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ABSTRACT OF THE DISSERTATION

Essays in Econometrics

by

Daniel Pellatt

Doctor of Philosophy in Economics

University of California San Diego, 2023

Professor Yixiao Sun, Chair

Each chapter of this dissertation examines a different econometric problem of interest

and proposes a new approach to the data analysis problem at hand. The chapter titles may

give the impression that some of these topics lie in disparate areas of focus. The topic and

approach of Chapter 3, for example, shares less commonalities with Chapters 1 and 2 than

the first two chapters share with one another. A connecting theme between all three chapters

is the combination of foundational problems with modern data or methodologies designed to

accommodate modern data analysis techniques.

In the first two chapters, the PAC-Bayesian analytical framework, which has developed

alongside the growth of machine learning applications, drives analyses of more traditional

xiii



problems involving binary decision and individual treatment rules. In Chapter 1, this facilitates

the derivation of new individual treatment rule estimators in the setting where a policy maker

faces a general budget or resource constraint. In Chapter 2, this suggests new decision rules

when a policy maker has a general utility function over payoffs that may have asymmetries

and vary with covariates relevant to the decision problem. In each case the rules possess

desirable theoretical properties, perform competitively against state-of-the-art alternatives, and

have additional advantages in terms of applicability, estimation options, and modeling flexibility.

Chapter 3 considers hypothesis testing in linear regressions when observations may

be sampled at short time intervals. Whereas monthly or even quarterly observations were

once ubiquitous in time series regression applications, it is becoming more common to have

weekly, daily or even intraday observations. However, higher frequency data can pose challenges

for classical inference procedures. F tests are proposed that utilize series long run variance

estimation. Under reasonable discrete-time or continuous-time settings, the procedures yield

valid inference so that the proposed hypothesis tests are robust to the sampling interval available

to the practitioner. The tests have competitive size and power properties against the limited set

of alternatives in a simulation study. Finally, an empirical example examining a relationship

between interest rates associated with shorter and longer duration bonds illustrates the usefulness

of the procedure.

xiv



Chapter 1

PAC-Bayesian Treatment Allocation Un-
der Budget Constraints

Abstract

This paper considers the estimation of treatment assignment rules when the policy maker faces

a general budget or resource constraint. Utilizing the PAC-Bayesian framework, we propose

new treatment assignment rules that allow for flexible notions of treatment outcome, treatment

cost, and a budget constraint. For example, the constraint setting allows for cost-savings, when

the costs of non-treatment exceed those of treatment for a subpopulation, to be factored into the

budget. It also accommodates simpler settings, such as quantity constraints, and doesn’t require

outcome responses and costs to have the same unit of measurement. Importantly, the approach

accounts for settings where budget or resource limitations may preclude treating all that can

benefit, where costs may vary with individual characteristics, and where there may be uncertainty

regarding the cost of treatment rules of interest. Despite the nomenclature, our theoretical

analysis examines frequentist properties of the proposed rules. For stochastic rules that typically

approach budget-penalized empirical welfare maximizing policies in larger samples, we derive

non-asymptotic generalization bounds for the target population costs and sharp oracle-type

inequalities that compare the rules’ welfare regret to that of optimal policies in relevant budget

categories. A closely related, non-stochastic, model aggregation treatment assignment rule is

shown to inherit desirable attributes.

1



1.1 Introduction

This paper proposes new statistical decision rules for treatment assignments under a

general budget or resource constraint. A key objective in the empirical analysis of treatment data

is identifying policies that result in the most beneficial outcomes. There is a large literature (e.g.

Manski (2004) and Hirano and Porter (2009)) that examines how to determine which policies

are optimal to implement in the absence of constraints such as one on policy cost. In practice,

however, policy makers are rarely free from constraints when it comes to the policies they may

enact. Several recent papers in the econometrics literature, including Kitagawa and Tetenov

(2018), Athey and Wager (2021), and Mbakop and Tabord-Meehan (2021), consider the treatment

estimation problem from an empirical welfare maximization (EWM) perspective that allows for

arbitrary constraints on the functional form of the decision rule. However, these papers do not

address general budget constraints nor cost uncertainty that varies with the characteristics of

individual agents. For example, while Kitagawa and Tetenov (2018) consider quantity constraints

via random rationing, this treats costs as fixed and hence cannot identify which policies most

efficiently balance cost vs. outcome trade-offs when costs vary with individual characteristics.

Here we focus on the setting where costs may be uncertain, current resource limitations

may preclude treating all that can benefit, and where individual characteristics can influence

treatment responses and costs. Compared to the unconstrained setting, the theoretically optimal

treatment rule involves population objects that are more difficult to estimate and analyze in

concert. For example, Bhattacharya and Dupas (2012) show that under a quantity constraint,

which is simpler than the setting with variable costs, the optimal rule is to assign treatment when

the conditional average treatment effect exceeds its (1− c)th quantile. Here c is the maximal

proportion of treatments assignable under the constraint. As a result, it can be difficult to evaluate

properties of interest for proposed approaches and each existing approach has limitations.

The contributions of the paper are as follows. First, we propose new treatment rules that

expand the tool set available to policy makers in the budget constrained setting. Second, we

2



show they possess several potential benefits in terms of theoretical guarantees, the variety of

settings in which they can be applied, and ease of estimation. Third, we show expert knowledge

can be incorporated when the policy maker has non-data-dependent insights into the problem.

However, the ability to integrate expert knowledge is a secondary feature of the approach. In our

primary implementation we assume no such knowledge.

PAC-Bayesian analysis applies the probably approximately correct learning framework

to objects of interest that involve probability distributions over model or parameter families.

These objects can include, for example, treatment rules formed by aggregating over a family

of potential rules. Our work can be seen as extending the PAC-Bayesian learning approach

to the treatment setting in a way that incorporates a secondary cost objective. This motivates

the proposed rules and allows us to derive generalization bounds for the costs and oracle-type

inequalities for the welfare regret of proposed rules. Here, the welfare regret associated with

a treatment rule is the loss in expected welfare of the decision rule relative to the theoretically

optimal decision rule (cf. Manski (2004)). To work within the regret framework, we also derive

the form of a theoretically optimal treatment policy if the data generating process (DGP) were

known under a general budget constraint.

Individualized treatment policies under budget restrictions are of interest in a variety

of settings. Often policy makers with limited resources face uncertainty regarding the costs

and benefits of potential policies where this uncertainty is driven due to the fact that costs and

benefits vary with the individual characteristics of those who decide to participate in a program.

For example, Finkelstein et al. (2012) examine outcomes such as health care utilization and

self-reported health measures following a randomized expansion of household access to Medicaid

in Oregon. A policy maker may be interested in identifying policies to maximize a well-defined

weighted average of such outcomes given a binding expenditure constraint. The government has

control over eligibility rules defined on characteristics such as age, income, and the number of

children in a household that directly influence expected cost and cost uncertainty.

Insecticide-treated nets (ITNs) for protection against malaria in regions of Africa repre-
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sent another common example. Lengeler (1998), for instance, documents reductions in child

mortality while Kuecken et al. (2014) document returns to education related to ITN provisions.

Teklehaimanot et al. (2007) estimate the cost of providing an ITN to every at-risk individual in

sub-Saharan Africa to be 2.5 billion dollars. However, government and aid funding was below

that level at the time of the study. Bhattacharya and Dupas (2012) look at a treatment policy

estimator under quantity constraints derived from data from a randomized experiment assigning

ITNs to rural households in Kenya. They use fixed costs to estimate rules that satisfy quantity

constraints. Our approach makes it possible to target policies in such a way as to account for cost

heterogeneity (e.g. different distribution channels) and hence improve efficiency and achieve a

higher overall outcome level.

Beyond aid and social safety net policies, the budget constrained treatment assignment

problem can also arise in a commercial context for firms considering potentially costly promo-

tions aimed at obtaining new customers. For instance, Sun et al. (2021) recently proposed a

budget constrained treatment estimator aimed at determining which customers should be offered

trial access to a premium service. They seek to use customers’ individual characteristics to

discriminate against making offers to customers likely to heavily utilize the service in the trial

(high cost) while being unlikely to use the service after the trial period expires. Rather than

the simple notion of not wanting to implement a policy that leads to long-term losses, many

companies will also face a short-term constraint on how much they can “lose” in the trial phase

to gain market share. For other firms, like Uber which is considered in Sun et al. (2021), a

deeper issue may arise. Increasing sales or trial offers may fundamentally alter the firm’s cost

structure (e.g., increasing driver compensation to induce enough new drivers to work to handle

the increased number of trips).

The rules we develop start from a user-specified family of (non-stochastic) treatment

models F that map an individual’s covariates that are observable pre-treatment to the {0,1}

treatment indicator space. Rather than choosing the model that maximizes the empirical welfare

in F , for example, we instead consider stochastic treatment rules derived from F and a measure
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of budget penalized empirical welfare. Given an individual’s pre-treatment covariates, their

treatment probability is calculated as an exponentially weighted average over the treatments

specified by members of F . The treatment probability is similar to a weighted majority vote

taken over F . The exponential weighting received by members of the model family is greatest

for models with a large budget-penalized empirical welfare. The magnitude of the penalization

term related to cost is determined by a parameter u that modulates the trade-off between max-

imizing welfare and reducing costs. Any choice for u will correspond to a different maximal

empirical budget, with u = 0 corresponding to an unlimited budget (no constraint). Typically,

for larger sample sizes, the rule is unlikely to assign identical covariates to different treatments

unless there are subsets of the model family with similarly high values of penalized welfare

that prescribe different treatments. We also consider closely related, non-stochastic, model

aggregation treatment rules that aggregate over F to make treatment decisions.

Utilizing a PAC-Bayesian framework, under reasonable conditions we show that for a set

of u values, in large samples, with high probability we obtain increasingly accurate estimates

of the target population costs associated with corresponding stochastic treatment rules. We can

use these estimates to select u or, alternatively, u can be chosen via cross-validation. At the

same time, with u chosen in either manner, with high probability the resulting rule achieves a

welfare regret comparable to that of the best models in the model family that have a similar target

population cost. Starting from a set of budget penalty parameters, the policy maker can trace out

good estimates of the feasible target population budgets, select the parameter associated with one

of these estimates, and obtain a treatment rule with desirable regret properties. Regarding the

non-stochastic, model aggregation treatment rules, we show that they inherit desirable properties

from the stochastic rules. We also consider the setting where u is chosen to meet a predetermined

target population budget level. The procedure in this case is still reasonably motivated, as the rule

minimizes an upper bound on the target population regret among rules that satisfy an empirical

budget constraint. However, the generalization bounds for the target population cost and the

oracle-type inequalities in this case become more complex to interpret.
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The remainder of the paper is organized as follows. Section 1.2 discusses related

literature and papers with alternative budget constrained treatment estimators. Section 1.3

details the statistical setting, treatment model formulation, and initial properties useful for later

results. Section 1.4 provides theoretical motivation for the proposed treatment rules, utilizing

the PAC-Bayesian analysis framework to examine (frequentist) properties of the proposed rules.

Section 1.5 conducts a simulation experiment and discusses implementation and estimation.

Lastly, Section 1.6 conducts a short empirical illustration utilizing data from the Job Training

Partnership Act Study and Section 1.7 concludes.

1.2 Related Literature

The topic of budget constrained treatment allocation is the subject of a small but growing

literature. Sun et al. (2021) and Wang et al. (2018) empirically implement treatment rules starting

from the notion of a theoretically optimal rule. They estimate unknown population level objects

that appear in the optimal rules and then plug in the empirical counterparts to the corresponding

theoretical formulas to obtain rules. The standard drawback of this sort of approach is that

the estimation technique doesn’t directly target policies that maximize the welfare problem of

interest. For example, the regressions utilized to fit the conditional average treatment and cost

functions in Wang et al. (2018) might yield parameters that are most accurate in regions of the

covariate space that are less important for distinguishing individuals with a high outcome-to-cost

ratios in the population. Wang et al. (2018) also consider a second method that shares similarities

with the approach taken by Huang and Xu (2020). These approaches add the budget constraint

to the outcome-weighted treatment learning approach considered, for example, in Zhao et al.

(2012). These approaches work from optimization problems that directly target an empirical

version of the problem of interest.

One drawback of the aforementioned techniques is a lack of theoretical insight regarding

the true target population cost and risk attributes of the proposed rules. Sun (2021) adapts the
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EWM setting of Kitagawa and Tetenov (2018) to account for a general budget constraint. She

considers a conservative rule that will satisfy the budget constraint asymptotically. She also con-

siders a modified rule where a Lagrange multiplier parameter is capped during estimation. This

will, asymptotically, approach the welfare of the budget constrained welfare maximizing policy

among the user-specified model class. This methodology extends the arbitrary form features

of EWM to the budget constraint setting. However, the rules involve a non-convex estimation

procedure that may become difficult if the model class includes more flexible functional forms.

While our methodology sacrifices some ability to satisfy functional form constraints due to its

stochastic nature, one benefit is that we can take advantage of Bayesian estimation machinery as

discussed in Section 1.5. Lastly, although the modified rules of Sun (2021) will approach the

optimal rule within the original budget constraint, it is worth noting that the modified rule may

violate that budget constraint. One benefit of our approach is we can compare our rules to those

with the highest welfare among rules with the same target population cost as the proposed rules.

In a broader context, this paper contributes to a growing literature on statistical treatment

rules in econometrics, including Manski (2004), Dehejia (2005), Hirano and Porter (2009),

Bhattacharya and Dupas (2012), Kitagawa and Tetenov (2018), Viviano (2019), and Athey and

Wager (2021). This literature has overlap with additional fields including statistics and machine

learning. For examples, see Qian and Murphy (2011) and Beygelzimer and Langford (2009),

respectively. Additional references and a discussion of the links between these fields can be

found in Athey and Wager (2021). In the machine learning literature, London and Sandler (2019)

utilize a PAC-Bayesian approach to policy estimation for the logged bandit feedback problem

which is closely related to treatment policy estimation. We also note that Kitagawa et al. (2023)

examine stochastic treatment assignment rules from a PAC-Bayesian perspective. Their paper’s

approach has overlap with ours, however the papers diverge in a number of dimensions stemming

from our focus on the setting with a general budget constraint which is not considered there.

Lastly, our analysis and proposed treatment rules are heavily influenced by the PAC-

Bayesian machine learning literature. Seminal works in this area include Shawe-Taylor and
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Williamson (1997), McAllester (1999b), McAllester (1999a), Seeger (2002), and McAllester

(2003b). In particular, we utilize techniques stemming from Catoni (2007), Lever et al. (2010),

Maurer (2004), Germain et al. (2015), and Alquier et al. (2016). The theoretical contribution of

our paper is, first, to modify and adapt relevant tools and generalization bounds to the treatment

choice setting. We also develop the incorporation of a secondary objective or loss function

(the treatment cost cost) into the analysis that yields informative oracle-type inequalities and

generalization bounds relevant to the constrained budget setting.

1.3 Setup and Assumptions

1.3.1 Statistical Setting and Policy Maker’s Problem

We consider the setting where a policy maker has data consisting of observations

Zi = (Yi,Ci,Di,Xi), i = 1, . . . ,n.

Here, Xi ∈X ⊂ Rdx , where dx ∈ N, denotes a vector of covariates for individual or unit i

observed prior to treatment assignment, Yi ∈R is unit i’s outcome that is observed after treatment

assignment, Ci ∈ R is the cost incurred and Di ∈ {0,1} is a treatment assignment indicator that

is 1 if unit i was assigned the treatment and is zero otherwise. Ci may be uncertain at the time of

treatment assignment and is allowed to be observed after treatment assignment.

To account for heterogeneous treatment responses and costs, we work from a potential

outcomes and costs framework. For unit i and for j ∈ {0,1}, let Yi, j and Ci, j denote the outcome

and cost, respectively, that would have been observed if unit i had been assigned Di = j. Ignoring

the index i, we can relate the observed outcome and cost to their potential outcomes and costs by

writing

Y = Y1D+Y0 (1−D) , C =C1D+C0 (1−D) . (1.1)

The following assumption formalizes this setting. It also includes conditions needed to identify
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properties related to potential outcomes and costs when they are not observed directly in sample

data.

Assumption 1.3.1 (i) Random Sample: Let Q be the joint distribution of (Y0,Y1,C0,C1,D,X),

where Y0,Y1,C0,C1 ∈ R, D ∈ {0,1}, X ∈X ⊆ Rdx . Let Z = (Y,C,D,X) ∈ Z be dis-

tributed according to P where P is determined by Q and (1.1). We assume the sample

S = {Zi}n
i=1 ∼ P⊗n is a size n i.i.d. sample1. We denote the sample space S ∈S = Z n.

(ii) Unconfoundedness: (Y1,Y0,C1,C0)⊥D|X.

(iii) Bounded Outcomes and Costs: There exist positive My,Mc < ∞ such that the support of Y

is contained in [−My/2,My/2] and the support of C is contained in [−Mc/2,Mc/2].

(iv) Strict overlap: Define e(X) = EP[D|X ], where EP(·) is the expectation with respect to P.2

It is assumed that there exists κ ∈ (0,1/2) such that e(x) ∈ [κ,1−κ] for all x ∈X .

Assumption 1.3.1 mirrors treatment assumptions in Kitagawa and Tetenov (2018) and

Mbakop and Tabord-Meehan (2021) and also includes similarly-formulated conditions for cost-

related variables. Unconfoundedness states that, conditional on the covariates, the potential

outcomes and costs are independent of the treatments assigned to the observed data. This and

strict overlap will hold in randomized controlled trials (RCTs) which is our primary setting of

interest. As such, we assume e(x) is known. It is possible to adjust our procedures to a setting

where e(x) is estimated similarly to the e-hybrid rules utilized in Kitagawa and Tetenov (2018)

and Mbakop and Tabord-Meehan (2021) while maintaining some of the theoretical motivations

considered in Section 1.4. We leave a complete exploration of this topic to future research and

work under the presumption that e(x) is known.

1To denote the probability of an event A under this sampling distribution, we will use the notation Pn(A). To
denote the probability of an event B under the distribution P, we write P(B).

2Similarly, we denote expectation with respect to Q by EQ(·). Expectation with respect to the distribution of the
sample, P⊗n, will be denoted EPn(·).

9



Define the conditional average treatment effect (CATE) and the conditional average

treatment cost (CATC), respectively, by

δy(x)≡ EQ[Y1−Y0|X = x], δc(x)≡ EQ[C1−C0|X = x]. (1.2)

Assumption 1.3.1 (iii) implies that |δy(X)| and |δc(X)| are bounded almost surely by My and Mc,

respectively. Our procedures can be implemented without knowledge of My or Mc and several of

the motivating regret bounds in Section 1.4 could be derived in slightly altered forms if instead

we required that objects related to |δy(X)| and |δc(X)| are sub-Guassian or even sub-exponential

with additional constraints on a hyper-parameter. Assumption 1.3.1 (iii) is typically a mild

requirement that is often adopted in the treatment and classification literature; here it simplifies

our exposition and path to generalization bounds. Note that Y and C may belong to any interval.

The upper and lower bounds are taken to be symmetric around zero for convenience and without

loss of generality.

In section 1.3.2 we propose treatment assignment rules that aim to balance two prevailing

objectives. We seek rules that will maximize the expected outcome Y while also accounting

for a potential budget constraint when we anticipate that resource, policy, or other limitations

may preclude treating everyone with a positive CATE. Our proposed rules contain a parameter

u, which can be chosen in a data-dependent manner, that modulates how much the second

(budgetary) objective is prioritized. In particular, any choice of u corresponds to a different

maximum expected cost in a budget-constrained welfare optimization problem. Before describing

the treatment model and empirical approach, we first state the policy maker’s problem at the

population level under a given maximum budget B if the distribution Q were known.

