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the invasion was most prominent in riverine forests and riparian grasslands. To combat the                                                                                                                         

ABSTRACT 

The Tale of Western Chitwan Community Forests: Historical Vegetation Dynamics and the 

Challenges with the Invasion of Mikania micrantha 

by 

Jie Dai 

This dissertation addresses the historical vegetation dynamics in community forests, their 

novel challenges introduced by the invasion of an exotic creeping vine, and simulations of 

large-scale intervention practices in western Chitwan, Nepal. Situated in the Chitwan National 

Park buffer zone, these community forests stand as the frontiers of human-environment 

interactions, nurturing both endangered large mammals such as Bengal tigers (Panthera tigris 

tigris) and great one-horned rhinos (Rhinoceros unicornis), as well as local forest users. For 

the past three decades, especially after their establishments in the mid-1990s, these forests have 

been greening up. In addition to community forest management, some of the green-up signals 

may be affected by the invasion of a notorious understory creeping vine, Mikania micrantha. 

Integrating remote sensing techniques (Multiple Endmember Spectral Mixture Analysis) and 

species distribution modeling (Maximum Entropy Modeling Framework), we developed a 

pixel-based presence probability map for the invasive plant in the study area. By the year 2015, 

vii
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spread of M. micrantha in the study area, we tested a cost-effective bag-and-bury treatment and 

developed a socio-ecological data informed agent-based model to project local household 

participation in an intervention program as well as M. micrantha’s extent under the intervention 

practices. Both social survey and simulation results indicated that about 40% of the households 

in the study area can contribute at least ten full days of labor per year to the modified 

intervention treatments, and M. micrantha can be eliminated from the community forests after 

three years of intensive intervention, although routine patrolling should be adopted to eradicate 

potential future invasion from the neighboring national park. This dissertation incorporated a 

coupled human and natural systems (CHANS) approach and integrated both social and 

ecological factors. The results can provide significant insights for not only local conservation 

practices, but also broader sustainable managements and development goals. 
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1. Chapter I: Introduction

Understanding the dynamics of ecosystems, their services, and human impacts on their 

trajectories is one of the fundamental goals concerning sustainability, and the rapidly changing 

world requires effective ecological assessment and forecasting for future management (Craig 

2010; Dietze et al., 2018 Milly et al., 2008). Since the mid-1950s, global population has been 

increasing at an alarming rate, causing large-scale deforestation and natural resource 

exploitation (Ezeh et al., 2012). To mitigate the pressure of population growth on deforestation 

and forest degradation while sustaining human wellbeing, community forests have been 

established worldwide, especially in developing countries (Gilmour 2016). These forests 

incorporate autonomous management from local residents in varying degrees, aiming to 

preserve forest ecosystem services while sustainably maintaining local residents’ livelihoods 

(Gilmour 2016). 

Funded by the National Science Foundation, a multi-disciplinary research team has been 

examining the “feedbacks between human community dynamics and socioecological 

vulnerability” (National Science Foundation grant BCS-1211498) in the western Chitwan 

community forests, Nepal. Based on this coupled natural-human (CNH) project, this 

dissertation addresses the historical vegetation dynamics, the novel challenges introduced by 

the invasion of an understory creeping plant, and simulations of large-scale intervention 

practices in these community forests. The study site includes an internationally recognized 

national park and biodiversity hotspot, as well as its buffer zone community forests and their 

catchment area households. Examining the current level of invasion and understanding possible 

scenarios of future forest conditions are critical to sustainable community forest management. 
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The research integrates a social survey with regression analysis and computer simulations to 

study vegetation dynamics and effects of invasive species intervention on forest conditions. 

The Chitwan district is located in the central part of Nepal bordering India to the south. It 

is famous for the Chitwan National Park, recognized as a World Heritage site and a significant 

biodiversity hotspot in the Terai region of Nepal with elevation between 120 and 815 m, 

nurturing endangered great one-horned rhinoceros (Rhinoceros unicornis), Bengal tiger 

(Panthera tigris tigris) and other endemic species (UNESCO 2020; CEPF 2020). Chitwan is 

also home to about 600,000 people who live and farm nearby (Central Bureau of Statistics-

Nepal, 2011). Beginning in the 1950s, large-scale deforestation occurred as forest was 

converted to farmland. To mitigate the pressure of deforestation as well as sustaining the 

livelihoods of local residents, the Nepali government implemented the Community Forestry 

Act in 1993 (Nagendra 2002; Spiteri & Nepal, 2008). Since the mid-1990s, 21 community 

forests have been established in the national park buffer zone. These community forests are 

characterized by incorporating local residents in forest management, and in Chitwan, residents 

form autonomous committees to regulate forest use and provide financial supports for the forest 

members (Charnley & Poe, 2007). 

Not long after their establishments, these community forests were encountered with 

considerable challenges of biological invasion. Since the late 1990s, an understory creeping 

vine, Mikania micrantha, has been invading the national park and its buffer zone community 

forests (Murphy et al., 2013). M. micrantha is nicknamed “mile-a-minute vine” due to its 

ferocious speed of growth and it is one of the world’s most notorious invaders (IUCN 2020). 

It decreases forest productivity by hindering the growth of native species, weakens social 
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organizations that manage and shape households’ resource use in the community forests, and 

downgrades local ecosystems and their corresponding services (Murphy et al. 2013). The 

invasion of M. micrantha is jeopardizing the western Chitwan community forests and has the 

potential of totally disrupting local coupled human and natural systems. 

The body of this dissertation is comprised of three chapters (Chapters II-IV) and a 

synthesis and concluding section (Chapter V). Chapter II examines the vegetation dynamics in 

the western Chitwan community forests from 1988 to 2018. In particular, it evaluates how 

green vegetation fractions has been changed. Chapter III models and develops a pixel-based M. 

micrantha distribution map in the community forests and the national park. Chapter IV draws 

on field experiments and computer simulations to predict how M. micrantha invasion in the 

forests will respond to planned intervention practices. Finally, Chapter V reviews the primary 

findings of the preceding chapters and identify potential future research directions. 
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2. Chapter II: Community Forests Continuously Green-up since Their 

Establishments in Western Chitwan, Nepal 

2.1 Introduction 

Community forestry, characterized by incorporating local communities and individuals 

into forest management, aims at preserving forest ecosystem services while sustainably 

maintaining local residents’ livelihood, especially in Global South countries (Gilmour 2016). 

It has a wide spectrum of organizational structures, ranging from private smallholder forestry 

to government-designated preservation lands with limited local involvement (Gilmour 2016; 

RECOFTC 2013). Community forests have been extended globally in the past four decades 

and cover about 732 million hectares of land, or 18.2% of the world’s forest area, playing 

significant roles in mitigating many serious environmental and social problems, including 

climate change and poverty alleviation (Gilmour 2016). 

Monitoring forest cover is critical in community forest management, and remote sensing 

techniques have been applied in assessing vegetation conditions and dynamics (Coppin & 

Bauer, 1996; Kim et al., 2014; Potapov et al., 2008). One concise and effective method is to 

calculate and examine vegetation indices, including the most widely used index, the 

Normalized Difference Vegetation Index (NDVI), where higher values are associated with 

greater vegetation cover and stature (Huete 1988; Liu & Huete 1995; Qi et al., 1994; Rouse et 

al., 1973). Despite being simple, these indices may sometimes produce controversial results 

due to undesirable atmospheric conditions or mixture effects from background substrate (Huete 

et al., 1985; Saleska et al., 2005; Samanta et al., 2010; Shen et al., 2013; Zhang et al., 2013). 

An alternative approach is to apply spectral mixture analysis to the selected imagery and 
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analyze the resultant vegetation fractions and indices developed from these fractions (Adams 

et al., 1995; Roberts et al., 1998; Souza Jr. et al., 2005; Souza Jr. et al., 2013). By incorporating 

both reference and image spectra in the endmember sets and quantifying the constituent 

fractions of major land cover types (e.g. Green Vegetation, Non-Photosynthetic Vegetation, and 

Soil, etc.), spectral mixture analysis can address mixed pixels, minimize atmospheric effects, 

and bypass inconsistences of wavelengths in different sensor types, which are common issues 

in long-term research utilizing moderate spatial resolution multispectral imagery (Roberts et 

al., 1998; Souza Jr. et al., 2005; Souza Jr. et al., 2013). 

The western Chitwan community forests in Nepal was established in the Chitwan National 

Park buffer zone following the Community Forestry Act implemented in 1993 (Nagendra 2002). 

These community forests serve as frontiers of human-environment interactions between protect 

area and rural residential landscapes. They are vital to both the survival of endangered 

mammals and the livelihoods of local residents (Murphy et al., 2013). However, few studies 

have systematically examined the vegetation cover changes in these forests since their 

establishment. This chapter evaluates vegetation cover dynamics in the western Chitwan 

community forests for the past three decades utilizing a temporal series of Landsat imagery. 

Particularly, it addresses the changes before and after the implementation of Community 

Forestry Act in 1993, and the potential effects of forest managements on the vegetation cover 

dynamics. Since the rivers flow sinuously through most of the riverine forests, this chapter first 

examined their water fraction dynamics. It then applied spectral mixture analysis to selected 

Landsat imagery and analyzed the green vegetation fractions of green vegetation (GV), non-

photosynthetic vegetation and soil. The Normalized Difference Fractional Index (NDFI; Souza 
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Jr. et al., 2005) was also calculated to evaluate forest canopy gaps. Both GV fractions and NFDI 

were adjusted to minimize the effects of water bodies at the forest level. The results will 

demonstrate the vegetation dynamics in the past three decades and provide important feedbacks 

to community forest committees and users. 

2.2 Methodology 

2.2.1 Study Area 

 The Chitwan District situates in the central region of Nepal, bordering India to the south. 

It is known mostly for the Chitwan National Park, which is a World Heritage Site designated 

by the United Nations Educational, Scientific and Cultural Organization (UNESCO 2020). It 

is also a significant biodiversity hotspot, nurturing Bengal Tiger (Panthera tigris tigris), Great 

One-horned Rhino (Rhinoceros unicornis) and other endemic species (CEPF 2020). Since the 

1950s, deforestation and urbanization have converted much of local forests in Chitwan to 

agricultural and other land-cover types. To protect the remaining natural resources, mitigate 

anthropogenic pressures on conservation, and sustain local residents’ livelihoods, community 

forests were established following the Community Forestry Act in 1993 (Nagendra 2002; 

Spiteri & Nepal, 2008). These forests are buffer zones between dense human settlements and 

the protected national park, and users are granted limited access to the forests to extract 

livelihood resources such as firewood and fodder. This chapter focuses on 21 community 

forests in the Chitwan National Park buffer zone (Fig. 2-1). 
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Figure 2-1: False color Landsat 8 three-band composite of the study area. White polygons depict the 

community forest boundaries, with forest codes illustrated. Image acquisition date: Oct. 27, 2014. Red: 

Band 6 (1560-1660 nm); Green: Band 5 (845-885 nm); Blue: Band 4 (630-680 nm). 

 Most of the forests were established along the Narayani and Rapti Rivers, where riverine 

mixed forests are the dominant vegetation types, supplemented by riparian grasslands. The 

most common plant species in these riverine forests include Acacia catechu, Bombax cieba, 

Dalbergia sissoo, Maesa chisia, Melia azedarach and Trewia nudiflor. The four inland forests 

(BAND, NABA, DASH and BATU), however, are dominant by Sal trees (Shorea robusta). The 

study area has a tropical monsoon climate with mean annual precipitation of 2100 mm and 

most of the rain falling from June through early October. Average daily temperature ranges 

from 36 °C in the summer to 18 °C in January. For the purpose of this chapter, the 21 forests 

were categorized into five groups (Table 2-1). 
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Table 2-1: Community forests in the study area 

Group Forest Name Code Area (km2) 

East 

Sal 

Bandevi BAND 1.62 

Nabajoty NABA 0.42 

Dashinkali DASH 1.05 

Batuliphokhari BATU 4.57 

South 

Central 

Rapti 

Belshar BELS 6.40 

Birendranagar BIRE 0.40 

Ghailaghari GHAI 1.82 

Belhatta BELH 1.21 

Dovan DOVA 0.23 

South 

West 

Rapti 

Sayukta Rapti Doon SAYU 1.36 

Betarihariyali BETA 0.87 

Malika MALI 0.11 

Radhakrishna RADH 0.82 

Sadabahar SADA 2.10 

Far 

West 

Rapptiniyantran RAPP 2.06 

Narayani Niyantran NARA 5.01 

North 

Narayani 

Diyalo DIYA 1.66 

Majhuwa MAJH 1.86 

Siddhi Ganesh SIDD 1.35 

Seti Debi SETI 1.51 

Ganeswor GANE 2.27 

2.2.2 Data 

Due to the timespan of the research objective (dating back into the 1980s), this chapter 

incorporated Landsat imagery (Path/Row: 142/41) in USGS EarthExplorer 

(https://earthexplorer.usgs.gov/) and potential Landsat surface reflectance products (Level-2; 

TM, ETM+ and OLI) were investigated. Searching criteria included: 1) image acquisition dates 

are within a two-month window after the monsoon (roughly between late September and mid-

November) to account for peak-biomass conditions and 2) images are cloud-free above the 

study area. If multiple images met the above two criteria, the earliest available was selected. 

