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Statistical Commentary

Best (but oft-forgotten) practices: expressing and interpreting
associations and effect sizes in clinical outcome assessments1

Lori D McLeod,2* Joseph C Cappelleri,3 and Ron D Hays4

2RTI Health Solutions, Research Triangle Park, NC; 3Pfizer Inc, Groton, CT; and 4University of California–Los Angeles, Los Angeles, CA

ABSTRACT
This article reviews methods used to facilitate the interpretation and
evaluation of group-level differences in clinical outcome assess-
ments. These methods complement and supplement tests of statisti-
cal significance. Examples, including studies in nutrition, are used to
illustrate the application of the interpretation methods for group-
level comparisons from experimental or observational studies. In
addition, specific pitfalls of evaluating change in meta-analysis studies
are described. A set of recommendations is provided. This review is
intended as an introduction for the novice and as a refresher for the
experienced researcher. Am J Clin Nutr doi: 10.3945/ajcn.115.
120378.

Keywords: clinical outcome assessment, effect size, interpretation,
minimally important difference, patient-reported outcome

BACKGROUND

Clinical outcome assessments

Clinical outcome assessment (COA)5 is an umbrella term
referring to patient-reported outcomes (PROs), clinician-reported
outcomes, observer-reported outcomes, and performance-based
outcomes measures. COAs “measure a patient’s symptoms, overall
mental state, or the effects of a disease or condition on how the
patient functions and can be used to determine whether or not
a drug has been demonstrated to provide treatment benefit”
(1). Nutritional clinical trials may assess the safety and ef-
fectiveness of weight-loss therapies or therapies intended to
protect or promote nutritional health. Although many of the
COAs used in nutritional studies include familiar measures,
such as weight and glycated hemoglobin, many measures are
unfamiliar and present challenges in relation to the interpre-
tation of scores.

PROs

PROs are a subset of a larger group of patient-reported mea-
sures that includes self-reports about individual characteristics
(e.g., weight, height), behavior (e.g., diet, exercise), experiences
with care (e.g., communication with doctors), and social support

(2). PRO measures range from single items to multidimensional
instruments with multiple subscales. The Food and Drug Ad-
ministration (FDA) (3) defines a PRO as “any report of the status
of a patient’s health condition that comes directly from the pa-
tient, without interpretation of the patient’s response by a clini-
cian or anyone else.”

Thus, a host of outcomes such as physical functioning; symp-
toms such as nausea and vomiting, pain, fatigue, depression; and
treatment satisfaction are PROs (4).

PROs are often relevant in studying a variety of symptoms and
conditions (e.g., gastrointestinal illness, pain) that cannot be
assessed adequately without a patient’s evaluation and when the
patient’s input is needed to determine the impact of a disease or
a treatment (5). To be useful to patients and other decision makers
(e.g., clinicians, researchers, regulatory agencies, reimbursement
authorities) who are stakeholders in health care, a PRO assessment
needs to measure what it is intended to measure reliably and
validly (3, 4, 6–8).

FDA perspective

The FDA developed a guidance related specifically to the
design and use of PRO measures (Guidance for Industry Patient-
Reported Outcome Measures: Use in Medical Product
Development to Support Labeling Claims) to support drug ap-
provals and label claims (3, 9). The FDA publicly announced
that the recommendations outlined in the PRO guidance should
be followed in the development of COAs (10, 11).
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Within the draft and final PRO guidance documents (3, 9), the
FDA outlined the evidence necessary to document adequate psy-
chometric properties and included a section specifically addressing
the need for information and evidence related to the interpretation
of PRO results. The focus of the interpretation section changed from
the evaluation of group differences in the draft guidance (9) to the
evaluation of individual differences in the final guidance (3). The
interpretation methods presented in this article primarily focus
on the group-level context. Other published articles focus on
interpreting individual change (12–14).

COA interpretation

This article highlights aspects of the research stakeholders
must consider when evaluating the meaningfulness of COA re-
sults, including the design and focus of the study, the quality of
the data collection procedures (as much as possible based on the
available information), the appropriateness of any preplanned hy-
potheses, the relevance of the COA measure used, and the mean-
ingfulness of the results for the intended objectives (Figure 1). The
target audience for these aspects is the novice, but information is
also included to provide a refresher for the experienced researcher.

