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ABSTRACT OF THE THESIS

Scene-Level Neural Implicit Surface Representations Using Signed Directional Distance
Functions

by

Hojoon Shin

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2023

Professor Nikolay Atanasov, Chair

Recent advances in the field of neural implicit surface representation has led to the use of

signed distance functions as a continuous representation of complex surfaces. Though signed

distance functions allow for a very simple and concise mapping of the environment, rendering

these surfaces from signed distance functions are non-trivial and require iterative methods such

as ray marching, leading to high render times. The inclusion of direction in these functions

have been proposed and applied to various object-level applications, but have yet to be proposed

for scene-level applications. This thesis explores the idea of scene-level directional distance

functions and some of the problems that it faces. It then proposes three different methods through

x



which the directional distance function can be implemented and potential solutions to some of

the drawbacks of the directional distance function.
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Chapter 1

Introduction

1.1 Background

Recent developments in robotics have allowed robots to be placed into operation in a

larger scale than ever before. Autonomous mobile robots (AMRs), in particular, have risen to

popularity for both commercial (i.e. delivery robots) and private (i.e. robot vacuum) applications.

One of the fundamental problems in the study of the AMRs is the reconstruction of expressive

maps of an explored environment from robot observations. Mapping allows a robot to not

only conduct key functions such as localization, but also generate representations that can be

then further analyzed for future use. Numerous mapping algorithms and surface representation

techniques have been developed for purposes ranging from scene reconstruction to large scale

hierarchical semantic mapping.

There are largely two primary methods of surface representation. Explicit surface

representation is one of the most commonly used type of map representation. Explicit surface

representation refers to techniques that define a surface as the range of a parameterized function

[8]. It is most commonly represented as a set of vertices and faces, making them very intuitive

and easy to manipulate. However, such representations require the surface to be discretized

in the form of voxels or polygons, leading to a high memory requirement and discontinuities

between patches. An alternative to the explicit surface representation is the implicit surface

representation. The implicit representation, such as the signed distance functions (SDF), defines
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a volumetric function g : R3→ R. This function is called an implicit function, with the surface S

defined as its zero level set, S = {p ∈ R3→ g(p) = 0}. The SDF is a special formulation of an

implicit function where in which the function returns the distance to the closest surface. This

formulation theoretically allows for a continuous representation of any arbitrary object, but the

objects in the real world cannot be represented analytically due to their complexity. Hence, the

SDF was typically discretized and voxelized, which led to similar problems faced in explicit

representations.

Fortunately, the development of deep learning in recent years has unlocked the field of

neural implicit surface representations that are capable of modeling detailed surfaces without

discretization. By utilizing multi-layered perceptrons (MLPs) to represent the implicit function,

the complex implicit representations of real life objects could be captured. These methods,

however, also faced another problem: rendering. Due to the nature of implicit functions, the

surface of the object or scene cannot be extracted directly and must use iterative techniques,

such as ray marching, to find the zero level set. In a neural representation, this requires multiple

forward passes through the network, which can be computationally expensive. In addition,

iterative algorithms are only able to compute the distance to a specified error tolerance, which

meant that the estimation itself contains error and may even actually terminate rays that pass

near a surface but does not actually hit the surface. Another major problem is that these neural

implicit models does not allow for incremental or local updates to the map. Because all input data

affects all the weights in the neural network, every observation will modify the map estimation

regardless of how distant the map and the data sample may be from each other.

In order to resolve these limitations, we propose two solutions. First, to resolve the

problem rendering, we suggest the incorporation of direction in scene-level SDFs. These

SDFs with direction will be henceforth collectively referred to as directional distance functions

(DDF). Incorporating direction in the SDF allows for depth estimation in a single forward pass,

without the need for iterative methods of rendering. Second, to solve the problem of local

updates, we propose the use of neural feature grids to encode the local area using a combination
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of the neighboring features. This means that each data sample only alters the neighboring

features, allowing for updates in just a local region. We combine both of these methods to

formulate feature-based signed directional distance functions (FSDDF). There are two different

implementations of the DDF presented in this paper. We first present the first scene-level DDF

formulation without the use of feature grids. We then extend this method to one that utilizes

a 2D feature grid by decoupling direction from position, and another that combines both the

direction and position to utilize a 3D feature grid. This is the first implementation of DDFs

at the scene-level and opens the possibility of fast implicit mapping for continuous surface

representations.

The remainder of this paper will be structured as follows. First we discuss existing prior

works regarding SDFs at both the object and scene-level along with those regarding DDFs. We

then formulate the specified problem mathematically and discuss the technical approaches taken.

Finally, we present the results of our implementation along with quantitative and qualitative

analysis.

1.2 Related Works

1.2.1 Implicit Object Representations

The first paper to utilize SDF using neural networks was DeepSDF in [13], which utilized

an autoencoder/autodecoder structure encoded a library of shape priors into a latent vector. The

latent vector was then concatenated with the queried pose to estimate the SDF. This formulation

allowed the network to learn the SDF without any discretization by optimizing the latent vector

with a simple L1 loss function. This sprouted many extensions to the method, such as [22],

which combined multiple-view stereo networks and SDF networks to allow deep image features

to improve the SDF estimation, and [11], which utilizes disentangled latent spaces to allow for

reconstruction of articulated objects with high levels of deformation.

Implicit geometric regularization (IGR) [5] proposed an addition to the DeepSDF method
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and introduced the eikonal constraint in the loss function. The method stated that point normals

could be utilized to encourage the gradient of the SDF at the point to be similar to that of the point

normal. The eikonal loss was also contained in the loss function in the form of the expectation of

the eikonal loss. IGR demonstrated superb accuracy when used for estimating SDFs at the object

level and presented the first use of the eikonal constraint in the loss function for learning SDFs.

Neural radiance fields (NeRF) [10] and its extension paper [2] presented another idea

of neural implicit object representation by utilizing volume rendering to estimate volumetric

radiance fields. By utilizing volume rendering techniques, the model was capable of dealing with

discontinuity along the queried ray, as the method involves sampling multiple points along a ray

to estimate the RGB color and volume density. However, since these methods were designed

for novel view synthesis, its estimated surfaces contain significant amounts of noise. NeuS [18]

adapted this volume rendering methodology to estimate SDF rather than radiance fields.