Consequently, at least one image was identified for most of the years (Table 2-2). 
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Table 2-2: Landsat imagery and their calendar and Julian dates 

Year Date Julian Sensor Year Date Julian Sensor 

1988 10/19 293 TM 2005 11/19 323 TM 

1989 11/07 311 TM 2006 10/05 278 TM 

1991 11/13 317 TM 2008 10/26 300 TM 

1992 11/15 320 TM 2009 10/29 302 TM 

1993 10/17 290 TM 2011 10/19 292 TM 

1994 10/20 293 TM 2013 11/19 323 OLI 

1995 11/08 312 TM 2014 10/27 300 OLI 

1996 11/10 315 TM 2015 10/14 287 OLI 

2000 09/26 270 ETM+ 2016 11/01 306 OLI 

2001 10/31 304 ETM+ 2017 10/19 292 OLI 

2003 11/14 318 TM 2018 10/22 295 OLI 

2004 10/15 289 TM     

 

 In addition to satellite imagery, during fieldwork in September 2018, in situ reference 

spectra were collected for major herbaceous species (including M. micrantha) at 1 m height 

with a nadir view geometry under cloud-free conditions within 2 hours of solar noon in the 

community forests, with sunlight as the light source. Spectra of other common land cover types 

were also collected in the study area, including soil, non-photosynthetic vegetation (NPV; e.g. 

senesced grass, plant residue, etc.; Roberts et al. 1993) and gravel fields (categorized as Soil 

here) in the study area. Spectroscopic surface reflectance data were collected with an Analytical 

Spectral Devices (ASD) FieldSpec® 4 Standard-Res spectroradiometer (Malvern Panalytical, 

Westborough, MA). Equipped with three detectors spanning the visible and near infrared 

(VNIR) and shortwave infrared (SWIR1 and SWIR2), the instrument samples at a spectral 

range of 350-2500 nm, with a sampling interval of 1.4 nm for the VNIR detector, and 1.1 nm 

for SWIR detectors. The Full Width Half Maximum is 3 nm in VNIR and 10 nm in the SWIR. 

With a 25-degree field of view, the 1.5 m fiber optic cable transmits light from the aperture to 

the spectrometer. Each plant spectrum was sampled 10 times to account for random errors and 

was bracketed by measurements from a Spectralon white reference panel to offset any changes 
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in solar illumination or changes due to weather. The reflectance values, automatically 

calibrated from the radiance records in the field, were later extracted through the software 

package ViewSpecPro (Malvern Panalytical, Westborough, MA). 

2.2.3 Methods 

One of the challenges in quantifying vegetation cover in the study area was the water body 

dynamics in the community forests. The Narayani and Rapti Rivers flow sinuously across most 

riverine forests (Fig. 2-1). Besides, annual monsoon and the consequent rainfall can submerge 

large portions of the riverine forests, especially the riparian grasslands, altering water body 

boundaries frequently. Since this chapter examines vegetation cover in the forests, information 

within the forest boundaries would be aggregated to the forest-level. To minimize potential 

influences of water on detected vegetation dynamics, the water coverage was first quantified 

in all forests, and water-adjusted green vegetation fractions and NDFI were calculated to 

analyze the change trends. 

2.2.3.1 Water coverage 

To quantify the water coverage in the forests, this chapter incorporated the Automatic 

Water Extraction Index (AWEInsh; Feyisa et al., 2014) to map surface water in the study area: 

AWEInsh = 4(Green – SWIR1) – (0.25NIR + 2.75SWIR2), (1) 

where Green, SWIR (Short-Wave Infrared) 1, NIR (Near Infrared) and SWIR2 are the 

reflectance values of corresponding bands (Table 2-3). Based on visual interpretation, an 

AWEInsh threshold of 0.1 was used to generate water masks and dichotomize the imagery into 

water and non-water regions, where pixels with AWEInsh value higher than 0.1 are assigned to 

water. Next, zonal statistics (mean) was applied to calculate the average water fractions of each 
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community forest polygon, Waterzonal. 

Table 2-3: Landsat bands used in AWEInsh 

Bands TM/ETM+ OLI 

Green Band 2 (520-600 nm) Band 3 (525-600 nm) 

NIR Band 4 (760-900 nm) Band 5 (845-885 nm) 

SWIR1 Band 5 (1550-1750 nm) Band 6 (1560-1660 nm) 

SWIR2 Band 7 (2080-2350 nm) Band 7 (2100-2300 nm) 

2.2.3.2 Spectral Mixture Analysis 

SMA is a classic method quantifying spectrally mixed pixels, especially for moderate and 

coarse spatial-resolution imagery. It assumes that an image pixel’s spectral reflectance can be 

modeled as the weighted addition of the reflectance of pure materials, or endmembers, within 

that pixel (Adams et al., 1995; Roberts et al., 1998). Developed upon simple SMA, multiple 

endmember SMA (MESMA) allows the type and number of endmembers to vary on a per-pixel 

basis, accounting for potential endmember varieties (Roberts et al., 1998). In this chapter 

MESMA was applied to the selected Landsat imagery. 

For most vegetated landscapes, the image pixels can usually be modeled as a Green 

Vegetation (GV), Non-photosynthetic Vegetation (NPV), Soil and Shade mixture. To apply 

MESMA, spectral libraries were developed across endmember types incorporating endmember 

variability for different sensor types (TM/ETM+ and OLI). Ground reference spectra, including 

Green Vegetation (GV), NPV and Soil, were acquired through in situ measurements. 

Complimentary NPV and Soil spectra were identified from two online spectral libraries: (1) Jet 

Propulsion Laboratory (JPL) ASTER Spectral library (Baldridge et al., 2009), and (2) USA 

Geological Survey (USGS) Spectral Library (Kokaly et al., 2017). All candidate reference 

spectra were convolved to Landsat 8 OLI wavelength in the software package ENVI (Harris 

Geospatial Solutions, Boulder, CO). Candidate image spectra, including GV, NPV and Soil, 
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were extracted by drawing representative region of interest (ROI) polygons in the Landsat 

imagery and including all pixels in the polygons. Image spectra identified through applying 

Pixel Purity Index (PPI) were also included. 

Combining all candidate reference and image spectra, subsets of spectra were identified 

from the library through Endmember Optimization module in Viper Tools, an ENVI add-on 

module (Roberts et al., 2007). For each bright endmember type (GV, NPV and Soil), the spectra 

with the lowest Endmember Average Root-mean-square-error (EAR; Dennison & Roberts, 

2003), lowest Mean Average Spectral Angle (MASA; Dennison et al., 2004) and highest Count-

Based Endmember Selection (COB; Roberts et al., 2003) score were selected. In the case of a 

tie with COB, EAR was used to split the tie. This subset was considered a reasonable balance 

between MESMA processing time and endmember variabilities. 

The comprehensive endmember sets were used to unmix the selected Landsat imagery. 

Physically reasonable ranges were set to [0, 1] for bright endmembers (GV, NPV and Soil) 

fractions. The allowed range for Shade fractions was [0, 0.5]. The most complex endmember 

combinations were four-endmember models (4-EM; three bright EMs plus Shade). All 

combination sets (2-EM, 3-EM and 4-EM; Table 2.4) were tested for each pixel, and the one 

that generates the lowest root-mean-square-error (RMSE) was selected as the candidate model. 

If this RMSE was no higher than 0.025, the candidate model was selected, otherwise the pixel 

was left unmodeled. 

Table 2-4: Allowed models by endmember types with total model numbers in parentheses 

Two-endmember (7) Three-endmember (16) Four-endmember (12) 

GV + Shade GV+ NPV + Shade GV + NPV + Soil + Shade 

NPV + Shade GV + Soil + Shade  

Soil + Shade NPV + Soil + Shade  
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To validate the fractions of bright endmembers (e.g. GV, NPV and Soil) in MESMA results, 

a 5-m spatial resolution RapidEye image captured on Nov 29, 2013 was obtained to generate 

reference data. Since the imagery type and MESMA procedures were consistent among the 

three years (2013-2015), the validation of one year’s image would be sufficient. MESMA 

fractions were first shade-normalized before validation. 100 random points were generated in 

the study area, and the corresponding pixels were assigned as candidate validation pixels. After 

excluding points that fall out of the reference image or points where pixels were not modeled 

by MESMA (e.g. water, cloud, shadow, etc.), 67 pixels were left for validation. Through 

unsupervised classification in ERDAS and with the aid of Google Earth high spatial-resolution 

imagery, the reference image was classified into GV, NPV, Soil and other cover types, including 

water, cloud and shadow. For each bright endmember type (GV, NPV and Soil), using the 

centroid of the 67 validation pixels as the focal points, the focal statistics (sum) at a 

neighborhood setting of 6 by 6 cells (30 m by 30 m) were analyzed. In this way, the sum divided 

by 36 would be the reference fraction of that pixel. In the end, validation pixels were assessed 

using R2 derived from plotting MESMA fractions (y) against reference fractions (x). 

MESMA generated fractional layers for each bright endmember (GV, NPV and Soil) as 

well as Shade. At the pixel level, the green vegetation fractions were shade-normalized: 

GVShade = GV / (1 - Shade), (2) 

where GV and Shade were the fractions generated in MESMA. Next, the average green 

vegetation fraction of each community forest, GVzonal, was processed through zonal statistics 

(mean). To account for water area, the water-adjusted green vegetation fraction was calculated: 

Water-adjusted GV = GVzonal / (1 - Waterzonal), (3) 
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where Waterzonal was the forest-level average water fraction calculated in Section 2.2.3.1. It 

should be noted that shade normalization is a pixel-based adjustment, whereas water 

adjustment is an area-based correction over a region (each community forest). 

2.2.3.3 Normalized Difference Fraction Index (NDFI) 

 NDFI ([16]) was also calculated to examine and sharpen the signals of canopy damage and 

gaps in the forests: 

NDFI = (GVShade – (NPV + Soil)) / (GVShade + (NPV + Soil)), (4) 

where GVshade was the shade normalized GV fraction calculated in Equation (2); NPV and Soil 

were the fractions generated in MESMA. In the end, forest-level average NDFI values, 

NDFIzonal, were calculated through zonal statistics (mean) analyzes. 

2.2.3.4 Forest dynamics 

 Although Landsat images were selected from roughly similar times of the year to account 

for peak-biomass vegetation conditions, the Julian dates of image acquisitions still differed 

considerably (Table 2-2), which could lead to fluctuations in vegetation dynamics. Instead of 

conducting a yearly-based time series analysis and because of some limited imagery 

availability, the 1988-2018 timespan was divided into four periods to analyze forest dynamics 

(Table 2-5). Period I accounts for forest conditions before the establishments of community 

forests in 1993, and Periods II, III and IV relate to post-establishment conditions. For each 

period, Landsat images from multiple years were selected so that the average Julian dates were 

similar among different periods. To identify potential significant changes between any two 

periods, forest-level average water-adjusted GVshade and NDFI values (from Sections 2.2.3.2 

and 2.2.3.3) of each period were compared through one-tailed two sample unequal variance T-
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tests (e.g. Periods I vs. II, II vs. III, III vs. IV, I vs. III, II vs. IV and I vs. IV), where all values 

in the same period were treated as a sample. Comparisons between Period I and all later periods 

(I vs. II-IV) were also conducted to evaluate the potential effects of 1993 Community Forestry 

Act on forest dynamics. 

Table 2-5: Selected Landsat imagery for different periods 

Periods Years Selected 

I (Pre 1993) 1988, 1989, 1991, 1992, 1993 

II (1994-1999) 1994, 1995, 1996 

III (2000s) 2003, 2004, 2005, 2008, 2009 

IV (2010s) 2013, 2014, 2016, 2018 

 

2.3 Results 

2.3.1 MESMA library and fractions 

The final endmember library was processed based on the criteria described in Section 

2.2.3.2 and included two GV (one reference, GV1, and one image, GV2) endmember, two NPV 

(one reference, NPV1, and one image, NPV2) endmember, and three Soil (two reference Soil2 

and Soil3, and one image, Soil1) endmember spectra (Fig. 2-2). The allowed models consist of 

all possible permutations of the endmember types listed in Table 2-4, resulting in 7 two-

endmember models, 16 three-endmember models and 12 four-endmember models. 

 

Figure 2-2: Spectra included in the final endmember library 
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MESMA results without shade normalization are shown in Fig. 2-3. Water, cloud and 

shadow are mostly unmodeled and appear black in the map. The park and its buffer zone 

community forests are dominated by green vegetation, which include highland Sal forests, 

riverine forests, and riparian grasslands (Fig. 2-3). Sal forests account for the majority of the 

green vegetation in the study area, and they appear darker in the map than the latter two 

vegetation types. NPV and Soil pure pixels are rare and their fractions mostly concentrate in 

riverine habitats, including gravels fields, river banks and senesced grasses. The landscape is 

observed to be relatively uniform within the study area compared to outside human settlements 

surrounded by the Narayani and Rapti Rivers, where human settlements and agricultural lands 

prevail (Fig. 2-1). MESMA fraction validation produces similar ranges of accuracy for GV (R2 

= 0.95), NPV (R2 = 0.92) and Soil (R2 = 0.93), indicating good MESMA results (Fig. 2-4). 

Figure 2-3: False color three band composite of MESMA results with CNP and buffer zone boundaries 

highlighted (white polygon). Image acquisition date: 27 October 2014. Red: NPV; Green: GV; Blue: 

Soil; Black: water, cloud, cloud shadow or no data. The southern boundary of the validation image 

extends beyond this figure extent.  
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Figure 2-4: Scatterplots of MESMA fraction validations. Y axis is the MESMA fractions and X axis is 

the reference fractions. 

2.3.2 Water coverage in community forests 

Water coverage within the 21 community forests in the study area varies dramatically (Fig. 

2-5 & Table 2-6). The four East Sal forests (BAND, NABA, DASH and BATU) and two inland 

South West Rapti forests (MALI and RADH) have minimal water fractions throughout the 

study period. Rivers and ponds account for the few water fractions in NABA, DASH and BATU, 

whereas BAND, MALI and RADH are completely water-free. 