Aspects to consider before interpreting COA results

Group compared with individual comparisons

Typically, COA study results, as with other study results, are
presented at the group level, including the statistical significance
of between-group mean differences and possibly the magnitude
of these differences. In addition, evaluating the statistical sig-
nificance of individual changes can provide a comprehensive picture
of the study findings, because one learns, for example, whether
there is an overall difference between groups, as well as how
many individuals benefit (get significantly better), stay the same,
or get worse (significantly decline) in the groups being compared
(12, 15).

Sample size, study design, and statistical significance of group
differences

The sample size for studies that incorporate COAs may be
selected for other endpoints and may be larger than required for
the COA comparisons. Hence, small differences can still be

statistically significant. In addition to considerations regarding
statistical power, Lang and colleagues (16) and Jacobson and
Truax (17) remind us that a P value is not synonymous with
meaningfulness. This is especially true in meta-analyses, where
sample sizes can become large due to the accumulation across
all studies.

Context

The context of the study provides one filter for interpretation.
Issues such as financial burden, health resources needed, and
general risks and benefits of an intervention should be considered
when reviewing and comparing COA results. Small benefits may
be very worthy of pursuit if the trade-offs necessary to obtain the
benefits are trivial (18).

Traditional methods to consider for interpreting COA
results

Hypothesis testing P values

The first step in interpreting differences in COA scores is
statistical group-level comparisons (Figure 2), including the
selection of an appropriate statistical test and a level (perhaps
adjusted for multiple comparisons). The resulting probability
value (P value) can be interpreted as the probability of observing
results as extreme or more extreme given the null hypothesis of
no group difference. However, a small observed P value does
not prove that the null is false, nor does a large P value prove
that the null is true. Rather, the P value provides statistical ev-
idence to inform conclusions as to whether there is sufficient
evidence (beyond chance) to make the assumed null hypothesis
untenable.

Statistical significance is influenced by sample size. A small
group-level difference can be determined as significant when
based on a very large sample size, and a large group-level dif-
ference may not be statistically significant when based on a very
small sample size (19). As an example, suppose data from a study
were used to compare mean weight loss for a group of patients
taking an experimental treatment with a group of patients taking
a placebo treatment. If differences between the mean weight
decreases are evaluated and a small P value (,0.001) is ob-
served, this signifies that, assuming no true difference between

FIGURE 1 Aspects to consider before interpreting clinical outcome assessment results.
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the treatment and placebo, the probability that this mean weight-
loss difference (or one more extreme) between the 2 groups is
due to chance alone is small and unlikely, calling into question
the assumption of no true treatment difference on which the
statistical test is based. The therapy is celebrated as a success
until further reflection highlights that it costs $10,000 per patient
per week, and the “significant” weight loss was only 115 g, on
average.

In contrast, Rosnow and Rosenthal (20) describe the effect of
aspirin treatment on the incidence of fatal and nonfatal myo-
cardial infarction (MI). Less than 1% of participants taking as-
pirin compared with 2% of participants in the placebo group had
an MI in the timeframe evaluated. Although the product-moment
correlation between treatment group and MI status was only
0.034, with a small decreased risk of MI, the real cost of aspirin
was judged as trivial in this study compared with the potential
benefit (20).

In summary, statistical significance testing is important when
interpreting COA results, but it should not be confused with the
magnitude or meaningfulness of the difference.

CIs

Although P values provide one indication of potentially note-
worthy findings, CIs provide an indication about the direction and
strength of an effect (21). For example, in the weight-loss example
described in the previous section, suppose that the 95% CI ranged
from 10 to 220 g for the difference in a 115-g mean weight loss.
This would mean that some would show a difference as low as 10 g
and others as large as 220 g for samples drawn from the same
population. Sample size affects CIs in much the same way they
influence P values; for a given level of confidence (e.g., 95%),
the width of the CI will narrow as the sample size increases.