1.2.2 Implicit Scene Representation

A field that was developing concurrently with the object-level SDF was the representation

of scenes using these implicit formulations. iMAP, developed in [16], was one of the first

methods that utilized implicit surface representations for scene representation. iMAP utilized

a single MLP to learn the scene geometry in real time from a handheld RGB-D camera to

simultaneous estimate the camera pose and build a dense 3D model of the scene occupancy with

color. This was achieved with no prior data and demonstrated a 10 Hz tracking frequency and 2

Hz map updates. Building further upon the idea of real-time operation, iSDF [12] utilized a very

similar pipeline to estimate SDFs instead of occupancy using self-supervision. Though the iSDF

demonstrated high accuracy at extremely fast speeds, the model struggles to scale to multi-room

datasets, as each input to the network updated the network parameters for the entire map and

solely relied on keyframe windows to maintain accuracy on past data. In addition, most of the

datasets used by these papers consists of single rooms with a distinct lack of narrow corridors

and thin walls.
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NICE-SLAM [24] proposed the idea of using a neural implicit feature grid to estimate the

occupancy and color from RGB-D inputs. NICE-SLAM utilized feature grids that stored feature

vectors at each grid index. For every queried point, the neighboring grid point features were

trilinearly interpolated to output the final feature vector, which was then decoded by a decoder

MLP. This was then extended by [23] and [21] to work with RGB images and to estimate SDF

rather than occupancy respectively. Though these methods are able to operate in real time, they

suffer from the limitations of SDFs in that rendering of views requires multiple forward passes

through the network, making it highly inefficient.

1.2.3 Directional Distance Prediction

An intuitive step up from regular SDF is to incorporate direction. The key idea here is

that the the viewing direction is added to the distance function, so that the function returns the

distance to the surface along the specified viewing direction. For simplicity, we will henceforth

refer to these functions as directional distance functions (DDFs). As this field has only been

proposed very recently, there are only a very limited number of works that fit our application.

The first implementation of DDF was the signed directional distance function (SDDF)

[25]. Developed as an extension of DeepSDF, SDDF is designed to learn shape representation for

categorical objects and uses an MLP to learn the signed distance for a given object latent code,

pose, and viewing direction. The paper also proposes a novel dimension reduction algorithm that

helps to simultaneously reduce the number of input dimensions and embed the eikonal constraint

into the model structure, hence removing the need for a separate eikonal loss. Though effective,

the same method cannot be applied to scene level data as the dimension reduction technique

does not account for occlusion.

Another very similar idea was the probabilistic directed distance fields (PDDF) [1]. PDDF

is a formulation of DDFs where the measured distance is always looking forward along the

viewing direction. Due to this definition, the paper takes special steps to deal with discontinuities

arising from occlusion through applying a probability distribution along the ray that is a mixture
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of delta functions. This allows the network to output a depth prediction based on the most

probable continuous piece of the function along the ray. However, the network was again only

applied for object level and hence does not take into consideration the discontinuity along the

direction dimension.

Hybrid directional and signed distance function (HDSDF) [20] proposed utilizing both

SDF and DDF in its formulation for depth estimation. Since SDF and DDF are related in

that SDF(p) = min
v

DDF(p,v) for a given pose p amd viewing direction v, HDSDF learns to

simultaneously predict DDF and SDF values. For the DDF prediction, the network learns to

output DDF estimations along with ray-hitting probability from points and directions on a unit

sphere that fully encloses the object. Fast inverse rendering (FIRe) [19], which was written by the

same authors, extends the HDSDF to include two sets of 2D feature grids and can be considered

to be the most analogous to the method implemented in this paper. FIRe decomposes the 3D input

(x,y,z) in SDFs into three 2D feature grids, while for DDFs, the 6D input (x,y,z,dx,dy,dz) is

decomposed into 15 2D feature grids. Then a higher dimensional feature is interpolated for each

feature grid under the assumption that the learned function is linear in a higher dimensional space.

Though this method demonstrated exceptional accuracy and runtimes, it cannot be extended to

the scene level, as the queried DDF is bounded to a unit sphere that surrounds the entire object.

1.2.4 Discontinuity Approximation Using Neural Networks

A key factor to training neural networks to learn DDFs is the ability of the network to

approximate discontinuity. There are two major types of discontinuity in DDFs that are worth

discussing. First is the discontinuity along a fixed viewing direction resulting from occlusion.

This problem was also present at the object level and hence was tackled by previous work such as

[1] using probability distributions of mixtures of delta functions. The second is the discontinuity

in depth measurement due to the viewing direction from a fixed position. This is a major problem

that become particularly important in scene-level applications because each ray from the LiDAR

may be hitting entirely different objects, resulting in a piecewise discontinuous output.
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There has been extensive work conducted regarding the approximation of piecewise

continuous functions using neural networks. Ismailov [7] proved that a three-layered neural

network is capable of representing any multivariate function, including discontinuous functions.

However, the paper explicitly states that the argument is strictly an existence result and that

there is no guarantee that existing learning algorithms are capable of converging to the desired

function. The primary method of dealing with such piecewise continuities have been to utilize

classification identify the piece at which the queried point belongs. Bernholdt et al. [3] suggested

clustering and classifying the input data prior to conducting regression on the data. The clustering

and classifying front end could either be parametric or non-parametric, while a neural network

was used for the regression. Cho et al. [4] partitioned the input data under the assumption

that the input data only affects a single piece of the piecewise continuous function. Using this

assumption, a k× k weak Jacobian block matrix can be computed, for a piecewise continuous

with k partitions. Each block of the represents the Jacobian of each corresponding piece, which

can be used to optimize the network parameters corresponding to the specific continuous piece.

However, both of these methods cannot be applied to our circumstance, as it is impossible to

cluster the surface scan of an unknown environment a-priori.

Another approach that was to utilize jump functions to model the discontinuity. Selmic

et al. [14] utilized sigmoid jump blocks, which appends a regular MLP with nodes that pass

through sigmoid jump basis functions as an activation. These sigmoid jump blocks takes the

position of the discontinuity c as a parameter in order to network to apply the jump at the

appropriate position. Llanas et al. [9] also utilized step functions to model the discontinuities

while combining the piecewise continuous functions together to for a single continuous function.

By decoupling the approximation of the discontinuity and the continuous function itself, the

network was able to effectively estimate the piecewise continuous function accurately. Both of

these methods, however, requires prior knowledge regarding the position of the discontinuities,

which is impossible in an unknown environment.
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Chapter 2

Problem Formulation

2.1 Definitions

We first illustrate the definition of DDFs that will be used in this paper. The DDF is

defined with a point p ∈ Rn and the direction v ∈S n−1 input. The output of the DDF is then

the distance to the surface along the queried direction. Please note that though the definition in

Eq.2.1 uses a unit vector to represent the viewing direction, the rotation can be represented using

any other forms, such as roll-pitch-yaw.