The policy maker’s goal is to obtain a treatment rule that maximizes welfare subject

to a budget or quantity constraint. The treatment rule is intended for application to a target

population wherein the joint distribution of (Y0,Y1,C0,C1,X) follows that associated with Q. We

will consider stochastic treatment assignment rules, defining such a rule as a measurable map
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f : X → [0,1] from the covariate space to a treatment assignment probability. If f (x) ∈ {0,1},

the treatment assignment for x is non-random. If 0 < f (x)< 1, treatment is assigned randomly

with treatment probability f (x).

The utilitarian welfare associated with f is given by

EQ[Y1 f (X)+Y0(1− f (X))]. (1.3)

This is the expected value of Y when treatment is administered according to f (X). Dropping

terms that do not vary with f , the policy maker’s objective function evaluated at f is defined by

W ( f )≡ EQ[(Y1−Y0) f (X)]. (1.4)

Choosing f that maximizes W ( f ) is equivalent to choosing f that maximizes utilitarian welfare.

Thus we will refer to W ( f ) as the welfare associated with f . Note that by the law of iterated

expectations, W ( f ) = EQ[δy(X) f (X)]. Next, define the expected cost of f by

K( f )≡ EQ [(C1−C0) f (X)] , (1.5)

which can similarly be written K( f ) = EQ[δc(X) f (X)]. Given a budget constraint B, the policy

maker’s problem is to identify

f ∗B ∈ argmax
f
{W ( f ) : K( f )≤ B} , (1.6)

where the maximization is taken over all measurable functions from X to [0,1].

Note that K( f ) = EQ[C1 f (X)+C0(1− f (X))]−EQ[C0]. The budget constraint states that

the expected additional cost due to implementing treatment policy f , that beyond what would be

expected if treatment were never assigned, cannot exceed B. This is flexible, as it allows for cost

savings (i.e. when C1 <C0 with positive probability) to be factored into the budget. Provided
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such savings are possible, a policy maker could be interested in, for example, B = 0. In this

scenario the policy maker is looking for treatment policies that may improve welfare without

increasing the expected cost beyond the setting were no treatments are administered. On the

other hand, if the policy maker has a fixed budget allocated to treatments and cost savings do not

feed back into the budget, one can simply define C0 = 0, so that the observed C is equal to the

cost of treatment when treatment is provided and is zero otherwise. If there is a a fixed quantity

constraint consisting of a set number of treatments and no other budgetary concerns, one can set

C0 = 0 and C1 = 1 so that the observed C is the treatment indicator. In this case B denotes the

maximum proportion of the target population for which treatments are available.

If there is no budget constraint and the policy maker is able to choose any measurable

f : X → [0,1], it is straightforward to verify that an optimal treatment allocation rule is given by

f ∗(x) = 1{δy(x)> 0}. (1.7)

f ∗ assigns treatment to any unit with a positive CATE. Here, and throughout the paper, the

indicator function 1{A} takes the value 1 if event A occurs and is zero otherwise. Given a

particular budget constraint B, a solution to the policy maker’s problem is characterized in the

following theorem.

Theorem 1.3.1 Let (Y0,Y1,C0,C1,X) be distributed according to Q. Assume that EQ|δy(X)|<∞,

EQ|δc(X)|< ∞, and that B > EQ[δc(X)1{δc(X)< 0}]. Then there exist constants ηB ≥ 0 and

a1,a2 ∈ [0,1] such that

f ∗B(x) =


0 if δy(x)< ηBδc(x),

a11{δc(x)> 0}+a21{δc(x)< 0} if δy(x) = ηBδc(x),

1 if δy(x)> ηBδc(x),

(1.8)

satisfies (1.6). In particular, if K( f ∗)≤ B, then one can take ηB = a1 = a2 = 0 and f ∗B = f ∗; if
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K( f ∗)> B then (ηB,a1,a2) are chosen such that K( f ∗B) = B. If EQ[1{δy(X) = ηBδc(X)}] = 0,

f ∗B is deterministic and is the unique budget-constrained, welfare-optimizing policy in the sense

that for any f ′ satisfying (1.6) it holds that f ′(X) = f ∗B(X) a.s.

The choice of ηB in Theorem 1.3.1 is unique, however in general there may be different

choices of a1,a2 that produce optimal rules when EQ[1{δy(X) = ηBδc(X)}] ̸= 0. Apart from this

difference, Theorem 1.3.1 is a generalization of a result in Sun et al. (2021) which restricts itself

to the setting where C1 ≥C0 almost surely. In practice, of course, Q is unknown to the researcher

who must estimate a suitable model f empirically. Section 1.3.2 introduces the PAC-Bayesian

setting for the empirical strategy we employ.

When EQ[1{δy(X) = ηBδc(X)}] = 0, for example when δy(X) and δc(X) have bounded

densities, Theorem 1.3.1 says the optimal treatment rule is deterministic and unique in terms of

the resulting treatment decisions. However, the function δy(x)−ηBδc(x) in the optimal rule in

this setting, given by

f ∗B(x) = 1{δy(x)−ηBδc(x)> 0},

is not unique. Any measurable function m(x) : X → R that satisfies

sign [m(x)] = sign [δy(x)−ηBδc(x)] ,

yields an optimal treatment rule via fm(x) = 1{m(x)> 0}. This situation is similar to that in the

binary forecasting problem (cf. Elliott and Lieli (2013)) and is illustrated in Figure 1.1.

In Section 1.3.2, we propose treatment rules that aggregate over a user-specified family

of treatment rules in a way that is weighted towards models with high empirical budget-penalized

welfare. There, we introduce Gibbs treatment rules, which aggregate over the rule family to

derive a treatment probability, and related majority vote rules which aggregate over the rule

family to assign treatment directly. Aside from the desirable theoretical properties derived in

Section 1.4, some intuition behind such an approach is as follows. Two functions m̂(x) and
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δy(x)
ηBδc(x)
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δy(x) − ηBδc(x)
m(x)

x

Figure 1.1. On the left, a plot of δy(x) and ηBδc(x) in a simple setting with a single crossing
point and a single covariate. On the right, the corresponding δy(x)−ηBδc(x) is plotted along
with a second function, m(x). Here, m(x) differs from δy(x)−ηBδc(x) everywhere except at
the crossing point yet 1{m(x) > 0} and 1{δy(x)−ηBδc(x)} = f ∗B(x) yield identical treatment
decisions.

m̂∗(x), with corresponding treatment rules 1{m̂(x)> 0} and 1{m̂∗(x)> 0}, respectively, could

yield identical or very similar treatment decisions over the sample covariate values. In a setting

where different rules may have the same or very similar observable properties, it is reasonable to

aggregate or average over rules with high empirical welfare. Rather than trying to select a single

solution, we take the identification issue above as motivation for an ensemble approach.

1.3.2 Empirical Approach and PAC-Bayesian Setting

Underpinning the treatment rules we will consider is a family of non-stochastic treatment

rules, indexed by θ ∈Θ, denoted

FΘ = { fθ (x) : X →{0,1};θ ∈Θ}. (1.9)

For a concrete example, we could let {φ1(x), . . . ,φq(x)} be a set of feature transformations where

φ j(x) : X → R for j = 1, . . . ,q. Denoting φ(x) = (φ1(x), . . . ,φq(x))⊺, we could then have

fθ (x) = 1{φ(x)⊺θ > 0} for θ ∈Θ = Rq, (1.10)
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where q ∈ N need not be equal to dx, the dimension of X .

For any treatment assignment rule f , we define the welfare regret relative to the first-best

prediction rule f ∗ in (1.7) by

R( f )≡W ( f ∗)−W ( f ) .

Note that R( f ) is defined relative to the first-best treatment assignment without a budget con-

straint. We can also define

RB( f )≡W ( f ∗B)−W ( f ), (1.11)

the welfare-regret under a maximum expected budget of B where f ∗B is defined in Theorem 1.3.1.

With simple manipulations, the oracle-type inequalities involving R( f ) in Sections 1.4.1 and

1.4.2 apply to RB( f ) rather than R( f ). For simplicity, we will mostly work with R( f ) which is

non-negative. Note that RB( f ) is only non-negative when attention is constrained to treatment

rules with a maximal budget B. For particular models fθ ∈FΘ, with a slight abuse of notation,

we will write

R(θ)≡ R( fθ ) , W (θ)≡W ( fθ ) , and K(θ)≡ K ( fθ ) .

Under the unconfoundedness and strict overlap conditions of Assumption 1.3.1, it holds

that

W ( f ) = EQ [(Y1−Y0) f (X)] = EP

[(
Y D
e(X)

− Y (1−D)

1− e(X)

)
f (X)

]
.

A similar statement can be written for K( f ), now with C in place of Y . Defining

δy,i =

(
YiDi

e(Xi)
− Yi(1−Di)

1− e(Xi)

)
and δc,i =

(
CiDi

e(Xi)
−Ci(1−Di)

1− e(Xi)

)
,

the (unbiased) empirical counterparts of W ( f ), R( f ), and K( f ), along with their notation for
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fθ ∈FΘ, are given by

Wn( f )≡ 1
n

n

∑
i=1

δy,i f (Xi) , Wn(θ)≡
1
n

n

∑
i=1

δy,i fθ (Xi) ,

Rn( f )≡ 1
n

n

∑
i=1

δy,i ( f ∗ (Xi)− f (Xi)) , Rn(θ)≡
1
n

n

∑
i=1

δy,i ( f ∗ (Xi)− fθ (Xi)) ,

Kn( f )≡ 1
n

n

∑
i=1

δc,i f (Xi), Kn(θ)≡
1
n

n

∑
i=1

δc,i fθ (Xi).

As f ∗ is unknown, the empirical regret Rn( f ) =Wn( f ∗)−Wn( f ) or Rn(θ) for θ ∈Θ cannot be

evaluated in practice. Rn(θ) will arise in our analysis only as a theoretical object in relation to

R(θ). We stress that the treatment assignment rules we consider can be expressed solely in terms

of Wn(θ).

FΘ consisting of treatment rules of the form in (1.10) will be considered in Sections

1.4.2 and 1.5. In general, to accommodate broader treatment rule model families, we make the

following technical assumptions.

Assumption 1.3.2 (i) We assume that (Θ,Bθ ) is a standard Borel space. (ii) We assume that

FΘ is such that the maps (S,θ) 7→ Rn(θ) : S ×Θ→ R and (S,θ) 7→ Kn(θ) : S ×Θ→ R are

measurable.

We now introduce the stochastic treatment rules of interest. Let P(Θ) be the set of

probability measures on (Θ,Bθ ) and, for any π ∈P(Θ), let Pπ(Θ) = {ρ ∈P(Θ) : ρ ≪ π}.

That is, Pπ(Θ) is the set of probability measures on (Θ,Bθ ) that are absolutely continuous

with respect to π . Rather than selecting a single value θ̂ ∈Θ, for example that which maximizes

Wn(θ), and then assigning treatment via f
θ̂

, we seek probability measures ρ ∈P(Θ) from which

we form stochastic treatment rules. Borrowing nomenclature from the classification literature, we

work with Gibbs treatment rules. For ρ ∈P(Θ), the Gibbs treatment rule or method associated

ρ , denoted fG,ρ : X → [0,1], is defined by

fG,ρ(x) =
∫

Θ

fθ (x)dρ(θ), x ∈X .
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Assigning treatments via the Gibbs method is equivalent to assigning treatments as

follows. For an individual with covariates X , a parameter value θ◦ is drawn randomly according

to ρ , i.e. θ◦ ∼ ρ . Then, fθ◦(X) ∈ {0,1} determines the treatment assignment. This process,

with an independent draw from ρ , is repeated each time treatment is to be assigned. Note that,

exchanging the order of integration, we can write

R( fG,ρ) =
∫

Θ

R(θ)dρ(θ) and Rn( fG,ρ) =
∫

Θ

Rn(θ)dρ(θ),

which is called the Gibbs risk associated with ρ . Similarly, the expected cost of fG,ρ and its

empirical counterpart can be written

K( fG,ρ) =
∫

Θ

K(θ)dρ(θ) and Kn( fG,ρ) =
∫

Θ

Kn(θ)dρ(θ).

We will frequently be concerned with the cost or empirical cost associated with a Gibbs treatment

rule utilizing some ρ ∈Pπ(Θ). To simplify the exposition, we denote

B(ρ)≡ K
(

fG,ρ

)
, and B̂(ρ)≡ Kn

(
fG,ρ

)
. (1.12)

A non-stochastic treatment rule that is closely related to the Gibbs rule is the so-called

majority vote or Bayes method associated with ρ ∈P(Θ). This is given by

fmv,ρ(x) = 1
{∫

Θ

fθ (x)dρ(θ)>
1
2

}
, x ∈X . (1.13)

In practice, majority vote rules can deliver treatment rules that are numerically more stable than

their Gibbs counterpart. If ρ = αρ1 +(1−α)ρ2 for some ρ1,ρ2 ∈P(Θ) and constant α , then

R( fG,ρ) = αR( fG,ρ1)+(1−α)R( fG,ρ2). That is, the Gibbs risk is a linear functional of ρ . This

linearity makes the Gibbs risk and Gibbs treatment rules more amenable to theoretical analysis.

Our analysis will therefore focus on a family of Gibbs treatment rules. However, in Section 1.4.3,
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we show that the majority vote treatment rule associated with our Gibbs rules of interest inherit

desirable properties from their Gibbs counterparts. In practice, either method is an acceptable

choice and we consider both in our simulation study in Section 1.5.

In particular, we propose to use Gibbs treatment rules utilizing data-dependent3 probabil-

ity measures of the form ρ̂λ ,u defined below.

Definition 1.3.2 For λ > 0, u ≥ 0, and a reference measure π ∈P(Θ), define ρ̂λ ,u to be the

(random) probability measure on Θ with the following Radon-Nikodym (RN) derivative with

respect to π:

dρ̂λ ,u

dπ
(θ) =

exp [−λ (Rn(θ)+uKn(θ))]∫
Θ

exp
[
−λ
(
Rn
(
θ̃
)
+uKn

(
θ̃
))]

dπ
(
θ̃
)

=
exp [−λ (uKn(θ)−Wn(θ))]∫

Θ
exp
[
−λ
(
uKn

(
θ̃
)
−Wn

(
θ̃
))]

dπ
(
θ̃
) .

Define ρ∗
λ ,u to be the probability measure on Θ with the following RN derivative with respect to

π:
dρ∗

λ ,u

dπ
(θ) =

exp [−λ (R(θ)+uK(θ))]∫
Θ

exp
[
−λ
(
R
(
θ̃
)
+uK

(
θ̃
))]

dπ
(
θ̃
) .

ρ̂λ ,u is sometimes called a Gibbs posterior distribution or a Boltzmann distribution. As

λ → ∞, ρ̂λ ,u concentrates around the value of θ such that fθ minimizes the budget-penalized

empirical regret criterion Rn( fθ )+uKn( fθ ). Equivalently, it concentrates around the value of θ

the maximizes Wn(θ)−uKn(θ) over Θ. This reduces to the empirical welfare maximizer when

u = 0. In general, ρ̂λ ,u assigns higher probability to regions of the parameter or model space

with low budget-penalized empirical regret. u modulates the trade off between emphasis on low

regret vs expected cost. As subsequent analysis will show, different choices of u correspond

3In general, by data-dependent probability measures on (Θ,Bθ ) we mean regular conditional probability
measures (RCPMs): letting Bs denote the σ -algebra associated with the sample space S , ρ(S, ·) is an RCPM on
(Θ,Bθ ) if (i) for any fixed A ∈Bθ , the map S 7→ ρ(S,A) : (S ,Bs)→ R+ is measurable; and (ii) for any S ∈S ,
the map A 7→ ρ(S,A) : Bθ → [0,1] is a probability measure. For additional measure-theoretic details, for example
the decomposition and measurability of the Kullback-Leibler divergence (utilized throughout the paper) between
RCPMs, we refer the reader to Catoni (2004), in particular Proposition 1.7.1 and its proof on pages 50-54.
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in a one-to-one manner with different budget constraints. We will consider the setting where

u is cross-validated and the setting where it is determined by a particular choice of a budget

constraint parameter B. ρ∗
λ ,u is a theoretical counterpart to ρ̂λ ,u that will be useful when we

analyze statistical properties related to ρ̂λ ,u. λ is typically chosen via cross-validation while

choices where λ = O(
√

n) will yield optimal or near-optimal rates of convergence in Section

1.4.

In the PAC-Bayesian literature, probability measures over the model or parameter space

that are traditionally chosen independently of the sample are often called prior probability

measures. In our setting, the choice of π utilized in Definition 1.3.2 will fall into this category.

Probability measures utilized for treatment or prediction, such as ρ̂λ ,u, are called posterior

distributions. However, this nomenclature does not have the same connotation as in traditional

Bayesian methodology. While knowledge of the DGP could allow for a prior to be chosen that

improves the performance of rules suggested from PAC-Bayesian analysis, often the prior is taken

to be uniform or normal centered at the origin. Additionally, the posterior, for example, does not

need to be proportional to a likeilihood function. The statistical analysis itself is frequentist in

nature. The role and choice of π will be discussed further later in the paper. For now we make

the following assumption.

Assumption 1.3.3 π ∈P(Θ) is a (deterministic) probability measure that does not depend on

the sample.

1.3.3 Initial Properties of the Gibbs Posterior

Here we derive initial properties of ρ̂λ ,u that link the choice of u to a particular budget

constraint. These provide intuition behind Definition 1.3.2 and are utilized in proving the results

of Section 1.4.

19



Let DKL(ρ,π) denote the Kullback–Leibler (KL) divergence between ρ,π ∈P(Θ),

DKL (ρ,π) =


∫

Θ
log
[

dρ

dπ
(θ)
]

dρ(θ), if ρ ≪ π

∞, else.

Suppose the policy maker has a maximum expected budget of B ∈ R∪{∞}, where B = ∞ is the

unconstrained setting. If the data generating process were known, among Gibbs treatment rules

we would be interested in a solution to

min
ρ∈P(Θ)

∫
Θ

R(θ)dρ(θ), subject to
∫

Θ

K(θ)dρ(θ)≤ B. (1.14)

In practice, we will instead focus on a subset Pπ(Θ)⊂P(Θ) and solve the following empirical

problem:

min
ρ∈Pπ (Θ)

[∫
Θ

Rn(θ)dρ(θ)+
1
λ

DKL (ρ,π)

]
, subject to

∫
Θ

Kn(θ)dρ(θ)≤ B. (1.15)

(1.15) includes a regularization term in the form of DKL(ρ,π), discouraging any choice

for ρ that has a large KL divergence from the reference measure π . In practice, Pπ(Θ) is flexible

and optimal choices for λ will entail λ →∞ as n→∞. When adapted to our setting, Lemma 1.3.1

below shows that, provided a feasibility or Slater condition holds, for some value û≥ 0, ρ̂λ ,û is

the solution to (1.15). Of course, appearing to be a reasonable empirical counterpart of (1.14)

is not, in and of itself, justification for fG,ρ̂λ ,u
. In Section 1.4 we provide additional theoretical

motivation for fG,ρ̂λ ,u
, comparing it to alternative Gibbs rules and optimal (non-stochastic)

models in Fθ .

The following lemma yields solutions to (1.15) and a theoretical counterpart when Rn(θ)

and Kn(θ) are replaced by R(θ) and K(θ), respectively.