Effect size comparisons

An effect size offers information for evaluating the group-level
change or difference between groups beyond a P value or a CI
(22–24). In Cohen’s highly cited publication (25), he stated that
statistically significant differences do not mean plain English
“different” and recommended the use of effect size measures to
facilitate interpretation of group-level differences. More recently,
Cumming (26) recommended including effect sizes, CIs, and

meta-analysis when conducting research in response to the
heightened concern that published literature may be “incomplete
or untrustworthy” and to avoid flaws associated with reliance
solely on the practice of null-hypothesis significance testing. As
an example, an effect size value can be used as a guide to the size
of a treatment group difference relative to a control group. Just as
there are many types of hypotheses, however, there are many
variants for expressing effect sizes. A list of commonly used
effect size formulas is provided in Table 1.

One common effect size formula is the standardized mean
difference (SMD) between 2 groups, which is computed as the
difference in the mean values divided by a relevant SD such as the
SD of the group designated as the control group, the pooled SD of
the groups at baseline, or the pooled SD at follow-up (27, 28).
Assuming a normal distribution, the value of an effect size using
the SMD formula can be interpreted directly as a z score from
a standard normal distribution (shown in Figure 3). For exam-
ple, if the SMD is 1 and the pooled SD at follow-up is used in
the denominator, then the results can be interpreted as the “av-
erage patient” in the experimental treated group is one SD above
the “average patient” in the control group. An alternative and
complementary interpretation is that the score of the “average
patient” in the treated group exceeded (i.e., was more favorable
when positive change is favorable) that of 84% of patients in the
control group (84 = 0.1 + 2.1 + 13.6 + 34.1 + 34.1) (29).

Durant and colleagues (30) provide a real-world effect size
application based on review of a meta-analysis study focused on
school-based interventions designed to decrease childhood
obesity. A key result from the meta-analysis was a pooled effect
size of –0.29 (SMD in BMI) in favor of the intervention com-
bining nutrition and physical activity compared with no in-
tervention (control group). To provide meaning for this value,
the researchers converted the SMD into the probability that
a student randomly selected from the intervention group would
have a lower BMI than a student randomly selected from the
control group. (The SMD was defined by using a pooled SD,
presumably at follow-up, but no statement was explicitly made
whether it was at baseline or follow-up.) Although an effect size
of 0 would result in a probability of 50%, –0.29 translates into
58%, a difference of 8% above a null finding.

An alternative effect size formula is the standardized re-
sponse mean—the change in score divided by the SD of change

FIGURE 2 Traditional methods and additional methods to consider when interpreting clinical outcome assessment results.
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(28, 31, 32). For clarity, Olejink and Algina (33) recommend
reporting SDs for both groups, details for computing different
denominators, and the formula for the effect size measure used.
This information facilitates interpretation and transparency,
allowing stakeholders to calculate effect size differently, if
desired. Furthermore, Cohen’s rule of thumb for effect size
magnitudes is based on the pooled SD, so caution should be
exercised when classifying differences without consideration
of the effect size formula. If the effect size is based on the SD
of change, for example, the correlation between the values at
the 2 time points may lead to differences in the estimated effect
size (34).

In the simple case, data are available for the separate pieces of
an effect size, including the means and SDs needed to facilitate
the computation of the selected effect size. In other situations,
such as in meta-analysis literature, components may be obtained
through additional formulas to convert the provided statistics into
an effect size format. For example, Cohen’s d can be computed
based on reported t statistics. As an example, suppose the ob-
jective is to obtain Cohen’s d based on the pooled SD and the
supplied statistic is the t test.

Cohen’s d ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ngroup 1 þ ncontrol

ðngroup 1ÞðncontrolÞ

! 
ngroup 1 þ ncontrol

ðngroup 1 þ ncontrol 2 2Þ

!vuut

In addition to the general effect size unit, the magnitude of
effects may be reported as a correlation or an OR. It is often
useful, especially for meta-analysis, to convert from one effect
size statistic to another. Various formulas are available to fa-
cilitate these conversions, as well as to help stakeholders judge
the magnitude of an effect size value. For example, one may want
to compare effect size measures based on correlations (r) with
those based on SDs [Cohen’s d: (mean of group 1 2 mean of
group 2) / (pooled SD of both groups)]. A small effect size
is typically r = 0.100 or 0.200 SD units, a medium effect size is

r = 0.243 or 0.500 SD units, and a large effect size is r = 0.371
or 0.800 SD units: r = d / [(d2 + 4)0.5] = 0.8 / [(0.82 + 4)0.5] =
0.8 / [(0.64 + 4)0.5] = 0.8 / [(4.64)0.5] = 0.8 / 2.154 = 0.371 (35,
36). Within the field of epidemiology, RR reduction has been
posed as a metric to standardize effect sizes when comparing
public heath interventions (37).

