) confidence bands.
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Figure B3: U.S. Financial Crises

Notes: Financial Crisis indicator for the United States from Romer and
Romer (2017).

Figure B4: Intermediary Capital Ratio

Notes: Intermediary capital ratio from He et al. (2016).
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Figure B5: Rate Response P-Values

0
.2

.4
.6

.8
1

P-
va

lu
e

0 10 20 30

Short-Term Demand Shock
0

.2
.4

.6
.8

1
P-

va
lu

e

0 10 20 30

Long-Term Demand Shock

Notes: p-values testing equality of coefficients from Figure 2.12.
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Figure B6: Rate Response P-Values
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Notes: p-values testing equality of coefficients from Figure 2.13.
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Figure B7: Rate Responses (Bid-to-Cover, 1995-2015)
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Notes: Plots of the regression coefficient on the surprise component of the bid-to-cover
ratio from regression equation (2.4) for the sample 1995-2015. Each curve is from the
subsample combinations: short-term and long-term auctions; and periods of high and
low risk aversion as measured. 2 standard error (Newey-West) confidence intervals are
included.
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Figure B8: Rate Response P-Values (Bid-to-Cover, 1995-2015)
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Notes: p-values testing equality of coefficients from Figure B7.
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Figure B9: Rate Responses (Bid-to-Cover, 1979-2015)
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Notes: Plots of the regression coefficient on the surprise component of the bid-to-cover
ratio from regression equation (2.4) for the sample 1979-2015. Each curve is from the
subsample combinations: short-term and long-term auctions; and periods of high and
low risk aversion as measured. 2 standard error (Newey-West) confidence intervals are
included.
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Figure B10: Rate Response P-Values (Bid-to-Cover, 1979-2015)
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Notes: p-values testing equality of coefficients from Figure B9.
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Figure B11: Rate Responses (rotated intraday Futures surprises)
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Notes: Plots of the regression coefficients on the demand shocks Di
t from regression equa-

tion (2.4). The shocks are the first two principal components of our intraday shocks, D`
t

and Ds
t , rotated such that Ds

t is uncorrelated with D
(30Y )
t . For long-term auctions the

shock is D`
t ; similarly short-term auctions use Ds

t . Each curve is from the subsample com-
binations: short-term and long-term auctions; and periods of high and low risk aversion.
2 standard error (Newey-West) confidence intervals are included.
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Figure B12: Rate Response P-Values (rotated intraday Futures sur-
prises)
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Notes: p-values testing equality of coefficients from Figure B11.
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Table B1: Reaction of market to surprises at Treasury auctions (IV
specification)

Dep.variable: asset type
Estimate N F-stat Sample(s.e.)
(1) (2) (3) (4)

Panel A. Debt
TLT 0.359*** 662 78.9 2002-2015

(0.032)
SHY 0.024*** 662 78.9 2002-2015

(0.002)
LQD 0.121*** 662 78.9 2002-2015

(0.015)
Aaa† -2.666*** 871 126.6 1995-2015

(0.406)

Panel B. Equities
SPY 0.016 871 126.6 1995-2015

(0.027)
IWM 0.039 706 91.4 2000-2015

(0.060)
SP500† -0.111 871 126.6 1995-2015

(0.113)
Russell 2000† -0.191 871 126.6 1995-2015

(0.119)

Notes: The table repeats the regressions from Table 2.4, but instruments D(m′)
t with

the surprise component of the bid-to-cover ratio. First-stage F-statistics are reported in
column (3). Newey-West standard errors in parentheses.
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Table B2: Reaction of market to surprises at Treasury auctions (IV
specification)

Dep.variable: asset type
Estimate N F-stat Sample(s.e.)
(1) (2) (3) (4)

Panel C. Inflation expectations and commodities
10Y Inflation Swap† -0.290 618 74.2 2004-2015

(0.331)
2Y Inflation Swap† -0.001 618 74.2 2004-2015

(0.669)
GLD 0.041 595 72.3 2004-2015

(0.030)
GSCI† 0.023 871 126.6 1995-2015

(0.107)

Panel D. Spreads and credit default swaps
Baa-Aaa† -0.169 871 126.6 1995-2015

(0.146)
3-month LIBOR-OIS† -0.006 630 77.3 2003-2015

(0.004)
Auto CDS† -9.793 627 77.0 2004-2015

(7.458)
Bank CDS† 1.269 627 77.0 2004-2015

(0.800)
VIX† -0.063 871 126.6 1995-2015

(0.148)