Lemma 1.3.1 Let π ∈P(Θ), λ > 0, B ∈ R∪{∞}, and let A(θ) and H(θ) be bounded, mea-
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surable functions defined on (Θ,Bθ ). For u≥ 0, define ρ̃A,H,λ ,u ∈Pπ (Θ) to be the probability

measure with RN derivative with respect to π given by

dρ̃A,H,λ ,u

dπ
(θ) =

exp [−λ (A(θ)+uH (θ))]∫
Θ

exp
[
−λ
(
A
(
θ̃
)
+uH

(
θ̃
))]

dπ
(
θ̃
) .

Lastly, define

Λ(u) =
∫

Θ

H(θ)dρ̃A,H,λ ,u (θ) , u≥ 0, and EH,B =

{
ρ ∈Pπ (Θ) :

∫
Θ

H(θ)dρ(θ)≤ B
}
.

We have the following result. If

π ({θ : H (θ)< B})> 0, (1.16)

then,

ρ̃A,H,λ ,uB = argmin
EH,B

[∫
Θ

A(θ)dρ(θ)+
1
λ

DKL(ρ,π)

]
, (1.17)

where uB = 0 if Λ(0) ≤ B and otherwise, when Λ(0) > B, uB > 0 is the unique positive real

number satisfying Λ(uB) = B. Additionally4,

∫
Θ

A(θ)dρ̃A,H,λ ,uB(θ)+
1
λ

DKL
(
ρ̃A,H,λ ,uB,π

)
= sup

u≥0

[∫
Θ

A(θ)dρ̃A,H,λ ,u(θ)+u
(∫

Θ

H(θ)dρ̃A,H,λ ,u(θ)−B
)
+

1
λ

DKL
(
ρ̃A,H,λ ,u,π

)]
.

(1.18)

When B = ∞, so that uB = 0, the result in Lemma 1.3.1 is a well known property that

is commonly utilized in the PAC-Bayesian literature with A(θ) taken as some loss or regret

function; see Catoni (2007) and Alquier et al. (2016) among many possible examples. Lemma

1.3.1 extends this setting to accommodate a secondary constraint objective associated with

4Throughout, we adopt the convention that 0 ·−∞ = 0 when B = ∞ in statements of this form.
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H(θ). When, for example H(θ) = R(θ), Λ(u) is the cost associated with the Gibbs treatment

rule utilizing ρ̃A,H,λ ,u. Λ(u) is decreasing in u. Intuitively, as the exponential re-weighting of

π depends more heavily on H(θ) for larger values of u, regions of the parameter or model

space with greater cost receive a relatively lower weighting and the overall cost is reduced as

u increases. Convex optimization problems where the objective or constraint set involves the

Kullback-Liebler divergence have been considered in earlier work, for example in Csiszár (1975).

Rather than establishing Lemma 1.3.1 from the more abstract setting there, the proof in the

Appendix utilizes well known properties of the KL divergence, stated as Lemma 1.A.1 and

Corollary 1.A.1 in the Appendix. We note that Corollary 1.A.1 (b) is a well known change-of-

measure inequality (c.f. Csiszár (1975) and Donsker and Varadhan (1975)) that is widely utilized

in deriving PAC-Bayesian generalization bounds.

The property in (1.18) is used in deriving the oracle-type inequalities in Section 1.4. The

result states that the duality gap between the primal and dual of the minimization problem in

(1.17) is zero. That is,

min
ρ∈Pπ (Θ)

sup
u≥0

[∫
Θ

A(θ)dρ(θ)+
1
λ

DKL(ρ,π)+u
(∫

Θ

H(θ)dρ(θ)−B
)]

= sup
u≥0

min
ρ∈Pπ (Θ)

[∫
Θ

A(θ)dρ(θ)+
1
λ

DKL(ρ,π)+u
(∫

Θ

H(θ)dρ(θ)−B
)]

.

Note that the left-hand side of the above equality, the primal problem, is equivalent to the

optimization problem in (1.17). The right-hand side is the dual of this problem. That the right-

hand side above is equivalent to the expression on the right-hand side of (1.18) can be seen from

a careful examination of (1.17) or from Corollary 1.A.1 (a) in the Appendix. The condition in

(1.16) constitutes a constraint qualification.

We will apply Lemma 1.3.1 with A(θ) = Rn(θ) or R(θ) and H(θ) = Kn(θ) or K(θ).

We consider two scenarios or perspectives. In the first, we have a (nonrandom) predetermined

budget B and utilize a corresponding, sample dependent, choice of û. In the second scenario,
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we start from a predetermined, non-random choice of u (or multiple values of u), which then

corresponds to a sample dependent budget (or budgets) associated with fG,ρ̂λ ,u
. We will require

the following assumptions in order to satisfy (1.16) in our analysis. The first will correspond to

the case with a predetermined B while the second condition will be utilized when we start from

predetermined u.

Assumption 1.3.4 (i) Let B ∈ R∪{∞} be a desired budget. It is assumed that

π (θ ∈Θ : K(θ)< B)> 0 and π (θ ∈Θ : Kn(θ)< B)> 0 Pn almost surely.

(ii) It is assumed that

Vθ∼π [K(θ)]> 0 and Vθ∼π [Kn(θ)]> 0 Pn almost surely

where, Vθ∼π denotes the variance of K(θ) when θ ∼ π and, for a fixed sample S ∈ S ,

Vθ∼π [Kn(θ)] denotes the variance of Kn(θ) when θ ∼ π .

Assumption 1.3.4 involves FΘ, π and the sampling distribution P. Condition (i) requires

that the budget of interest is not ruled out under the prior or reference measure π and is not

exactly at the boundary of theoretical or empirical feasibility. With additional exposition, the

condition that π (θ ∈Θ : Kn(θ)< B)> 0 holds Pn a.s. could be replaced by the condition that

π (θ ∈Θ : Kn(θ)< B)> 0 holds with high probability. For example, with probability at least

1−ξ , for some ξ ∈ [0,1). In this case the theorems in Section 1.4 will remain valid except that

the high probability bounds there, that hold with probability at least 1−ε for ε ∈ (0,1], will now

hold with probability at least 1− ε−ξ . Condition (ii) requires that there is always variation in

actual and empirical costs within models in FΘ drawn by π .

Given Lemma 1.3.1 and the assumption above, the following definition will be relevant

when the analysis starts with a predetermined budget B for which we must find an appropriate

value of u.
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Definition 1.3.3 Let ρ̂λ ,u and ρ∗
λ ,u be defined with π ∈P(Θ) as in Definition 1.3.2. For B ∈ R,

define û(B,λ ) by

û(B,λ ) = argmax
u≥0

∫
Θ

Rn(θ)dρ̂λ ,u(θ)+u
(∫

Θ

Kn(θ)dρ̂λ ,u(θ)−B
)
+

1
λ

DKL
(
ρ̂λ ,u,π

)
,

u∗(B,λ ) = argmax
u≥0

∫
Θ

R(θ)dρ
∗
λ ,u(θ)+u

(∫
Θ

K(θ)dρ
∗
λ ,u(θ)−B

)
+

1
λ

DKL

(
ρ
∗
λ ,u,π

)
.

For B = ∞, define û(∞,λ ) = 0 and u∗(∞,λ ) = 0.

To conclude the section, we point out corollaries of Lemma 1.3.1 and Assumption 1.3.4

relevant to our setting. Define the sets

EB =

{
ρ ∈Pπ(Θ) :

∫
Θ

K(θ)dρ(θ)≤ B
}
, B ∈ R∪{∞} (1.19)

and

ÊB =

{
ρ ∈Pπ(Θ) :

∫
Θ

Kn(θ)dρ(θ)≤ B
}
, B ∈ R∪{∞}. (1.20)

In the scenario where we start from a pre-selected B, EB is the (non-random) subset of Pπ(Θ)

corresponding to Gibbs treatment rules with expected cost within the budget. ÊB a random set

that serves as an empirical counterpart, denoting the ρ ∈Pπ(Θ) with Gibbs rules that meet the

budget constraint empirically.

When analysis begins with a pre-determined value of u, B(ρ̂λ ,u) as in Assumption 1.3.4

and its empirical counterpart B̂(ρ̂λ ,u) both defined in (1.12), are both random. B(ρ̂λ ,u) is the

expected cost of fG,ρ̂λ ,u
in the target population given the sample-dependent ρ̂λ ,u. This is not

observed. However, it is a key object of interest, as it tells the researcher the expected cost of

the estimated policy fG,ρ̂λ ,u
associated with u. Similarly, for a predetermined u, both EB(ρ̂λ ,u)

and ÊB̂(ρ̂λ ,u)
are random sets. The former corresponds to all Gibbs treatment policies with an

expected budget in the target population that is less than or equal to that of fG,ρ̂λ ,u
. The latter

serves as an empirical counterpart for which membership can be evaluated from the sample.
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Given Lemma 1.3.1 and Assumption 1.3.4, the following lemma pertains to the empirical

problem in (1.15) and is mostly a corollary to 1.3.1. It says that, for a pre-specified B, ρ̂λ ,û(B,λ )

solves (1.15). Conversely, if we start with a predetermined value of u, ρ̂λ ,u solves an analogous

problem where the budget is given by B̂(ρ̂λ ,u).

Lemma 1.3.2 (a) Let Assumptions 1.3.2 and 1.3.4 (i) hold for B ∈R∪{∞}. The following prop-

erties hold Pn almost surely. For any λ > 0, û(B,λ ) exists, is unique, and satisfies that û(B,λ ) =

0 when
∫

Θ
Kn(θ)dρ̂λ ,0(θ)≤ B and û(B,λ ) is positive and satisfies

∫
Θ

Kn(θ)dρ̂λ ,û(θ) = B when∫
Θ

Kn(θ)dρ̂λ ,0(θ)> B. Additionally,

ρ̂λ ,û(B,λ ) = argmin
ÊB

[∫
Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π)

]
,

(b) Let Assumptions 1.3.2 and 1.3.4 (ii) hold. Then, Pn almost surely,

ρ̂λ ,u = argmin
ÊB̂(ρ̂

λ ,u)

[∫
Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π)

]
.

1.4 PAC-Bayesian Analysis

Here we provide theoretical motivation for decision rules utilizing ρ̂λ ,u or ρ̂λ ,û(B,λ ).

In Section 1.4.1, we first construct PAC-Bayesian generalization bounds that are similar to

counterparts in earlier literature. Then we derive oracle-type inequalities that compare the

proposed treatment rules to alternatives in terms of regret in the target population for a given

budget. The results in Section 1.4.1 allow for a general choice of the prior or reference measure

π utilized in the definition of ρ̂λ ,u and ρ̂λ ,û(B,λ ). As a result, several bounds there contain KL

divergence terms related to the complexity of the learning problem and the model class FΘ.

In Section 1.4.2, we specify FΘ to consist of rules of the form in (1.10) and take π to be an

uninformative multivariate normal distribution. In this setting, we obtain oracle-type inequalities

that compare the regret of our proposed treatment assignment rules directly to that of the rules in
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FΘ with the lowest welfare regret that are in budget. In section 1.4.3, we show that desirable

properties for the majority vote rules associated with ρ̂λ ,u can be inherited by their majority vote

counterparts.

Our analysis builds from results and techniques in the PAC-Bayesian literature that are

not always stated in ways that are directly applicable to our setting. Results from earlier literature

are adapted to our setting in Appendix Section 1.A.1, which also contains additional properties of

interest. For the most part, proofs are included there for completeness even when the adjustments

are fairly minor. This spares the reader from visiting multiple references requiring concerted

adjustments at certain steps of our analysis. Proofs specific to Section 1.4 are contained in

Appendix Section 1.A.3.

1.4.1 Regret Bounds and Oracle-Type Inequalities

The first step in our analysis, Theorem 1.4.1, obtains alterations of earlier PAC-Bayesian

generalization bounds for the treatment assignment setting. A variant of part (a) appears in

Catoni (2007) which considers classification in the 0/1-loss setting. In our setting, it can be

derived as a special case of a bound appearing in Alquier et al. (2016) or via a general approach

to PAC-Bayesian bounds outlined, for example, in Germain et al. (2015). We utilize the latter

approach which is useful during additional steps of our analysis. The proofs of parts (b) and (c)

utilize the approach of Lever et al. (2010), with part (b) being an alteration of Theorem 3 in that

work.

Theorem 1.4.1 Let π ∈P(Θ) and let Assumptions 1.3.1, 1.3.2, and 1.3.3 hold. Set

{Vn(θ),V (θ),Mℓ}= {Rn(θ),R(θ),My} or else {Vn(θ),V (θ),Mℓ}= {Kn(θ),K(θ),Mc}.

We have the following properties.

(a) Let ε ∈ (0,1], λ > 0 and s ∈ {−1,1}. With probability at least 1− ε , for all ρ ∈
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Pπ(Θ) simultaneously it holds that

∫
Θ

s [Vn(θ)−V (θ)]dρ(θ)≤ 1
λ

DKL(ρ,π)+
1
λ

[
λ 2M2

ℓ

8nκ2 + log
1
ε

]
.

(b) Let λ > 0, u≥ 0, and ε ∈ (0,1]. With probability at least 1− ε , it holds that

(∫
Θ

V (θ)dρ̂λ ,u(θ)−
∫

Θ

Vn(θ)dρ̂λ ,u(θ)

)2

≤
M2

ℓ

2nκ2

[
λ
√

2(My +uMc)

κ
√

n

√
log
(
2
√

n
)
+ log

2
ε
+

λ 2 (My +uMc)
2

2nκ2 + log
(
2
√

n
)
+ log

2
ε

]
.

(c) Let λ > 0, u≥ 0, and ε ∈ (0,1]. With probability at least 1− ε , it holds that

∫
Θ

V (θ)dρ̂λ ,u(θ)−
∫

Θ

Vn(θ)dρ̂λ ,u(θ)

≤
√

2(My +uMc)

κ
√

n

√
log
(
2
√

n
)
+ log

2
ε
+

λ (My +uMc)
2

2nκ2 +
1
λ

[
λ 2M2

ℓ

8nκ2 + log
2
ε

]
.

Theorem 1.4.1 contains high probability bounds for notions of the generalization error

between the target population regret (or alternatively, expected cost) and its empirical counterpart

for Gibbs treatment rules. For example, one notion of generalization error for the cost of policy

fG,ρ̂λ ,u
could be the absolute difference,

∣∣∣K( fG,ρ̂λ ,u

)
−Kn

(
fG,ρ̂λ ,u

)∣∣∣ .
Suppose we take λ = aκ

√
n/(My +uMc) for some constant a > 0. Then Part (b) says that with

probability at least 1− ε , this absolute difference is less than or equal to

Mc

κ
√

2n

[
a

√
log(4n)+2log

2
ε
+

a2

2
+ log(2

√
n)+ log

2
ε

]1/2

= O

(
logn√

n

)
.

When Mc and My are known, this upper bound can be evaluated for a given choice of a.
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We say that Kn( fG,ρ̂λ ,u
) is Probably (with probability at least 1− ε) and Approximately (the

O(
√

log(n)/n) upper bound on the absolute difference) Correct for K( fG,ρ̂λ ,u
). This suggests

that for a predetermined choice of u, Kn( fG,ρ̂λ ,u
) will give a reasonable estimate of the expected

cost in the target population, K( fG,ρ̂λ ,u
), provided that λ is not too large. Part (c) is a variation of

the style of bound in (b) that is useful in deriving subsequent results. We note that the above

choice for λ may not be best in practice, or even feasible if the upper bound Mc is not known.

In practice λ is chosen via cross-validation, which can be accommodated by Theorem 1.4.1

similarly to the choice of u as discussed below.

The bounds in Theorem 1.4.1 can be adjusted to accommodate the setting where λ , u,

or pairs (λ ,u) are selected from a finite set of values W . With |W | denoting the number of

elements in W , one can apply a union bound argument similar to that in the proof of part (b).

The theorem is applied once for each element of W with size ε/|W | for each repetition. Then,

applying the union bound argument, the bounds as stated in Theorem 1.4.1 remain valid for any

element of W with the alteration that the term log 1
ε

in part (a) is replaced by (log 1
ε
+ log|W |)

and the terms log 2
ε

in parts (b) and (c) are replaced by (log 2
ε
+ log|W |). For example, when

λ =O(
√

n), this adds a term that is O(log|W |/
√

n) to the right hand side of the high probability

bound in part (a). This observation is applicable to the remaining theorems in the paper, with

minor adjustments. Therefore, it is not unreasonable to start with multiple values for u. Then

one may choose u in ρ̂λ ,u for the final policy based on the empirical estimates of the associated

budgets, Kn( fG,ρ̂λ ,u
) for u ∈W , or via cross-validation.

Before comparing our suggested treatment policies to alternative choices, we discuss a

final insight from Theorem 1.4.1. Part (a) yields that, with probability at least 1− ε ,

R( fG,ρ)≤
∫

Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π)+
1
λ

[
λ 2M2

y

8nκ2 + log
1
ε

]
, (1.21)

for all ρ ∈Pπ simultaneously. Given a budget B such that Assumption 1.3.4 (i) holds, Lemma

1.3.2 (a) states that ρ̂λ ,û(B,λ ) produces the smallest upper bound for the target population regret
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in (1.21) among all ρ ∈Pπ(Θ) such that Kn( fG,ρ)≤ B. Similarly, starting from a given value

of u, under Assumption 1.3.4 (ii), Lemma 1.3.2 (b) shows that ρ̂λ ,u results in the smallest upper

bound for the target population regret among Gibbs rules with an empirical budget less than or

equal to B̂(ρ̂λ ,u).

Although Theorem 1.4.1 (a) is most useful for our subsequent analysis, in the PAC-

Bayesian literature there are alternative generalization bounds to (1.21) that apply for all ρ ∈

Pπ(Θ) and could be adapted to our setting. Most notably, variants of the bounds in Seeger

(2002) and Catoni (2007) are fairly ubiquitous in the literature. Either directly or via a slight

relaxation, these bounds also suggest choosing ρ to minimize

∫
Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π), (1.22)

for some λ > 0. Hence, if we impose an empirical budget constraint these would again lead back

to ρ̂λ ,û(B,λ ) and ρ̂λ ,u. We note that Seeger’s bound is utilized in our analysis to derive parts (b)

and (c) of Theorem 1.4.1 and appears as Theorem 1.A.2 in Appendix Section 1.A.1. While this

bound does not yield a closed form solution ρ̃ that minimizes an upper bound on the regret, we

refer to the discussion in Thiemann et al. (2017) regarding a relaxation that suggests minimizing

(1.22) with λ replaced by λn, which will yield the an equivalent minimization problem when λ

is cross-validated. The style of bound in Catoni (2007), in particular Theorem 1.2.6 there, can be

adapted to our setting via the approach in Germain et al. (2015) and again suggests choosing ρ

to minimize (1.22).

Next we derive oracle-type inequalities that compare the target population regret associ-

ated with ρ̂λ ,u or ρ̂λ ,û(B,λ ) to that of alternative choices of ρ among Gibbs treatment rules within

a relevant budget. It may be helpful to recall the definitions of EB and EB(ρ̂λ ,u)
from (1.19) and

(1.12),

EB =
{

ρ ∈Pπ(Θ) : K
(

fG,ρ

)
≤ B

}
and EB(ρ̂λ ,u)

=
{

ρ ∈Pπ(Θ) : K
(

fG,ρ

)
≤ K

(
fG,ρ̂λ ,u

)}
.
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We have the following result.

Theorem 1.4.2 Let π ∈P(Θ), λ > 0, and ε ∈ (0,1]. Under Assumptions 1.3.1, 1.3.2, and

1.3.3, we have the following properties.

(a) Let B ∈ R∪{∞}, denote û = û(B,λ ) and let Assumption 1.3.4 (i) hold. With proba-

bility at least 1− ε , it holds that

R
(

fG,ρ̂λ ,û

)
≤ min

ρ∈EB

{
R
(

fG,ρ

)
+

2
λ

DKL(ρ,π)

}
+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2 .