Meta-analysis depends on the accuracy and availability of
information reported for each study. When combining studies, it is
important to consider the appropriateness of the study designs and
outcomes reported, as well as to correctly use the available for-
mulas. In meta-analysis, interpretation of results and the way
studies are conducted extend beyond a single study to a collection
of studies. Mistakes related (at least in part) to errors in the
calculation of effect sizes are not uncommon in meta-analyses.

For example, Kirsch and colleagues (38) meta-analyzed 6 weight-
loss studies comparing the efficacy of cognitive-behavior therapy
(CBT) alone with CBT plus hypnotherapy and concluded that “the
addition of hypnosis substantially enhanced treatment outcome.”
The authors reported a mean effect size (expressed as Cohen’s d) of
1.96. After correcting several transcription and computational in-
accuracies in the original meta-analysis, Allison and Faith (39)
found that these 6 studies yielded a much smaller mean effect

TABLE 1

Common effect size formulas1

Formula Method Example

ðmeangroup 1 2meangroup 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðngroup 1 ÞSD2

group 1
þðngroup 2 ÞSD2

group 2
�

ðngroup 1þngroup 22 2Þ

r Cohen’s d (5 2 4) /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð120 3 22 þ 220 3 32Þ= ð120þ 2202 2Þ�p ¼ 1=2:70 ¼ 0:37

ðmeangroup 12meangroup 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðngroup 12 1ÞSD2

group 1
þðngroup 221ÞSD2

group 2
�

ðngroup 1þngroup 22 2Þ

r Hedges’s g (5 2 4) /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffif½ð1202 1Þ 22� þ ½ð220 2 1Þ 32�= ð120þ 2202 2Þgp ¼ 1=2:69 ¼ 0:37

(meangroup 1 – meangroup 2) / SDgroup 2 Glass’s D (5 2 4) / 3 = 0.33

(meanfollow-up – meanbaseline) / SDbaseline Effect size

estimate of

change

(10 2 5) / 5 = 1

(meanfollow-up – meanbaseline) / SDchange Standardized

response mean

(10 2 5) /2 = 2.5

(meanfollow-up – meanbaseline) / SDchange in stable group Guyatt’s

responsiveness

statistic

(10 2 5) / 3 = 1.667

1In the example, there are 2 groups: group 1 and group 2. Group 1 is the treatment group, and group 2 is considered the control group. Meangroup 1 = 5,

meangroup 2 = 4, ngroup 1 = 120, ngroup 2 = 220, SDgroup 1 = 2, SDgroup 2 = 3, meanfollow-up = 10, meanbaseline = 5, SDbaseline = 5, SDchange = 2, SDchange in stable group = 3.

FIGURE 3 Normal distribution. The value of an effect size by using the
standard mean difference formula can be interpreted directly as a z score
from a standard normal distribution.
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size (0.26). Moreover, if one questionable study is removed
from the analysis, the effect sizes for the remaining 5 studies
become more homogeneous, and the mean (0.21) is no longer
statistically significant. As such, the addition of hypnosis to
CBT for weight loss was believed to enhance the treatment
outcome to a small extent at most.

Through review of publishedmeta-analysis studies, Gøtzsche and
colleagues (40) found that a high proportion of meta-analyses
based on SMD showed errors and that, although the statistical
process is ostensibly simple, data extraction is particularly liable to
errors that can negate or even reverse the findings of the study.
Common problems included erroneous numbers of patients, means,
SDs, and signs of the effect size estimates. These errors have im-
plications for researchers and suggest that consumers, including
journal reviewers and policy makers, should approach meta-
analytic results with caution. When performing a meta-analysis, the
quality review process should include independent checks to verify
that the appropriate articles are included (or excluded), the data
elements provided are logged correctly, the appropriate formulas
are used, and the computations are accurate. Including 2 re-
searchers for each task, with one researcher performing the primary
tasks and the other researcher independently performing the tasks
and comparing results with those of the primary researcher, will
increase the accuracy of the data and ultimately the accuracy of the
conclusions based on the computations.