 

 

Figure 2-5: Water fractions in (a) South Central Rapti, (b) South West Rapti (excluding MALI and 

RADH) and Far West, as well as (c) North Narayani community forests from 1988 to 2018. 
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Table 2-6: Average water fractions of each community forest from 1988 to 2018 

Group Forest Water 

East 

Sal 

BAND 0.00 

NABA 0.00 

DASH 0.01 

BATU 0.00 

South 

Central 

Rapti 

BELS 0.12 

BIRE 0.15 

GHAI 0.02 

BELH 0.16 

DOVA 0.06 

South 

West 

Rapti 

SAYU 0.20 

BETA 0.09 

MALI 0.00 

RADH 0.04 

SADA 0.11 

Far 

West 

RAPP 0.17 

NARA 0.37 

North 

Narayani 

DIYA 0.17 

MAJH 0.15 

SIDD 0.21 

SETI 0.12 

GANE 0.04 

The remaining 15 forests are all riverine and their fluctuations in water fractions reflect 

the historical changes in river channels. In South Central Rapti forests, the Rapti River used to 

wand around the southern border of BELS but has been cutting through it since 2001. The river 

has also diverged to the south of BELH and SADA since 2005. The Narayani River flows right 

through NARA, leaving it with the highest water coverage among all forests. The five North 

Narayani forests (DIYA, MAJH, SIDD, SETI and GANE) remain relatively stable to the south 

of the river main course. 

2.3.2 Water-adjusted green vegetation fractions 

The four East Sal forests have minimal disturbances from flooding or river channel 

changes and have the highest average green vegetation fractions (0.65~0.79) among all forests 

(Fig. 2-6 & Table 2-7). Especially for recent years, the green vegetation fractions are all around 
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or above 0.95. MALI in the South West Rapti group and GANE in the North Narayani group 

also have relatively high average green vegetation fractions (0.74 and 0.68, respectively). 

Highly disturbed by the river flows, SAYU from the South West Rapti group and NARA from 

the Far West group have the lowest average green vegetation fractions (0.20 and 0.21, 

respectively) among all forests. 

 

 

Figure 2-6: Water-adjusted green vegetation fractions of (a) East Sal and Far West, (b) South Central 

Rapti, (c) South West Rapti and (d) North Narayani community forests from 1988 to 2018. 
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Table 2-7: Average water-adjusted green vegetation fraction of each forest from 1988 to 2018 

Group Forest Water-adjusted GV 

East 

Sal 

BAND 0.79 

NABA 0.70 

DASH 0.65 

BATU 0.72 

South 

Central 

Rapti 

BELS 0.46 

BIRE 0.33 

GHAI 0.56 

BELH 0.29 

DOVA 0.43 

South 

West 

Rapti 

SAYU 0.20 

BETA 0.45 

MALI 0.74 

RADH 0.57 

SADA 0.30 

Far 

West 

RAPP 0.34 

NARA 0.21 

North 

Narayani 

DIYA 0.39 

MAJH 0.57 

SIDD 0.61 

SETI 0.60 

GANE 0.68 

 

Despite occasional spikes and valleys largely due to image capture dates, the general trends 

of the green vegetation fraction curve are ascending (Fig. 2-6). We examine their statistical 

significances in Section 2.3.4. 

2.3.3 Water-adjusted NDFI 

NDFI is a useful indicator of deforestation and forest degradation, with value 1 indicating 

compact forest canopies (Souza Jr. et al., 2005). NDFI accentuates the degradation signals by 

combining multiple impacts of forest degradation, including an increase in NPV and increase 

in bare soil. In the community forests, the general patterns of NDFI are similar to those of green 

vegetation fractions (Fig. 2-7 & Table 2-8). The four East Sal forests, plus MALI and GANE, 

have relatively high average NDFI values (0.43~0.67). The NDFI values of NARA and SAYU 

(-0.54 and -0.43, respectively) are lower than other forests. The general trends of NDFI curves 
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are generally ascending. The statistical significances of NDFI dynamics will also be examined 

in Section 2.3.4. 

Figure 2-7: NDFI of (a) East Sal and Far West, (b) South Central Rapti, (c) South West Rapti and (d) 

North Narayani community forests from 1988 to 2018. 
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Table 2-8: Average NDFI of each forest from 1988 to 2018 

Group Forest NDFI 

East 

Sal 

BAND 0.67 

NABA 0.52 

DASH 0.44 

BATU 0.56 

South 

Central 

Rapti 

BELS 0.11 

BIRE -0.09 

GHAI 0.32 

BELH -0.21 

DOVA 0.06 

South 

West 

Rapti 

SAYU -0.43 

BETA 0.05 

MALI 0.59 

RADH 0.27 

SADA -0.21 

Far 

West 

RAPP -0.12 

NARA -0.54 

North 

Narayani 

DIYA -0.13 

MAJH 0.19 

SIDD 0.29 

SETI 0.25 

GANE 0.43 

 

2.3.4 Community forest dynamics 

2.3.4.1 Water-adjusted green vegetation fractions 

 Comparisons among different periods indicate the trends of change in green vegetation 

fractions in the forests (Table 2-9). Only one significant change (BIRE between Periods I and 

II) shows a decrease in green vegetation fractions, whereas all other changes show increases. 

Five forests (BELH, DOVA, MALI, RADH and GANE) rapidly greened-up after the 

establishments of the community forests in the 1990s (Period I vs. Period II). Comparing Period 

I (before the 1993 Community Forestry Act) with Period IV (2010s), all forests show 

significant increases in green vegetation fractions. Combining all values after 1993 into a single 

dataset and comparing between Period II~IV with Periods I, the null hypothesis (later period 

has no higher values than the previous period) cannot be rejected for only two forests (BIRE 
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and SIDD). The green-up signals are highly correlated with the establishment of the community 

forests. 

Table 2-9: Comparison of green vegetation fractions among different periods. Only significant p values 

(<0.05) are listed. Italic numbers (BIRE, I vs. II) indicate decreases. All others indicate increases. Period 

I: Pre 1993; Period II: 1994-1999; Period III: 2000s and Period IV: 2010s. 

Group Forest I vs. II II vs. III III vs. IV I vs. III II vs. IV I vs. IV I vs. II~IV 

East 

Sal 

BAND 3.77E-02 4.22E-03 1.07E-03 3.19E-03 

NABA 1.77E-02 3.17E-03 2.20E-02 

DASH 4.19E-02 4.41E-03 2.26E-03 2.80E-02 

BATU 3.08E-02 1.07E-03 6.47E-05 4.98E-04 

South 

Central 

Rapti 

BELS 5.50E-03 4.70E-02 3.89E-06 3.86E-06 1.83E-03 

BIRE 4.83E-02 5.14E-03 7.51E-03 6.75E-03 

GHAI 4.02E-02 4.18E-04 4.79E-05 6.01E-03 

BELH 7.12E-03 1.05E-02 1.22E-05 5.17E-06 1.19E-03 

DOVA 8.18E-05 1.35E-02 6.28E-03 7.45E-06 3.30E-07 1.11E-05 

South 

West 

Rapti 

SAYU 1.18E-03 7.32E-04 7.58E-07 4.65E-03 

BETA 1.70E-02 4.37E-02 3.99E-03 2.92E-03 5.64E-07 6.65E-05 

MALI 3.91E-02 1.18E-02 1.73E-03 1.46E-03 

RADH 1.97E-02 1.38E-02 4.48E-02 7.38E-03 1.24E-03 2.86E-06 2.86E-06 

SADA 4.45E-02 5.09E-03 3.84E-02 3.77E-08 8.05E-10 1.63E-03 

Far 

West 

RAPP 1.69E-02 2.77E-02 1.53E-02 9.23E-07 8.05E-07 6.22E-04 

NARA 4.42E-02 6.99E-04 4.03E-04 7.41E-03 

North 

Narayani 

DIYA 1.24E-02 1.35E-02 2.37E-05 8.10E-06 5.44E-04 

MAJH 1.91E-02 1.09E-04 1.16E-02 

SIDD 2.91E-02 

SETI 3.78E-02 2.11E-04 1.73E-04 1.72E-02 

GANE 3.70E-02 2.53E-04 1.60E-04 7.50E-03 

2.3.4.2 NDFI 

The change patterns of NDFI for all community forests are similar to those of green 

vegetation fractions (Table 2-10), only that no significant decreases are detected. Three forests 

(BELH, DOVA and RADH) show rapid greening-up after the establishment of community 

forests (Period I vs. Period II). All comparisons between Periods I and IV indicate significant 

increases. Except for SIDD, all other comparisons between Period I and Periods II~IV show 

prominent green-up signals. 
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Table 2-10: Comparison of NDFI among different periods. Only significant p values (<0.05) are shown. 

All values indicate increases in NDFI. Period I: Pre 1993; Period II: 1994-1999; Period III: 2000s and 

Period IV: 2010s. 

Group Forest I vs. II II vs. III III vs. IV I vs. III II vs. IV I vs. IV I vs. II~IV 

East 

Sal 

BAND  4.78E-04  1.16E-03 3.50E-03 1.22E-03 1.54E-03 

NABA  1.18E-02  5.15E-03 1.66E-02 3.60E-03 1.17E-02 

DASH  1.20E-03 4.81E-02 3.29E-03 4.63E-03 2.61E-03 1.10E-02 

BATU  3.48E-05  6.43E-06 1.38E-03 6.64E-05 2.13E-05 

South 

Central 

Rapti 

BELS  7.75E-03 5.53E-03 5.07E-03 9.64E-06 1.34E-06 5.44E-04 

BIRE   6.86E-03  2.14E-06 9.27E-08 1.46E-02 

GHAI  2.00E-02 2.98E-02 9.71E-03 4.22E-04 2.39E-05 4.50E-04 

BELH 9.17E-03  7.68E-03  1.11E-03 8.87E-04 1.70E-03 

DOVA 1.22E-04 5.23E-03 5.07E-03 4.65E-04 8.29E-07 7.73E-09 1.11E-05 

South 

West 

Rapti 

SAYU   2.12E-04  4.22E-04 3.26E-04 6.17E-03 

BETA  3.21E-03 2.30E-02 9.69E-04 1.77E-03 3.66E-06 4.56E-05 

MALI    2.17E-03  2.12E-03 1.73E-03 

RADH 2.50E-02 1.56E-05  3.28E-06 1.17E-03 2.83E-06 8.13E-06 

SADA  1.78E-02 2.46E-03 1.67E-02 1.89E-06 1.82E-07 1.38E-03 

Far 

West 

RAPP  6.39E-03 2.84E-02 6.34E-03 3.00E-07 3.16E-07 3.78E-04 

NARA  3.18E-02  4.25E-02 3.25E-04 2.29E-04 3.86E-03 

North 

Narayani 

DIYA  3.20E-03  3.77E-03 1.64E-05 1.31E-06 2.69E-04 

MAJH  2.10E-02  1.65E-02 1.44E-02 8.58E-05 3.50E-03 

SIDD      1.57E-02  

SETI   2.01E-02  3.98E-04 5.97E-05 5.01E-03 

GANE   2.96E-02 2.22E-02 1.40E-03 1.20E-04 4.96E-04 

 

2.4 Discussion 

Situated in the frontier of human-environment interactions, the western Chitwan 

community forests provide perfect opportunities to study how human and endangered large 

carnivores and ungulates can coexist at fine spatial scales (Carter et al., 2012). The vegetation 

conditions of these forests are vital to both the survival of the endangered species and the 

livelihoods of local residents. To date, however, there have been no systematic assessments of 

these forests for the past three decades. This chapter adopts two indicators (green vegetation 

fraction from MESMA and NDFI) to evaluate the vegetation dynamics in these forests and 

adjusts them to minimize influences from water bodies. 

Although the green vegetation fractions and NDFI values have been increasing during the 

30 years, and the values for post-1993 imagery are significantly higher than that of the pre-

1993 imagery, factors other than the community forest management may also have affected the 
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green-up signals in the study area. Since the late 1990s, a notorious exotic plant, M. micrantha, 

nicknamed “mile-a-minute-vine”, has been invading the Chitwan National Park and its buffer 

zone (Murphy et al., 2013). The invasion is most prominent in the riparian habitats, affecting 

all riverine community forests in this study (Dai et al., 2020). As an understory creeping vine, 

M. micrantha tends to fill the gaps between forest canopies and increase green vegetation 

fractions in the forest image pixels. In other words, in addition to reforestation, the invasion 

may also have contributed to the green-up signals quantified in this chapter. 

Even though it is not the ultimate objective of this chapter to articulate the relative 

contributions to the green-up signals, from the most conservative perspective, at least in the 

East Sal forests where invasion has been minimal, community forestry management and 

reforestation has been the prime cause for green-up. Besides, in the five forests (BELH, DOVA, 

MALI, RADH and GANE) where green vegetation fractions significantly increased in the 

years right after 1993, the contribution of reforestation appears to be the main reason for green-

up, since the invasion of M. micrantha was minimal back then. 