We also adopt a similar direction convention that is used in [25], where the network

estimates the direction to the closest surface along the viewing ray with negative depth represent-

ing a distance behind the field-of-view (FOV). We utilize a modified version of the definition,

as shown in Eq.2.1, where the set S,O refers to the set of points on the surface and within the

obstacle respectively. Note that with the definition, the queries that are within the obstacle are

now measuring the distance to the surface behind the FOV. This allows the depth measurement

along the ray pointing into the object surface to be continuous, allowing the network to have an

easier time modeling the surface. Though this still causes rays originating from the insider of the

surface pointing out to have a discontinuous depth measurement, this is an extremely unlikely

circumstance in our problem formulation, as an operating robot would always be positioned

outside an obstacle. An illustration of both the SDDF and PDDF interior point definition is

shown in Fig. 2.1.
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Figure 2.1. Difference in the modified SDDF and PDDF definition for interior sampling. po, pi
represents the (x,y) coordinate of the sample point, vo represents the viewing direction, and

do,di the depth label of the query.

SDDF(p,v) =


0, if p ∈ S

min{d > 0 | p+dv ∈ S}, if p /∈ O

max{d < 0 | p+dv ∈ S}, if p ∈ O

p ∈ Rn, v ∈S n−1, ||v||2 = 1

(2.1)

In additional, though not directly enforced, the estimated SDDF would ideally adhere to

the directional eikonal constraint, where the gradient of the SDDF along a viewing direction is

fixed to be -1. This can be mathematically defined as:

∇pSDDF(p,v)T v =−1 (2.2)

2.2 Problem Statement

For the application of DDFs, we consider a randomly positioned robot in a 2D room

environment. The pose of the robot is known and provided in the form of (p,v), where p = (x,y)

and v = (dx,dy) is the orientation of the robot represented in unit vectors. At each step, we
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receive depth information from a 2D LiDAR in the form of d, where the number of depth

measurements per scan j depends on the FOV and resolution of the sensor. In order to mimic

the FOV of a depth camera, we limit the LiDAR FOV to 60◦ with an angular resolution of 0.5◦.

We refer to the input dataset as Di, where i is the index of the input data (pi,vi,di). Hence, a

dataset with k number of poses and j scans per pose will contain a total of n = j× k samples.

It should be noted that the pi and vi samples in the dataset are not unique, as there may be two

entries at the sample pose with different viewing directions or vice versa. The aim is then to

learn a function that represents the map of the surrounding environment. Specifically, we seek

the parameters θ such that:

min
θ
{∑

i
|SDDF(pi,vi ; θ)−di|} (2.3)

The surrounding environment is assumed to be an enclosed indoor home environment with

multiple rooms. This multiple-room setup creates a significant amount of occlusion and thin

walls, which both SDFs and SDDFs tend to struggle with. A sample input data is shown in

Fig.2.2. For evaluation of the results, we utilize a simple L1 error between the estimated depth

and the ground truth input from the scans. In the following section we discuss three different

methods to tackle this problem.

2.3 Datasets

There will be three different room environments that the methods will be evaluated upon.

First, we utilize a vary simple initial testing dataset that consists of a simple square room with

dimensions 5× 5 meters. As a simple geometric shape of a square does not contain any occlusion

while also containing discontinuities such as the sharp corners, it creates a decent baseline from

which we can evaluate the performance.

The second room environment that was used to test the methodology was a custom made

room dataset with a couple distinct points. First, the dataset contains three rooms with open
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Figure 2.2. Example input from the HouseExpo dataset taken with a 60◦ FOV and angular
resolution of 0.5◦
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doors, meaning that the rooms contains thin walls that existing works have not tested extensively

on. The room also contained a large star in the center of the room, that causes occlusion and

creates great amount of discontinuity in the LiDAR scans. Both these factors make the shape

room a very difficult dataset to learn. The room was also relatively larger, with a map dimension

of 17 × 11 meters.

As a final test, we utilize the room layouts that are part of the HouseExpo [17].The

complete dataset contains 35,126 2D floor plans of multiple rooms in each floor plan. We chose

a room from the dataset with many discontinuities and corridors to truly test the accuracy of the

estimation. The layouts for all the rooms discussed are shown in Fig.2.3.

We randomly sample the free space for 700 different pose samples for the box dataset and

1000 poses for the shape room and HouseExpo dataset. For each pose, we generate a 2D LiDAR

scan with the sensor parameters stated previous. Since each of the scans contain 120 sample rays,

the box dataset contains 84,000 input data points, while the shape room and HouseExpo contains

120,000. These points can then be further expanded using data augmentation techniques that will

be described later in this paper. For the evaluation of the results, 100 additional random poses

that were not used for the training dataset were sampled from each of the environments and a

similiar laser scan was generated for each of the test poses.
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(a) Box Dataset (b) Shape Room Dataset

(c) HouseExpo Dataset

Figure 2.3. Full layout of the three different datasets.
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Chapter 3

SDDF without Feature Grid

3.1 Network Architecture

We first present a method of estimation SDDF without the use of feature grids, the model

of which is shown in Fig.3.1. We will refer to this method as the SDDF for the rest of the

paper. As we can see, there are two major portions in the model. First is the encoder network,

which is a simple five-layer MLP with leaky ReLU activation. Each hidden linear layer in the

encoder contains 256 nodes. The encoder takes in the position and direction (p,v) and encodes

the information into a feature vector f . Here, the position p is taken in Cartesian coordinates

p = (x,y) while the direction is assumed to be in the form of a unit vector v = (dx,dy). Once

encoded, the feature vector is concatenated with the original input (p,v) and then passed to the

decoder MLP, which is identical to the encoder MLP, except that the output is now the SDDF.

3.2 Network Training and Inference

For training the network, stochastic gradient descent was used with an Adam optimizer.

We only require a very simple loss function using the depth loss Ldepth with a simple L1 loss as

follows:

Ldepth =
1

ninput

ninput

∑
i=1
|SDDF(xi,yi,vi)−di| (3.1)
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Figure 3.1. Architecture of the SDDF with no feature grid. Given coordinates (x,y) and
directional unit vector (dx,dy), the encoder computes a feature vector f which is then

concatenated with the original 4D input to decode the final SDDF estimate.

where the ninput is the total number of samples in the training data. The results of the training are

shown in Sec.6.4.

When evaluating the network, we utilize double-forward pass technique to leverage the

fact that the SDDF follows the eikonal constraint along a viewing direction. To this end, we first

run the input (p,v) through the network to obtain the first estimate of the depth dcoarse. Using

this estimated depth, we move along the ray a point closer to the surface and query the network

again for to return d f ine. We then combine these two estimations together to compute the final

depth estimate. Specifically,

d f inal = γcoarsedcoarse +(1− γcoarse)d f ine (3.2)

The hyperparameter γcoarse is the weighting factor 0 ≤ γcoarse ≤ 1 of the coarse estimate with

respect to the fine estimate.
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Figure 3.2. Two sample input scans from the shape room dataset. The horizontal axis represents
the ray index of a 360◦ LiDAR scan with a 0.5◦ resolution, resulting in a total of 720 points. The

piecewise discontinuity can be clearly observed from both scans.