In addition to pitfalls related to the accuracy of data or use of
appropriate effect size formulas, it is important to consider the
type of group comparison. Readers should view effect size results
based on extreme groups with great caution unless the selection
of these groups is sufficiently justified. In a review of reported
epidemiologic risks, Kavvoura and colleagues (41) observed,
“Paradoxically, the smallest presented relative risks were based
on the contrasts of extreme quintiles; on average, the relative
risk magnitude was 1.41-, 1.42-, and 1.36-fold larger in contrasts
of extreme quartiles, extreme tertiles, and above-versus-below
median values, respectively (P , 0.001).” One possibility is that
the more extreme groupings were chosen for comparisons when
the less extreme groupings would not provide the desired posi-
tive conclusion (42). Moreover, it should be noted that this
finding was based primarily on comparisons between studies on
different topics, not within a study on the same topic (if it oc-
curred here, it would suggest a risk relation that is J- or U-
shaped). The use of the extreme groupings inflated the effect
size, and due to the missing information, the results may lead to
incorrect conclusions and interpretations.

Use of effect size measures within the American Journal of
Clinical Nutrition

Effect size methods and measures are not new. However,
despite their usefulness, they are not widely presented in the
literature. As a targeted review of their current use, we randomly
selected 42 articles in the current volume of the American
Journal of Clinical Nutrition (w15% of the articles published
January–November 2015) and categorized the results by using
the abstract as the primary source. The most common methods
provided for interpreting results were P values (95%; 40/42) and
CIs (45%; 19/42). ORs, HRs, and RR values with CIs were the
most common type of effect size in the sample (35.7%; 15/42).
None of the articles reported a Cohen’s d value or SMD.

Methods from the COA field for interpreting results

Comparisons to thresholds based on external anchors

A common practice outlined in the draft PRO guidance (9) and
described in many applications (43–47) is to evaluate whether
differences observed exceed a threshold based on a minimally
important difference (MID): the smallest difference that can be
interpreted as important to patients. The draft PRO guidance
endorsed using this type of threshold as a logical comparison to
rule out differences less than or equal to the threshold but ac-
knowledged that in practice, this was rarely implemented. Fur-
thermore, in the MID literature, various terms and definitions
have been used for the thresholds, with distinctions made for
definitions based on MIDs compared with minimally clinically
important differences or clinically meaningful differences (4, 47).

A team of researchers at McMaster University (Hamilton,
Ontario, Canada) pioneered the use of self-reported retrospective
measures of change as external anchors (48). Specifically, in this
approach, mean changes in the COA scores over time are
compared with responses to a global rating of overall change.
Typically, the global rating is a single retrospective question that
addresses the reporter’s overall perception of change in the
construct underlying the COA and uses a balanced ordinal re-
sponse scale. For example, responses to a global question about
change in a patient’s disease status could be used to anchor a
COA addressing the severity of various disease-related symptoms.

As another example, suppose there is a study in asthma that
includes an anchor question with 7 categories for positive change
or improvement, 1 category for no change, and 7 categories for
negative change or deterioration in health status. Patients are
classified based on their response to this anchor question, and
then the mean changes in subscale scores on the target COA are
calculated for each anchor classification.

For each subscale, the mean change is evaluated for each
category of the anchor to ensure that the pattern of changes is
monotonic, with the largest positive mean change for (anchor)
category indicating the most improvement on the anchor ques-
tion, the next largest positive mean change for the category in-
dicating the next largest improvement on the anchor, and so forth.
This evaluation provides evidence to support the appropriateness
of the anchor (see below for additional information about anchor
selection). For example, the group of patients reporting “a little
improvement” on the anchor question may be used to estimate
the MID by using their mean change on the subscale (e.g., mean
change for “a little improvement” = 5). This estimates the MID
for within-group change (49). If one is interested in the between-
group MID, then mean change in the “no-change group” can be
subtracted from the mean change in the “a little improvement
group” (e.g., mean change for the no-change group = 0.5;
threshold = 5 2 0.5 = 4.5 points) (4). If the mean change in the
no-change group = 0, then these methods provide identical re-
sults; however, if the mean change in the no-change group is
nonzero, the resulting MID estimate will be different. Therefore,
it is important to understand the approach used by the authors
before using a published MID.