(b) Fix u≥ 0 and let Assumption 1.3.4 (ii) hold. With probability at least 1− ε , it holds

that

R
(

fG,ρ̂λ ,u

)
≤ min

ρ∈EB(ρ̂
λ ,u)

{
R
(

fG,ρ

)
+

1
λ

DKL(ρ,π)

}
+uU1 (ε;λ ,u,n)+U2 (ε;λ ,u,n) .

where

U1 (ε;λ ,u,n) =

√
2(My +uMc)

κ
√

n

√
log
(
2
√

n
)
+ log

4
ε
+

λ (My +uMc)
2

2nκ2 ,

and

U2 (ε;λ ,u,n) =

√
(My +uMc)2 log(4/ε)

2nκ2 +
1
λ

[
λ 2 (M2

y +uM2
c
)

8nκ2 +(1+u) log
4
ε

]
.

Note that if λ = O(n1/2) , then for any u≥ 0 and ε ∈ (0,1],

U1 (ε;λ ,u,n) = O

(√
log(n)

n

)
and U2 (ε;λ ,u,n) = O

(
1√
n

)
.

Theorem 1.4.2 contains sharp oracle-type inequalities that hold with high probability. They differ

slightly from traditional oracle inequalities in that the right-hand sides contain objects that are

random.

Consider part (b) first. In this case, the randomness on the right-hand side of the
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inequality stems from EB(ρ̂λ ,u)
which depends on the sample through B(ρ̂λ ,u) = K( fG,ρ̂λ ,u

), the

un-observable expected target population cost of ρ̂λ ,u. For a predetermined u, it is natural to ask

if there are alternatives in Pπ(Θ) that would yield lower regret for the same or lower expected

cost. EB(ρ̂λ ,u)
is therefore the natural set of interest for comparison with ρ̂λ ,u as it is the subset

of Pπ(Θ) with Gibbs rules that have target population costs no greater than B(ρ̂λ ,u). Given

a budget B(ρ̂λ ,u), an oracle with knowledge of R(θ) could solve for argminρ∈EB(ρ̂
λ ,u)

R( fG,ρ).

For λ → ∞, we may consider argminρ∈EB(ρ̂
λ ,u)

R( fG,ρ)+λ−1DKL(ρ,π) as a second-best oracle

solution. When λ = O(n1/2), for example, part (b) indicates that with high probability ρ̂λ ,u is

close to the second best oracle solution. In Section 1.4.2 we consider oracle-type inequalities

without the KL penalty term appearing.

In part (a), the interpretation is similar to that in part (b), except that now the set of

alternative Gibbs estimators for comparison are those that satisfy the predetermined budget B.

This set is non-random, however now the right-hand side contains a term involving the random

û = û(B,λ ). Note that û is the value taken by the Lagrange multiplier u in the problem

min
ρ∈EB

sup
u≥0

{∫
Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π)+u
(∫

Θ

Kn(θ)dρ(θ)−B
)}

.

It measures the marginal decrease in empirical penalized regret (alternatively, the increase

in empirical penalized welfare) resulting from a marginal relaxation of the budget. Recall

the welfare and budget are measured per treatment. For example, when benefits and costs

are measured in dollars, how many dollars of penalized welfare are obtained (empirically)

by increasing the maximum empirical cost by a dollar. In more extreme scenarios where a

small increase in the budget produces a large increase in empirical welfare, the bound becomes

less meaningful as the right-hand side approaches the maximum possible regret (if this level

is exceeded, the bound becomes trivial). An example of an extreme setting would be when

û = Op(nα) for some α ≥ 1/2. When ûn−1/2 is large relative to typical or maximal values of

the regret (which ranges from zero to twice the maximal welfare), this situation is visible to the
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analyst. For a fixed λ , a statement similar to part (a) can be obtained where û is replaced by

a non-random constant if we make additional assumptions on the data generating distribution

P. For example, if we instead assume the marginal increase in population penalized regret

associated with a small relaxation of the empirical budget is Op(1). As it stands, the bound

produces a robustness check for the method’s motivation. Intuitively, if it is easy to dramatically

change the empirical welfare by relatively small budget changes, so that ûn−1/2 is large, we may

be in a situation where it is difficult to learn policies well for the given B and the proposed rules

should be treated cautiously.

If regions of the model space with desirable regret and budget are assigned lower proba-

bility by π , the distributions ρ ∈Pπ(Θ) with the best trade-off between R( fG,ρ) and DKL(ρ,π)

in Theorem 1.4.2 will tend to have larger DKL(ρ,π) terms. As a result, the upper bounds will

be larger and less informative. Similarly, applying Theorem 1.4.1 part (a) with ρ = ρ̂λ ,c for

either c = u≥ 0 or c = û(B,λ ), and noting Lemma 1.3.2, the regret and budget bounds there are

influenced by the trade-off between empirical regret (or cost) and DKL(ρ̂λ ,c,π). DKL(ρ̂λ ,c,π)

increases when ρ̂λ ,c involves a greater re-weighting of π in definition 1.3.2. The impact of the

KL terms in the bounds of this subsection are therefore related to the learning problem and model

space complexity. It is influenced by how large the model space is, how narrow the subset of

the model space with low regret/budget is, the relative difference in between lower and higher

regret regions and the noisiness of the data. In parts (b) and (c) of Theorem 1.4.1, where the KL

term is absent, this role falls more to the λ parameter: if the problem is more complex, larger

(relative to n) values of λ are needed to achieve lower regret or cost. If λ is too large, remainder

terms in the generalization error bounds increase. See Lever et al. (2010) for further discussion

of complexity in the setting of bounds of the form in (b) and (c).

Conversely, when the policy maker has (sample independent) knowledge of the data

generating process, they may be able to select or alter a given choice of π to focus on the regions

of the model space that best balance regret and cost. Then DKL(ρ,π) can be smaller for ρ that

put the greatest weight on the most desirable regions of the parameter space. The result is smaller
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upper bounds in Theorem 1.4.2 and Theorem 1.4.1 (a). A benefit of the Gibbs rules associated

with ρ̂λ ,u and ρ̂λ ,û(B,λ ) is that economic theory or situation-specific knowledge can be factored

into the treatment rule via π . Compatibility with expert knowledge may be a valuable advantage

in settings where resource limitations imply that some individuals with a positive CATE will not

be treated. As we will see in Section 1.4.2, such knowledge is not required for the procedures to

have desirable properties.

1.4.2 Normal Prior

As noted at the end of Section 1.4.1, perhaps unsurprisingly, knowledge about the

data generating process can confer estimation benefits through the choice of π . While it is a

positive attribute that the proposed treatment rules can utilize this information when available,

it is important to emphasize that such knowledge is not a requirement. Learning procedures

based on PAC-Bayesian analysis often utilize uninformative or less informative choices for π ,

such as normal distributions, uniform distributions when Θ is compatible, or sparsity inducing

distributions.

Here we take π to be a multivariate normal distribution centered at the origin and utilize

the models of the form in (1.10). We show that the proposed treatment rules maintain desirable

properties. In doing so, the KL divergence term is removed from the oracle inequalities, resulting

in a clearer comparison to alternative treatment rules. We leave an exploration of alternative

prior choices and the settings where they may be desirable to future research.

We satisfy Assumptions 1.3.2 and 1.3.3 with the following, more specific, condition.

Note that in the assumption below we are treating q as fixed; it does not grow with the sample

size.

Assumption 1.4.1 It is assumed that FΘ consists of treatment rules fθ as described by (1.10),

with Θ = Rq. Let

Φµ,σ2 ∈P(Rq)
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denote a multivariate normal distribution with mean vector µ and covariance matrix σ2Iq for

some σ > 0. We assume that π = Φ0,σ2
π

for some σπ > 0 that does not depend on the sample.

Next, we define

ΘB = {θ ∈ Rq : K(θ)≤ B} and ΘB(ρ̂λ ,u)
=
{

θ ∈ Rq : K(θ)≤ B(ρ̂λ ,u)
}
,

and denote

θ ∈ argmin
ΘB

[R(θ)] and θ u ∈ argmin
ΘB(ρ̂

λ ,u)

[R(θ)] . (1.23)

Note that ΘB(ρ̂λ ,u)
and θ u are random as they vary with B(ρ̂λ ,u). ΘB(ρ̂λ ,u)

is the set of parameters

such that the corresponding models in FΘ have lower expected target population cost than

fG,ρ̂λ ,u
. θ u is the minimizer of the population regret among this set. With regard to θ and θ u, we

assume the following condition.

Assumption 1.4.2 With probability one, θ and θ u as defined in (1.23) exist and are nonzero.

This type of condition is implicitly assumed in, for example, Kitagawa and Tetenov (2018) and

in Sun (2021). It simplifies the exposition rather than allowing that the models associated with

these parameters have regret that is arbitrarily close to an infimum. The requirement that θ and

θ u are nonzero simply specifies that the covariates are relevant to the budget constrained welfare

problem. Lastly, our analysis will also require the following technical condition.

Assumption 1.4.3 There exists a constant ν > 0 such that

P
[
(φ(X)⊺θ)

(
φ(X)⊺θ

′)< 0
]
≤ ν∥θ −θ

′∥

for any θ and θ ′ ∈ Rq such that ∥θ∥= ∥θ ′∥= 1.

Assumption 1.4.3 or a direct analog is applied in several classification and bipartite

ranking applications utilizing PAC-Bayesian approaches. For examples, see Ridgway et al.
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(2014), Alquier et al. (2016), and Guedj and Robbiano (2018). It is a fairly mild requirement

and, as is shown in Alquier et al. (2016) (c.f. p. 10 there), it is satisfied whenever φ(X)/∥φ(X)∥

has a bounded density on the unit sphere.

We have the following result.

Theorem 1.4.3 Let Assumptions 1.3.1, 1.4.1, 1.4.2, and 1.4.3 hold. Let σπ = 1/
√

q. Then we

have the following properties for any ε ∈ (0,1].

(a) Let Assumption 1.3.4 (i) hold for a given B∈R∪{∞}. Let λ = κ
√

nq/My, û= û(B,λ )

and u∗ = u∗(B,λ/2). With probability at least 1− ε , it holds that

R
(

fG,ρ̂λ ,û

)
≤ R

(
θ
)
+

√
q
n

log(4n)
My

κ
+

2My log 3
ε

κ
√

nq
+ û

√
M2

c log 3
ε

2nκ2 +
u∗νMc√

n
+U1(n;q),

where U1(n;q) = O(n−1/2) with the explicit formulation given in the proof.

(b) Fix u≥ 0 and set λ = κ
√

nq/(My+uMc). Let Assumption Assumption 1.3.4 (ii) hold.

With probability at least 1− ε ,

R
(

fG,ρ̂λ ,u

)
≤ R

(
θ u
)
+

My +uMc

κ

[
U2(n;q,u,ε)+U3(n;q,u,ε)+U4(n;q,u)

]
,

where U2(n;q,u,ε) = O(log(n)n−1/2), U3(n;q,u,ε) = O(n−1/2), and U4(n;q,u) = O(n−1/2),

with the explicit forms given in the proof.

Note that the values for λ in parts (a) and (b) are chosen to produce the nearly optimal

rate of convergence in part (b). In practice there may be better choices and we will typically

choose λ via cross-validation. As noted in the discussion following Theorem 1.4.1, we may

choose λ , u, or pairs (λ ,u) from a finite set of values W . In this case the theorem above can be

adjusted to hold simultaneously for all elements of W by replacing the terms log(ε/3) on the

right-hand side of the inequality in (a) by log(ε/3)+ log |W | and the terms on the right-hand

side of (b) that involve log(ε/4), which appear in the U j terms defined in the proof, are replaced
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by log(ε/4)+ log |W |. For example, for fixed ε ∈ (0,1] and u ≥ 0, this adds a term that is

O(log |W |n−1/2) to the right hand side of (b).

In Theorem 1.4.3, fG,ρ̂λ ,û(B,λ )
and fG,ρ̂λ ,u

are compared to the best (non-stochastic) models

in FΘ with an expected cost no greater than B or B(ρ̂λ ,u), respectively. Additionally, the absence

of KL terms in the inequalities allows for a more salient comparison to relevant alternatives.

In part (b), for any u ≥ 0 and ε ∈ (0,1], the terms beside R(θ u) on the right hand-side are

collectively O(log(n)n−1/2). With high probability, the regret of fG,ρ̂λ ,u
gets close to the regret

an oracle would obtain choosing the best rule from the subset of FΘ with a target population

budget no greater than that of fG,ρ̂λ ,u
. The rate log(n)n−1/2 is nearly optimal. For example, in the

unconstrained case with B = ∞, which corresponds to u = 0 or û = u∗ = 0, Kitagawa and Tetenov

(2018) show that n−1/2 is the optimal rate for bounds on the expected regret of the empirical

welfare maximizer over FΘ, provided FΘ has a finite VC-dimension (see the discussion there

for more details).

Part (a) has the complication of involving û = û(B,λ ) and u∗ = u∗(B,λ/2) as λ grows

with n. The effect of û is related to the marginal decrease in

Rn( fG,ρ̂λ ,û(B,λ )
)+λ

−1DKL(ρ̂λ ,û(B,λ ),π)

associated with marginal increases in B as the penalty diminishes (λ increases). The behavior

of u∗ is related to the marginal decrease in the penalized regret of fG,ρ∗
λ ,u∗(B,λ/2)

associated with

marginal increases in B. Suppose we are unlikely to have large marginal gains in empirical or

theoretical penalized regret associated with a marginal increase in B at all or small penalty levels

(i.e. as λ → ∞). Then (a) implies that, with high probability and for large enough sample sizes,

the regret of fG,ρ̂λ ,û
is close to the regret that would be obtained by an oracle choosing the best

policy from the subset of FΘ with an expected cost in the target population that is less than or

equal to B. For example, if u∗ = O(1) and û = Op(1) as n and λ increase, then the terms on the

right-hand side of the inequality in (a) other than R(θ) are Op(log(n)n−1/2).
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We conclude this subsection with remarks regarding implications for the proposed

treatment assignment rules. One drawback of starting from a fixed B and utilizing û = û(B,λ )

is the absence of a counterpart to Theorem 1.4.1 (b) for the cost K( fG,ρ̂λ ,û
) when û is random.

Even when û and u∗ are well behaved so that Theorem 1.4.3 (a) implies it is likely that fG,ρ̂λ ,û

will have regret comparable to the best rules in FΘ with expected cost less than B, this may

be achieved with an expected cost greater than B. On the other hand Theorem 1.4.1 (a) with

ρ = ρ̂λ ,û yields that with probability at least 1− ε ,

K
(

fG,ρ̂λ ,û

)
≤ B+

1
λ

DKL
(
ρ̂λ ,û,π

)
+

1
λ

[
λ 2M2

c
8nκ2 + log

1
ε

]
,

where we have used the fact that Kn( fG,ρ̂λ ,û
) ≤ B a.s. under the assumptions of the theorem.

When λ = O(n1/2), for example, whether or not we have an upper bound that approaches B

depends on the behavior of this KL term. Unfortunately, û and the KL term above are difficult

to analyze in this scenario as û is essentially defined implicitly to ensure Kn( fG,ρ̂λ ,û
)≤ B. It is

possible to cross-validate B, for example examining values less than B to try and ensure the

expected budget is not violated. The comments regarding extending the high probability bounds

to apply simultaneously for multiple values of u can be applied to choices for B as well.

On the whole, the procedure starting with a set of values for u may be more compelling.

By Theorem 1.4.1 (b) and the surrounding discussion, for values u in a reasonably sized set

W , the values of Kn( fG,ρ̂λ ,u
) provide reasonable estimates of K( fG,ρ̂λ ,u

), the expected costs of

these policies conditional on the rules estimated from the sample. These can be utilized to select

u. Alternatively, u can be chosen from W via cross-validation or by some other method. For

example, in the case of pure quantity constraints, it may be possible use data from the target

population to select u to achieve the correct (or nearly correct) proportion of treatments assigned

in the target population. Theorem 1.4.3 (b) and its extension to hold for all u∈W simultaneously,

then indicate it is likely R( fG,ρ̂λ ,u
) for the selected u will be comparable to the best treatment

rules in FΘ among those whose target population cost does not exceed that of fG,ρ̂λ ,u
. Hence
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by starting from a set of u values, the policy maker can trace out reasonable estimates of the

target population budget horizon. At the same time, the policy selected according to these budget

estimates is likely to be the best bang for the buck in that the associated regret gets close to that

which an oracle would choose for the same target population cost.

1.4.3 The Majority Vote Treatment Rule

Let ρ ∈Pπ(Θ). As mentioned in Section 1.3.2, the non-stochastic majority vote treat-

ment rule fmv,ρ in (1.13) is a close relative of the Gibbs rule fG,ρ that can prove numerically more

stable in practice. In the classification literature, it is well known that the risk associated with the

majority vote rule, where risk is defined for a zero-one loss function, is upper bounded by twice

the risk associated with the Gibbs classification method (e.g., Langford and Shawe-Taylor (2003),

McAllester (2003a)). Hence analysis of the Gibbs treatment rule is often used to justify use of

the majority vote. Additionally, the “2×” upper bound can be loose and it is not uncommon

for majority vote rules to outperform Gibbs rules. We refer to Germain et al. (2015) for further

discussion regarding the majority vote versus the Gibbs method for classification settings. Here,

we show that, as in the classification setting, the majority vote treatment rule can inherit desirable

qualities from the Gibbs treatment rule in the budget constrained treatment rule setting.

While the majority vote rule fmv,ρ is not guaranteed to satisfy the same budget as its

Gibbs counterpart fG,ρ(x), we can still show that when fG,ρ(x) is close to f ∗B(ρ)(x), the optimal

rule for its budget,

B(ρ) = K( fG,ρ),

then fmv,ρ will also be close to f ∗B(ρ). The measurement of closeness, defined shortly, depends

on both the welfare achieved and deviations from the budget B(ρ). We will suppose that

B(ρ)> EQ[δc(X)1{δc(X)< 0}]. (1.24)

That is, fG,ρ does not achieve the exact cost of the cost-minimizing rule 1{δc(x)< 0} for x ∈X .
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If (1.24) were an equality, the budget of fG,ρ would be such that a policy maker faced with

this budget would need to ignore welfare and seek the lowest cost rule. Hence, when we are

interested in maximizing welfare with a budget constraint, it is reasonable to rule out the case

where the solution to the policy maker’s problem is to ignore welfare and seek the lowest cost. In

addition to (1.24), we will assume that δy(X) and δc(X) have bounded densities so that optimal

solution to the decision makers in Theorem 1.3.1 is deterministic.

Under (1.24), Assumption 1.3.1, and the condition that δy(X) and δc(X) have bounded

densities, Theorem 1.3.1 yields that the optimal budget-constrained policy for the budget B(ρ)

of the Gibbs rule fG,ρ is of the form

f ∗B(ρ)(x) = 1{δy(x)−ηB(ρ)δc(x)> 0}, x ∈X , (1.25)

for a constant ηB(ρ). It also follows from Theorem 1.3.1 that either ηB(ρ) = 0 and K( f ∗B(ρ))<

B(ρ) or else ηB(ρ) > 0 and K( f ∗B(ρ)) = B(ρ). Recalling the definition of the welfare-regret under

a budget constraint in (1.11),

RB(ρ)( f )≡W
(

f ∗B(ρ)
)
−W ( f ) ,

it is clear that RB(ρ)( fG,ρ) is non-negative. It is small only when fG,ρ attains a welfare that is

close to the budget optimal rule in its own budget class. We will show that when RB(ρ)( fG,ρ) is

small, fmv,ρ has similar welfare to the optimal policy f ∗B(ρ) and is unlikely to violate the budget

B(ρ) by a large amount.