3.3 Discontinuity Treatment

As mentioned previously, there are two types of discontinuity that network must be

able to handle for scene-level SDDF. In Sec.1.2.4, we discussed some prior works regarding

approximation of piecewise discontinuous functions and Sec.1.2.3 contained prior attempts to

tackle discontinuity with regards to the depth discontinuity along a single ray. Another source of

discontinuity that has not been addressed by previous work at the object level is the discontinuity

due to the changes in viewing direction. This becomes immediately evident when simply plotting

the depth values from a single LiDAR scan. Based on the surface that each individual ray hits,

the depth measurement may change drastically, as shown in Fig.3.2.

To evaluate the different methods of approximating discontinuity, we implemented neural

network approximations of a piecewise discontinuous quadratic function. As mentioned in

section 1.2.4, many of the existing works in this field is ill-suited for our problem situation.
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However, the sigmoid jump block in particular can be adapted by assuming that the jump position

is a zero. In other words, the sigmoid jump block SigJump will have the effective formulation as

follows,

SigmoidalJump(x) =
L

∑
k=0

αkσ(mkx+nk)+
N

∑
k=0

αkϕk(x) (3.3)

where αk is the weight of the kth node and the σ is a sigmoid activation. The ϕk is the sigmoidal

jump approximation function defined as follows

ϕk(x) =


0, for x < 0

(1− e−x)k, for x≥ 0
(3.4)

For analysis we utilize a sigmoidal jump block with five different jump nodes, or k = 5.

We also include a parameterized ReLU activation, where in which the slope of the negative

portion of the leaky ReLU was a parameter that was optimized by the network. Instead of have

just a single parameter, each node in the layer would receive its own parameter, meaning that

each node would have a differently sloped leaky ReLU activation. We present the results of these

tests in Sec.6.1.

3.4 Data Sub-Sampling

From our formulation, for each set of input data (pi,vi), we can acquire j number of

depth measurements, the directions of which are determined by the sensor type. For example, if

using a 2D LiDAR with a 60◦ FOV and 0.5◦ resolution, we acquire 120 data points per pi,vi pair.

While we could directly utilize these measurements, there is still additional information that can

be exacted to allow for more information in the space. Since each depth measurement means

that the ray passes through free space, we can further sample points along the ray to augment our

dataset while also indirectly implying the eikonal constraint in our input data.
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To this end, we adapt the sub-sampling method that was used in [12], for fast sub-

sampling of our data. We use both the stratified and Gaussian sampling along the ray. The

stratified sampling takes in two parameters: dmin,which indicates the minimum distance along

the ray the stratified sampling takes place, and ddelta, which indicates the distance past the

depth measurement the stratified sampling continues to. This helps to create additional samples

with the same viewing direction from different poses. The Gaussian sampling is conducted by

drawing from a normal distribution to create offset distances from the original depth measurement.

The standard deviation of the Gaussian distribution σ is a hyper-parameter that can be tuned.

In summary, given nstrat desired stratified samples, ngauss desired Gaussian samples, the sub-

sampling can be expressed in Alg.1,

Algorithm 1. Data Sub-Sampling

1: Given ray (p,v) with depth d and hyper-parameters nstrat ,ngauss,dmin,ddelta,σ
2: {dstrat}← range(dmin,d +ddelta,nstrat)
3: {dgauss}← d ∼N (0,σ)
4: for dstrat in Dstrat do
5: pstrat ← p+dstrat(cos(v),sin(v))
6: Dstrat ← (pstrat ,v,dstrat)
7: end for
8: for dgauss in Dgauss do
9: pgauss← p+(dgauss +d)(cos(v),sin(v))

10: Dgauss← (pgauss,v,d− (dgauss +d))
11: Dsupp← (pgauss,−v,d− (dgauss +d)) ▷ For directional supplement only
12: end for

We can also utilize the same method to generate interior samples. Gaussian depths that

are greater than zero in the above sampling methods indicates that the sampled point will be

inside the detected obstacle. These are our first negative or interior samples that we can generate.

Due to our definition of the SDDF, the viewing direction for these additional interior samples

are the same as the exterior samples, except that the distances will now be negative. This is

also reflected in the last line of the algorithm, as d− (dguass + d) ≤ 0 for dguass ≥ 0. Though

generating more interior points using a larger σ would generate a wider range of data samples, it

can potentially cause incorrect data samples, particular if the obstacle the robot is looking at is
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a thin wall, hence causing the point sampled to be in free space rather than in occupied space.

Hence, it is beneficial to keep the σ parameter sufficient small to limit such erroneous labels.

3.5 Directional Augmentation

Though the existing subsampling method is great for providing additional positional

samples, additional directional variety is critical in training an SDDF network, especially if the

dataset is along a trajectory where the variety in directions in the input data set is insufficient. In

other words, for an input dataset consisting of a poses along with n number viewing directions

and depths {p,v j,d j} j=1,..,n, we want to augment the dataset m additional sets {pl,vl,dl}l=1,..,m,

such that vi ̸= vl .

Because these samples represent the distance to a surface in the given direction, the

samples must generated must simultaneously pass through only free space and must hit a

guaranteed surface point. This limits the potential samples that can be taken, as the only points

that are certain to be on a surface are the surface points from the input data, given by si = pi+divi.

Another constraint is that the pose pl must also lie in free space. There are a couple ways we

can guarantee this. First, we could sample along existing rays, as any point along the input ray

is in free space. However, doing so limits the range of augmented viewing directions and can

potentially bias the input data. Therefore, to maximize the variety of data the augmentation

provides, we utilize the sampled surface points to draw polygons to define areas of free space,

henceforth referred to as safe polygons.

The safe polygon first chooses a closest surface points within a given scan to consider as

vertices of the polygon. Let us refer to these vertices as {sk}k=1,...,a Using these closest points

along with the pose p, we define a polygon where in which points can be considered to be in

free space. We can then sample m number of candidate points within this safe polygon and draw

rays vk to each of the k vertices. We must then verify that each of these candidate rays are not

occluded, in other words, that the drawn polygon is convex. To do so, we choose one of the v j as
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an anchor and compute the angle θk between the anchor and the other directions. The polygon is

guaranteed to be convex if the difference in angles are of the same sign. The summary of the

algorithm is shown in Alg.2.

Algorithm 2. Data Augmentation

1: Given S = {si}i=1,...,n surface points in a scan with pose (p0,v0)
2: Choose C = {sk} ∈ S where C are the a closest surface points
3: for point p = (x,y) inside polygon drawn from C and p0 do
4: vk← sk− p
5: Compute θk for vk w.r.t a chosen v1 ∈V
6: δθk← θk−θk−1
7: if |∑sign({δθk})|= a then
8: Daug← (p,vk,dk)
9: end if

10: end for

The final dataset Dinput that is used to train the network can then be represented as

Dinput = Di∪Dstrat ∪Dgauss∪Dsupp∪Daug (3.5)

resulting in a total of ninput = n+(nstrat +2×ngauss)× j× k+naug datasamples in the dataset.