2.5 Conclusions 

The green vegetation dynamics in Chitwan community forests, Nepal from 1988 to 2018 

is evaluated in this chapter. The comparison of green vegetation fractions from spectral mixture 

analysis and a forest degradation index (NDFI), based on two-sample unequal variance T-tests, 

show that the forests have been continually greened-up during those thirty years. Although the 

invasion of an understory vine may have partially contributed to the green-up signals in some 

forests, the establishment of community forests and the resultant forest managements should 

be credited for some of the green-up signals, especially in the inland Sal forests. Future work 
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may be conducted to quantify and separate the relative contributions of exotic plant invasion 

and community forest management practices, especially in the riverine forests where invasion 

has been most prominent. 
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3. Chapter III: Mapping understory invasive plant species with field and 

remotely sensed data in Chitwan, Nepal 

3.1 Introduction 

 Invasive species have long been associated with human-introduced environmental change, 

rendering negative effects on ecosystem services and human well-being (Pejchar & Mooney, 

2009). The first step in invasive species management and intervention requires identifying their 

geographical locations. Traditional invasive plant detection and identification usually involves 

intensive field surveys, which can be time consuming and expensive. Remote sensing provides 

a potential alternative method for detection. In general, direct remote sensing of invasive plants 

aims to detect spectral, textural and/or phenological differences between the invasive and 

native species (Bradley 2014). Spectral differentiation focuses on the unique spectral signatures 

of invasive plants compared to native vegetation and is mostly applied to hyperspectral imagery 

(Asner et al., 2008; Barbosa et al., 2016; Underwood et al., 2003). Textural differentiation 

examines the distinct spatial patterns of invasive species and background land covers captured 

within a neighborhood of adjacent pixels and is usually conducted with high-spatial resolution 

imagery, depending on the size of the invasive plant or its aggregation (Lishawa et al., 2013; 

McCormick 1999; Pearlstine et al., 2005). Phenological differentiation identifies different 

seasonal or inter-annual growth patterns between invasive and native plants, including base 

and maximum level greenness of growing season, time and rate of greening up and senescence, 

date of the middle of the season, and other parameters (Bradley et al., 2018; Hoyos et al., 2010; 

Peterson 2005; Somers & Asner, 2013). Phenological differentiation requires repeat imaging 

to gain adequate temporal information to define spectral differences.  
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Obscured by the top canopy, detection of understory invasive plants is even more 

challenging, especially in closed-canopy mature forests. Direct detection through passive 

optical remote sensing techniques can be achieved when understory vegetation has distinct 

phenologies from overstory species, such as an extended green season or earlier greening up 

when the overstory trees are leaf-off (Taylor et al., 2013; Tuanmu et al., 2010; Wilfong et al., 

2009). Understory invasive plants may be indirectly identified if the invasion introduces 

competition for nutrients as well as water and renders biochemical changes in overstory leaves, 

thus altering the spectral features of the overstory vegetation (Asner & Vitousek, 2005). 

Indirect detection of understory invasive plants may also be achieved through linking its 

presence with remote sensing imagery related biophysical and socio-ecological factors 

governing its growth, such as light-availability and human disturbance in the forests (Joshi et 

al., 2006). 

Spectral mixture analysis (SMA) is a powerful tool for inspecting mixed pixels in remote 

sensing imagery and quantifying their constituents, especially for moderate and coarse spatial 

resolution images. Theoretically, the invasion of understory plants can introduce changes to the 

types and quantities of constituents within mixed pixels, which may be directly or indirectly 

detected in SMA. Nevertheless, few studies have incorporated SMA to investigate understory 

invasive plant mapping. This chapter explores the detection and mapping of understory 

invasive plant species through multiple endmember SMA (MESMA; Roberts et al., 1998) and 

maximum entropy (Maxent; Philips et al., 2006) modeling framework. In particular, the spatial 

extent of Mikania micrantha is mapped in Chitwan National Park (CNP), Nepal and its buffer 

zone community forests. M. micrantha is one of the world’s most notorious invaders (IUCN 
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2020) and its invasion is jeopardizing forests and has the potential of totally disrupting local 

coupled human and natural systems. M. micrantha also decreases forest productivity by 

hindering the growth of native species, weakens social organizations that manage and shape 

households’ resource use in the community forests, and downgrades local ecosystems and their 

corresponding services (Murphy et al. 2013). According to research literature, and discussions 

with local forest users and park rangers, M. micrantha mostly flourishes in riverine habitats 

and tends not to grow in higher-elevation environments (Murphy et al. 2013). Given this 

general distribution pattern, the goal of this chapter is to create a detailed, pixel-based 

distribution map for M. micrantha in the study area. The results from this chapter will help 

identify the locations of M. micrantha and guide local invasive plant species management and 

intervention practices. 

3.2 Methodology 

3.2.1 Study area 

 The study area of this chapter is the Chitwan National Park and its buffer zone community 

forests (Fig. 3-1). Detailed information on local temperature and precipitation, as well as the 

vegetation species composition in the forests can be found in Chapter I and Section 2.2.1 of 

Chapter II.  
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Figure 3-1: False color Landsat 8 three-band composite of the study area (highlighted in white polygon). 

Image acquisition date: 27 October 2014. Red: Band 6 (1560-1660 nm); Green: Band 5 (845-885 nm); 

Blue: Band 4 (630-680 nm). 

3.2.2 Field vegetation inventory 

In the three consecutive years of 2013, 2014 and 2015, field vegetation surveys were 

conducted in the western Chitwan buffer zone community forests, bounded to the south by the 

Rapti River and the west by the Narayani River (Fig. 3-2). Field data were collected around the 

peak biomass period right after the monsoon season, approximately between late September 

and mid-November. In every community forest, parallel transects were set up that are 200 m 

apart, angling from human settlements toward the park. Along each transect, at 50 m intervals, 

a sample site was established with two 5 m by 5 m plots adjacent to each other and 

perpendicular to the transect. For each plot, several ecological measurements were obtained, 

including M. micrantha coverage (in categories 0-4 through visual estimation, where 0 

represents absence of M. micrantha, 1 for 1%-25% coverage and 2 for 26%-50% coverage, 

etc.), canopy cover (in percentage, measured through a forest densiometer) and identification 
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of dominant tree and herbaceous species. 

 
Figure 3-2: Terrain map of the study area and vegetation survey sites. 

In the field vegetation survey, the coverage of sample sites in the community forests was 

affected by accessibility (rivers, lakes and wetlands were inaccessible) and occasionally by 

likely presence of dangerous animals such as tigers and rhinos. The field vegetation survey 

team were able to investigate most of the areas to the north of the Rapti River and to the south 

of the Narayani River (e.g. in BELS, SAYU, NARA, DIYA, MAJH, SIDD and SETI; Fig. 3-

3). The team also crossed the borders of three Sal community forests in the east (e.g. BAND, 

NABA and DASH; Fig. 3-3) and doubled the lengths of the sampling transects. 
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Figure 3-3: Community forests (highlighted by white polygons) in the study area and sample sites with 

M. micrantha presence. Background image: false color Landsat 8 three-band composite. Image 

acquisition date: 27 October 2014. Red: Band 6 (1560-1660 nm); Green: Band 5 (845-885 nm); Blue: 

Band 4 (630-680 nm). 

3.2.3 Ground reference spectra 

 In September 2018, apart from the field vegetation surveys, in situ reference spectra were 

collected for major herbaceous species (including M. micrantha) in the community forests. 

Consult Section 2.2.2 of Chapter II for details on ground reference data collection and 

processing.  

3.2.4 Remotely sensed data 

 Landsat Operational Land Imager (OLI) surface reflectance products (Level-2) were 

obtained from USGS EarthExplorer (https://earthexplorer.usgs.gov/) to align with the field 

vegetation survey dates. For the years 2013, 2014 and 2015, one desirable scene was identified 

for each year (Path/Row: 142/41; Table 3.1). Also obtained was a 30 m spatial resolution digital 

elevation model (DEM) derived from Terra Advanced Spaceborne Thermal emission and 
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Reflectance Radiometer (ASTER) stereoscopic imagery for the study area (NASA/METI, 

2019). 

Table 3-1: Selected Landsat OLI imagery 

Year Acquisition Date Cloud Cover Image Quality 

2013 11/09 2.00% 9 

2014 10/27 0.94% 9 

2015 10/14 4.84% 9 

3.2.5 Multiple Endmember Spectral Mixture Analysis 

Spectral mixture analysis (SMA) is a classic method for estimating mixed constituents 

within ground resolution elements associated with image pixels. It assumes that the spectral 

reflectance of a pixel can be modeled as the weighted sum of endmember reflectance, or 

spectrally “pure” materials, within that pixel. Most SMA adopts a linear addition method and 

the weights correspond to fractions of endmembers in the pixel. As an extension of simple 

SMA, Multiple Endmember SMA (MESMA) allows the number and types of endmembers to 

vary on a per-pixel basis, generating more legitimate unmixing results for imagery with high 

inter- and intra-endmember variance (Roberts et al., 1998). This chapter is characterized by 

adopting the MESMA procedures and results from the Chapter II. MESMA fractions 

validations can also be found in Chapter II of this dissertation. 

For Landsat multispectral imagery of vegetated landscapes, most pixels can be modeled as 

GV-NPV-Soil-Shade mixture in MESMA. In the study area, M. micrantha is genetically and 

physiologically distinct from other plants, including the other two major invasive species, 

Chromolaena odorata and Lantana camara. M. micrantha is a perennial creeping vine with 

higher spectral reflectance than mature forests in the near-infrared wavelength, tends to form 

dense layers and fill the gaps among top canopies. The hypothesis is that the pixels representing 
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areas invaded by M. micrantha will yield higher GV fractions and lower Shade fractions than 

unaffected pixels. To test this hypothesis, two-sample T-tests (two-tailed and unequal variance) 

were conducted for both GV and Shade fraction values between presence and background 

pixels to identify potential significant differences. 

3.2.6 Maximum Entropy Modeling Framework 

In this chapter, the software package Maxent was utilized to generate models for mapping 

M. micrantha distribution in the Landsat image we selected (Philips et al., 2006). Maxent 

makes presence predictions based on the relationships between presence records and 

corresponding environmental data. The difference between Maxent and many other species 

distributions modeling methods is that there is no real “absence data” in the modeling 

procedures, and it is typically developed to accommodate presence-only data. In the vegetation 

survey mentioned earlier in this chapter, the presence and coverage of M. micrantha were 

recorded for all 5 m by 5 m sample plots. If M. micrantha was not detected in a specific sample 

plot, it cannot be guaranteed if it was absent from the whole 30 m by 30 m Landsat ground 

resolution element, or whether the plant was present in that element but outside of the sample 

plots. Therefore, instead of interpreting the field records as “presence-absence” data, they 

should be more appropriately treated as “presence-only” data. 

This chapter also emphasizes the importance of the representativeness of presence data to 

Maxent model results. The ultimate objective of Maxent is to make predictions of species 

distributions by evaluating the presence records and their corresponding environmental 

information, and the representativeness of any presence data is vital to the overall model 

accuracy. Ideal presence records should include all types of possible presence locations (in the 
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dimensions of the environment data) in the target predicting area. In this chapter, although the 

community forests and sample sites are spatially biased, residing mostly on the fringe of the 

park and covering relatively small areas compared to the whole study area, they are highly 

diverse in floral species and contained all local vegetation types (e.g. Sal forest, riverine forest 

and riparian grassland), and consequently contain all possible M. micrantha presence location 

types. Because the general distribution pattern of M. micrantha in the study area (mostly in 

riverine habitats) are already known, the sampling data can be considered sufficient. 

In the Maxent models, pixels with M. micrantha coverage level of 1 or above (excluding 

all pixels without detected coverage) were adopted as presence data; 10000 pixels were 

randomly selected from the study area as background data (Phillips & Dudik, 2008). The four 

fraction layers (GV, NPV, Soil and Shade, from MESMA) and elevation were imported as 

potential predictor variables. The maximum iterations were set at 500 times and the predicted 

M. micrantha presence probabilities were averaged for each pixel. The presence data and 

MESMA fraction layers could only account for the ground conditions around the time the 

records and imagery were collected, thus for each year (2013, 2014 and 2015), one map was 

generated for each predictor combination (e.g. GV-Shade-NPV, GV-Shade-Soil and GV-Shade-

DEM). 

3.2.7 Model validation 

The receiver operating characteristic (ROC) analysis and the area under the ROC curve 

(AUC) incorporated in Maxent were used for model evaluation (Fielding & Bell, 1997; Pearce 

& Ferrier, 2000). In general, AUC values between 0.7 and 0.8 indicate fair modeling results, 

values between 0.8 and 0.9 are considered good, and values higher than 0.9 are excellent 
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(Fielding & Bell, 1997; Pearce & Ferrier, 2000). In this chapter, among all the presence data, 

75% of them were randomly allocated for model training, and the remaining 25% for testing. 

Kappa analysis was also applied to evaluate Maxent results (Cohen 1960). For this purpose, 

100 presence pixels and another 100 background pixels were randomly selected from the whole 

study area in each year’s modeling results. Continuous presence probabilities were 

dichotomized to 0 or 1, with values greater than 0.5 assigned to the latter. Since all pixels, 

including presence data, were involved in the random selection of background data, the AUC 

and kappa values tended to be underestimated in this case. Jackknife analyses were conducted 

to evaluate the relative contributions of the environmental variables. The results would be the 

AUC values of the relative Maxent model if only one of the variables was included in the 

modeling process (e.g. GV-only or Shade-only Maxent models, etc.). 

3.3 Results 

3.3.1 M. micrantha presence in the sample sites 

The fieldwork was conducted in the two-month window right after the monsoon and it 

took us three years (2013-2015) to survey all 21 community forests. The field vegetation survey 

team were able to visit 2219 sample sites in total, of which 1038 were invaded by M. micrantha. 

The four East Sal forests were sparsely invaded, with M. micrantha presence at around 10% of 

the sample sites (Table 3-2; Fig. 3-3). Invasions were more prominent in riverine forests, where 

M. micrantha occurred in more than half of the sample sites (Table 3-2; Fig. 3-3). This general 

pattern resembles the results from the assessment of M. micrantha distribution conducted in 

the study area in 2008 (Murphy et al., 2013). Forests in the South West Rapti region and the 

North Narayani region bore the most severe invasion, with invasion rates close to or above 
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80%. Two forests in particular, MALI and RADH, had M. micrantha detected at every sample 

site. 