Notes: The table repeats the regressions from Table 2.4, but instruments D(m′)
t with

the surprise component of the bid-to-cover ratio. First-stage F-statistics are reported in
column (3). Newey-West standard errors in parentheses.
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Table B3: Secondary Market Rate Responses

Panel A: Short-Term (2-7 year) auctions

(1) (2) (3) (4) (5) (6)
0-2 2-5 5-8 8-11 11-20 20-30

Ct=0 × Dt -1.32*** -2.16*** -2.48*** -1.97*** -2.46*** -1.79***
(0.22) (0.30) (0.33) (0.30) (0.29) (0.24)

Ct=1 × Dt -1.44*** -2.61*** -3.09*** -3.02*** -2.72*** -2.09***
(0.25) (0.39) (0.46) (0.45) (0.44) (0.45)

Observations 35363 37304 15644 7813 9733 11085
Clusters 615 615 615 615 615 615
R2 0.136 0.217 0.224 0.205 0.206 0.153
P-Value 0.712 0.366 0.274 0.053 0.625 0.561

Panel B: Long-Term (10-30 year) auctions

(1) (2) (3) (4) (5) (6)
0-2 2-5 5-8 8-11 11-20 20-30

Ct=0 × Dt -0.56*** -1.07*** -1.55*** -1.83*** -2.21*** -2.13***
(0.20) (0.30) (0.40) (0.33) (0.39) (0.26)

Ct=1 × Dt -1.04*** -1.96*** -2.49*** -2.95*** -3.00*** -3.15***
(0.25) (0.29) (0.30) (0.33) (0.34) (0.38)

Observations 15139 16525 7264 3385 4161 4559
Clusters 255 255 255 255 255 255
R2 0.152 0.216 0.277 0.329 0.349 0.369
P-Value 0.144 0.032 0.064 0.017 0.136 0.028

Notes: The table reports results estimating equation (2.4), but using security-level changes
in yields as the dependent variable. Panel A reports the results for short-term auction
dates (2-7 years), while Panel B reports the results for long term auction dates (10-30
years). The columns break up the securities into different baskets based on the remaining
maturity: column (1) contains all note and bonds with less than 2 years remaining before
maturity; column (2) is 2-5 years; column, column (3) is 5-8 years; column (4) is 8-11
years; column (5) is 11-20 years; and column (6) is 20-30 years. P-values testing equality
of coefficients are reported in the final row. Standard errors clustered at the auction level
are in parentheses.
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Table B4: Numerical Exercise Calibration

Parameter Value
T 30
σ .01
κr 0.7
κs 0.3
κ` 0.3
α 5
a (0, 500)
θs(m) δ(m− 3)
θ`(m) δ(m− 20)

179



Appendix C

Polarized Expectations

C.1 Proofs
Proof of Lemma 3.1. The characterization of posterior variance matrices S,
Ξ, Σ, and the optimal action y∗ follow from Kőszegi and Matějka (2018).

To derive the form of Eq. (3.2), first consider the simple case of a noisy signal s
for a single variable x.

s = x+ σee

x ∼ N(µ, σ2
0) (prior)

e ∼ N(0, 1) (known)

Then given a realization of the signal s, the posterior mean and variance is:

x̃ = E
[
x
∣∣s] = µ+

σ2
0

σ2
0 + σ2

e

(s− µ)

σ2 = Var
[
x
∣∣s] =

σ2
0

σ2
0 + σ2

e

σ2
ε

which can be written using ξ ≡ 1− σ2

σ2
0

=
σ2
0

σ2
0+σ2

e
as follows:

x̃ = µ+ ξ(s− µ) = (1− ξ)µ+ ξs

σ2 = ξσ2
e = (1− ξ)σ2

0

Hence if the prior mean is zero (µ = 0), then x̃ = ξs
In the general multivariate case with prior x ∼ N(0, σ2

0I), the orthonormal eigen-
vector matrix V transforms the problem in a set of independent signals. If vi is the
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ith element of V, then

(vi · x̃) = ξi(v
i · x) + ξiσeiei

=⇒ VT x̃ = ΞVTx + ΞΣ1/2
e e

= ΞVTx + σ0 (Ξ(I−Ξ))1/2 e

=⇒ x̃ = VVT x̃

= VΞVTx + σ0V (Ξ(I−Ξ))1/2 e

≡W1x + W2e

Proof of Prop. 3.1. Taking the conditional expectation of Eq. (3.2) gives

E
[
x̃
∣∣x] = W1x + W2E [e]