Chapter 3 is, in part, coauthored with Paskal, Alex; Liu, Peiran; Dai, Zhirui; Atanasov,

Nikolay. The thesis author was the primary author of this chapter.
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Chapter 4

SDDF with 2D Feature Grid

4.1 Network Architecture

We first present a scene level SDDF architecture with a 2D feature grid. For convenience,

we will refer to SDDF with the feature grid as FSDDFs, where 2D FSDDF indicates a FSDDF

with 2D feature grid. The overall network structure is shown in Fig.4.1. The first component of

the network is the interpolator that holds the feature grid used to interpolate the feature vector f .

We utilize a similar rectilinear feature grid used in [24, 23], except that we use a single feature

grid rather than a hierarchical setup. While [19] included direction in the feature grid by pairing

the dimensions in sets of two, we decouple the direction from the position so that the feature

grid only takes in the position p = (x,y) while the directional component is concatenated to

the feature vector prior to the decoding. This means that the feature grid can be interpolated

using bi-linear interpolation. Given a queried point (x,y) and the four neighboring feature grid

coordinates and features {(x1,y1, f11),(x2,y1, f21),(x1,y2, f12),(x2,y2, f22)}, the output feature

f can be interpolated as follows:

f =
1

(x2− x1)(y2− y1)
{ f11(x2− x)(y2− y)+ f21(x− x1)(y2− y)

+ f12(x2− x)(y− y1)+ f22(x− x1)(y− y1)}
(4.1)
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Figure 4.1. Architecture of the SDDF with a 2D feature grid. Given coordinates (x,y) and
directional unit vector (dx,dy), the feature grid interpolates a feature vector f from just the

position (x,y)

The resolution of the feature grid is a hyper-parameter that can be tuned depending on the

environment and the variance of the input data. Though having a finer resolution can increase the

accuracy of the SDDF estimation, there is a risk of the grid not being trained at all, which could

lead to failure. Utilizing a feature grid enables two things: first, the network is now capable of

making local updates to the map, where the observations only affect the grid coordinates relevant

to the specific area, rather than the entire map. Second, the map is now subdivided to allow the

feature to encode information in a very local region, a characteristic that we will take advantage

of during the inference stage of the network.

The output feature is then passed to the decoder MLP to output the final SDDF estimate.

The feature vector is concatenated with the position pi and the direction vi = (dx,dy) such that

||vi||2 = 1. Hence, the input dimension to the MLP becomes c+4. The MLP consists of five

hidden linear layers, with 256 nodes in each layer, and a leaky ReLU activation in between each

layer. From various testing, we have observed that the leaky ReLU activation allowed for the
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most accurate estimation of piecewise discontinuous functions in neural networks. This will

be discussed in further detail in Sec.3.3. There is also a residual layer at the third linear layer,

where the original inputs are concatenated to the input. This was a design based on the ResNet

[6] design. There are two separate output layers to the decoder MLP. The first is a standard linear

output layer that outputs the estimate of the SDDF value. The second, however, consists of a

linear output layer followed by a sigmoid activation. This is because this output layer estimates

the occupancy of the queried point. Estimating output layer complements the SDDF estimation

as the occupancy determines the sign of the SDDF, allowing for a more accurate estimation of

depth.

4.2 Occupancy Labels

Occupancy labels for the input data points can also similarly concurrently with the

subsampling methods described in Sec.3.4. If the computed depth label is greater than the depth

measurement to the surface, the occupancy would be 1, as the point would be within the obstacle.

In our implementation, the stratified samples were used to generate free space data while the

Gaussian samples were used to generate occupied data. One of the major problems with this

method of interior sampling is that the parameter ddelta is not a completely accurate assumption.

If, for example, ddelta was unnecessarily large, it is entirely possible for the sampled point to

have exited through the surface on the other side of the object. If we were utilizing these methods

at the object level, this would not be much of a problem. However, because we are working with

scenes with narrow corridors and thin walls, this problem is a definite possibility. Hence, we

must maintain the ddelta to be sufficiently small, which naturally greatly limits the depth into the

surface at which we can sample.

There is also one additional method we can employ to generate additional occupancy in-

formation. Though the Gaussian samples generate samples in the surface, the sampled directions

are all point from free space into the surface, meaning that there are no samples in the reverse
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direction. Hence, in order to generate some data from within the surface, we utilize the same

interior Gaussian samples, but with a flipped direction. However, since we cannot generate a

depth label for this point, we only utilize the occupancy portion of the network. Doing so will

allow the network to have knowledge regarding the occupancy boundary when the estimate is

from within the surface. These supplemental interior samples will be henceforth referred to as

directional supplement samples and can be seen in the last line of Alg.1.

4.3 Network Training and Inference

In order to train the feature grid and the decoder networks, take a two-step approach with

initial pre-training followed by feature training. During the pre-training stage, all the parameters

in both the feature grid and the decoder are optimized. Once the pre-training is complete, the

weights of the decoder are frozen, while the grid features continue to be optimized. This freezing

of the weights in the decoder allow the network to learn the environment purely through its

features while the decoder remains unchanged.

We utilize two different loss functions to optimize the network. First, we utilize the same

depth loss defined in Eq.3.1. For the occupancy, we utilize a binary cross entropy loss LBCE , as

the occupancy estimation problem can be described as a simple binary classification problem.

Given the output of the occupancy estimation as opred and occupancy label ogt , the loss can be

specifically calculated as follows:

LBCE =
1

ninput

ninput

∑
i=1
−wi[ogt,ilog(opred,i)+(1−ogt,i)log(1−opred,i)] (4.2)

Combining the two losses together, the total loss can be computed as follows:

Ltotal = λdepthLdepth +λoccLocc (4.3)

where λdepth,λocc are hyper-parameters representing the weights of the two components.
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When running an inference on the network, we utilize the same double-forwad pass

technique used in the SDDF formulation with no feature grids. However, due to the ability of the

feature grid to represent highly accurate local information, we see an even greater increase in the

accuracy of the estimation.

25



Chapter 5

SDDF with 3D Feature Grid

5.1 Network Architecture

The overall network structure is shown in Fig.5.1. Similar to the 2D FSDDF, we will

refer to this method as the 3D FSDDF. Though very similar to the network model used in Chapter

4, there are a couple of key changes that differentiates the two. Instead of taking unit vectors

to represent direction, we now utilize the yaw angle to represent v. By doing so, we decrease

the number of input dimensions by one. In addition, the feature grid is now represented using a

cube, as the feature now takes in the full (x,y,v) as an input. This results in a slight modification

in the interpolation method utilized in the feature grid that will be discussed further below.