Table 3-2: Number of total sample sites and invaded sites in each community forest 

Region Forest Code Total Sites Invaded Sites Invasion % 

 

East 

Sal 

BAND 299 23 7.7% 

NABA 39 4 10.3% 

DASH 232 31 13.4% 

BATU 126 7 5.6% 

 

South 

Central 

Rapti 

BELS 167 33 19.8% 

BIRE 28 7 25.0% 

GHAI 136 100 73.5% 

BELH 87 39 44.8% 

DOVA 19 10 52.6% 

 

South 

West 

Rapti 

SAYU 52 21 40.4% 

BETA 109 62 56.9% 

MALI 9 9 100.0% 

RADH 76 76 100.0% 

SADA 177 147 83.1% 

Far 

West 

RAPP 148 101 68.2% 

NARA 88 33 37.5% 

 

North 

Narayani 

DIYA 70 62 88.6% 

MAJH 74 67 90.5% 

SIDD 59 47 79.7% 

SETI 92 78 84.8% 

GANE 136 99 72.8% 

 

3.3.2 MESMA fractions 

Based on the MESMA results in Chapter II, the 2219 sample sites are used in the 

community forests to identify potential significant differences in GV and Shade fractions 

between M. micrantha invaded sites (1038) and background sites (1181). T-test results confirm 

that compared to background pixels, presence pixels generate significantly higher GV fractions 

and lower Shade fractions (both p < 0.001; Figure 3.4). 
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Figure 3-4: Boxplots of GV and Shade fractions between presence (green) and community forest 

background (orange) pixels. 

3.3.3 M. micrantha distribution 

Incorporating both GV and Shade fraction layers with an addition of NPV or Soil, the AUC 

values of M. micrantha distribution Maxent models for training and testing data are both 

between 0.74 and 0.86, respectively (Fig. 3-5, first two columns from the left). The relative 

kappa coefficients range from 0.49 to 0.61. Both ranges, even though underestimated due to 

the inclusion of presence records in background data, indicate fair or good model results. The 

estimated M. micrantha presence probabilities ranged from 0 to 1 across the study area, with 

most of the higher probability pixels located in riverine forests and riparian grasslands along 

the Narayani and Rapti Rivers (Fig. 3-6). Some of the high probabilities were associated with 

high-GV-fraction pixels at higher elevations, e.g. the sunlit slopes along the southern side of 

Churia Hills (Fig. 3-6). 
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Figure 3-5: ROC curves and AUC values for training and test data in GV-Shade-NPV (first column, a, 

d, g), GV-Shade-Soil (second column, b, e, h) and GV-Shade-DEM (third column, c, f, i) Maxent models 

for 2013, 2014 and 2015. 
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Figure 3-6: M. micrantha average presence probability maps generated from GV-Shade-NPV (First 

column from left) and GV-Shade-Soil (Second column from left) Maxent models in 2013, 2014 and 

2015. Large blue patches above Churia Hills in 2013 and 2015 maps are associated with clouds or cloud 

shadows. 

Although MESMA-fraction-only Maxent models (e.g. GV-Shade-Soil and GV-Shade-

NPV) produce fair/good model results (AUC between 0.7 and 0.9, kappa between 0.4 and 0.75), 

the inclusion of elevation (DEM) as a model input significantly improves map accuracy, with 

both training and testing AUC values around 0.95 (Fig. 3-5, last column at right). Their kappa 

coefficients range between 0.75 and 0.81. Both ranges indicate excellent mapping results. The 

effects of including elevation will be further examined in the Discussion section. 

3.4 Discussion 

3.4.1 MESMA fractions and M. micrantha mapping 

In this chapter, an effective approach is developed for mapping understory invasive plant 
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species using SMA and the Maxent modeling framework. By applying MESMA to Landsat 8 

OLI surface reflectance products, this chapter verify the significant differences in GV and 

Shade fractions between M. micrantha-invaded and non-invaded pixels. Then the spatial extent 

of M. micrantha is successfully mapped in Chitwan National Park and the community forests 

within its buffer zone using MESMA generated fraction layers. The resulting distribution maps 

prove to be fair/good for MESMA-fraction-only models (AUC between 0.7 and 0.9, kappa 

between 0.4 and 0.75). The inclusion of elevation as a model input produces excellent map 

results (AUC above 0.9 and kappa above 0.75). While endmember fractions from MESMA 

have been used for sub-pixel land cover mapping (Roberts et al., 1998; Powell et al., 2007), 

deforestation and forest degradation evaluation (Souza Jr. et al., 2005; Souza Jr. et al., 2013) 

and plant species classification (Roberts et al., 2015; Roth et al., 2015), in this chapter their 

applications are extended to analyze the spatial extent of invasive plant species growing under 

forest canopies. 

By analyzing endmember fractions generated from MESMA, an important finding arise: 

pixels with M. micrantha invasion can be distinguished from background pixels in the study 

area. Higher GV fractions and lower Shade fractions reflect the differences between invaded 

forests and unaffected landscape types. The growth and densification of M. micrantha from 

ground to tree crowns in the forests may contribute to the higher GV fractions, whereas the 

filling between canopy gaps may account for the lower Shade fractions of the invaded pixels. 

Some of the pixels along the southern side of Churia Hills are also assigned high-

probability values, especially in the 2015 maps (Fig. 3-6). These results may be explained by 

the limitation of the 2015 presence data, since no Sal forest was sampled that year and all M. 
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micrantha presence records were in riverine forests along the Narayani River (Fig. 3-2). In 

addition, due to sun-sensor geometry, sunlit slope vegetation usually has higher reflectance and 

higher GV values before shade normalization in MESMA. Since the GV fraction is positively 

related to M. micrantha presence, sunlit slope vegetation pixels with high GV values can be 

assigned with higher presence probabilities. Despite fair model results, the presence data may 

not be sufficiently representative for predicting sites with distinct environmental conditions in 

the study area. 

3.4.2 Incorporating elevation 

In MESMA-fraction-only Maxent models (e.g. GV-Shade-NPV and GV-Shade-Soil), GV 

and Shade make prominent contributions to M. micrantha mapping, producing fair or good 

mapping results for both training and test datasets (Fig. 3-5). Nevertheless, according to the 

jackknife analysis in Maxent, although GV and Shade fractions are fair or good indicators of 

understory M. micrantha distribution (with-only AUC around 0.8), the most powerful predictor 

is elevation (with-only AUC above 0.9; Fig. 3-7). All GV-Shade-DEM Maxent models generate 

excellent map accuracies (AUC around 0.95; Fig. 3-5. c, f & i), and the contributions of 

elevation dwarf that of GV or Shade (Fig. 3-8). Map results show that the general distribution 

pattern is similar to those from fraction-only models, with M. micrantha presence allocated to 

pixels close to the Narayani and Rapti Rivers (Fig. 3-9). However, higher-elevation pixels are 

mostly assigned with low presence probabilities. This observation is in agreement with local 

knowledge that most M. micrantha is detected in riverine mixed forests, while invasion is less 

common in higher-elevation Sal forests. 
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Figure 3-7: AUC values of Maxent models with only one of the predictors 

 

Figure 3-8: Predictors’ contributions to their relevant Maxent models 
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Figure 3-9: M. micrantha presence probability maps from GV-Shade-DEM Maxent models 

Although elevation makes prominent contributions to the map results and it alone can 

generate excellent model outputs (With-only AUC above 0.9, Fig. 3-7), both MESMA fractions 

and elevation are critical in generating optimal M. micrantha distribution maps. Elevation alone 

may have produced good results for our training/testing dataset, which are the sample sites 

within the community forests, but it may not be sufficient for mapping the whole study area. If 
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elevation was the sole environmental layer, Maxent would assign high presence probabilities 

to all pixels with low elevation values, such as rivers and lakes (Fig. 3-10). Landscape factors 

like elevation may not be sufficient to explain ecological questions such as the distribution of 

certain species, thus biological factors should also be included. In this chapter, as indicators of 

forest structure and canopy conditions, the MESMA fractions are incorporated to produce 

optimal map results. 

Figure 3-10: (a) depicts a subset of Fig. 3-1 where the Rapti River joins the Narayani River. Difference 

between GV-Shade-DEM (b) and DEM-only (c) Maxent models show that DEM-only models assigned 

high presence probabilities to non-vegetated pixels, including rivers and lakes. 

3.4.3 M. micrantha invasion in Chitwan 

Invasion ecology proposes that there are three main steps in the spread of an invasive 

species: first, an individual or a small population is transported from its native habitat to a 

geographically distant location it would otherwise not have reached through natural dispersal; 

secondly, this individual or population survives and reproduces in the new environment and 

forms sustainable communities; third, the exotic species thrives in the new environment and 

expands to its immediate neighbors or to more distant areas with the help of environmental or 

anthropogenic factors such as natural disasters and the movement of animals or humans 

(Lockwood et al., 2013). M. micrantha was introduced from the tropical and subtropical 
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Americas to India in World War II as camouflage for military facilities (Tiwari et al., 2005). It 

was first reported in eastern Nepal in the early 1960s and reached Chitwan in the early 1990s 

through catastrophic flooding according to local knowledge. M. micrantha is a fast-growing 

climber which can reproduce through sexual (seeds) or asexual (stems) processes, and its seeds 

are adapted to fire (Murphy et al., 2013). The stems and seeds of M. micrantha would first 

arrive at and inhabit riverine and riparian environments. After establishing sustainable 

populations and communities, it would invade higher-elevation habitats that are further away 

from rivers. In this case, proximity to a river would be the determining factor of the first wave 

of M. micrantha invasion. Besides, M. micrantha prefers and grows best in high soil moisture 

conditions (Zhang & Wen 2009). It is more likely to invade and thrive in low-lying areas having 

higher soil moisture. Our results show that by the year 2015, M. micrantha invasion in Chitwan 

National Park and its buffer zone community forests had mostly occurred in riverine forests 

and riparian grasslands. 

3.4.4 Combination of MESMA and Maxent 

In addition to the good agreement between the presence records and the M. micrantha 

distribution maps generated in this chapter, the method of combining MESMA and Maxent 

species distribution modeling provides a novel approach for mapping understory vegetation. In 

situations where direct detection with satellite data is obscured by canopy tops, Maxent 

modeling enables understory mapping through indirect methods. Compared to other indirect 

detection approaches which require additional temporal information through time series 

analysis of vegetation phenology, this approach only need the process of a single-time image 

(Tuanmu et al., 2010). Other than the presence records, the only other data needed are remotely 
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sensed which are open source and can be acquired conveniently from online sources. Besides, 

this approach can be easily extended to other understory plant species, as long as they introduce 

composition (e.g. GV and Shade fractions) changes alongside their growth. 

3.5 Conclusions 

It can be challenging to identify and map understory invasive plants through traditional 

remote sensing techniques due to the obstruction by canopies. In this chapter an effective and 

practical approach is developed to map understory invasive plant using endmember fractions 

derived from Landsat 8 OLI imagery and the Maxent modeling framework. The easy access, 

global coverage and rich historical archive of Landsat data make this approach applicable to a 

wide range of different study sites. It can also be applied to other satellite imagery with 

moderate/coarse spatial resolution and global coverage, such as Sentinel 2 data. The 

combination of MESMA and Maxent provides a significant opportunity for understanding 

understory vegetation distribution, not only about invasive non-native species, but also native 

shrubs and herbaceous species. The map results can provide guidance to local invasive plant 

eradication practices and conservation plans, substantially contributing to ecological 

restoration, biodiversity conservation, and provision of sustainable ecosystem services in 

protected areas. 
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4. Chapter IV: Invasive Mikania micrantha Control in Western Chitwan

Community Forests, Nepal: An Agent-based Modeling Approach 

4.1. Introduction 

Mikania micrantha is a notorious creeping vine originated in the tropical Central and South 

Americas, and it has been invading the Chitwan National Park and its buffer zone community 

forests in Nepal since the late 1990s (Murphy et al. 2013). Due to its fast growth and unsuitable 

for herbivory, M. micrantha is disrupting forest ecosystems and biodiversity hotspots by 

hindering native vegetation growth, which is significant to the survival of endemic endangered 

species, such as the great one-horned rhinos and Bengal tigers (Dai et al., 2020; Murphy et al., 

2013). The invasion of M. micrantha may also jeopardize the livelihoods of local residents by 

affecting the productivity of the community forests, upon which most of households rely 

directly or indirectly in varying degrees. 

According to conversations and household surveys with local residents (described later), 

forest users have conducted jungle cleaning treatments in the past aiming to control the spread 

of M. micrantha. Common practice was to remove all herbaceous and woody vegetation except 

trees, collect them into a pile and burn in situ. This treatment method may promote invasion 

since M. micrantha’s seeds are adapted to fire and burning can eliminate competitors for natural 

resources (Murphy et al. 2013). To combat the spread of the invasive species, an ecological 

intervention with modified treatment practices has been designed, in which only invasive plants 

(including M. micrantha) are removed from the forests, and they are bagged and buried in one-

meter-deep holes dug in the forest (Clark 2020). 

The objective of this chapter is to simulate local household participation in the intervention, 



49 

and the subsequent responses of M. micrantha under modified intervention practices. The CNH 

research team (“the team” hereafter) conducted household surveys to collect a suite of socio-

economic and demographic information which may affect willingness of household members 

to participate (An et al., 2014). The team also drew on field experiments to quantify the growth 

of M. micrantha and cost of labor and time for the intervention (Clark 2020). This chapter 

features development of a spatially explicit agent-based model using NetLogo software to 

simulate different levels of household participation in the large-scale intervention of the 

community forests, as well as how M. micrantha’s extent and coverage will respond to the 

intervention. The results provide significant insights in guiding local invasive plant 

intervention practices, conservation of ecosystems or ecosystem services, and more importantly, 

understanding impacts of human decisions on coupled human and natural systems. 

4.2 Methodology 

4.2.1 Study site 

The study area of this chapter consists of the 21 community forests in the Chitwan National 

Park buffer zone and their catchment area households (Fig. 4-1). This study also includes a 

portion of the Chitwan National Park that is adjacent to the community forests, where 

intervention practices will not likely be conducted due to accessibility and the presence of 

dangerous animals. Nevertheless, M. micrantha may spread from these regions to cleaned 

community forests. 
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Figure 4-1: Image map of the community forests in the Chitwan study area 

4.2.2 Social survey 

The social survey team administered the first wave of household surveys in 2014. Through 

a systematic sampling scheme, around 50 households were selected from the catchment area 

of each community forest, as well as about 200 non-catchment households. The response rate 

was 98.6% and 1235 households were interviewed. The survey focused on 1) demographic 

information: household size, and the age, gender, education level of interviewed individuals; 

2) household-level characteristics such as income sources, farming practices, land area,

livestock raising and resource collection behavior; 3) household relationships to community 

forestry: membership of community forests, participation in forest committee and related user 

groups; 4) opinions on invasive species: the spread of Mikania micrantha and its effects on 

forest ecosystems, and 5) geographical information: longitude and latitude of each household. 