A threshold derived in this manner can provide a useful
supplement to statistically significant group mean improvements
in evaluating the meaningfulness of an observed improvement or
deterioration. McNeil and Patrick’s illustration of how to apply
the group-level threshold to interpret the meaningfulness of
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group mean differences [R McNeil (FDA) and D Patrick (Uni-
versity of Washington), personal communication, 1997] is shown
in Figure 4. Four group comparisons (G1–G4) are provided, in-
cluding CIs for mean differences. In addition, the MID threshold
is shown as a vertical line for evaluating differences favoring the
study drug. The first group comparison (G1) is the only one that
meets both statistical significance (the CI does not include zero)
and threshold (the CI exceeds the chosen threshold). The G2 and
G3 comparisons are statistically significant but are not meaningful
based on the threshold, and the G4 comparison does not meet the
planned statistical significance.

Selection of the anchor

When using a threshold based on an external anchor, the choice
of anchor is critical. Evidence should be provided to justify the
appropriateness of the anchor. The anchor measure should be
interpretable and bear an appreciable correlation (see below for
guidance) with the targeted COA of interest. An anchor may
pertain, for instance, to general or overall health status (e.g., mild,
moderate, severe) at the time asked or within a relatively short
recall period. Hays and colleagues (49) suggested a correlation of
at least 0.371, based on this being large according to Cohen’s
rules of thumb.

Selected anchors may be cross-sectional (classification based
on a relevant external measure at one time point) or longitudinal
(classification based on change assessed through a relevant ex-
ternal measure) in nature. Cross-sectional anchors may be based
on disease-related severity classes, such as a classification of
severe malnutrition; external non–disease-related criteria, such
as the loss of a job; or health states judged through hypothetical
scenario frameworks (50).

Longitudinal anchors are most commonly used and include
retrospective ratings of change from patients, clinicians, or other
stakeholders, as well as changes in disease-related outcomes.
Hudgens and colleagues (51) report differences in thresholds

based on whether the anchors were collected prospectively or
retrospectively. Specifically, although the results for identifying
MIDs were similar across anchors for the 6 target scales, not all
scale-level change scores increased monotonically for the ret-
rospective anchors. Fayers and Hays (52) and others warn that
retrospective global ratings can be biased due to response shift
because of, for example, adaptation to illness, recall bias between
visits, and implicit theories of change (15, 31, 53, 54).

Furthermore, studies have suggested that baseline impairment
level may bias threshold estimates based on retrospective ratings.
For example, Engel and colleagues (55) evaluated the impact of
weight loss and weight regain on scores for an obesity-specific
health-related quality-of-life (HRQOL) measure. Their results
indicated that patients reporting more severe impairments at the
start of the study reported greater improvements in HRQOL for
the same weight loss than those with less severe impairments at
the beginning. Weight regain impact on HRQOL was greater for
those with more severe impairments at the start. Although these
results suggest a bias related to baseline characteristics, we
caution that these results may be due, at least in part, to regression
to the mean (56).

Hays and colleagues (49) suggest reporting the correlation be-
tween the anchor responses, baseline scores, and postintervention
scores, in addition to the correlation with the change scores. Ideally,
the anchor responses should correlate with approximately equal
magnitude at the baseline and postintervention time points (57).
Retrospective anchors may be acceptable, depending on the situ-
ation. However, retrospective questions may, in at least some in-
stances, correlate more strongly with the postintervention scores
than they do with the baseline, because current status unduly in-
fluences the retrospective perception of change and may bias the
results based on the anchor. When available, researchers may want
to consider using criterion-referenced anchors based on difference
in PRO means between impaired and normal samples or between
different levels of severity (4, 49, 58, 59).