First note that if a decision maker faced a budget of B(ρ), it would be reasonable to seek

a rule f : X → [0,1] that minimizes

LB(ρ)( f )≡ EQ

[(
δy(X)−ηB(ρ)δc(X)

)(
f ∗B(ρ)(X)− f (X)

)]
,
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with the associated loss function

ℓB(ρ)( f ,x) =
(
δy(x)−ηB(ρ)δc(x)

)(
f ∗B(ρ)(x)− f (x)

)

=


0 if f ∗B(ρ)(x) = f (x),∣∣δy(x)−ηB(ρ)δc(x)

∣∣ if f ∗B(ρ)(x) ̸= f (x).

By the form of f ∗B(ρ) in (1.25), LB(ρ)( f ) is non-negative and attains the value zero only

when f (X) = f ∗B(ρ)(X) almost surely. Of course, such a loss function cannot yield an estimation

strategy directly because δy, δx, and ηB(ρ) are unknown. However, when LB(ρ)( f ) is small, this

means we are unlikely to encounter a set of co-variates X for which f assigns treatment and

ηB(ρ)δc(X) exceeds δy(X) by a large amount. We have the following result

Theorem 1.4.4 Let ρ ∈Pπ(Θ). Let Assumptions 1.3.1 and 1.3.2 hold and also assume that

(1.24) holds and δc(X) and δy(X) have bounded densities so that EQ[1{δy(X) = ηB(ρ)δc(X)}] =

0. Then

LB(ρ)
(

fmv,ρ
)
≤ 2RB(ρ)

(
fG,ρ

)
.

We note that the expectation in the definition of LB(ρ)( f ) is taken with respect to a draw

from the target population. When ρ is dependent on the sample data, the result and proof still

hold, conditional on the estimated rule or sample, provided that (1.24) can be assumed to hold

almost surely for ρ or with high probability if considering probabilistic bounds such as those

in Sections 1.4.1 and 1.4.2. This is reasonable to assume for ρ̂λ ,u, particularly when u is not so

large that no treatments will be assigned. The notion that, for appropriately chosen values of λ ,

RB(ρ̂λ ,u)
( fG,ρ̂λ ,u

) is small is exactly the implication of Theorems 1.4.2 (b) and 1.4.3 (b).

For example, assume that the conditions of Theorem 1.4.3 hold, take λ = κ
√

nq/(My +

uMc) (although we continue to write λ to reduce clutter in the notation), and suppose that (1.24)

holds almost surely for ρ = ρ̂λ ,u and that δc(X) and δy(X) have bounded densities. Then by
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Theorem 1.4.3 (b), with probability at least 1− ε it holds that

RB( fG,ρ̂
λ ,u

)

(
fG,ρ̂λ ,u

)
≤ argmin

θ∈ΘB(ρ̂
λ ,u)

[
RB( fG,ρ̂

λ ,u
)(θ)

]
+

My +uMc

κ

[
U2(n;q,u,ε)+U3(n;q,u,ε)+U4(n;q,u)

]

where we have done some simple algebra on the inequality of part (b) of Theorem 1.4.3 utilizing

the definitions of regret and regret under a budget constraint. The above also uses the notation

RB( fG,ρ̂
λ ,u

)(θ) =W
(

f ∗B( fG,ρ̂
λ ,u

)

)
−W ( fθ ) .

Recall that the terms outside of the argmin on the right-hand side of the above inequality are at

most O(log(n)n−1/2) for fixed u≥ 0, q ∈ N and ε ∈ (0,1]. If, for example,

δy(X) = φ(X)⊺θy, and δc(X) = φ(X)⊺θc,

for some θy,θc ∈ Rq, then we would have

argmin
θ∈ΘB(ρ̂

λ ,u)

[
RB( fG,ρ̂

λ ,u
)(θ)

]
= 0.

In this case, the above combined with Theorem 1.4.4 produce that, with probability at least 1−ε ,

LB(ρ̂λ ,u)
( fmv,ρ̂λ ,u

) is bounded above by terms that are O(log(n)n−1/2).

1.5 Simulation Study and Implementation Details

In this section we evaluate the proposed treatment assignment methodology in a simula-

tion environment. We also discuss model estimation and implementation. Section 1.5.1 describes

the simulation environment and findings. Section 1.5.2 describes a model estimation strategy

using the Sequential Monte Carlo (SMC) approach and discusses the implementation choices
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utilized in the simulation.

1.5.1 Simulation Study

We assign treatments utilizing ρ̂λ ,u in the following simulation environments. We take

X = (X1,X2,X3) where X j ∼ Unif(−1,1) for j = 1,2,3 are i.i.d. uniform random variables.

Letting Λ(v) = (1+ exp(−v))−1 denote the logistic function, potential outcomes are determined

via

Yd = max{X1 +X2,0}+max{X3,0}+4dΛ(2(X1 +X1X2 +X2))+ ε, d ∈ {0,1},

where ε is taken to be a standard normal random variable that is truncated to take values in

[−2,2] and is independent of all other variables considered. Potential costs are determined via

C0 = 0, C1 ∼ Binom
(

6,
4Λ(a(3X2 +1.5X3))

6

)
,

where a is a constant. Lastly, e(x) = 1/2 for all x∈X so that D∼Bern(1/2) and is independent

of the other variables. We consider a ∈ {1,2,4}.

Each choice of a corresponds to a different data generating process (DGP) and for each

we perform the following simulation study separately. We simulate training sets each with sample

size n = 1,000. A testing sample of size ntest = 10,000, which is re-used across training sample

iterations, yields approximately the true costs and benefits from of any considered treatment

rule. We consider 100 training simulation replicates. Using knowledge of the DGP, we can

calculate EQ[Y1,i−Y0,i|Xi] and EQ[C1,i|Xi] for each testing set observation. Then, for a rule

f (x) : X → [0,1], we use the testing set to obtain the (approximate) gain and cost associated

with f ,

Gain of f = EQ [(Y1−Y0) f (X)] ,
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and

Cost of f = EQ [C1 f (X)] .

The Gain of f is the expected increase in welfare, relative to no treatments, associated with the

treatment rule policy while the Cost of f is its cost.

Section 1.5.2 describes the Sequential Monte Carlo procedure used to sample from ρ̂λ ,u

to implement the associated Gibbs or majority vote rule. We consider values of u increasing

from 0 to 2 in increments of 0.05. For each choice of u, λ is chosen by 4-fold cross-validation

to maximize Wn( f )−uKn( f ) across hold-out folds, where f = fG,ρ̂λ ,u
for the Gibbs rules and

f = fmv,ρ̂λ ,u
for the majority vote rules. We thus obtain treatment rules with varying gain-cost

pairs for different choices of u and can obtain cross-validation-based estimates of these pairs

during the estimation stage.

To make estimation from a training sample operational, we must specify a treatment rule

space FΘ and prior π . With dx denoting the dimension of X (dx = 3 in the simulation setting),

for k ∈ N and qk =
(dx+k

k

)
, the polynomial transformation on X of order at most k is defined as

F poly
Θ

(k) =

{
m(x) : m(x) =

qk

∑
j=1

θ jφ j(x),θ ∈ Rqk

}
, (1.26)

where the summation is over all monomials φ j(x) = ∏
d
ℓ=1 x

p jℓ
ℓ with ∑

d
ℓ=1 p jℓ ≤ q, p jℓ ∈ N∪{0}.

We take FΘ to be the family of rules described in (1.9) and (1.10) where the transformations

φ j(x) are the monomials used in the construction of the polynomial transformations on R3 of

order at most 2 with the monomials normalized by their sample mean and standard deviation

calculated from training data. We set π to be the standard multivariate normal distribution over

R10.

As an alternative treatment rule, we consider the approach of Sun et al. (2021). Under

our simulation setting, where for example C0 ≤C1 almost surely, f ∗B in Theorem 1.3.1 takes the
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form

f ∗B(x) = 1
{

δy(x)
δc(x)

> ηB

}
,

for some constant ηB. Sun et al. (2021) show that δy(x)/δc(x) can be estimated nonparametrically

by re-purposing the so-called generalized random forest methodology of Athey et al. (2019).

When costs can be observed at the time of treatment assignment, their approach first estimates

δy(x)/δc(x) for x ∈X . This produces an estimate of the conditional welfare to conditional

cost ratio δy(Xi)/δc(Xi) for each observation in the target group5. These ratio estimates are

ranked according in descending order and treatments are allotted according to this order until

the budget is exhausted. We call such a method of assignment, where a ranking is derived

for members of the target group who are then treated in that order until the budget is reached,

a “batch implementation” method. Additionally, as a baseline rule, we estimate the CATE

δy(x) = EQ[Y1−Y0|X = x] using the generalized random forest of Athey et al. (2019) and

then use the resulting scores in the target group for a batch implementation. This baseline

approach does not factor costs into the treatment decisions. In our simulations, these methods are

implemented using R 4.2.2 (R Core Team (2023)) with the grf package (Tibshirani et al. (2022))

following the described adaptation in Sun et al. (2021) for their approach. The default package

settings were except that the known treatment probabilities supplied to the algorithm.

The approach of Sun et al. (2021) and the baseline that ignores cost utilize batch im-

plementations while the Gibbs and majority vote methods do not. To compare like-for-like,

the majority vote models associated with ρ̂λ ,u for a range of u values (with λ chosen via

cross-validation for each u) are amenable to a batch implementation method. An algorithm for

implementing a batch treatment rule utilizing the majority vote rules is described below.

5By target group we mean individuals or units for whom treatment assignment must be determined, typically
this is the wider population from which the sample comes from that consists of individuals or units not used in
fitting treatment rules.
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Batch treatment implementation utilizing majority vote rules

Input Target group observations indexed by Itarget = {1,2, . . . ,ntarget} with ntarget total observa-

tions and covariates {X j : j ∈Itarget}, minimum cost Bmin, number of bins used denoted nbin,

budget B, set of u values denoted Wu, majority vote rules fmv,ρ̂
λ̃u,u

for each u ∈Wu along with

cost estimates ˆcost( fmv,ρ̂
λ̃u,u

). If treatment is assigned to X j, we then observe the cost of treating

individual j, C1, j.

Output Itreat ⊆Itarget, a subset of individuals in the target group assigned treatment.

Step 1: Initialization

Set B0← Bmin and Itreat← /0.

Step 2: Treatment determinations

For i = 1 : nbin

• Set ui← argmin
u∈Wu

∣∣∣ ˆcost
(

fmv,ρ̂
λ̃u,u

)
−
(

i(B−Bmin)
nbin

)∣∣∣ .
• Let Ii = {αi(1),αi(2), . . .} denote the ordered ranking of target group observations not

currently in the set Itreat in decreasing order of the majority vote scores. That is, in

decreasing order of
∫

Θ
fθ (X j)dρ̂

λ̃ui ,ui
(θ) for j ∈Itarget∩I c

treat. For example, αi(1) gives

the index of the individual with the largest such majority vote score that is in Itarget but

not currently in Itreat, provided that Itarget∩I c
treat ̸= /0. In the latter case, Ii = /0.

• Set k← 1.

• While B0 < B× ntarget and k ≤ |Ii| do Itreat← Itreat ∪αi(k), B0← B0 +C1,αi(k), and

then k← k+1.
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End For

The algorithm above divides the cost space below the budget into bins and then performs

a batch implementation at each bin using the majority vote scores of the model with an estimated

cost nearest to that bin’s endpoint. Note that we are using the notation λ̃u in fmv,ρ̂
λ̃u,u

to reflect

that λ varies with u and is data dependent. For ˆcost( fmv,ρ̂
λ̃u,u

), one could use Kn( fmv,ρ̂
λ̃u,u

), an

estimate of the cost arising during the cross-validation of λ , or some other estimate such as one

arising from an auxiliary testing dataset if one is available. Minor modifications may improve the

performance, for example dropping any values of u from consideration in Step 2 if there exists

another u′ with a corresponding estimated majority vote model that has lower estimated cost

but higher estimated welfare. However, in our simulations we use the simpler version presented

above. We take ˆcost( fmv,ρ̂
λ̃u,u

) to be the average cost associated with fmv,ρ̂
λ̃u,u

across the hold-out

fold samples during the cross-validation of λ when estimating ρ̂λ ,u for the majority vote model.

The batch implementation utilizing the majority vote rules is noteworthy because, when

batch implementation is feasible, it controls costs accurately. In our simulations, we created 20

equally spaced cost bins, starting at 0 and with endpoints increasing from 0.1 to 2 by increments

of 0.1. We treated each end point as a desired budget level and applied the batch implementation

that utilizes the majority vote models. For example, the first desired budget level is B = 0.1

and utilizes nbin = 1 in the algorithm above, while the last desired budget is B = 2 and we set

nbin = 20. Throughout, we take Bmin = 0. For each budget level we also applied the alternative

batch implementation methods. The gains associated with models fit to each training sample

iteration were calculated using the test set. Then these gains were averaged over all training

sample iterations to produce Figures 1.5, 1.7 and 1.9 for a = 1,2,4, respectively. We denote

the batch implementation method utilizing the majority vote models by “PB-B”, we denote

the non-parametric method of Sun et al. (2021) centered around the conditional welfare to

conditional cost ratio by “R-NP”, and we denote the baseline that ignores cost by “Ignore Cost”

46



or IC in subsequent discussion.

We will refer to the non-batch-implemented stochastic Gibbs and non-stochastic majority

vote methods by “PB-G” and “PB-MV”, respectively. To assess these methods, we utilize “cost

curves” to compare the gain-cost trade-off of the considered rules at different budget levels.

These are constructed as follows. For a single training sample iteration, for each u we estimate

a Gibbs rule and a majority vote rule. We then evaluate the true cost and gain associated with

these treatment rules (for different choices of u) using the test data. Once we have the true costs

associated with these rules, we estimate the R-NP ratios and IC CATE scores from the training

sample and implement these rules via batch implementation in the testing data. For each u choice

and for each PB-MV and PB-G rule, the R-NP and IC rules are implemented to stop assigning

treatment when they reach the same cost as the PB-MV or PB-G rule of interest. In this way we

are comparing models with the same true costs.

For each training sample, the various (approximately) true gain-cost points associated

with different u choices for the PB-MV and PB-G methods are plotted in gain-cost space along

with the associated points for the R-NP and IC models. The gain-cost curve for the iteration is

then estimated by interpolating between these points. For a single training sample iteration, this

process is illustrated in Figures 1.11 and 1.12 for the DGP with a = 1. Then, the gain-cost curves

for all training sample iterations are averaged (vertically) to produce the final (approximately)

true gain-cost curves. This procedure for the DGP with a = 1 then produces Figure 1.6. The

black lines in these figures give the gain-cost pairs that would result from randomly assigning

treatment in the target population until the particular cost level is achieved. The cost curves for

the DGPs with a = 2 and a = 4 are presented in Figures 1.8 and 1.10, respectively.

We can now discuss the main takeaways and results from the simulation study. Figures

1.5-1.12 present the cost curves from the simulation study while Table 1.1 collects select data

points from these graphs for a more precise snapshot. For a = 1, the PAC-Bayesian methods

PB-G, PB-MV, and PB-B perform quite closely to the R-NP method. In this setting, the R-NP

slightly outperforms the PB-G and PB-MV methods across most cost levels, with the gap in
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out-performance slightly increasing at greater cost levels. The PB-B models, on the other hand,

perform quite similarly to the R-NP method across the cost levels in this setting, with ±0.01

differences in welfare at a few cost levels.

As a increases to 2 and 4, all of the PAC-Bayesian-based rules improve their performance

relative to the R-NP approach. PB-B rules yield higher welfare gains than the R-NP rules at

lower to middle cost levels while slightly lagging the welfare of the R-NP models at higher cost

levels for a = 2 and slightly out-performing them at a = 4. The out-performance of PB-B models

increases slightly at lower cost levels as a increases from 2 from 4. For a ∈ {2,4}, relative to the

R-NP models, the PB-MV and PB-G models now yield higher welfare gains at lower cost levels,

perform similarly at middling cost levels, and are slightly beaten at the highest budgets. As the

cost/budget level increases, the optimal rules in these simulation environments involve treating a

higher proportion of the target population, eventually treating everyone as cost levels are allowed

to rise enough. The optimization problem that the Gibbs posterior solves is penalized towards

allowing a degree of randomness in the resulting Gibbs rule (see, for example, the DKL(ρ,π)

term in (1.15)). This could help to explain why the PB-G and closely related PB-MV models lag

slightly at the highest cost levels whereas the PB-B implementation that treats until the budget is

met performs well at these levels.

Note that

δy(x) = 4Λ(2(x1 + x1x2 + x2)) , δc(x) = 4Λ(a(3x2 +1.5x3)) .

For values of v near zero, Λ(v) is approximately linear in v and so the above compositions are

also approximately linear in x1,x1x2, x2 and x3 near the origin. For values further from the origin,

which are encountered with increasing probability as a increases, this linear approximation

worsens. When we are likely to observe combinations of X1, X2, X1X2 and X3 that are further

from the origin, the conditional welfare to cost ratio in the optimal rules is a more complex object

in these regions that is less well approximated by individual rules in FΘ and has increasing
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variance as a increases. This simulation study could suggest the PAC-Bayesian approaches may

have benefits over the R-NP method when conditional expected costs are noisier.

In practice it is desirable to compare alternative methods prior to implementation. For

example, via evaluation using an auxialry testing data set separate from that which the models are

trained on. One drawback of the approach of Sun et al. (2021) and other batch implementation

methods is they cannot be evaluated in a traditional way using test data withheld from model

estimation. For example, test sample data points that a batch implementation method may rank

highly for treatment may not have received the treatment and thus we do not observe the costs

accruing properly to know when a batch implementation method would stop assigning treatments.

We note that Sun et al. (2021) is a working paper and since this paper was started the authors

have added material aimed at addressing this issue.

It also is important to note that there are a number of settings where the forest-based R-NP

method is not viable whereas the PAC-Bayesian approaches considered here remain applicable.

Batch implementations are not always viable. The cost of a treatment may not be realized until

sometime after treatment assignment and one may not always have the full target group available

when the rule must be set. Batch implementations, where treatment is assigned until the budget

is hit, could also be unacceptable to policy makers in settings where the “budget” is something

with a negative connotation like a complication rate in a medical setting.

Additionally, the R-NP rule can only be applied when C0 ≤ C1 a.s., which rules out

certain circumstances relevant to policy makers. For example, as noted in Sun (2021), Hendren

and Sprung-Keyser (2020) identify fourteen welfare programs out of 133 considered that are

estimated to have negative or zero net cost to the government. The EWM based approach of Sun

(2021) can accommodate the setting where C0 >C1 with positive probability, as can the PB-G

and PB-MV methods considered here. However, the approach of Sun (2021) may be difficult

to implement when allowing for more flexible decision rule classes (she considers threshold

rules that vary with a covariate in her application) and lacks the budget efficiency properties

derived here. An additional benefit of the PAC-Bayesian approaches here is their ability to utilize
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estimation tools from the Bayesian literature as demonstrated in Section 1.5.2 below. Lastly,

while one could estimate δy(x) and δc(x) separately and try to build a workaround via Theorem

1.3.1 when C0 >C1 is possible, the resulting ratio estimates may have increased variance and

will again require batch implementation, which adds a complication in this setting.