= W1x

=⇒ E
[
x̃− x

∣∣x] = (W1 − I)x

= V(Ξ− I)VTx

since e is mean-zero and independent of x.
Note that W1 is symmetric and

W1W
T
1 = VΞVTVΞVT = VΞ2VT

=⇒ (W1)n = VΞnVT

(I−W1)n = V(I−Ξ)nVT

W2W
T
2 = σ2

0VΞ(I−Ξ)VT = VΞSVT

=⇒
(
W2W

T
2

)n
= V(ΞS)nVT

Hence the conditional variance is given by Eq. (3.5).
Taking derivatives with respect to information costs λ gives

∂ξi
∂λ

=

{
−1

2
(σ2

0Λi)
−1 if 2Λiσ

2
0 ≥ λ

0 otherwise

∂ξiSii
∂λ

=

{
1
2

Λiσ
2
0−λ

Λ2
i σ

2
0

if 2Λiσ
2
0 > λ

0 otherwise

Then the derivatives of the respective diagonal matrices are

∂

∂λ
Ξ = diag

(
∂ξi
∂λ

)
,
∂

∂λ
ΞS = diag

(
∂ξiSii
∂λ

)
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Since the eigenvectors V are independent of information costs,

∂

∂λ
Var

[
x̃− x

∣∣x] = V

[
∂

∂λ
ΞS

]
VT (A1)

Note

sign
∂ξi
∂λ

=

{
0 if λ > 2Λiσ

2
0

−1 if λ ≤ 2Λiσ
2
0

sign
∂ξiSii
∂λ

=


0 if λ > 2Λiσ

2
0

−1 if 2Λiσ
2
0 ≥ λ > Λiσ

2
0

0 if λ = Λiσ
2
0

1 if λ < Λiσ
2
0

Recall that the eigenvalues are ordered Λ1 ≥ . . . ≥ ΛJ and that some eigenvalues
may be zero:

Λ = diag
[
Λ1 . . . ΛN 0 . . . 0

]
Hence, if 2Λ1σ

2
0 > λ > σ2

0Λ1 then λ > sigma0Λi ∀i and hence

∂ξ1S11

∂λ
< 0

∂ξiSii
∂λ

≤ 0

Thus, the matrix ∂
∂λ

ΞS in Eq. (A1) is a diagonal matrix with nonpositive diagonal
elements. Since these are the eigenvalues of ∂

∂λ
Var

[
x̃− x

∣∣x], this matrix is negative
semidefinite.

A similar argument shows that λ < ΛNσ
2
0 implies ∂

∂λ
Var

[
x̃− x

∣∣x] is positive
semidefinite.

Note that as information costs approach zero,

lim
λ=0

ξi =

{
1 if Λi > 0

0 otherwise

Hence as the cost of information λ→ 0,

Ξ→ ĨN

S→ σ2
0(I− ĨN)

ΞS→ 0
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Hence

W1 → VĨNVT

W2W
T
2 → 0

and the results follow.

Proof of Cor. 3.1.1. Consider the matrix V(ĨN − I), which is made up of
columns of zeros and columns of eigenvectors associated with zero eigenvalues (if
they exist). For any such eigenvalue v, we have

Ωv = 0 =⇒ vTBC−1BTv = 0

Since C and hence C−1 are positive definite,

zTC−1z = 0 ⇐⇒ z = 0

=⇒ BTv = 0

=⇒ BTV(ĨN − I) = 0

=⇒ HV(ĨN − I)VTx = 0

Then note as λ→ 0:

H(x̃− x)→ HV(ĨN − I)VTx = 0

and hence y∗ → Hx.