One way to potentially avoid recall bias is to incorporate status
anchor measures into the clinical trial or observational study (in
addition to or instead of the retrospective anchor items) to define
the threshold. Instead of the retrospective change questions (e.g.,
relative to baseline, how has your overall health status changed?),
these status anchors (e.g., what is your overall health status now?)
can be assessed serially, one point at a time, to focus on the
patient’s present state at multiple time points, thus avoiding
potential recall bias but not losing the patient-reported per-
spective. Mulhall and colleagues (60) provide an example re-
lated to erectile dysfunction, where the relation between various
outcomes was evaluated by using a repeated-measures, longi-
tudinal, mixed-effects model incorporating status anchors.
Similar longitudinal analyses have been replicated with various
COA measures and anchors and in numerous therapeutic areas
(61, 62).

Comparisons to thresholds based on distributional properties

Another common practice involves noting the COA score that
equates to effect sizes deemed to be MIDs in previous studies.
Often, this is used as a supportive method to the anchor-based
method, because it does not estimate theMID from the study data.
A common distribution-based threshold that is based on the effect
size statistic is defined as 0.5 SDs (where the SD is the COA

FIGURE 4 Application of statistical and MID-based classifications for
group mean differences. Example of how to apply a group-level threshold to
interpret the meaningfulness of group mean differences. Four group com-
parisons (G1–G4) are provided, including CIs for mean differences. The
reference line provides the threshold for determining differences favoring
the study drug. The first group comparison (G1) is the only comparison that
meets both statistical significance (the CI does not include zero) and thresh-
old (the CI exceeds the chosen threshold). The G2 and G3 comparisons are
statistically significant but are not meaningful based on the threshold, and
the G4 comparison does not meet the planned statistical significance. MID,
minimally important difference. Adapted from R McNeil (FDA) and D
Patrick (University of Washington), personal communication, 1997, with
permission.
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measure’s baseline SD); others have advocated for 0.2 SDs.
These suggestions are based on Cohen’s rules of thumb: 0.2 as
a small effect size and 0.5 as a medium effect size (46, 63).
Therefore, this method relies solely on the statistical distribution
of values through a mean and an SD to help interpret differences.

Comparisons of cumulative distribution functions

Another evaluation tool for quantitative outcomes is the
comparison of cumulative distribution functions (CDFs). A CDF
is a basic plot of the cumulative proportion of a sample at each
possible outcome change score; a typical representation plots the
change from baseline scores on the x axis and the proportion of
the sample experiencing that level of change (the proportion at
that score plus the proportion at all scores less than that par-
ticular score) on the y axis. Visual inspection of CDFs (either
empirical or smooth plots) provides for the inspection of group-
level differences, with complete separation (no overlapping areas)
of the CDFs by group membership representing superiority/
inferiority across the continuum of outcome scores.

A more informative method for comparison of the CDFs is to
compute CIs based on survival methods (CDFs implemented as
survival density functions) and to test the difference between the
curves at the maximum point or comparisons based on AUC
methods by using either parametric (e.g., maximum likelihood
smoothing) or nonparametric (e.g., adding trapezoids)methods (4,
13, 64). Cappelleri and Bushmakin (4) suggest assigning in-
dividuals who drop out of the study to the worst possible score or
change score when dropout status is considered informative. [This
practice may be more reasonable for studies involving physical
health outcomes than mental health outcomes (65).] Furthermore,
if a measure has multiple scoring algorithms, it is necessary to
consider the type of score (original score compared with trans-
formed scores) when comparing groups or the interpretation may
be biased. For example, percent change from baseline may be
more extreme for transformed than for original scores (66).

Mediation

A relatively new recommendation is to use statistical medi-
ation analysis to further support the interpretation of COA scores
and changes in these scores, provided that the total effect of the
independent variable on the dependent variable is of sufficient
magnitude (4). Mediation analysis involves the assessment of
interrelations among a set of variables simultaneously based on
a postulated substantive (subject matter) framework. In the most
basic mediation model, the dependent outcome (e.g., physical
functioning) is predicted indirectly by one independent variable
(e.g., treatment group) and directly by the mediator variable (e.g.,
weight reduction). In this example, the model estimates provide
information about the relation between the treatment group as-
signment and increases in physical functioning through reduction
in weight, the mediator. Understanding these relations can pro-
vide clarity about the mechanism of action for a treatment or
other type of intervention so that further development or ex-
aminations can focus on the aspects that provide the most im-
provement (59).