1.5.2 Implementation and Estimation via Sequential Monte Carlo

To implement treatment rules associated with ρ̂λ ,u(θ), we must evaluate the treatment

assignment probabilities or majority vote scores of the form

∫
Θ

fθ (x)dρ̂λ ,u(θ), x ∈X . (1.27)

To do so, we utilize the Sequential Monte Carlo (SMC) procedure considered, for example, in

Del Moral et al. (2006). While a Markov Chain Monte Carlo (MCMC) approach also could be

derived, recently Ridgway et al. (2014) and Alquier et al. (2016) have highlighted the usefulness

of the SMC procedure in PAC-Bayesian applications. One benefit is the ability to sample from a

sequence of Gibbs posterior distributions for a range of λ values. This can ease the computational

burden for cross-validation. Here we discuss key elements of the approach, provide an estimation

algorithm for our setting, and discuss implementation. We also discuss the choices utilized in

implementing the procedure for Section 1.5.1.

Throughout, we make the following computational adjustment to the definition of ρ̂λ ,u in

order to make the implementation choices for Section 1.5.1 applicable to more general settings.

We define ρ̂λ ,u to be the distribution over Θ with RN derivative with respect to π given by

dρ̂λ ,u

dπ
(θ) =

exp
[
−λ
(
uKn(θ)−W n(θ)

)]
Z(λ ,u)

, (1.28)

where

Z(λ ,u) =
∫

Θ

exp
[
−λ
(
uKn(θ)−W n(θ)

)]
dπ(θ),
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and

W n(θ) =
Wn(θ)

1
n ∑

n
i=1 δy,i

and Kn(θ) =
Kn(θ)

1
n ∑

n
i=1 δy,i

.

This adjustment is relevant when the average treatment effect is expected to be is positive.

Clearly, if we denote δ̂y = n−1
∑

n
i=1 δy,i, the distribution ρ̂λ ,u in (1.28) is equivalent to ρ̂

(δ̂yλ ),u in

Definition 1.3.3. In practice we choose λ via cross-validation from a wide range of values.

For given choices of λ > 0 and u≥ 0, the SMC algorithm we adopt samples from ρ̂λ ,u to

evaluate (1.27) by simulating a set of parameter draws from each of a sequence of distributions

{ρ̂λt ,u}
T
t=0. Here,

0 = λ0 < λ1 < · · ·< λT = λ

is an increasing temperature ladder that must be specified. Note that ρ̂λ0,u = π , which the user

may specify and we assume can be sampled from. The temperature ladder {λt}T
t=0 is intended

to be such that the corresponding distributions ρ̂λt ,u progress gradually from π to the target

distribution ρ̂λ ,u.

For each t = 0, . . . ,T , the SMC algorithm produces a set of N weighted samples

{Ψ(i)
t ,θ

(i)
t }N

i=1 with Ψ
(i)
t > 0 and ∑

N
i=1 Ψ

(i)
t = 1 where θ

(i)
t ∈ Θ for all t and i in our setting.

The set of parameter draws {θ (i)
t }N

i=1 are referred to as particles (there are N weighted particles

for each t). SMC combines MCMC moves with sequential importance sampling; we refer to

Del Moral et al. (2006) for additional details and discussion. This produces weighted particles

that emulate, in terms of computing expectations, samples from the distributions ρ̂λt ,u associated

with

dρ̂λt ,u

dπ
(θ) =

exp
[
−λt

(
uKn(θ)−W n(θ)

)]
Zt

, Zt =
∫

Θ

exp
[
−λt

(
uKn(θ)−W n(θ)

)]
dπ(θ).

Conditional on ρ̂λT ,u, under general conditions, for a ρ̂λT ,u-integrable function ϕ : Θ→ R,

N

∑
i=1

Ψ
(i)
T ϕ

(
θ
(i)
T

)
a.s.→
∫

Θ

ϕ (θ)dρ̂λT ,u(θ) as N→ ∞.
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In our setting, we are interested in ϕ(θ) = fθ (x) to approximate (1.27) via

N

∑
i=1

Ψ
(i)
T f

θ
(i)
T
(x), x ∈X .

Once we have run the SMC algorithm to yield {Ψ(i)
T ,θ

(i)
T }N

i=1 for a given pair (λ ,u) = (λT ,u),

the treatment probability or majority vote score for any value x in the covariate space can be

computed as above. Alternatively, for example, we may be interested in ϕ(θ) = Kn(θ), to

approximate Kn( fG,ρ̂λ ,u
).

The SMC algorithm utilized to estimate the treatment rules in Section 1.5.1 is detailed

in the algorithm tables below. We set the input parameters τESS and N there equal to 1/2 and

1,000, respectively. τESS is an Effective Sample Size threshold criterion. When the variance of

the weights at a given step t is too high, the SMC procedure utilizes a re-sampling step. This is

referred to in Step 2 of the algorithm below. In our application we utilize systematic resampling,

which is also outlined below. The choice of temperature ladder, additional algorithm details, and

cross-validation points are detailed below the algorithm descriptions.

Tempering SMC Algorithm

Input N (number of particles), τESS ∈ (0,1) (ESS threshold), {λt}T
t=1 (temperature ladder).

Output {Ψ(i)
t ,θ

(i)
t }N

i=1 for t = 0, . . . ,T .

Step 1: initialization

• Set t← 0. For i = 1, . . . ,N, draw θ
(i)
0 ∼ π and set Ψ

(i)
0 ← 1/N.

Iterate steps 2 and 3

Step 2: Resampling
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• If {
N

∑
i=1

(
Ψ

(i)
t

)2
}−1

< τESSN,

resample
{

Ψ
(i)
t ,θ

(i)
t

}N

i=1
yielding equally weighted resampled particles

{
1
N ,θ

(i)
t

}N

i=1
and

set
{

Ψ
(i)
t ,θ

(i)
t

}N

i=1
←
{

1
N ,θ

(i)
t

}N

i=1
. Otherwise, leave

{
Ψ

(i)
t ,θ

(i)
t

}N

i=1
unaltered.

Step 3: Sampling

• Set t← t +1; if t = T +1, stop.

• For i = 1, . . . ,N, draw θ
(i)
t ∼ Kt(θ

(i)
t−1, ·), where Kt is an MCMC kernel with invariant

distribution ρ̂λt ,u, and evaluate the unnormalized importance weights

ω
(i)
t

(
θ
(i)
t−1

)
= exp

[
λt−1

(
uKn

(
θ
(i)
t−1

)
−W n

(
θ
(i)
t−1

))
−λt

(
uKn

(
θ
(i)
t−1

)
−W n

(
θ
(i)
t−1

))]
.

• For i = 1, . . . ,N, set

Ψ
(i)
t ←

Ψ
(i)
t−1ωt

(
θ
(i)
t−1

)
∑

N
j=1 Ψ

( j)
t−1ωt

(
θ
( j)
t−1

) .

Resampling Algorithm (systematic resampling):

Input A set of (normalized) weights and associated particles,
{

Ψ
(i)
t ,θ

(i)
t

}N

i=1
for some t ∈

{0, . . . ,T}.

Output Resampled particles for equal weighting,
{

θ
(i)
t

}N

i=1

• Draw u∼U
[
0, 1

N

]
.

• Compute cumulative weights C(i) = ∑
i
m=1 Ψ

(m)
t for i = 1, ...,N.

• Set m← 1.
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• For i = 1 : N

While u <C(i) do θ
(m)
t ← θ

(i)
t .

m← m+1, and u← u+1/N.

End For

Some additional implementation details utilized in Section 1.5.1 are as follows. For the

MCMC kernel in the sampling step of the SMC algorithm, we use a Gaussian random-walk

Metropolis kernel with covariance matrix proportional to the empirical covariance matrix of the

current set of particles. We scale the empirical covariance of the step t particles by t−0.9. In

practice, the scaling factor can be adjusted, possibly dynamically rather than with a general rule

like t−0.9, to ensure reasonable acceptance rates in the MCMC steps of the SMC algorithm.

For a temperature ladder, we set T = 800 and utilize a piece-wise linear structure

as follows. {λt}200
t=0 increases from 0 to 4/(|1+ u|) in equally spaced steps. Then, {λt}320

t=201

increases from 4/(|1+u|) to 32/(|1+u|) = 25/(|1+u|) in equally spaced increments, {λt}470
t=321

increases from 25/(|1+u|) to 28/(|1+u|) in equally spaced increments, and {λt}800
t=471 increases

from 28/(|1+ u|) to 210/(|1+ u|) in equally spaced increments. For λ values of interest less

than 210, the temperature ladder is cut short (at fewer than 800 steps) to end once λt reaches

the desired value. Let Wλ denote the elements of {λt}800
t=0 that are closest to elements in

{22,(22 +23)/2,23,(23 +24)/2,24, . . . ,210}/(|1+u|). Rather than considering each value in

{λt}800
t=0 as a potential choice for a rule, during cross-validation λ chosen from values in Wλ .

1.6 Empirical Illustration

Here, we illustrate the procedure for Gibbs treatment rules centered around ρ̂λ ,u using

data from the National Job Training Partnership Act (JTPA) Study. This study has been a popular

choice for illustrating individualized treatment rule estimators and is utilized, for example, in
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Kitagawa and Tetenov (2018), Mbakop and Tabord-Meehan (2021), and Kitagawa et al. (2023).

Detailed descriptions of the study can be found in Orr et al. (1994) and Bloom et al. (1997).

The JTPA study was a randomized controlled trial aimed at assessing the costs and

benefits of the training and employment assistance programs of the JTPA. The study randomly

assigned each participant to one of two groups. In the first group (the treatment group), partici-

pants had access to JTPA services, whereas in the second group (the control group), access to

JTPA services was restricted. For example, access was limited to certain services, and a period

of time was imposed when a control individual would be ineligible for services. Note that the

treatment was ease of access to services, rather than participation in JTPA programs or any other

type of compliance. The study collected background information on participants and tracked

their earnings in the 30-month period following treatment assignments.

As in Kitagawa and Tetenov (2018), we use an individual’s total earnings in the 30

months following treatment as the outcome variable of interest (Y ). Our Gibbs treatment rules,

like those proposed in the referenced above, are based on two variables that policymakers might

consider in designing access policies: an individual’s years of education and their earnings in the

year prior to treatment assignment. JTPA personnel assessed all participants prior to treatment

assignments and provided service type recommendations, which were categorized by Orr et al.

(1994) into three types: classroom training, on-the-job training/job search assistance, and other

services. To construct our cost variable, we use averages related to these categories, as described

below.

Although treatment costs varied between individuals in the study, we don’t have exact

costs per person. Instead, we define the cost variable C as follows: if an individual received

0 hours of JTPA services, we set their cost to 0. Otherwise, we take their cost to be the

average cost of services for individuals with the same gender, treatment assignment, and service

recommendation category. These averages are reported in Exhibit 5.3 of Orr et al. (1994) and

were adjusted for our purposes to reflect the averages among individuals who received services,

using the proportion of individuals in each subcategory who received more than 0 hours of
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services. As noted in Orr et al. (1994), it is relevant that services utilized correlated with service

recommendations and individuals in the control group that did access JTPA services at some

point in the study tended to incur similar costs as individuals in the treatment group that received

services. The probability of using any services, on the other hand, was greatly impacted by

treatment assignment and is a key driver in cost differences.

Our sample consists of 7,675 adults (22 years and older) for whom data on years of

education, pre-program earnings, and service hours received are available. As in Kitagawa and

Tetenov (2018), we only consider individuals from the original program evaluation and studies

around it (e.g. Bloom et al. (1997) and other references provided in Kitagawa and Tetenov

(2018)). The probability of being assigned treatment is 2/3 in this sample. To estimate potential

models of interest, we utilize the SMC procedure described in Section 1.5.2. We consider

u ∈ {0.05,0.1, . . . ,3} and cross-validate λ̃u ∈ {2,22, . . . ,210}/(1+u) for each. During the cross-

validation step, for each u we obtain an estimated cost and welfare, namely the averages of

B̂(ρ̂
λ̃u,u

) and Wn( fG,ρ̂
λ̃ ,u
) across hold out folds. Note we are abusing notation here because, during

cross-validation, objects involving ρ̂
λ̃ ,u are calculated from the k-fold training sample rather than

the entire sample while the cost and welfare estimates are averages of objects calculated using

hold out samples.

We use 2-fold cross-validation because the 30-month post-treatment earnings data is

highly variable, and there is a potential to overfit noise in smaller cross-validation samples. We

take FΘ to be the family of rules described in (1.9) and (1.10), where the transformations φ j(x)

are the monomials used in the construction of polynomial transformations on R2 of order at most

3. As in the simulation section, we normalize the monomial transformations by subtracting their

sample means and scaling by the sample standard deviations since there is a considerable degree

of variation in scale among the transformations, with education taking values from 7 to 18 years

and pre-program earnings ranging from $0 to $63,000.

The cross-validation-based estimates of the welfare and cost pairs for different values of

u are plotted below in Figure 1.2. We dropped points corresponding to models with dominated
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welfare-cost pairs, i.e., points where there existed an alternative model for a different choice

of u with a higher estimated welfare for the same or lower estimated cost, and these are not

displayed. Following an approach where we consider multiple values of u and examine feasible

budget estimates of the policies, we can see that there are models with average costs per person

ranging from roughly $100 to about $650. That is, we estimate that when these treatment rules

are applied to a wider population similar to the sample, we can achieve average costs per person

within these ranges.

We examine three of the estimated models corresponding to the circled points in Figure

1.2 in greater detail. Starting from the left, the first circle corresponds to the model with an

estimated cost closest to $200 and with u = 2.45. We refer to this model as the “low-budget

model.” The second circled point corresponds to the model with an estimated cost nearest to $400,

with u = 2.1, and we call this model the “medium-budget model.” The right circle, which we

refer to as the ”no budget model,” has the highest estimated welfare and corresponds to u = 0.15.

Figure 1.3 presents treatment probabilities for different values of education and pre-program

earnings associated with the high, medium, and no budget models. The population densities

linked to the covariate space for these models are shown in Figure 1.4.

We observe that treatment probabilities transition fairly smoothly across the covariate

space in all three models but less so in the no budget model. Treatment assignment probabilities

are not uniform across the covariate space in any of the estimated models. Furthermore, as we

consider models with lower costs, we do not simply obtain uniform reductions in treatment

probabilities associated with higher-cost models. In the no budget model, treatment probabilities

are either 1 or 0 for sizable portions of the covariate space. The no-budget model treats 81%

of individuals in the sample on average. The medium-budget model treats 49% of individuals

on average, and the treatment probabilities among individuals in the sample range from 46% to

51%. The low-budget model treats 20% of individuals on average, and treatment probabilities

among covariate pairs encountered in the sample range from 4% to 66%.
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Figure 1.4. Population densities for different regions of the covariate space. The color at each
block represents the number of individuals in the sample that fall into the associated education
and pre-program earnings level.

One common feature among most of the (non-stochastic) treatment rules estimated in

Kitagawa and Tetenov (2018) is the avoidance of treating individuals with the highest levels of

education. The most comparable model to those considered here, the no budget model, differs

from these rules in that it treats individuals with higher levels of education above a certain income

level and randomizes treatment in regions of the covariate space with lower education. It also

avoids treating individuals with middling pre-program earnings and low education, although

these individuals are relatively less common. As we move to models with lower costs, the

medium-budget model becomes more uniform in its treatment probabilities than the other Gibbs

rules. It also features increased treatment probabilities among lower and higher education levels

compared to the other models, particularly at lower income levels. The low-budget model reduces

cost by lowering treatment probabilities among individuals with lower to middle education levels,

especially at the most commonly encountered non-zero education levels.
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1.7 Conclusion

In this paper, we proposed a new approach to estimating treatment rules in a budget

constrained setting. Utilizing the PAC-Bayesian framework, theoretical properties of interest

were derived, including generalization bounds and oracle-type inequalities demonstrating a

type of budget efficiency for a proposed class of stochastic treatment rules. The treatment rule

estimators can accommodate a variety of budget constraints of interest including settings with

uncertain and or heterogeneous costs, quantity constraints, and settings where costs are not

realized at the time of treatment. Another benefit is that the proposed rules can take advantage of

well developed Bayesian estimation machinery. Lastly, the models were shown to be competitive

against state-of-the-art alternatives in a simulation study and an empirical illustration was

examined.

There are a number of considerations for future work. It would be of interest to determine

if different prior choices, for example a sparsity-inducing prior or a normal prior with a different

form for the covariance matrix than that considered here, would facilitate bounds of the type in

Section 1.4.2 or yield modeling suggestions for higher dimensional feature spaces. Rather than

using the Gibbs posterior to form treatment rules, it could also prove fruitful to approximate the

Gibbs posterior with alternative distribution such as a normal distribution. So-called variational

approximations of Gibbs posteriors for general PAC-Bayesian approaches are considered in

Alquier et al. (2016). This could yield greater flexibility in terms of functional form constraints,

beyond control over the variables included in the treatment rules featured here. It would also be

of interest to incorporate estimated propensity scores into the PAC-Bayesian framework here

and to explore how this impacts rates of convergence. Lastly, the analysis for balancing the

primary welfare or regret objective against that of a secondary cost objective can be generalized

to settings beyond the welfare-based potential outcomes framework. Balancing a secondary

objective of concern could also be of interest in classification or regression settings.

Chapter 1 contains material being prepared for submission for academic publication. The
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dissertation author is the sole author of this material.

61



Table 1.1. Simulation welfare gains for models at different cost levels

Cost PB-G PB-MV PB-B R-NP Ignore Cost
a = 1

0.1 0.27 0.28 0.28 0.28 0.11
0.3 0.56 0.57 0.58 0.57 0.34
0.6 0.90 0.91 0.92 0.92 0.70
0.9 1.20 1.22 1.23 1.23 1.04
1.2 1.46 1.48 1.49 1.49 1.34
1.5 1.66 1.68 1.69 1.70 1.57
1.8 1.79 1.81 1.82 1.82 1.74

a = 2
0.1 0.46 0.47 0.47 0.45 0.10
0.3 0.71 0.72 0.73 0.70 0.31
0.6 1.01 1.01 1.03 1.01 0.63
0.9 1.28 1.29 1.30 1.29 0.96
1.2 1.51 1.53 1.54 1.54 1.26
1.5 1.68 1.70 1.71 1.72 1.52
1.8 1.79 1.81 1.82 1.83 1.71

a = 4
0.1 0.60 0.61 0.61 0.57 0.10
0.3 0.80 0.80 0.82 0.78 0.30
0.6 1.07 1.08 1.09 1.07 0.61
0.9 1.33 1.34 1.35 1.34 0.92
1.2 1.55 1.56 1.58 1.57 1.24
1.5 1.70 1.72 1.74 1.74 1.51
1.8 1.80 1.82 1.84 1.83 1.70
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Figures for a = 1
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Figure 1.5. Cost curves when all methods utilize batch implementation for the DGP featuring
a = 1.
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Figure 1.6. With a = 1 in the DGP, cost curves for the PB-MV and PB-G methods, which do
not feature batch implementation, compared with the batch-implemented R-NP and IC methods.

63



Figures for a = 2
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Figure 1.7. Cost curves when all methods utilize batch implementation for the DGP featuring
a = 2.
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Figure 1.8. With a = 2 in the DGP, cost curves for the PB-MV and PB-G methods, which do
not feature batch implementation, compared with the batch-implemented R-NP and IC methods.
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Figures for a = 4
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Figure 1.9. Cost curves when all methods utilize batch implementation for the DGP featuring
a = 4.
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Figure 1.10. With a = 4 in the DGP, cost curves for the PB-MV and PB-G methods, which do
not feature batch implementation, compared with the batch-implemented R-NP and IC methods.
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Figure 1.11. For the DGP with a = 1, the left-hand side plots the estimated and actual cost-gain
pairs (one point for each u) for a single training sample iteration for the PB-G method. On the
right-hand side the actual cost-gain pairs of PB-G models for various u values are plotted again,
now compared with the actual cost-gain pairs associated with the R-NP and IC rules that produce
the same target group cost. The points on the right are then interpolated to produce cost-gain
curve estimates for a single iteration. These curves are averaged (vertically) over all simulation
iterations to produce the right-hand side of Figure 1.6.
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Figure 1.12. Illustrates a single training sample iteration for DGP1 when considering the PB-MV
treatment model.
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Appendices

1.A Appendix of Proofs for Chapter 1

1.A.1 Preliminaries and Adaptations From Earlier Literature to Our
Setting

Here we consider preliminary properties to be utilized in subsequent analysis and recall

results from the PAC-Bayesian literature that are also needed, sometimes with minor modifica-

tions. For the most part, proofs (and citations) are included for completeness even when a result

is a fairly straightforward adaption.