The feature f computed by the interpolation is also now no longer concatenated with the

original input, but rather directly passed on to the decoder. As the feature grid now incorporates

direction in its formulation, there is no longer a need to concatenate the initial inputs for the

directional information. While the decoder architecture is largely the same, with linear layers

and leaky ReLU activation, it no longer contains a separate output layers for occupancy and

depth, but instead simply estimates the SDDF value. In addition, we utilize eight linear layers

instead of five, with the residual layer at the fifth linear layer instead of the third.
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Figure 5.1. Architecture of the SDDF model with a 3D feature grid. Though the architecture is
largely the same, the inclusion of rotation in the feature grid requires a modified interpolation

method using Slerp

5.2 Rectilinear Feature Grid with Rotation

The feature grid design is very similar to the one used in the 2D feature grid, except that

we add an additional dimension of rotation. The feature grid is therefore defined by (x,y,v),

where v is the yaw angle. In all previous works, the interpolation in the feature grid has been

done through bi-linear or tri-linear interpolation. Now, if the network was purely interpolation

rotation angles in radians, the bilinear interpolation would be justified, as the angles in radians

for a unit circle represents the great circle distance, meaning that the bilinear interpolation would

be interpolating based on the great circle distance rather than Euclidean distance. However, the

problem arises when utilizing these weights for interpolating the feature vectors. The simple

bi-linear interpolation appears to be incapable of accurately interpolating between features in the

latent space. Hence, we utilize the weighing factor used in spherical linear interpolation (Slerp)

[15]. The Slerp interpolation given p1, p2 ∈ S2 and interpolation factor t is given as follows,
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Figure 5.2. Slerp interpolation process within the 3D feature grid. The rotation dimension is
interpolated first before using bilinear interpolation for the remaining dimensions

Slerp(p1, p2, t) =
sin((1− t)Ω)

sin(Ω)
p1 +

sin(tΩ)

sin(Ω)
p2 (5.1)

where Ω is the angle between p1 and p2 in radians. The Slerp interpolation provides interpolation

based on the great circle geodesic between two Using this equation, we can compute a similar

interpolation factor based on the sine ratios between the yaw angles of the grid coordinates. The

other two dimensions of p can be interpolated bilinearly, as they line in the Euclidean space.

Given a queried point (p,v) and the neighbor eight sets of points as shown in Fig.5.2, we can then

compute the feature grid interpolation as follows.First, we interpolate using the Slerp weighing

factors for the theta dimension. Using the notation shown in the figure, this can be computed as

below:
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fx1y1 =
sin(v2− v)
sin(v2− v1)

f1 +
sin(v− v1)

sin(v2− v1)
f4

fx2y1 =
sin(v2− v)
sin(v2− v1)

f2 +
sin(v− v1)

sin(v2− v1)
f3

fx1y2 =
sin(v2− v)
sin(v2− v1)

f5 +
sin(v− v1)

sin(v2− v1)
f8

fx2y2 =
sin(v2− v)
sin(v2− v1)

f6 +
sin(v− v1)

sin(v2− v1)
f7

(5.2)

Once the v dimension gone, the feature grid becomes the standard 2D feature grid, where in

which we can conduct bilinear interpolation as described in Eq.4.1 to compute the final feature.
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Chapter 6

Results

6.1 Discontinuity Analysis

We first present the results of the discontinuity analysis discussed in Sec.3.3. The first

MLP we test is the baseline MLP that utilizes the standard ReLU activation in between linear

layers. The second is the discontinuity approximation using sigmoid jump blocks, as discussed

in Sec.1.2.4. We then present the MLP utilizing the parametrized leaky ReLU activation and

long with the standard leaky ReLU activation, which was adopted for the methods in this paper.

All of the networks were optimized using the L1 loss between the ground truth and the estimate.

For estimating the piecewise quadratic function, we first generate sample data along the

quadratic function for a total of . Then each of the above networks were trained on the generated

dataset . Fig.6.1 shows the results.

We immediately see that the sigmoidal jump block approach with significantly over-

smooths the function and estimates the discontinuity with curves. This is detrimental when

estimating surfaces as the curvature means that any points that are sampled to be point in that

direction will estimate a direction that is between the discontinuities rather than jumping cleanly

from once piece to another. ReLU, PReLU, and Leaky ReLU actually visually performs quite

similarly, though the ReLU activation fails to model the final discontinuity at the end of the

curve. Furthermore, though the PReLU activation does have a cleaner estimation of the function,

it also contains more straggling points between discontinuities. Leaky ReLU on the other hand,
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(a) ReLU (b) Sigmoidal Jump Block

(c) Leaky ReLU (d) PReLU

Figure 6.1. Estimation of a piecewise quadratic function using various activation functions
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Table 6.1. L1 Loss from Various Methods for Piecewise Quadratic

ReLU Leaky ReLU
Sigmoid Jump

Block
Parametric

Leaky ReLU
Piecewise
Quadratic

0.4081 0.4077 0.4237 0.4038

has less of this problem while having some noise in the piecewise estimation.

For quantitative evaluation, we look at the L1 loss computed each estimation method, as

summarized in Table.6.1. For this evaluation, 500 test points were sampled along the piecewise

quadratic function and evaluated by each network. The mean L1 loss was then computed for

each of the results. Interestingly, the leaky ReLU and ReLU performed quantitatively similarly,

with the leaky ReLU being slightly more accurate. The PReLU, however, actually outperformed

all other methods, despite the trailing points. Hence, in terms of accuracy, the PReLU appears to

be the best choice out of the other methods. However, due to the fact that t he PReLU requires

additional parameters for each activation layer, but still produces a similar performance to that of

the leaky ReLU, we decided to utilize the leaky ReLU over the PReLU in our implementations.

6.2 Directional Augmentation

As discussed previously, we also augment our dataset, the trajectory dataset in particular,

with directional augmentation. To analyze the effects of the augmentation on the input data, we

take a look at the augmented data and compare it with the original. If the augmentation was

successful, we would see an increase in the variance of the chosen dataset. We utilize the shape

room dataset for this purpose and Fig.6.2 shows a histogram of the results for each dimension.

We see quite clearly from the histogram that the augmentation technique does in fact

significantly increase the variance of data that we see. The variance of the rotation dimension in

particular increased by a significant margin, from 0.414 to 0.445 for dx and 0.476 to 0.532 for dy,

which is invaluable for training SDDFs as mentioned above. The one drawback we do observe

from this directional augmentation is the increase in computation time. Though the algorithm
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(a) Directional Augmentation Histogram

(b) Augmentation Output of a Scan

Figure 6.2. Results of the directional augmentation on the shape room dataset. The histogram depicts
the distribution of the input data for each dimension.
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itself is pretty efficient, with a computational complexity of O(m×n), where m is the number

of close point samples and n is the number of desired augmented samples, the increase in the

amount of data used for training does actually cause a significant performance impact. Of course,

this computation impact is heavily dependent on how densely the dataset is augmented and can

be adjusted depending on the situation. Furthermore, it would also be possible to replace the

majoring of the subsampling methods with the augmentation, such that most of the subsampled

points are from the augmentation with a greater variation in direction rather than the subsampling

method that only provides samples in the same viewing drection.