Cook and colleagues (67) provide an additional example re-
lated to eating disorders and exercise. The mediation model in
this study included eating disorder symptom severity as the
dependent outcome, which was predicted indirectly by exercise

behavior and directly by exercise dependence. Results indicated
that exercise dependence is a significant mediator for the relation
between exercise and eating disorder symptom severity, pro-
viding evidence to support a target psychological component
(exercise dependence) for future interventions, with the goal of
decreasing eating disorder severity.

Using a group-level threshold for an individual or an
individual-level threshold for a group

Group-level thresholds have erroneously been applied for
individual-level interpretations. However, the amount of change
necessary to be meaningful will be larger for an individual than
for a group of individuals. Group change and individual change
have different SEs, and thus it has been noted that group-level
estimates cannot be used to define responders (12, 52).

For individual comparisons, a minimum criterion is that the
individual has improved an amount that is statistically significant
(i.e., the observed individual change is greater than the mea-
surement error associated with the COA). Computing a CI for the
individual by using the measure’s SE of measurement or com-
puting the reliable change index is an appropriate method to
classify individuals as responders or nonresponders (12).

Probability of relative benefit

Differences between treatment groups at a specific follow-up
time or change from baseline can be evaluated nonparametrically
with Wilcoxon’s rank-sum test by using ridit analysis (59, 68,
69). This type of analysis is well suited for ordinal responses and
is related to the receiver operating characteristic curve for the
binary case. The Mann-Whitney U statistic from Wilcoxon’s
rank-sum test gets converted, by using ridit analysis, to a prob-
ability that represents the chance that a randomly selected pa-
tient from the treatment group has a more favorable response
than a randomly selected patient from the control group. For
instance, the method may be used to address the following
question: what is the likelihood that a randomly selected patient
in the treatment group would have a greater reduction in phys-
ical functioning relative to a randomly selected patient in the
control group? Related interpretation tools are the probability-
probability plot and the probability-probability index, which
provide an alternative way to evaluate the mean difference in
percentile rank for responses or outcomes for different treat-
ments (70).

DISCUSSION

The use of COAs in clinical trials, observational studies, and
clinical practice provides patient-focused information to help
guide decisions, including decisions in nutrition science. How-
ever, because of the wide variety of instruments, varied scoring
rules, and the competitive COA development environment (e.g.,
potential lack of details due to ownership and strict licensure of
a COA), interpretation of COA results within and across studies
can be difficult. Furthermore, because studies are rarely powered
for the COA comparisons, researchers must be proactive in
planning, implementing, and making conclusions based on COA
results.

Using examples, this article offers a review of potential methods
that can be used to facilitate interpretation of group-level
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evaluations based on COAs to equip researchers with a basic
understanding of these measures. It includes aspects to consider
before reviewing statistical results and recommendations for how
to be an educated stakeholder when drawing conclusions and
implications from COA-based information. Before considering
COA results, it is important that the measure be well developed
and properly evaluated to support its use in the context of the
study under review. In addition, the quality of the study design,
sample size, and data collection methods should be appropriate
for the intended objective of the evaluation.

Given favorable review of the COA and the study, the first step
in evaluating COA results should consist of the main statistical
analysis and inference based on established statistical methods
(e.g., repeated measures or random coefficient models when the data
are longitudinal) and the main objectives, including computation
of CIs and measures of effect size, if available. Recent guidance
from the FDA addresses the need for CIs and effect size values to
support P values when developing an integrated summary of
effectiveness section for inclusion in either new drug applica-
tions or biologics license applications for efficacy endpoints
based on COAs and non-COAs. The guidance states, “A pre-
sentation of p-values alone would not be adequate” (71). An
ideal next step, based on the recommendations within this arti-
cle, should incorporate judgment by using an appropriate unit of
comparison, such as a prespecified threshold, and review of the
complete distribution of change by using tools such as the CDF.

As part of the overall plan, further investigation on applying
existing techniques to COA, such as mediation or ridit analysis,
should be considered to gain insights into potential next steps or
to begin to explain the reason for the changes. Collectively,
consideration of these methods before interpreting COA results
should facilitate a careful evaluation in nutritional science—with
the ultimate goal of enhanced decision making based on relevant
information from a patient’s perspective.
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