Let M (Θ) be the set of measurable functions on (Θ,Bθ ) and let

M π
b (Θ) =

{
A : A ∈M (Θ) and

∫
Θ

exp(A(θ))dπ (θ)< ∞

}
,

which is a subset of M (Θ) that has a finite exponential moment under π. We have the following

lemma and corollary that will be utilized repeatedly in subsequent analysis. In particular they

serve as a base in deriving Lemma 1.3.1 in Section 1.3.3.

Lemma 1.A.1 For π ∈P(Θ) and A ∈M (Θ) such that −A ∈M π
b (Θ), let ρA,π ∈Pπ(Θ) be

the probability measure on Θ with the Radon–Nikodym (RN) derivative with respect to π given

by
dρA,π

dπ
(θ) =

exp(−A(θ))∫
Θ

exp
(
−A
(
θ̃
))

dπ
(
θ̃
) .
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Then for any probability measure ρ ∈Pπ (Θ) we have

log
[∫

Θ

exp(−A(θ))dπ (θ)

]
=−

[∫
Θ

A(θ)dρ (θ)+DKL (ρ,π)

]
+DKL

(
ρ,ρA,π

)
. (1.29)

Proof of Lemma 1.A.1. By definition,

DKL
(
ρ,ρA,π

)
=
∫

Θ

log
[

dρ

dρA,π
(θ)

]
dρ(θ)

=
∫

Θ

log

{
dρ

dπ
(θ)

[
dρA,π

dπ
(θ)

]−1
}

dρ(θ)

=
∫

Θ

[
log

dρ

dπ
(θ)− log

exp(−A(θ))∫
Θ

exp
(
−A
(
θ̃
))

dπ
(
θ̃
)]dρ (θ)

=
∫

Θ

A(θ)dρ (θ)+
∫

Θ

log
[∫

Θ

exp
(
−A
(
θ̃
))

dπ
(
θ̃
)]

dρ (θ)+
∫

Θ

[
log

dρ

dπ
(θ)

]
dρ (θ)

=
∫

Θ

A(θ)dρ (θ)+ log
[∫

Θ

exp(−A(θ))dπ (θ)

]
+
∫

Θ

[
log

dρ

dπ
(θ)

]
dρ (θ)

=
∫

Θ

A(θ)dρ (θ)+ log
[∫

Θ

exp(−A(θ))dπ (θ)

]
+DKL (ρ,π) .

Hence,

log
[∫

Θ

exp(−A(θ))dπ (θ)

]
=−

[∫
Θ

A(θ)dρ (θ)+DKL (ρ,π)

]
+DKL

(
ρ,ρA,π

)
.

Corollary 1.A.1 (a) Let λ > 0, π ∈P(Θ), and let A ∈M (Θ) be such that −λA ∈M π
b (Θ).

Then

ρλA,π = argmin
ρ∈Pπ (Θ)

[∫
Θ

A(θ)dρ (θ)+
1
λ

DKL (ρ,π)

]
,
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and

min
ρ∈Pπ (Θ)

[∫
Θ

A(θ)dρ (θ)+
1
λ

DKL (ρ,π)

]
=− 1

λ
log
[∫

Θ

exp(−λA(θ))dπ (θ)

]
.

(b) For any A (·) ∈M π
b (Θ), π ∈P (Θ), ρ ∈Pπ (Θ),

∫
Θ

A (θ)dρ (θ)≤ log
[∫

Θ

exp(A (θ))dπ (θ)

]
+DKL (ρ,π) .

Proof of Corollary 1.A.1. Part (a). Note ρλA,π = argminρ∈Pπ (Θ)DKL(ρ,ρλA,π) as DKL(ρ,π)≥

0 with equality if and only if ρ = π π-almost surely. Replacing A with λA in Lemma 1.A.1 and

noting that the left-hand-side of (1.29) does not vary with ρ we have

ρλA,π = argmin
ρ∈Pπ (Θ)

[
DKL

(
ρ,ρλA,π

)]
= argmin

ρ∈Pπ (Θ)

[∫
Θ

λA(θ)dρ(θ)+DKL(ρ,π)

]
= argmin

ρ∈Pπ (Θ)

[∫
Θ

A(θ)dρ(θ)+
1
λ

DKL(ρ,π)

]
.

By equation (1.29) we then have

min
ρ∈P(Θ)

[∫
Θ

λA(θ)dρ (θ)+DKL (ρ,π)

]
=
∫

Θ

λA(θ)dρλA,π (θ)+DKL
(
ρλA,π ,π

)
=− log

[∫
Θ

exp(−λA(θ))dπ (θ)

]
.

This is equivalent to the second statement in part (a).

Part (b) Taking A =−A in Lemma 1.A.1, we obtain that for any probability measure

ρ ∈Pπ (Θ),

log
[∫

Θ

exp(A (θ))dπ (θ)

]
=

[∫
Θ

A (θ)dρ (θ)−DKL (ρ,π)

]
+DKL

(
ρ,ρ−A,π

)
. (1.30)
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Note that DKL
(
ρ,ρ−A,π

)
≥ 0. It follows that

log
[∫

Θ

exp(A (θ))dπ (θ)

]
=

[∫
Θ

A (θ)dρ (θ)−DKL (ρ,π)

]
+DKL

(
ρ,ρ−A,π

)
≥
[∫

Θ

A (θ)dρ (θ)−DKL (ρ,π)

]
.

This implies that

∫
Θ

A (θ)dρ (θ)≤ DKL (ρ,π)+ log
[∫

Θ

exp(A (θ))dπ (θ)

]
.

The following Theorem helps to produce PAC-Bayesian generalization bounds in our

setting similar to counterparts in the classification literature. In particular, it essentially the same

as Theorem 18 in Germain et al. (2015) with the loss function altered to the structure our setting;

it is also similar to Theorem 4.1 in Alquier et al. (2016). The proof follows similar steps to those

in Germain et al. (2015) and Alquier et al. (2016). We note that the proof applies to more general

sample spaces, not just those following Assumption 1.3.1. We follow the current formulation to

avoid additional exposition/notation.

Theorem 1.A.1 Let Assumptions 1.3.1 and 1.3.2 (i) hold and let π ∈P(Θ). Let ℓ(Z,θ) :

Z ×Θ→R denote a measurable loss function with range R ⊆ R. Define

L(θ) = EP [ℓ(Z,θ)] , Ln(θ) =
1
n

n

∑
i=1

ℓ(Zi,θ),

and, for ρ ∈Pπ(Θ),

L
(

fG,ρ

)
=
∫

Θ

L(θ)dρ(θ), Ln
(

fG,ρ

)
=
∫

Θ

Ln(θ)dρ(θ).
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Let D : R×R→ R be any convex function and let λ > 0. Suppose

EPn

[∫
Θ

exp(λD [Ln(θ),L(θ)])dπ(θ)

]
≤ exp( f (λ ,n)) , (1.31)

where f (λ ,n)< ∞ and may depend on λ and n. Then for any ε ∈ (0,1] it holds with probability

at least 1− ε that, simultaneously for all ρ ∈Pπ(Θ),

D
[
Ln
(

fG,ρ

)
,L
(

fG,ρ

)]
≤

f (λ ,n)+ log
(1

ε

)
+DKL(ρ,π)

λ
.

Proof of Theorem 1.A.1. (1.31) implies that

∫
Θ

exp(λD [Ln(θ),L(θ)])dπ(θ)< ∞,

holds almost surely. Therefore, applying Corollary 1.A.1 (b) with A (θ) = λD[Ln(θ),L(θ)], the

event

{∫
Θ

λD[Ln(θ),L(θ)]dρ(θ)

≤ log
[∫

Θ

exp(λD [Ln(θ),L(θ)])dπ(θ)

]
+DKL(ρ,π) for all ρ ∈Pπ (Θ) simultaneously

}
,

occurs with probability one. Applying Jensen’s inequality to the object on the left-hand-side of

the inequality in this event, we have

Pn
{

λD[Ln
(

fG,ρ

)
,L
(

fG,ρ

)
]

≤ log
[∫

Θ

exp(λD [Ln(θ),L(θ)])dπ(θ)

]
+DKL(ρ,π) for all ρ ∈Pπ (Θ) simultaneously

}
,

= 1 (1.32)
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By Markov’s inequality and then applying (1.31),

Pn
{∫

Θ

exp(λD [Ln(θ),L(θ)])dπ(θ)> exp
[

f (λ ,n)+ log
(

1
ε

)]}
≤

EPn [
∫

Θ
exp(λD [Ln(θ),L(θ)])dπ(θ)]

exp
[

f (λ ,n)+ log
(1

ε

)]
≤ ε.

Therefore,

Pn
{

log
[∫

Θ

exp(λD [Ln(θ),L(θ)])dπ(θ)

]
≤ f (λ ,n)+ log

(
1
ε

)}
≥ 1− ε

Note that this high probability bound does not involve ρ . Combining it with (1.32), we have

Pn

{
D[Ln

(
fG,ρ

)
,L
(

fG,ρ

)
]≤

f (λ ,n)+ log
( 1

ε

)
+DKL(ρ,π)

λ
for all ρ ∈Pπ (Θ) simultaneously

}

≥ 1− ε

The following lemma will be combined with Theorem 1.A.1 to produce Theorem 1.A.2

below. The lemma yields a key step in adapting PAC-Bayesian bounds from the 0/1-loss

classification literature to more general settings, a procedure utilized in Maurer (2004) and

Germain et al. (2015). For us it will allow us to follow those author’s adaption of a well known

PAC-Bayesian bound, appearing, for example, in Seeger (2002), to more general settings. This

then serves as a key input for producing Lemma 1.A.3 following the analysis of Lever et al.

(2010).

Lemma 1.A.2 Let X be any random variable taking values in [0,1] with EX = µ . Denote X =

(X1, . . . ,Xn) where X1, . . . ,Xn are iid realizations of X. Let X′= (X ′1, . . . ,X
′
n) where X ′1, . . . ,X

′
n are

iid realizations of a Bernoulli random variable X ′ with probability of success µ . If f : [0,1]n→R
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is convex, then

E [ f (X)]≤ E
[

f
(
X′
)]

Proof of Lemma 1.A.2. This lemma is due to Maurer (2004). Another proof with more details

is given in Germain et al. (2015); see Lemmas 51 and 52 there. For intuition, we can regard X′

as a mean-preserving spread of X and − f as the utility function. Then the lemma says that X is

preferred by an expected utility maximizer having concave utility − f (·) .

Now we use Lemma 1.A.2 combined with Theorem 1.A.1 to produce Theorem 1.A.2

below, which is a variant of a well known bound appearing in Seeger (2002). To do this, we

follow the analysis in Germain et al. (2015) to verify the bound for our setting. The proof closely

follows that in Germain et al. (2015). Theorem 20 in Germain et al. (2015), for example, is a

very similar and can apply to a variety of settings. The only difference here is that the structure

of what plays the role of a loss function is stated differently in Theorem 1.A.1.

The following notation is used in the next theorem. We let

kl(a,b) = a log
a
b
+(1−a) log

1−a
1−b

, (1.33)

and adopt the convention that 0 log0 = 0, a log a
0 = ∞ if a > 0 and 0log 0

0 = 0. Note that kl(a,b)

is the KL-divergence between two Bernoulli random variables with success probabilities a and b.

Theorem 1.A.2 Set any prior π ∈P(θ) and ε ∈ (0,1]. Let Assumption 1.3.1, 1.3.2, and 1.3.3

hold. Let ℓ(Z,θ) : Z ×Θ→ [0,1] denote a measurable loss function with range [0,1] (equipped

with the standard Borel sigma field). Define

L(θ) = EP [ℓ(Z,θ)] , Ln(θ) =
1
n

n

∑
i=1

ℓ(Zi,θ),
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and, for ρ ∈Pπ(Θ),

L
(

fG,ρ

)
=
∫

Θ

L(θ)dρ(θ), Ln
(

fG,ρ

)
=
∫

Θ

Ln(θ)dρ(θ).

(a). With probability at least 1− ε , for all posteriors ρ ∈Pπ(Θ) simultaneously it holds

that

kl
(
Ln
(

fG,ρ

)
,L
(

fG,ρ

))
≤ 1

n

[
DKL(ρ,π)+ log

(
2
√

n
)
+ log

1
ε

]
.

(b). With probability at least 1− ε , for all posteriors ρ ∈Pπ(Θ) simultaneously it holds

that (
Ln
(

fG,ρ

)
−L

(
fG,ρ

))2 ≤ 1
2n

[
DKL(ρ,π)+ log

(
2
√

n
)
+ log

1
ε

]
.

Proof of Theorem 1.A.2. Part (a) Given the adaptation of Theorem 1.A.1 to our setting, the

proof follows that of Lemma 19 in Germain et al. (2015) or Theorem 1 in Maurer (2004). We

will apply Theorem 1.A.1 with

D(a,b) =
n
λ

kl(a,b) .

That kl(·, ·) is convex follows from Theorem 2.7.2 of Cover and Thomas (2006). We must verify

that the condition in (1.31) holds with f (λ ,n) = log(2
√

n). We will show that for any θ ∈Θ,

EPn {exp [nkl(Ln(θ),L(θ))]} ≤
n

∑
k=0

(
n
k

)(
k
n

)k(
1− k

n

)n−k

≡ ξ (n). (1.34)

It can be shown (c.f. Lemma 19 in Germain et al. (2015) and the references therein) that
√

n ≤ ξ (n) ≤ 2
√

n. Then, by Assumption 1.3.3, we can reverse the order of integration on

the object on the left hand side of condition 1.31, so that (1.34) yields that (1.31) holds with

f (λ ,n) = log(2
√

n). All that remains is to prove (1.34).

Let θ ∈Θ. First note that in edge cases where L(θ) = 0 or L(θ) = 1, we then have with

probability one that Ln(θ) = 0 or Ln(θ) = 1, respectively, in which case kl(Ln(θ),L(θ)) = 0
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and (1.34) holds. Now consider any θ such that L(θ) ∈ (0,1). Note that

exp{λD(Ln(θ),L(θ))}= exp

{
n ·kl

(
1
n

n

∑
i=1

ℓ(Zi,θ),L(θ)

)}

is a convex function of X = (ℓ(Z1,θ), . . . , ℓ(Zn,θ)). Then, by Lemma 1.A.2,

EPn {exp{λD(Ln(θ),L(θ))}} ≤ E exp

{
n ·kl

(
1
n

n

∑
i=1

X ′i ,L(θ)

)}
, (1.35)

where X ′1, . . . ,X
′
n are iid Bernoulli random variables with success probability L(θ) and the

expectation on the right is taken with respect to their joint distribution. Denoting X ′ = ∑
n
i=1 X ′i ,

we have

E exp
{

n ·kl
(

1
n

X ′,L(θ)
)}

= E

(
1
nX ′

L(θ)

)X ′(
1− 1

nX ′

1−L(θ)

)n−X ′

=
n

∑
k=0

Pr
(
X ′ = k

)( k
n

L(θ)

)k(
1− k

n
1−L(θ)

)n−k

=
n

∑
k=0

(
n
k

)
(L(θ))k (1−L(θ))n−k

(
k
n

L(θ)

)k(
1− k

n
1−L(θ)

)n−k

=
n

∑
k=0

(
n
k

)(
k
n

)k(
1− k

n

)n−k

= ξ (n) (1.36)

Therefore (1.34) holds for any θ ∈Θ, completing the proof.

Part (b). Part (b) follows from part (a) with an application of Pinsker’s inequality,

2(a−b)2 ≤ kl(a,b) (1.37)

The following lemma adapts Lemma 2 of Lever et al. (2010) to our setting, it will aid in

75



removing a DKL term from several bounds in Section 1.4.

Lemma 1.A.3 Let ρ̂λ ,u and ρ∗
λ ,u be as in Definition 1.3.2 with π ∈P(Θ), λ > 0, and u ≥ 0.

Let Assumptions 1.3.1, 1.3.2, and 1.3.3 hold and let ε ∈ (0,1]. With probability at least 1− ε it

holds that

DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

)
≤

λ
√

2(My +uMc)

κ
√

n

√
log
(

2
√

n
ε

)
+

λ 2 (My +uMc)
2

2nκ2 .

Proof of Lemma 1.A.3. The proof follows that of Lemma 2 in Lever et al. (2010), with some

minor adjustments, which are straightforward with Theorem 1.A.2 taking the place of Seeger’s

(c.f. Seeger (2002)) bound in the setting of Lever et al. (2010). To lighten the exposition, we will

write

M(θ ;u) = R(θ)+uK(θ) and Mn(θ ;u) = Rn(θ)+uKn(θ)

when writing the RN deriviatives of ρ̂λ ,u and ρ∗
λ ,u with respect to π and related objects. Note

that for any θ ∈Θ we have Mn(θ ;u)∈ [−(My+uMc)/2κ,(My+uMc)/2κ] by Assumption 1.3.1

(iii) and (iv).
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First, observe that

DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

)
=
∫

Θ

log

[(
dρ̂λ ,u

dπ
(θ)

)(
dπ

dρ∗
λ ,u

(θ)

)]
dρ̂λ ,u(θ)

=
∫

Θ

(
log
[

exp(−λMn(θ ;u))
exp(−λM(θ ;u))

]
− log

[∫
Θ

exp(−λMn(θ ,u))dπ(θ)∫
Θ

exp(−λM(θ ;u))dπ(θ)

])
dρ̂λ ,u(θ)

=
∫

Θ

log
[

exp(−λMn(θ ;u))
exp(−λM(θ ;u))

]
dρ̂λ ,u(θ)

− log
[∫

Θ
exp(−λ [Mn(θ ;u)+M(θ ;u)−M(θ ;u)])dπ(θ)∫

Θ
exp(−λM(θ ;u))dπ(θ)

]
= λ

∫
Θ

M(θ ;u)−Mn(θ ;u)dρ̂λ ,u(θ)− log
[∫

Θ

exp(λ [M(θ ;u)−Mn(θ ;u)])dρ
∗
λ ,u

]
≤ λ

[∫
Θ

M(θ ;u)−Mn(θ ;u)dρ̂λ ,u(θ)−
∫

Θ

M(θ ;u)−Mn(θ ;u)dρ
∗
λ ,u

]
, (1.38)

where the last inequality follows from Jensen’s inequality.

Next we utilize an Theorem 1.A.2 (b). For the setting there, let

ℓ(Z,θ) =
(
ℓy(Z,θ)+uℓc(Z,θ)+

My +uMc

2κ

)(
κ

My +uMc

)

where

ℓy(Z,θ) =
(

Y D
e(X)

− Y (1−D)

1− e(X)

)
( f ∗(X)− fθ (X)) , (1.39)

ℓc(Z,θ) =
(

CD
e(X)

−C(1−D)

1− e(X)

)
fθ (X), (1.40)

and f ∗ is as in (1.7).