6.3 Feature Grid Pretraining and Training

As mentioned previously, the training process for the 2D and 3D FSDDF methods are

split into two steps. First we have the pretraining step, where we optimize the parameters for

every portion of the network, and the training step, where the parameters of the decoder are

frozen and only the grid features are optimized. This was done to allow the grid features handle

the representation of the environment while the decoder was simply interpreting the features to

compute the SDDF. Though simplistic, we can see the effects of this method in the training and

validation losses during network training process. Fig. 6.3 depicts the training and validation

losses on the HouseExpo dataset for both the 2D and 3D FSDDF methods.

The first observation that we make is the drop in training loss caused by freezing the

feature grid. We can observe that freezing the feature grid causes a significant drop in both the

training and validation loss, allowing the losses to fall below the plateau for both the 2D and 3D

FSDDFs. However, we actually do observe that the validation loss actually increases for the 2D

FSDDF, indicating that the network is overfitting. Hence, it is clear that choosing the correct

number of pretraining epochs and training epochs is critical to the accuracy of the network.

Though pretraining/training split that we utilized worked relatively well, it is evident

that there are some severe limitations to the efficacy of the method. The performance of
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(a) Training and validation loss from the 2D
FSDDF

(b) Training and validation loss from the 3D
FSDDF

Figure 6.3. Sample training and validation losses from the 2D and 3D FSDDF methods on the
HouseExpo Dataset

the network varies greatly based on the level of overfitting, which depends greatly on the

pretraining/traing epoch splits. In addition, though the drops in the losses when freezing the

decoder are significant, the rest of the training does not seem to improve the losses by very much.

A potential improvement of this method would be to actually used pretrained neural features.

Instead of training the neural features from the input datasets, it might be better to actually

pretrain the neural features using other geometric datasets containing a significantly wider range

of room. This would be akin to the latent code autoencoder adopted by DeepSDF and would

create generalized neural features rather than ones specific to a particular dataset.

6.4 SDDF without Feature Grid

We now present the results of the scene-level SDDF model without feature grid trained

on the three room environments. For each of these rooms, The normal distribution that was

used to sample the Gaussian samples were given by N (0,0.001). We did not utilize directional

augmentation for the random poses. The model was trained with a learning rate of 1e−3 and
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batch size of 5000. After training, the network was tested on a testing dataset that consisted of

100 novel poses that the network had not seen before. The results of the testing on the three

rooms are shown in Fig.6.4.

As we can see, the results of the training for the square room is extremely clean, which is

as expected as the dataset is the simplest out of the three we utilize. The key observations that

should be made are the network is fully capable of modeling the sharp discontinuous corners,

while the flat walls are still correctly estimated. There is still some noise around the corners,

though they are not significant enough to warrant concern.

The interesting observations appear starting from the shape room dataset, where we now

observe significantly more noise in the output. There are couple observations that immediately

stick out, however. First, we see that the start at the center which should be completely free

is largely intact, indicating that the network is capable of modeling occlusion in the dataset.

However, we do observe limitation of the leaky ReLU activation in capturing discontinuity,

as there are many noisy points at positions where such discontinuity occurs. Hence, we can

conclude that though the leaky ReLU activation works wonderfully compared to the ReLU and

sigmoidal activation, it still incapable of allowing the network to cleanly model the discontinuous

jump.

These limitations become even clearer when we sample a single scan and visualize the

estimation from the results, as shown in Fig.6.4b. There are clear areas where in which the

network struggles to estimate the function. When there are abrupt changes to the function, which

are caused by discontinuities due to rotation, the network struggles to settle onto the correct

estimate, also known as the Gibb’s phenomenon.

Finally, in the HouseExpo dataset, the network clearly struggles with the narrow corridors

and numerous doorways, as there are erroneous estimations in the free space that are closing off

what should be openings into another room. This could be due to the fact that from points far

away, the doorsways are not visible, meaning that the network assumes there are walls rather than

doorways along the corridor. Regardless, the network still does a remarkable job in capturing the
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(a) SDDF without feature grid tested on the three different room environments

(b) Single 60◦ scan estimated using the SDDF without feature grid from the shape room dataset

Figure 6.4. Testing results of the SDDF without feature grid on the three datasets
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multiple layered walls and occlusion in the rooms.

6.5 SDDF with 2D Feature Grid

Now we evaluate the implementation of the feature into the SDDF estimation. For this

model, we utilize the same parameters as the SDDF without a feature grid for sampling. The

feature grid was designed to be of resolution (10× 10) for the box dataset, (15× 15) for the

shape room dataset, and (12×12) for the HouseExpo dataset. For the training, we pretrained the

network for 60 epochs then froze the decoder and continued training for another 60 epochs. We

utilized different learning rates for the pretraining and training phases, with plr = 1e−4 being

used for pretraining and lr = 1e−5 being used for the final training. The results of the estimations

are shown in Fig.6.5.

We can clearly observe that the estimated depths are significantly cleaner than the

previous SDDF method without a feature grid. This may be due to the fact that the feature grid

allows the network to overfit onto small regions of the map, instead of having to learn the map in

its entirety. The double-forward pass really shines here, as it moves the query along the ray to a

grid cell that models the depth more accurately.

The box dataset still exhibits a very clean result, with even less noise than compared to

the no feature grid method. We also see a significant reduction in the noise for the shape room

and HouseExpo datasets, though there are still some narrow doorways that are predicted to be

closed off in some poses. It is clear that the inclusion of the feature grid has definitely help the

network learn the environment significantly better. In the single scan predictions, we see that the

Gibbs phenomenon is minimized, with the network almost being able to perfectly predict the

depth scan of the second sample.
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(a) 2D FSDDF tested on the three different room environments

(b) Single 60◦ scan estimated using the 2D FSDDF

Figure 6.5. Testing results of the 2D FSDDF on the three datasets
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(a) 3D FSDDF tested on the three different room environments

(b) Single 60◦ scan estimated using the 3D FSDDF

Figure 6.6. Testing results of the 3D FSDDF on the three datasets
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6.6 SDDF with 3D Feature Grids

Finally, we demonstrate the results of the SDDF model with 3D feature grids. Similar to

the previous feature grid model, the same parameters for the subsampling and training were used,

but the additional of the v dimension in the feature grid adds an addition to the resolution of the

feature grid. The resolution of the feature grid was set to be (10×10×10) for the box dataset,

(15×15×20) for the shape room dataset, and (12×12×20) for the HouseExpo dataset. The

results of the estimations are shown in Fig.6.6.