In 2017, all households in the first wave survey were resurveyed with identical questions 
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and some new households that moved into the study area since 2014 were also included. 

Households that had moved out were tracked as well. This resulted in 1489 households being 

interviewed in the second wave of survey. In addition to all previous questions, households 

were also questioned about their willingness to participate in future large-scale M. micrantha 

intervention practices. 

4.2.3 Field experiments 

An ecological intervention was designed to test the feasibility of implementing a low-cost, 

effective, and sustainable set of practices to reduce the rate of spread of M. micrantha in the 

study area (Clark 2020). In November 2015, five community forests were selected to 

participate in the intervention (e.g. BELS, RADH, RAPT, SAYU, and DIYA; Figure 1). A total 

of 20 experiment plots were established with four in each forest. Each plot is 30 m by 30 m in 

area with a buffer of 5 m on each side, whereas all experimental and measurement activities 

were conducted within the core 20 m by 20 m area. The intervention involved multiple steps; 

several people conducted jungle cleaning and removed all invasive plants from their host plants 

or on the ground, meanwhile others dug holes in the forests. All removed M. micrantha was 

then bagged and buried deep in the holes. All experiments and measurements were conducted 

between November 2015 and October 2018. The experimental plots were set up in November 

2015 and the first intervention took place in January 2016. Two additional intervention 

treatments were conducted in October 2016 and October 2017. For the intervention details 

please consult Clark (2020). 

4.2.4 M. micrantha control model 

In this chapter, the spatially explicit agent-based model integrated both ecological and 
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social factors to simulate household participation in M. micrantha intervention and the resulting 

M. micrantha presence probabilities in the community forests (Fig. 4-2). A social module 

simulated household participation in the intervention, while a cellular automaton-based 

ecological module was designed to examine M. micrantha responses to the intervention. For 

the ecological module, the model’s start of simulation was set at 2015 (Time 0 in the model) 

and a M. micrantha coverage map of the same year was imported (Dai et al., 2020). For the 

social module, the simulation of household attribute dynamics was set to start in 2017 (Time 

2). No prior interventions other than our field experiments had been conducted in the study 

area, so the large-scale M. micrantha intervention was set to be onset starting 2020 (Time 5). 

In the model there was no social impacts on the landscape before 2020, so that the ecological 

module could operate on its own without considering human impacts. The spatial resolution of 

the model was 30 m, identical to the M. micrantha presence map (Dai et al., 2020). The 

temporal resolution was one year, and the time span of simulation was 25 years (including 20 

years of intervention starting in 2020).  
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Figure 4-2: The interface of the model developed in NetLogo. The window on the right represents the 

community forests (lime), Chitwan National Park (green), water bodies (blue) and households (red; 

1072 in total) against a black background depicting the landscape of the study area (1083 cells by 614 

cells). Most of the forest and park cells are yellow and indicate M. micrantha invasion with varying 

degrees at the simulation start. The graphs on the left show the percentage of community forest cells 

being invaded and the number of households participating in intervention. 

The agents in the model were the simulated households, who could decide on their 

participation in intervention based on a suite of social, demographic and geographic attributes. 

The environment consisted of landscape cells with attributes of being invaded by M. micrantha 

or not. In each time step, M. micrantha could spread in the study area, and then intervention 

could eradicate M. micrantha from the cells. The technical details of the model are presented 

in the following paragraphs, as well as in the Overview, Design concepts, & Details (ODD) 

appendix. 

4.2.4.1 M. micrantha invasion 

The  M. micrantha presence probability map (Dai et al., 2020) was imported into the 

model as the initial state of M. micrantha prior to simulating its spread and removal. In the 
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cellular automaton based ecological module, once a cell was invaded by M. micrantha, it would 

have a probability of spread to any of its neighboring cells. This probability was flexible and 

controlled interactively by a slider in the model interface (Invasion_rate 0-100%; Figure 4-2). 

Given the notorious quick speed of grow and spread of M. micrantha, the invasion rate 

(probability) was set as 1.0 (e.g. 100%) in the baseline simulations. An important goal of this 

chapter is testing the model with different levels of invasion probabilities in a sensitivity 

analysis, described later in the model evaluation section. 

4.2.4.2 Household decision in intervention participation 

Based on previous pilot interviews and the 2017 household survey (1489 responding 

households), the team asked each household about their willingness to contribute at least ten 

full days of labor to M. micrantha intervention in the community forests each year. Here this 

chapter draws on a suite of socioeconomic, geographic, and demographic variables from the 

survey to quantify the households’ probabilities of contribution and present our rationales. 

About 54% of the households (806/1489) surveyed in the study area were general members 

of community forests, upon which their livelihoods relied in varying degrees. Some households 

directly extracted natural resources from the forests. For example, around 84% of the surveyed 

households (1253/1489) used firewood for cooking and other purposes, and 291 of them 

regularly collected firewood from the forests. About 63% of the surveyed households 

(935/1489) indicated that they raise cows, buffalos and/or goats, and 118 of them regularly 

collected fodder in the forests. Households may also be indirectly related to community forestry. 

About 74% of the households (1098/1489) were members of at least one user’s group, such as 

women’s group, forest user’s group, saving and credit group, farmer’s group, etc. (Baral et al., 
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2019). These groups usually receive support from the community forests and their governance 

committees in the study area. 

When examining households’ motives in M. micrantha intervention in the community 

forests, a suite of potential factors that might affect their decisions were considered (Table 4-

1). Since the invasion of M. micrantha jeopardizes forest productivity, households closely 

related to community forests might be willing to contribute to invasive plant removal. 

Independent variables thus included income sources (farming, business, and salary jobs), 

community forest membership, and participation in a user’s group supported by community 

forestry. Because community forests are important sources of firewood and fodder, variables 

related to resource consumptions (use firewood or not, 1/0; number of livestock) were also 

included. According to local knowledge, a cow consumes about the same amount of fodder as 

a buffalo and about four times as much as a goat. Fodder consumption was thus represented by 

livestock amount, equal to four times the number of cows and buffalos plus the number of goats. 

Household geographic and demographic characters might also affect their decisions, and 

household distance to the community forests and household size (number of residents) were 

also included. The dependent variable was whether the household would be willing to 

contribute at least ten full days of labor for M. micrantha intervention each year (1 for yes and 

0 for no). Generalized logistic regression was applied to analyze the relationships between the 

dependent and independent (listed in Table 4-1) variables. 
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Table 4-1: List of independent variables 

Variables Description Mean Min Max Std 

HH_size Number of residents 3.99 0 16 1.76 

CF_dis Household distance (kilometers) to 

community forest 

1.37 0 4.80 1.15 

CF_member Community forest member or not (1/0) 0.54 0 1 0.50 

User_group User group member or not (1/0) 0.74 0 1 0.44 

Farming Income from farming or not (1/0) 0.76 0 1 0.43 

Business Income from business or not (1/0) 0.28 0 1 0.45 

Salary Income from salary jobs or not (1/0) 0.36 0 1 0.48 

Firewood Use firewood or not (1/0) 0.84 0 1 0.37 

Livestock Number of livestock 5.53 0 164 7.59 

 

All independent variables were included in the logistic regression model and the results 

are presented in Table 4-2. 

Table 4-2: Final variables included in the generalized logistic model 

 Estimate Std. Error Z value P value 

(Intercept) -1.197983 0.223301 -5.365 8.10E-08 

CF_dis -0.146668 0.052480 -2.795 5.19E-03 

HH_size 0.065629 0.031928 2.056 3.98E-02 

CF_member 0.125382 0.122034 1.027 0.30 

Farming 0.199650 0.144517 1.381 0.17 

Business 0.068230 0.124442 0.548 0.58 

Salary -0.046555 0.113728 -0.409 0.68 

Livestock -0.008416 0.008245 -1.021 0.31 

Firewood 0.224656 0.169237 1.327 0.18 

User_group 0.452033 0.131778 3.430 6.03E-04 

Note: N = 1489; AIC: 1973.5; Pseudo R2 =0.25 

 

Incorporating the coefficients analyzed from the regression, the probability of household 

contributing at least ten full days of labor to M. micrantha intervention (Mik_prob) is: 

Mik_prob = exp (-1.197983 – 0.146668 * CF_dis + 0.065629 * HH_size + 0.125382 * 

CF_member + 0.199650 * Farming + 0.068230 * Business – 0.046555 * Salary – 0.008416 * 

Livestock + 0.224656 * Firewood + 0.452033 * User_group) / (1 + exp (-1.197983 – 0.146668 

* CF_dis + 0.065629 * HH_size + 0.125382 * CF_member + 0.199650 * Farming + 0.068230 

* Business – 0.046555 * Salary – 0.008416 * Livestock + 0.224656 * Firewood + 0.452033 * 

User_group))                                                     Equation (4.1) 

 

During the modeling process, the potential changes in the demographic and social 
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characteristics above were informed by the two waves of household surveys. The 1235 

households in 2014 with the 1489 households in 2017 were compared to locate those who were 

surveyed twice. A total of 1072 households were selected, upon which derived change patterns 

of household attributes, which would affect their intervention participation. Average household 

size, or the average number of residents who regularly lived in the household, was 4.143 and 

4.118 in 2014 and 2017, respectively. The average change from 2014 to 2017 is -0.025 with 

most of the households’ sizes remaining unchanged. Average livestock amount decreased by 

0.994 between the two waves of surveys, from 7.444 in 2014 to 6.450 in 2017. 

Among households who used firewood in 2014, 7.44% of them switched from using 

firewood to not using it in 2017, whereas 56.04% of the households who did not used firewood 

in 2014 switched to using firewood in 2017 (Table 4-3). Similar change patterns for other 

binary household attributes are listed in Table 4-3. 

Table 4-3: The probabilities of changing binary household attributes from 2014 to 2017 based on 

surveys of 1072 households. 1 stands for positive responses, and 0 for negative ones. 

 2014 (1) -> 2017 (0) 2014 (0) -> 2017 (1) 

Firewood 0.0744 0.5604 

User group 0.2513 0.8225 

CF member 0.1722 0.3213 

Farming 0.0922 0.3005 

Business 0.3115 0.1613 

Salary jobs 0.3166 0.2483 

 

To simulate household participation in the intervention, the model first populated the 1072 

households in the landscape based on their geographical information (longitude and latitude). 

Also, annual household attribute changes were modeled starting in 2018 (Time 3 in our 

simulation time span) to simulate household participation dynamics. The distances to forests 

were kept constant since they rarely changed between the two waves of survey. Since the 
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average change of household size was minimal (-0.025) and with most households unchanged, 

household size was also set to be constant for the simulations. For livestock amount, starting 

in Time 3 (year 2018), the value in the current step was set to be its value in the previous step 

minus a Poisson-distributed random integer with a mean of 0.994/3. If the new value was 

negative, it was set to zero. For all binary attributes, their change probabilities were informed 

by Table 4-3 and we divided them by three to account for annual changes. If the values did not 

change, they were kept the values in the previous step. Utilizing Equation (4.1), the household’s 

probability of contribution in M. micrantha intervention were calculated. In the modeling 

process, if a randomly generated number between 0 and 1 was less than this probability, the 

corresponding household would contribute ten days of labor to the intervention. 

Given the ratio of simulated households to the total number of households within all 

community forest catchment areas (1072/29418), the participation numbers were linearly 

upscaled to account for total available labor in the large-scale intervention. This decision was 

made for both theoretical and practical reasons (Zvoleff & An, 2014). First, the agents in our 

model were survey-based and are drawn from the population with a systematic sampling 

scheme, thus they were considered as representative of all households in the study area. Second, 

based on questions under hypothetical situations in the 2017 survey, some households would 

be affected if 75% or more of their neighbors participated in the intervention, whereas most of 

the households’ decisions remained unchanged despite potential neighborhood impacts. Given 

the participation rate (around 40%) in the current real-world situation (2017 survey), 

interactions with neighbors can hardly change their decisions on intervention participation. 

Last, a practical concern was that modeling all of the 29148 households would significantly 
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slow down the simulations with little marginal benefits.  

4.2.4.3 M. micrantha Intervention  

In the field experiments, seven people could clean a 20 m by 20 m plot in 90 to 210 minutes 

(Clark 2020). The model set the intervention time to be a randomly selected number from a 

normal distribution between 90 min and 210 min, with a mean of 150 min and standard 

deviation of 30 min. Later in the sensitivity analysis (Section 4.2.4.4 an important test regarding 

the impact of different levels of fixed intervention times is featured. 

To establish intervention locations, the model calculated the distances from each cell to the 

households. During intervention, cells closer to the households were cleaned first. Worthy of 

mention is that the participation rate was linearly upscaled to the whole population in the study 

area, which would also upscale the number of cells being cleaned in the intervention. However, 

this decision did not affect the locations of selected cells, since their selections were always  

based upon their distances to the households. Once a cell was cleaned, it could not be marked 

as “invaded” (invaded? = false) toward the end of current step. Based on the invasion rules 

articulated in Section 4.2.4.1, it might be re-invaded in future steps if one of its neighbors was 

invaded. 