Proof of Prop. 3.2. Conditional on an individual k, the solution is identical to
the problem considered in the case of homogenous agents. Hence

E
[
x̃k
∣∣x, k] = Wk

1x

Then the law of iterated expectations implies

E
[
x̃k
∣∣x] = E

[
E
[
x̃k
∣∣x, k]∣∣x]

= E
[
Wk

1

]
x

=

∫
k

Wk
1 dF (k) x ≡ W̄1x

hence the expression for the conditional misperception in Eq. (3.6) follows. Further,

(x̃k − x)− E
[
x̃k − x

∣∣x] = W̃k
1x + Wk

2ek
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and [
W̃k

1x + Wk
2ek
] [

W̃k
1x + Wk

2ek
]T

= W̃k
1xxT (W̃k

1)T

+ W̃k
1x(ek)T (Wk

2)T + Wk
2ekxT (W̃k

1)T

+ Wk
2ek(ek)T (Wk

2)T

Taking expectations of the above expression conditional on x and k gives

W̃k
1xxT (W̃k

1)T + σ2
0W

k
2(Wk

2)T

Thus, the law of iterated expectations implies that the conditional variance of poste-
rior belief misperceptions is given by Eq. (3.7).

Note that from how λ̄ is defined, Ξk = 0 ∀k at λ̄. Hence W̃k
1 = 0 as well. Then

note, taking derivatives with respect to information costs:

∂

∂λ
ΣW̃1W̃1|x =

∫
k

[
∂

∂λ
W̃1

k
]

xxT (W̃1

k
)T dF (k)

+

∫
k

W̃1

k
xxT

[
∂

∂λ
W̃1

k
]T

dF (k)

The above expression is also equal to 0 at λ̄.
Additionally,

∂

∂λ
ΣW2W2 =

∫
k

Vk

[
∂

∂λ
ΞkSk

]
(Vk)T dF (k)

From the proof of Prop. 3.2, the integrand of the above expression is negative semidef-
inite at λ̄. Hence, as the sum of negative semidefinite matrices, the above expression
is negative semidefinite at λ̄. Thus ∂

∂λ
Var

[
x̃k − x

∣∣x] is negative semidefinite at λ̄.
The results regarding the limit as λ→ 0 follow from the proof in Prop. 3.2, which

shows that

lim
λ→0

Wk
1 = VkĨN(Vk)T

lim
λ→0

Wk
2(Wk

2)T = 0

C.2 Log-Quadratic Approximation
This section derives the log-quadratic approximation around the steady state, and
applies the approximation to the two period model described in Section 3.2.3.
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Suppose the individual has arbitrary preferences U(Y,X), where (Y,X) are the
choices and state variables, respectively. The steady state of the state variables is
known: X̄. Then the steady state of the choice variables Ȳ is implicitly defined by

∂U(Y, X̄)

∂YT

∣∣∣∣
Y=Ȳ

= 0

Let lower case variables denote log deviations from steady state: z = logZ − log Z̄.
Then the utility function can be written equivalently as

û(y,x) ≡ U(Ȳ ◦ exp(y), X̄ ◦ exp(x)) (B1)

where ◦ is Hadamard (elementwise) multiplication, and with a slight abuse of notation
such that exp(y) is the element-wise exponential.

Define the first- and second-order partial derivatives evaluated at steady state:

ûy ≡
∂û

∂y

∣∣∣∣
x,y=0

ûy,y ≡
∂2û

∂y∂yT

∣∣∣∣
x,y=0

ûy,x ≡
∂2û

∂y∂xT

∣∣∣∣
x,y=0

Then the second-order (log) approximation of the utility function around the steady
state is

U(y,x) ≈ −yTCy + xTBy + h.o.t. + t.i.c.

C = −1

2
ûy,y

B = ûy,x

Note the above ignores higher order terms, and terms independent of choice.

C.2.1 Two-Period Model

Now consider the model considered in Section 3.2.3. The budget constraint always
holds with equality, so the utility function is equivalent to the concentrated utility
function with

C2 =
1

P2

(R((1− τ)Y − P1C1) + τY )

In steady state we have Ȳ = 1, P̄1 = P̄2 = 1, and 1− τ = 1. Then steady state period-
1 consumption is C̄1 = 1

1+β
. Re-writing the utility function in terms of deviations
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from steady state, as in Eq. (B1), and evaluating the first- and second-order partial
derivatives involving period-1 log consumption c1 gives

ûc1 = 0

ûc1,c1 = −(1 + β)η
k
ηk

β

ûc1,y =
(1 + β)η

k
ηk

β

ûc1,1−τ =
(1 + β)η

k
ηk(1− β)

β

ûc1,p1 = −(1 + β)η
k
(β + ηk)

β

ûc1,p2 = (1 + β)η
k

(1− ηk)

Using these results gives the expressions for the quadratic preference matrices Ck (in
this case a scalar) and Bk (in this case a column vector).
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