With the inclusion of the rotation in our feature grid, we see an unbelievable drop in

the training loss, where there are almost no noise in the free space of the map on the training

data. This is most evident in the Shape Room dataset, where the start at the center is extremely

clearly defined and the training loss is almost a third of what the other methods were at. However,

unfortunately this accuracy is not reflected in the testing results. The validation loss does not

fall as much as the training loss does, and remains at a level that is on par with the previous 2D

feature grid, indicating that the network is heavily overfitting to the training data.

Qualitatively, we observe a similar performance as the 2D feature grid for all three

datasets, though the network predicts the box dataset arguably cleaner. An interesting observation

is that with the 3D formulation the narrow doorway in the HouseExpo dataset is intact indicating

that the network was able to predict these gaps more accurately than before. However, the single

scane figures indicate a problem in the results. We see that there is a significant offset in the

drop of the depth value for the first scan. There could be a multitude of reasons behind this, but

the primary cause may be due to the fact that because now rotation is included in the feature

grid, the interpolation in the rotation space sometimes does not make sense. For example, if two

consecutive rays are hitting separate surfaces with no connection between them, interpolating the

two depth values will yield an erroneous measure that is halfway between the two depth values.

Of course, it is not a direct translation, as we’re interpolating feature vectors rather than depth

values, but the analogy still holds.
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Table 6.2. L1 losses of the different methods on the testing datasets for each room. FSDDF
refers to the SDDF method with feature grids

SDDF 2D FSDDF 3D FSDDF
Box 0.0196 0.0116 0.0125

Shape
Room

0.116 0.0923 0.112

HouseExpo 0.0802 0.0442 0.122

A summary of the average L1 error for all the various methods in each of the room

datasets are shown in Table 6.2. As we can see, the 2D FSDDF outperformed all the other

methods by a significant margin, especially in the complex shape room and HouseExpo datasets.

It is clear that the inclusion of the feature grid significantly improves the accuracy of the SDDF in

general. Unfortunately, as stated previously, the 3D FSDDF does not perform as well as expected,

largely due to the heavy overfitting we observed. Still, it is able to beat out the no-feature-grid

method for the box and shape room datasets, indicating that despite overfitting, it still performs

admirably. It may be possible that the occupancy prediction in the 2D FSDDF helped its ability

to generalize, and could potentially aid the 3D FSDDF in the feature. Until then, the 2D FSDDF

appears to be the best way to implemented directional distance functions for scene level datasets.
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Chapter 7

Closing Remarks

7.1 Conclusion

In this thesis, we have explored the idea of utilizing directional information in SDFs to

create SDDFs for the purpose of implicit surface representation. We have demonstrated that

the leaky ReLU function out-performs the ReLU and sigmoidal jump block activation layers

when it comes to approximating piecewise continuous functions with neural networks, while also

proposing a novel directional augmentation technique that improves the variance of direction in

the input data, especially along a trajectory.

We then proposed three different methods of implementing the SDDF in a 2D environ-

ment. The first method utilized a simple encoder MLP and decoder MLP architecture with

a concatenation with the original input data in the middle, mimicking residual networks in

computer vision. The second utilized a 2D neural feature grid that replaced the encoder MLP

and decoupled the rotation from the position to allow the feature grid to use bilinear interpolation

to compute neural features. The final method was an extended the second method to include

the rotation dimension in the feature grid and utilize Slerp to interpolate in the rotation space

while maintaining the bilinear interpolation for the position. All three methods were capable

of modeling the surrounding environment, though there are clear differences in performance

between the methods. The feature grid appears to significantly improve the performance of the

estimations, as can be observed from the results of the 2D and 3D FSDDF. This can be attributed

43



to the subdivision of the mapping area using a feature grid, allowing the features to represent a

smaller area around the map more accurately. However, there appears to be a trade-off, in that

if the feature grid is too fine, the amount of sampling may be insufficient to train some of the

feature grids, causing erroneous interpolation.

Another factor that must be discussed is the inclusion of the rotation in the feature grid.

As we can see from the 3D FSDDF, the training results of the 3D feature grid is superb. However,

in its current state, it is incapable of generalizing to the testing dataset and overfits heavily onto

the training data. This could be due to a couple things. First, the Slerp interpolation itself could

be the problem, meaning that the interpolation method is not accurate in the higher-dimensional

space, hence leading to the feature overfitting to the training data. Another is the possibility that

the network contains too many parameters and that the geometry can be represented using a

smaller network. Nevertheless, this demonstrates that including rotation in the feature grid can

significantly improve the estimation of the results.

All three methods presented are viable options when attempting to model SDDF in 2D

for the scene-level environment. Leveraging the fast rendering speeds of SDDFs, one could

easily see applications in fields such as active mapping, where in which poses can be queried for

scene prediction to evaluate the novelty of a particular pose, and novel view reconstruction.

7.2 Future Work

Though the progress we have made is further than any prior work regarding scene-level

SDDFs, there is still some obvious fine tuning that must be done before the results can be

considered finalized. First, as mentioned above, though the formulation of the FSDDF with the

3D feature grid has the greatest potential for accuracy, it is still struggling to generalize onto the

rest of the dataset. This could be caused by a multitude of factors such as the accuracy of the

Slerp weighting and still requires investigating in the future. In addition, the current methods

could also be applied to a windowed environment, where instead of learning the entire dataset as
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a batch, we learn the environment incrementally. This would demonstrate the performance of

the feature grid when data is provided sequentially and verify the real-time performance of the

implemented algorithm. Finally, different methods of pretraining and training can be researched.

For example, instead of utilizing the first couple training epochs of the data as pretraining, it may

be possible to generalize the process and have the grid features trained on prior set of data, then

be fine tuned onto the targeted environment. This could potentially help alleviate some of the

problems regarding overfitting.

In addition to the potential improvements to the existing model, there are a couple

extensions to the work we have shown here as well. First and most intuitively, is to apply

these methodologies in 3D. We have already demonstrated progress in this regard and while

not included in this thesis, have been able to approximate room geometry using the SDDF

representation without feature grids. Despite being in the initial stages of the development, the

method achieves near equal training loss as the Slerp formulation of the FSDDF, though still

currently faces problems regarding over-fitting and generalization. Another is the extension of

the directional augmentation algorithm into 3D. Though the algorithm described in this thesis is

efficient and can greatly improve the diversity of data, scaling the algorithm to 3D is actually

non-trivial. To this end, we have researched utilizing convex hull decomposition to create safe

convex polygons in 3D with a computational complexity of O(n logn). Applying this to the

3D trajectory datasets could potentially lead to improvements in generalization. As SDDF and

FSDDF are still in the early stages of its development, the possibilities for their application are

endless and further research could lead to some significant breakthroughs.
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