4.2.4.4 Model evaluation 

The evaluation of the simulation processes consists of both model verification and 

validation (Manson 2002). Model verification guarantees that the programming code is free of 

bugs and fulfils the simulation objectives, whereas model validation compares model processes 

and results with expected ones from empirical data, real world observations, domain 

knowledge, or expert’s opinions (An et al., 2005; An et al., 2020; Manson 2002). 
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The dynamics of simulated livestock amount of the households were examined for 20 years 

and the mean and standard deviation are compared to the data informed by the 2017 household 

survey. The dynamics of participating households were also examined for 20 years. As 

empirical data for the number of livestock amount and participating households after 2017 were 

unavailable, the simulation results from 2020 (start of household participation simulation) 

onward were compared to the participation ratio informed by the 2017 survey.  

M. micrantha dynamics (percentage of forest cells being invaded and their locations) in 

response to the intervention were also validated in the community forests. Since the model 

projected future scenarios based on principles learned from empirical data but in totally 

different situations (intervention), it was examined based on whether change trends were 

reasonable.  

Last, sensitivity analysis was performed through a parameter-sweeping approach (An et 

al., 2005; An et al., 2020). In Sections 4.2.4.1 through 4.2.4.3, the model performance might 

be sensitive to three parameters, i.e., M. micrantha invasion rate in the field, number of days 

each household contributed per year, and the intervention time cost. A sensitivity test was 

designed based on these three parameters: invasion rate was set at 0.2, 0.5, 0.8, and 1.0; number 

of contributing days of each household could be 2, 5, and 10; and the time needed to clean a 

20 m by 20 m plot was be fixed at 90 min, 150 min, and 210 min. As there were four, three and 

three values for each parameter to test, respectively, there were a total of 4*3*3 = 36 

experiments. The baseline scenario was set with 1.0 invasion rate-10 days participation -150 

min clean-up combination since it was the closest to real-world situations. For each experiment, 

30 model runs were conducted and M. micrantha extent maps were generated at the end of 
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simulation. Then the kappa index was calculated between each experiment map and the 

baseline map. 

Model evaluation results will be discussed alongside presentation of simulation results, as 

well as in detail in Section 4.3.3. 

4.3 Experiment design and simulation results 

In the NetLogo model, the community forest landscape was comprised of 45138 non-water 

cells, 94.77% of which (42777 cells) were marked as “invaded” with varying M. micrantha 

coverage in the initial phase (Fig. 4-2). There were 29418 households in the study area, and in 

the 2017 survey, 39.56% (589/1489) of the households were positive about their intervention 

participation. Based on this background, the experiment designs and the simulation results are 

presented in the following paragraphs. 

4.3.1 Households participation in intervention 

The model first simulated the dynamics of several key household characteristics and 

examined the resulting household participations. These simulations were separated from the 

ecological module, and only household attributes calibrated in Section 4.2.4.2 would affect the 

simulation results. Starting from 2020 (Time 5 in the model), household intervention 

participation probabilities were calculated according to Equation (4.1), and the resultant 

numbers of participating households were modeled for 20 years. Thirty model runs were 

conducted to account for the stochastic processes included in the model, which might generate 

outliers or unexpected results. 

Despite fluctuations, the numbers of participating households remained relatively stable 

over the 20 years of simulation (Fig. 4-3). On average, 428 out of the 1072 households 
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contributed to the large-scale M. micrantha intervention in the community forests each year. 

The participation rate was about 39.93%, close to the rate informed by the 2017 household 

survey (39.56%). Given the consistency among different model runs and the similar rate 

compared to actual participation rates, this modeling result was considered reasonable for the 

simulation objectives. 

Figure 4-3: Number of participating households (30-run composite in gray) over 20 years with average 

number of each year highlighted in blue. 

4.3.2 M. micrantha responses to intervention 

The model then simulated M. micrantha responses to the intervention with inputs from the 

social module (Figures 4-4 & 4-5). In the simulation start (Time 0, Year 2015), 94.77% of the 

forest cells were invaded by M. micrantha (based on Dai et al., 2020), and the invasion extent 

gradually increased to almost 100% in Time 4 (Year 2019). After intervention starts in Time 5, 

the extents quickly dropped, and by the end of Time 7 (Year 2022), after three years of 

treatments, M. micrantha was completely eradicated from the forests (Extent = 0%). Note that 

this model did not simulate M. micrantha coverage in the cell, thus even 1% coverage would 
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be considered as “invaded”. 

 

Figure 4-4: Percentage of forest cells being invaded by M. micrantha (30-run composite in gray) with 

average of the 30 runs in time steps five and six highlighted. 

  

(1) Time step 4, Year 2019             (2) Time step 5, Year 2020 

  

(3) Time step 6, Year 2021             (4) Time step 7, Year 2022 

Figure 4-5: Average M. micrantha extent with invaded cells in yellow and cleaned cells in green at the 

end of time steps four to seven. 

The simulated spatial locations of M. micrantha are shown in Fig. 4-5. Distribution 

patterns were similar among the 30 model-runs, and average outputs were presented for time 
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steps four to seven, corresponding to years 2019 to 2022. From simulation start (Time 0, year 

2015) to Time 4 (year 2019), the spread and growth of M. micrantha was not affected by the 

output from the social module, and by the end of Time 4, almost all forest cells were invaded 

(Fig. 4-5 (1)). With the onset of the intervention treatments in Time 5, M. micrantha started 

being rapidly removed (Fig. 4-5 (2)). By the end of Time 7, the invasive plant was eliminated 

from the community forests, of which the map shows drastic comparisons with the outside 

national park, where intervention was not practiced (Fig. 4-5 (4)).  

In addition to qualitative visual effects, several quantitative metrics were calculated to 

compare the differences between Times 5 and 7, as well as between Times 6 and 7 results. For 

each model run, the M. micrantha locations in the community forests at the end of Time 5 and 

Time 7 were compared, and each comparison generated a Kappa index (An et al., 2020; Cohen 

1960). Then the Kappa indices from the 30 runs were averaged. The resultant averaging Kappa 

is 0.332. The processes were repeated between Times 6 and 7, and the averaging Kappa was 

0.903, with the higher Kappa index indicating more similarity with the simulation end (M. 

micrantha completely removed from the community forests). Based on this change trend and 

the extend maps, the intervention resulted patterns where landscape cells closer to the 

households were prioritized in the intervention treatments, in consistent with the model design. 

4.3.3 Model evaluation results 

As discussed in Sections 4.3.1 and 4.3.2, the simulation results of household participation 

were mostly consistent among the 30 model-runs (Fig. 4-3), and the participation rate was 

similar to that informed by the 2017 household survey. As for M. micrantha extent, the results 

were also largely consistent among the 30 model runs (Figures 4-4 & 4-5). Its change trends 
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also make sense and reflect the simulation intentions. 

Household livestock amount dynamics were also examined as described in Section 4.3.1 

(Fig. 4-6). The average and standard deviation were close to the numbers informed by the 2017 

household survey (6.28 and 7.08, respectively).  

 

Figure 4-6: Average livestock amount of all model households and the standard deviation during the 

household intervention participation simulation described in Section 4.3.1. 

The sensitivity analysis was conducted in two parts. In the first part, for each of the 36 

scenarios mentioned in Section 4.2.4.4, the simulation continued until M. micrantha was 

completely removed from the community forests. Then the model reported the number of 

year’s intervention needed to the simulation end (Table 4-4). The results varied dramatically 

among the different scenarios. In the baseline scenario (1.0-10 days-150 min), it took three 

years to completely eradicate M. micrantha from the community forest. When household 

contribution was high (10 days per year) and intervention time cost was low (90 min), M. 

micrantha could be eliminated after only two years of intervention. However, if household 

contribution was low (2 days per year) and intervention time cost was high (210 min), it might 

take 20 to 30 years to achieve the same goal. Comparing among the three parameters, the effect 

of invasion rate on the simulation results was less influential than household contribution and 
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intervention time cost in the tested ranges. 

Table 4-4: Time span (number of years) needed for intervention to eliminate M. micrantha from the 

community forests under different scenarios. Low, moderate, and high contribution refers to 

participating households contributing 2, 5 and 10 days of labor each year, respectively. Low, moderate, 

and high intervention time cost refers to it takes seven people to clean a 20 m by 20 m plot in 90 min, 

150 min, and 210 min, respectively. 

Intervention time cost 

Invasion Rate Contribution Low Moderate High 

1.0 

Low 8 17 32 

Moderate 3 5 8 

High 2 3* 4 

0.8 

Low 8 16 29 

Moderate 3 5 7 

High 2 3 4 

0.5 

Low 8 14 24 

Moderate 3 5 7 

High 2 3 4 

0.2 

Low 7 12 19 

Moderate 3 5 7 

High 2 3 3 

* Baseline scenario

In the second part of sensitivity analysis, based on the intervention years informed by the 

baseline scenario, the model allowed the intervention simulation to run for three years and the 

resultant M. micrantha extents between the baseline scenario and the other 35 scenarios were 

compared (Table 4-5). Thirty runs were made for each scenario. For Scenario 1 (S1: 1.0-low-

low) in Table 4-4, Run 1 was compared with Run 1 of the baseline setting, and the Kappa was 

calculated for Run 1, and was repeated for Run 2, Run 3, … up to Run 30. Then an average 

Kappa was calculated for S1 from the 30 Runs. And this process was replicated for all non-

baseline scenarios. Their average Kappa values were reported in Table 4-5. In the simulations 

for different scenarios, if M. micrantha could be eliminated from the forests after three years 

(or less) of intervention, the Kappa for that scenario would be 1, since the simulation end 
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indicates the same result: M. micrantha being completely removed (Fig. 4-7). The lower Kappa 

values indicate lower similarities with the baseline scenario, and therefore more M. micrantha 

was present in the forests after three years of intervention. 

Table 4-5: Average Kappa of 30 model runs after three years of intervention when comparing each 

scenario with the baseline scenario. Low, moderate, and high contribution refers to each household 

contributing 2, 5 and 10 days of labor each year, respectively. Low, moderate, and high intervention 

time cost refers to it takes seven people to clean a 20 m by 20 m plot in 90 min, 150 min, and 210 min, 

respectively. 

Intervention time cost 

Invasion Rate Contribution Low Moderate High 

1.0 

Low 0.2629 0.0916 0.0404 

Moderate 1.0000 0.5388 0.3037 

High 1.0000 * 0.9482 

0.8 

Low 0.2692 0.0943 0.0419 

Moderate 1.0000 0.5460 0.3038 

High 1.0000 1.0000 0.9563 

0.5 

Low 0.2709 0.0986 0.0454 

Moderate 1.0000 0.5561 0.3101 

High 1.0000 1.0000 0.9856 

0.2 

Low 0.3046 0.1150 0.0556 

Moderate 1.0000 0.6022 0.3493 

High 1.0000 1.0000 1.0000 

* Baseline scenario
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(b) 

Figure 4-7: Average M. micrantha extent after three years of intervention under each of the 36 

experiments. (a) presents the results for invasion rates of 1.0 and 0.8, whereas (b) is for invasion rates 

of 0.5 and 0.2. Intervention time stands for the time needed to clean a 20 m by 20 m plot. Green stand 

for cleaned (M. micrantha free) cells whereas yellow ones are invaded. 

4.4 Discussion 

In the model design, the priorities for cell cleaning are based on their distances to the 

households. Because all modeled households were surrounded by the community forests, this 

model setting creates a clustered pattern of intervention locations (Figures 4-5 & 4-7). To test 

the effects of this geographic attribute on intervention results, the model tests the baseline 

scenario (1.0 invasion rate - 10 days participation -150 min clean-up) but altering the settings 
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so that intervention locations were randomly picked from the forests. Again, the simulations 

were run for 30 times. The results are distinct from that with original model settings and after 

20 years of intervention, M. micrantha invasion is still prominent in the forests (Fig. 4-8) with 

reminiscent invasion scattered in the forest landscape. These results may arise from the 

following processes: scattered intervention efforts will create much more invasion frontiers 

than clustered intervention, so that many more cleaned cells will be re-invaded in the next time 

step. This finding provides important insights that intervention treatments should be organized 

in a clustered manner, starting from one side of the forest and pushing toward the other side. 

Figure 4-8: Simulation results if intervention locations were randomly selected. 

It should be noted that household participation might have been underestimated in the 

above simulations. A cut-off threshold of ten days was designated for each household because 

it was the average number indicated in the pilot survey, and the number was also consulted 

with local experts to get their positive feedbacks. In practical situations, there may be cases 
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where participants can contribute more than ten days, and more than one member from the 

household is willing to participate in the intervention. There may also be households who 

cannot set aside ten full day due to various reasons, but can contribute less time, for example 

five days. In terms of implications for future large-scale intervention, if the goal is to eliminate 

the invasion within a certain designated region in short time, the more households contribute, 

the more quickly the objectives can be met. Community forest committees may organize the 

intervention in a flexible manner, so that each willing household can contribute certain days of 

labor toward the removal of M. micrantha. 

Besides, the model only simulated M. micrantha eradication in the community forests, but 

not for the neighboring Chitwan National Park, where M. micrantha invasion was also 

pervasive (Dai et al., 2020). Ideally M. micrantha in both the community forests and the 

adjacent park area should be coherently removed, otherwise the park areas surrounding the 

community forests will continue to serve as sources of invasion. Nevertheless, intervention in 

the park can be risky due to potential encounters with dangerous animals, such as Bengal tigers 

and rhinos. If intervention in the park is impractical or limited, community forest users may 

need to routinely patrol and intervene in the forests neighboring the park (mostly along the 

Rapti River) for potential future invasions. 

In summary, the merits of this chapter lie in the following aspects. First, this chapter is 

innovative in applying a coupled human and natural systems (CHANS) approach and 

incorporating socioeconomic factors in invasive plant control. Participants of the large-scale 

intervention campaigns are households and their members, who can make decisions and act in 

response to various socioeconomic characteristics. These attributes are calibrated from 
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household surveys and household’s participation is quantified through regression analysis. In 

addition to the social factors, the responses of M. micrantha extent is also informed by a cellular 

automaton-based landscape module. All such processes take place on a spatially explicit 

landscape. In this context, the simulation is informed by knowledge from both natural and 

social disciplines and evaluates the dynamics of a socio-ecological system using an agent-based 

modeling approach. 

Also, results from this chapter provide local forest users with important conservation and 

management insights. The most effective intervention practices are to enlist participation by as 

many households as possible and concentrate efforts in a clustered manner, instead of scattering 

treatments in different parts of the forests. It is also suggested that the organization of 

intervention should be flexible to include as many laborers as possible from forest users. 

Furthermore, the agent-based modeling practice contributes to model transparency and 

reusability (code available in the CoMSES) in the agent-based modeling domain. 

Caveats may arise concerning intervention time in the field. In the agent-based model, the 

dynamics of M. micrantha coverage is simulated in the cells. Since the intervention involves 

clearing all invasive plants from the forests, not only M. micrantha, the amount of M. micrantha 

in a cell may have a positive effect on the intervention time cost. In the field experiments, the 

intervention time ranges from 90 min to 210 min, with varying M. micrantha coverage in the 

plots. Sensitivity analysis was thus designed to test different levels of intervention time costs. 

Also worth mentioning is that the participation rate is linearly scaled up from modeled 

households to all households within the study area. As indicated by the 2017 survey, households 

may change their decisions in intervention participation if high percentage (e.g. 75% or above) 



73 

of their neighbors participated. Although in the simulations, as well as informed by the 2017 

survey, the participation rates are much lower (e.g. 40%), there may be local neighborhoods 

where most households decide to contribute. In the future, experiments may be designed to test 

the impact of percentage of neighbors willing to participate in the program. 

4.5 Conclusion 

In this chapter, an agent-based model informed by socio-ecological data is developed and 

tested to project local household participation in M. micrantha intervention in Chitwan 

community forests, Nepal, as well as M. micrantha’s extent under the intervention practices. 

Based on modeled participation rates, if about 40% of the households in the study area 

contribute at least ten full days of labor to the modified intervention treatments, M. micrantha 

is projected to be eliminated from the community forests after three years, although routine 

patrolling should be adopted to eradicate potential future invasion from neighboring Chitwan 

National Park. It is recommended that the intervention should be carried out in a geographically 

clustered manner instead of diffusing efforts to all parts of the forests. The results provide 

significant insights for local users in terms of invasive plant control and sustainable community 

forests management. Broadly, this chapter also contributes to achieving the United Nation’s 

Sustainable Development Goals (United Nations 2016), especially Goal 15 that aims to 

sustainably manage forests and halt biodiversity loss. 
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5. Chapter V: Conclusions

Through this dissertation research I examined the historical vegetation dynamics and the 

invasions of Mikania micrantha in western Chitwan community forests and how local 

communities can control the invasion. Inspired by the interdisciplinary coupled human and 

natural systems (CHANS) framework (Liu et al., 2007), this dissertation employs quantitative 

geospatial methods such as remote sensing to examine the historical greening-up signals of the 

targeting forests (Chapter II) and the spatial extent of M. micrantha invasion (Chapter III). This 

dissertation also features development of an agent-based model to simulate invasive plant 

intervention in the forests (Chapter IV). Below is a review of the major findings from each 

chapter. 

Chapter II examines the green vegetation dynamics in the community forests for the past 

three decades, spanning from 1988 (before the 1993 Community Forestry Act) to 2018. 

Informed by the results generated from Multiple Endmember Spectral Mixture Analysis 

(MESMA) and the resultant Normalized Difference Fraction Index (NDFI), the western 

Chitwan community forests have been greening up since their establishments in the mid-1990s. 

Although the invasion of M. micrantha may have contributed to some of the detected signals, 

we can at least verify that community forestry management was the prime reason for 

reforestation in the inland Sal forests, where M. micrantha invasion was rare. 

Chapter III integrates MESMA and Maximum Entropy (Maxent) modeling framework to 

map the presence probabilities of M. micrantha in the community forests. According to the 

modeling results, M. micrantha presence was positively related to the Green Vegetation 

fractions and negatively related to the Shade fractions produced by MESMA. Nevertheless, the 
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invasion was most sensitive to elevation, also a surrogate for distance to rivers, with invasion 

most prominent in riverine habitats. By the year of 2015, invasion was most prominent in the 

riverine forests and grasslands. 

Chapter IV utilizes an agent-based model (ABM) to investigate household participation in 

a proposed large-scale invasive plant intervention campaign, and the response of M. micrantha 

to the intervention. Based on simulated participation rate of the households in the study area, 

as well as the designated contribution of labor, M. micrantha can be eliminated from the 

community forests after three years of intervention. The results suggest that concentrating the 

intervention locations in community forest areas instead of scattering efforts in different parts 

of the forests, in order to minimize potential frontiers of re-invasion. Recommendations from 

the work in this chapter are many. For instance, if the national park area adjacent to the forests 

are impractical to intervene, routine patrolling should be organized to clean any potential future 

invasions. 

Broader Impacts and Future Directions 

This dissertation addresses the “protection, restoration and promotion of sustainable use 

of terrestrial ecosystems”, identified by the United Nations as one of the Sustainable 

Development Goals (United Nations 2016). Facing the novel challenges introduced by the 

invasion of exotic plant species, this dissertation mapped the spatial extent of the invasive plant 

and modeled its control in the western Chitwan community forests Furthermore, this 

dissertation may shed significant insights toward intervention practices, specifically 

contributing to the sustainable development goals. 

Evaluating the functioning of forest ecosystems has long been the research focus of 
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sustainability science through both field inventory and remote detection techniques (Coppin 

and Bauer, 1996; Kim et al., 2014). Traditional remote sensing methods, especially direct 

detection, can readily assess forest top canopies, but researchers may have to be creative when 

novel challenges emerge. In this dissertation, the invasion of an understory creeping vine was 

mapped by integrating spectral mixture analysis (MESMA) and species distribution modeling 

(Maxent). Future research may incorporate active remote sensing techniques, such as Light 

Detection and Ranging (LiDAR) to better capture forest structure changes introduced by the 

invasion. 

In addition to examining the potential responses of forests to environmental changes, novel 

tools, such as agent-based modeling (ABM), may be employed to simulate and project forest 

management outcomes under different scenarios (An et al., 2005; An et al., 2020). Particularly, 

in coupled human and natural systems (CHANS) where social and ecological factors may 

interact with each other, ABM can better capture the complex relationships among different 

modeling sectors (An et al., 2005; An et al., 2020; Liu et al., 2007). This dissertation has 

specifically contributed to the modeling of CHANS, as well as ABM testing, model 

transparency and reusability, and model of human decisions (An 2012). The CHANS and ABM 

approach offers a comprehensive framework for examining not only local conservation topics, 

but also broader sustainability related issues. Researchers from different disciplines may 

leverage this approach to better address complex socio-ecological questions. 
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7. Appendix A: Model Documentation 

The agent-based model developed in Chapter IV was built in NetLogo 6.0. The code and 

documents are fully accessible at https://www.comses.net/codebases/da200968-4feb-4e17-

8662-b56d026b894b/releases/1.0.0/. 
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8. Appendix B: ODD Protocol 

The ODD (Overview, Design concepts, & Details) Protocol is adopted to document the 

purpose, framework, variables, and data of the agent-based model developed in Chapter IV 

(Grimm et al., 2006; Grimm et al., 2010).  

1. Purpose 

This model serves three purposes:  

1) To model local households’ participation in intervention of invasive M. micrantha in the 

western Chitwan community forests. Household’s decision in participation will be determined 

by a suite of socioeconomic, demographic and geographic characters. 

2) To simulate the responses of M. micrantha’s extent to the intervention. 

3) To produce real-world projections of M. micrantha invasion based on household attributes 

and intervention practices. 

2. Entities, state variables, and scales 

One time-step represents one year and simulations will run for 25 years. One grid cell 

represents an area of 30m by 30m, and the model landscape comprises 1083 by 614 cells.  

Entities of the model include Household (social module) and the Environment cells 

(ecological module): 

1) Household agents have geographic attributes (distance to community forests) and 

socioeconomic attributes (household size, use firewood or nor, participate in user groups or 

not). The household agents have state variable of participating in M. micrantha intervention or 

not. One pixel represents one non-moving household. In every step, household’s 

socioeconomic attributes will be changed. These changes are informed by the changing trend 
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between two waves of household survey conducted in 2014 and 2017, respectively. In every 

step, there is a chance that the household will participate in the intervention. This chance is 

based on a regression equation that includes the above geographic and socioeconomic attributes. 

2) Environment (grid cell) has attributes of being invaded or not. One environmental grid cell

represents a 30 m by 30 m, or 900 m2 area. In every time step, if the environment is not invaded, 

and if one of its neighbors is invaded in the last time step, it may be invaded based on the 

probabilities determined by the parameter “Invasion rate”. In terms of intervention, starting in 

Time 5, M. micrantha in certain amount of forests cells will be cleaned based on the simulated 

participating households. Selection of the cells will be based on their distances to the 

households and closer cells have higher priority being selected. 

3. Process overview and scheduling

Possible agent actions are as follows: 

1) Model (Step 0 only, Year 2015): Create and set up household agents and environmental grids

2) Household (each step, social module): attributes change (starting in Time 3, year 2018) and

participate in intervention (starting in Time 5, Year 2020) 

3) Environment (each step, ecological module only): M. micrantha spread to neighboring

landscape cells, and being cleaned by intervention (starting in Time 5, Year 2020) 

4. Design concepts

4.1 Basic principles 

Social module – This module assumes that household’s participation in M. micrantha 

intervention is affected by a suite of geographic and socioeconomic attributes. This relationship 

is informed by the household survey conducted in 2017, and household’s probability in 
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participation is quantified through a logistic regression. The cost of time and labor in cleaning 

certain area of forest landscape is quantified through field experiments conducted between 

2015 and 2018 (Clark 2020). 

Ecological module – It is a cellular automaton-based model to simulate the spread of M. 

micrantha in the forests. In every time step, if the environment is not invaded, it will be invaded 

if one of its neighbors is invaded in the last time step, based on a probability determined by the 

parameter “Invasion rate”. 

4.2 Emergence 

Social module: The change of household’s socioeconomic attributes may have more or less of 

an impact than expected. 

Ecological module: The invasion rate (probabilities of M. micrantha spreading from current 

invaded cells to neighboring cells) may have more or less an impact than expected. 

4.3 Adaptation 

Social module: Household agents decide on their intervention participation based on their 

geographic and socioeconomic attributes. 

4.4 Objectives 

Social module: Household agents’ only objective is to remove M. micrantha from the forests. 

4.5 Learning 

In this model, agents do not change their adaptive traits over time as a response of their 

experience. 

4.6 Prediction 

Agent’s decisions are made based on information available at the current step, instead of 
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considering possible future outcomes. 

4.7 Sensing 

Not sensing is identified in this model. 

4.8 Interaction 

No interactions are identified in this model. 

4.9 Stochasticity 

Social module: Household socioeconomic attribute changes are informed by the differences 

between two waves of household surveys and they are partially stochastic. Household 

intervention participation is based on a probability quantified through household attributes, so 

their decision in participation is partially stochastic.  

Ecological module: The probability of M. micrantha spread to neighboring cells is partially 

stochastic. 

4.10 Collectives 

No collectives are identified in this model. 

4.11 Observation 

The outputs of the model include two .csv files: One depicting the number of household 

participating in intervention in every step, and one plotting the percentage of forest non-water 

cells being invaded in every step. Other outputs include the spatial distribution maps of the 

invaded cells. 

5. Initialization 

All initial values of household attributes are informed by the 2017 household survey. Initial M. 

micrantha extent in the forests are adopted from Dai et al. (2020). 
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6. Input data

Household attributes are derived from the household survey conducted in 2017. Their changes 

follow the trends informed by the differences between the 2014 and 2017 surveys. The cost of 

labor and time in intervention are examined by Clark (2020). Initial M. micrantha extent in the 

forests are adopted from Dai et al. (2020). 

7. Submodels

The processes for the two submodels are summarized below. 

1) Step 0: All agents and environment types (households and the environment) are created and

parametrized. 

2) Social module: Household geographic attribute (distance to community forest) is constant

throughout the modeling process, whereas the socioeconomic and demographic attributes 

will vary according to the differences between 2014 and 2017 household surveys. In every 

step, the new livestock amount was set to be its previous value minus a Poisson-distributed 

random integer with a mean of 1.011/3. If the new value was negative, we also set it to be 

zero. The probability of a household switching from using firewood to not using is 0.0744/3, 

and the probability of switching from not using to using is 0.5604/3. If a household 

participated in a user group last, the probability of not participating this time is 0.2513/3. 

If a household did not participate in any user groups last time, the probability of participate 

in at least one this time is 0.8225/3. If the household held community forest membership 

last time, the probability of not holding any more is 0.1722/3. The probability of switching 

from not holding to holding is 0.3213/3. If the household farmed last time, the probability 

of not farming this time is 0.0922/3. The probability of the opposite direction of change is 
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0.3005/3. If the household had business incomes last time, the probability of not having 

anymore this time is 0.3115/3. The probability of the opposite direction of change is 0.1613. 

If a household had income from salary jobs last time, the probability of not keeping it is 

0.3166/3. The probability of the opposite direction of change is 0.2483/3. Given the 

geographic and socioeconomic attributes, the household’s probability of intervention 

participation is calculated based on Equation 1. In the modeling process, if a randomly 

generated number between 0 and 1 is smaller than this probability, the corresponding 

household will contribute labor to M. micrantha intervention in the current step. 

3) Ecological module: In this cellular automata-based module, for a target cell, if it is not

invaded this time and any of its neighbors are invaded, the probability of it being invaded 

is based on a model input (0.2, 0.5, 0.8 or 1.0). Once M. micrantha is removed, the 

corresponding cell will not be marked as invaded afterwards, unless it is re-invaded in later 

steps. 