Note then that, by Assumption (1.3.1) (iii) and (iv), for all θ ∈Θ, we have ℓ(Z,θ)∈ [0,1]
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almost surely. Additionally, we have

L(θ) = EP[ℓ(Z,θ)] =
(

R(θ)+uK(θ)+
My +uMc

2κ

)(
κ

My +uMc

)
=

(
M(θ ;u)+

My +uMc

2κ

)(
κ

My +uMc

)

and

Ln(θ) =

(
Rn(θ)+uKn(θ)+

My +uMc

2κ

)(
κ

My +uMc

)
=

(
Mn(θ ;u)+

My +uMc

2κ

)(
κ

My +uMc

)
.

Given the above setting, we will apply Theorem 1.A.2 (b). Note that in Theorem 1.A.2,

the prior π does not have to be the same as that used in the definition of ρ̂λ ,u and ρ∗
λ ,u, provided

that the posteriors of interest are still absolutely continuous with respect to the prior. Rather that

utilizing the theorem with the π associated with ρ̂λ ,u and ρ∗
λ ,u, we instead use ρ∗

λ ,u as the prior.

Note this prior choice satisfies Assumption 1.3.3, i.e. it does not depend on the sample. Applying

Theorem 1.A.2 (b) and taking the square root of each side in the high probability bound there,

utilizing posteriors ρ = ρ̂λ ,u and ρ = ρ∗
λ ,u, with probability at least 1− ε it holds simultaneously

that

∫
Θ

L(θ)−Ln(θ)dρ̂λ ,u(θ)≤
1√
2n

√
DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

)
+ log

(
2
√

n
ε

)
,

−
(∫

Θ

L(θ)−Ln(θ)dρ
∗
λ ,u(θ)

)
≤ 1√

2n

√
log
(

2
√

n
ε

)
.

In terms of M(θ ;u) and Mn(θ ;u), this reads: with probability at least 1−ε , the following events
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holds simultaneously

∫
Θ

M(θ)−Mn(θ)dρ̂λ ,u(θ)≤
My +uMc

κ
√

2n

√
DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

)
+ log

(
2
√

n
ε

)
,

−
(∫

Θ

M(θ)−Mn(θ)dρ
∗
λ ,u(θ)

)
≤

My +uMc

κ
√

2n

√
log
(

2
√

n
ε

)
.

Applying the above two inequalities to (1.38), we obtain

DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

)
≤

λ (My +uMc)

κ
√

2n

√
DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

)
+ log

(
2
√

n
ε

)
+

λ (My +uMc)

κ
√

2n

√
log
(

2
√

n
ε

)

Straightforward algebraic manipulations of the above produce that

(
DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

))2
−

2λ (My +uMc)

κ
√

2n

√
log
(

2
√

n
ε

)
DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

)
+

λ 2 (My +uMc)
2

2nκ2 log
(

2
√

n
ε

)
≤

λ 2 (My +uMc)
2

2nκ2 DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

)
+

λ 2 (My +uMc)
2

2nκ2 log
(

2
√

n
ε

)
. (1.41)

If

DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

)
≤

2λ (My +uMc)

κ
√

2n

√
log
(

2
√

n
ε

)
,

the statement of the lemma holds. Otherwise, this and the fact that DKL(ρ̂λ ,u,ρ
∗
λ ,u)≥ 0 imply

that DKL(ρ̂λ ,u,ρ
∗
λ ,u)> 0. Then, canceling out terms on either side of the inequality in (1.41) and

dividing each side by DKL(ρ̂λ ,u,ρ
∗
λ ,u) produces the statement of the lemma.

The remainder of the section contains straightforward lemmas that will be utilized in

proofs for results in Section 1.4 and one more substantial result adapted from Freund et al. (2004)

that will conclude this subsection.

Lemma 1.A.4 Let Assumptions 1.3.1 and 1.3.2 hold. Let ρ ′ ∈P(Θ) be a (deterministic)
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probability that does not depend on the sample. Then

Pn

(∫
Θ

Kn(θ)dρ
′(θ)≤

∫
Θ

K(θ)dρ
′(θ)+

√
M2

c log(1/ε)

2nκ2

)
≥ 1− ε.

Proof of Lemma 1.A.4. Define the mapping

K(Z1, . . . ,Zn) =
∫

Θ

Kn(θ)dρ
′(θ).

It is straightforward to check that, under Assumption 1.3.1 (iii), K satisfies the bounded differ-

ences property in Section 6.1 of Boucheron et al. (2013) with (in their notation) ci = Mc/(nκ) for

i = 1, . . . ,n. It follows by McDiarmid’s inequality (c.f. McDiarmid (1989)) that, for any t ≥ 0,

Pn
(∫

Θ

Kn(θ)dρ
′(θ)−EPn

[∫
Θ

Kn(θ)dρ
′(θ)

]
> t
)

= Pn
(∫

Θ

Kn(θ)dρ
′(θ)−

∫
Θ

K(θ)dρ
′(θ)> t

)
≤ exp

{
−2nκ2t2

M2
c

}
.

Substituting t =
√

M2
c log(1/ε)/(2nκ2), for any ε ∈ (0,1], this says

Pn

(∫
Θ

Kn(θ)dρ
′(θ)−

∫
Θ

K(θ)dρ
′(θ)>

√
M2

c log(1/ε)

2nκ2

)
≤ ε.

The result follows by taking the compliment and rearranging terms.

Lemma 1.A.5 The KL divergence between ρ : N(µρ ,Σρ) and π : N(µπ ,Σπ) on Rq, where µθ

and µρ are mean vectors and Σπ and Σρ are covariance matrices, is

DKL (ρ,π) =
1
2
(
µρ −µπ

)′
Σ
−1
π

(
µρ −µπ

)
+

1
2
[
tr
(
ΣρΣ

−1
π

)
−q
]
− 1

2
log

det
(
Σρ

)
det(Σπ)

.
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Proof of Lemma 1.A.5. By definition and via simple calculations, we have

DKL (ρ,π)

=−1
2

Eθ∼ρ

[
log

det
(
Σρ

)
det(Σπ)

+
(
θ −µρ

)′
Σ
−1
ρ

(
θ −µρ

)
− (θ −µπ)

′
Σ
−1
π (θ −µπ)

]

=−1
2

log
det
(
Σρ

)
det(Σπ)

− 1
2

[
q−Eθ∼ρ

(
θ −µρ +µρ −µπ

)′
Σ
−1
π

(
θ −µρ +µρ −µπ

)]
=−1

2
log

det
(
Σρ

)
det(Σπ)

− 1
2

[
q− tr

(
ΣρΣ

−1
π

)
−
(
µρ −µπ

)′
Σ
−1
π

(
µρ −µπ

)]
=

1
2
(
µρ −µπ

)′
Σ
−1
π

(
µρ −µπ

)
+

1
2
[
tr
(
ΣρΣ

−1
π

)
−q
]
− 1

2
log

det
(
Σρ

)
det(Σπ)

.

The last results needed for our analysis are stated in the two lemmas below. The first is a

more elementary property used in proving the second, which is utilized during a step in the proof

of Theorem 1.4.2 in Section 1.4. Both are close adaptions of analysis in Freund et al. (2004).

After a translation of the problem via Corollary 1.A.1, we follow the method of proof there,

adapting the analysis there in the 0/1 loss setting to ours with fairly straightforward modifications.

Lemma 1.A.6 For x = (x1, . . . ,xm) ∈ Rm, and with {ai}m
i=1 such that ai ≥ 0 for all i = 1, . . . ,m,

the function

x 7→ − log

[
m

∑
i=1

ai exp [xi]

]
is concave.

Proof of Lemma 1.A.6. Let α ∈ (0,1) and x,y ∈ Rm. We will show that

K(x) = log

[
m

∑
i=1

ai exp [xi]

]

is convex. Let p = 1/α , q = 1/(1−α) and define ri = a1/p
i exp[αxi] and si = a1/q

i exp[(1−α)yi].

81



As 1/p+1/q = 1, by Hölder’s inequality,

m

∑
i=1

risi ≤

(
m

∑
i=1

rp
i

)1/p( m

∑
i=1

sq
i

)1/q

.

Taking the logarithm of each side and plugging in the definitions of p, q, ri and si, this is

equivalent to

K(αx+(1−α)y)≤ αK(x)+(1−α)K(y),

completing the proof.

The following lemma combines pieces of Lemmas 1 and 2 of Freund et al. (2004) and

translates those results for the 0/1-loss setting to a useful ingredient for ours.

Lemma 1.A.7 Let ρ̂λ ,u and ρ∗
λ ,u be as in Definition 1.3.2 with π ∈P(Θ), λ > 0, and u ≥ 0.

Let assumptions 1.3.1, 1.3.2, and 1.3.3 hold. Then, for any ε ∈ (0,1], it holds that

Pn
{∫

Θ

Rn(θ)dρ̂λ ,u(θ)+u
∫

Θ

Kn(θ)dρ̂λ ,u(θ)+
1
λ

DKL
(
ρ̂λ ,u,π

)
≤

∫
Θ

R(θ)dρ
∗
λ ,u(θ)+u

∫
Θ

K(θ)dρ
∗
λ ,u(θ)+

1
λ

DKL(ρ
∗
λ ,u,π)+

√
(My +uMc)2 log(1/ε)

2nκ2

}

≥ 1− ε.

Proof of Lemma 1.A.7. Define the mapping

Ku(Z1, . . . ,Zn) =
∫

Θ

Rn(θ)dρ̂λ ,u(θ)+u
∫

Θ

Kn(θ)dρ̂λ ,u(θ)+
1
λ

DKL
(
ρ̂λ ,u,π

)
.

Note that by Corollary 1.A.1 (a), replacing A(θ) in the Corollary with R(θ)+uKn(θ),

Ku(Z1, . . . ,Zn) =−
1
λ

log
[∫

Θ

exp [−λ (Rn(θ)+uKn(θ))]dπ(θ)

]
. (1.42)
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First we show that for any ε ∈ (0,1] it holds that

Pn

(
Ku(Z1, . . . ,Zn)> EPn [Ku(Z1, . . . ,Zn)]+

√
(My +uMc)2 log(1/ε)

2nκ2

)
≤ ε. (1.43)

To show this, for any i ∈ {1, . . . ,n}, let Z′i ∈Z and let (Z1, . . . ,Zn) ∈Z n. Let Kn(θ) and Rn(θ)

be computed utilizing (Z1, . . . ,Zi−1,Zi,Zi+1, . . . ,Zn) and let K′n(θ) and R′n(θ) be computed as

Kn(θ) and Rn(θ) are, respectively, except utilizing the sample (Z1, . . . ,Zi−1,Z′i ,Zi+1, . . . ,Zn)

instead of (Z1, . . . ,Zi−1,Zi,Zi+1, . . . ,Zn). Also, let Kn−i(θ) and Rn−i denote the computation of

Kn(θ) and Rn(θ), respectively, except with the sample of size n−1 that drops observation Zi.

Then by construction Kn−i(θ) = K′n−1(θ) and Rn−i(θ) = R′n−1(θ). Under Assumptions 1.3.1

(iii) and (iv),

−
My +uMc

2κ
≤ ℓy(Zi)+uℓc(Zi,θ)≤

My +uMc

2κ

almost surely where ℓy and ℓc are defined in (1.39) and (1.40) and are summed over i in Rn(θ)

and Kn(θ), respectively. It follows from (1.42) that,

|Ku(Z1, . . . ,Zi−1,Zi,Zi+1, . . . ,Zn)−Ku(Z1, . . . ,Zi−1,Z′i ,Zi+1, . . . ,Zn)|

=

∣∣∣∣− 1
λ

log
[∫

Θ
exp [−λ (Rn(θ)+uKn(θ))]dπ(θ)∫

Θ
exp [−λ (R′n(θ)+uK′n(θ))]dπ(θ)

]∣∣∣∣
≤− 1

λ
log

[(
exp [−λ (My +uMc)/(2nκ)]

exp [λ (My +uMc)/(2nκ)]

)( ∫
Θ

exp [−λ (Rn−i(θ)+uKn−i(θ))]dπ(θ)∫
Θ

exp
[
−λ
(
R′n−i(θ)+uK′n−i(θ)

)]
dπ(θ)

)]

=
My +uMc

nκ
,

Thus, Ku satisfies the bounded differences property in Section 6.1 of Boucheron et al.

(2013) with (in their notation) ci = (My +uMc)/(nκ). By McDiarmid’s inequality, (see McDi-

armid (1989)), it holds that for any t ≥ 0,

Pn (Ku(Z1, . . . ,Zn)−EPn [Ku(Z1, . . . ,Zn)]> t)≤ exp
(
− 2nt2κ2

(My +uMc)2

)
.
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Substituting t =
√

(My +uMc)2 log(1/ε)/(2nκ2), we obtain that for for any ε ∈ (0,1],

Pn

(
Ku(Z1, . . . ,Zn)> EPn [Ku(Z1, . . . ,Zn)]+

√
(My +uMc)2 log(1/ε)

2nκ2

)
≤ ε.

Therefore (1.43) holds.

Next will show that

EPn [Ku(Z1, . . . ,Zn)]≤
∫

Θ

R(θ)dρ
∗
λ ,u(θ)+u

∫
Θ

K(θ)dρ
∗
λ ,u(θ)+

1
λ

DKL(ρ
∗
λ ,u,π). (1.44)

To do so, we follow arguments in Section 7 of Freund et al. (2004) with adjustments to suit our

setting.

First note that by Corollary 1.A.1 (a),

∫
Θ

R(θ)dρ
∗
λ ,u(θ)+u

∫
Θ

K(θ)dρ
∗
λ ,u(θ)+

1
λ

DKL(ρ
∗
λ ,u,π)

=− 1
λ

log
[∫

Θ

exp [−λ (R(θ)+uK(θ))]dπ(θ)

]
. (1.45)

Next, by Assumption 1.3.1 and the definitions of R(θ) and K(θ), it follows that

−My−uMc ≤ R(θ)+uK(θ)≤My +uMc,

for all θ ∈Θ. For any δ > 0, let

Bi =
{

θ ∈Θ :−(My +uMc)+ iδ ≤ R(θ)+uK(θ)<−(My +uMc)+(i+1)δ
}
,

Then B0, . . . ,Bk with k = ⌊2(My +uMc)/δ⌋, form a partition of Θ. For i ∈ {0, . . . ,k} such that

π(Bi)> 0, define

ε̃i ≡
∫
Bi

Rn(θ)+uKn(θ)dπ(θ)

π(Bi)
,
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Then, as π is independent of the sample by Assumption 1.3.3 and EPn[Rn(θ) + uKn(θ)] =

R(θ)+uK(θ),

EPn [ε̃i] =

∫
Bi

R(θ)+uK(θ)dπ(θ)

π(Bi)
≤−(My +uMc)+(i+1)δ .

Combining this with the fact that R(θ)+uK(θ)>−(My +uMc)+ iδ for θ ∈Bi,

∫
Θ

exp [−λ (R(θ)+uK(θ))]dπ(θ)≤∑π(Bi)exp [−λ (−(My +uMc)+ iδ )]

≤∑π(Bi)exp [−λ (EPn [ε̃i−δ ])]

= exp [λδ ]∑π(Bi)exp [−λ (EPn [ε̃i])] ,

where the sums above are to be understood as summing over all i∈{0, . . . ,k} such that π(Bi)> 0.

Taking the logarithm of each side of this inequality and multiplying by −1/λ , we have

− 1
λ

log
[∫

Θ

exp [−λ (R(θ)+uK(θ))]dπ(θ)

]
≥−δ − 1

λ
log
[
∑π(Bi)exp [−λ (EPn [ε̃i])]

]
≥−δ − 1

λ
EPn
[
log
(
∑π(Bi)exp [−λ ε̃i]

)]
(1.46)

=−δ − 1
λ

EPn

[
log
(

∑π(Bi)exp
[
−λ

∫
Bi

Rn(θ)+uKn(θ)dπ(θ)

π(Bi)

])]
≥−δ − 1

λ
EPn

[
log
(

∑π(Bi)

∫
Bi

exp [−λ (Rn(θ)+uKn(θ))]dπ(θ)

π(Bi)

)]
(1.47)

=−δ − 1
λ

EPn

[
log
(∫

Θ

exp [−λ (Rn(θ)+uKn(θ))]dπ(θ)

)]
=−δ +EPn [Ku(Z1, . . . ,Zn)] (1.48)

In the above, (1.46) follows from an application of Jensen’s inequality applied to the concave

function

x 7→ − log

(
∑

i
π(Bi)exp [xi]

)
,

85



where the concavity of this function follows from Lemma 1.A.6. (1.47) follows from another

application of Jensen’s inequality now applied to the convex function exp(x). (1.48) follows

from (1.42). δ was arbitrary, so this produces

− 1
λ

log
[∫

Θ

exp [−λ (R(θ)+uK(θ))]dπ(θ)

]
≥ EPn [Ku(Z1, . . . ,Zn)] ,

which, in light of (1.45), shows that (1.44) holds. (1.43) and (1.44) together yield that

Pn
(

Ku(Z1, . . . ,Zn)

>
∫

Θ

R(θ)dρ
∗
λ ,u(θ)+u

∫
Θ

K(θ)dρ
∗
λ ,u(θ)+

1
λ

DKL(ρ
∗
λ ,u,π)+

√
(My +uMc)2 log(1/ε)

2nκ2

)
≤ ε,

which produces the statement of the lemma upon taking the compliment.

1.A.2 Proofs for Section 1.3

Proofs for Subsection 1.3.1: Statistical Setting and Policy Maker’s Problem

We will utilize the following lemma in the proof of Theorem 1.3.1.

Lemma 1.A.8 Under the assumptions and setting of Theorem 1.3.1, let δ+
c (x) = max(δc(x),0)

and δ−c (x) = max(−δc(x),0) denote the positive and negative parts of δc(x), respectively. Define

β (b) = EQ[δc(X)1{δy(X)> bδc(X)}], b ∈ R,

which is the expected budget of the non-stochastic treatment assigmnet rule 1{δy(x)> bδc(x)}.

(i) Let ηB = inf{b≥ 0 : β (b)≤ B} . β (b) is non-increasing in b and 0≤ ηB < ∞.

(ii) Let

a1 =


B−β (ηB)

EQ[δ+
c (X)1{δy(X)=ηBδc(X)}]

if β (ηB)< B and ηB > 0,

0 else,
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and

a2 =


β (ηB)−B

EQ[δ−c (X)1{δy(X)=ηBδc(X)}]
if β (ηB)> B,

0 else.
.

Then these are well defined probabilities in that β (ηB)< B and ηB > 0 implies

EQ[δ
+
c (X)1{δy(X) = ηBδc(X)}]> 0,

β (ηB)> B implies

EQ[δ
−
c (X)1{δy(X) = ηBδc(X)}]> 0,

and a1,a2 ∈ [0,1]. Furthermore, for f ∗ defined as in Theorem 1.3.1 with ηB,a1, and a2 as above,

when β (0)> B it holds that

EQ [δc(X) f ∗B(x)] = B.

Proof of Lemma 1.A.8.

Proof of (i): To show β (b) is non-increasing in b, write

β (b) = EQ
[
δ
+
c (X)1{δy(X)> bδc(X)}

]
−EQ

[
δ
−
c (X)1{δy(X)> bδc(X)}

]
, (1.49)

By definition of δ+
c (x) and δ−c (x),

δ
+
c (x)1{δy(x)−bδc(x)}

is non-increasing in b and

δ
−
c (x)1{δy(x)−bδc(x)}

is non-decreasing in b for all x ∈X . It follows that β (b) is non-increasing in b.

Checking 0 ≤ ηB < ∞ translates to verifying that our form of policy assignment rule
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can meet the budget requirement. Let {bn} be any non-negative sequence such that bn→ ∞.

Then, EQ|δc(X)|< ∞ and EQ|δy(X)|< ∞, equation (1.49), and an application of the dominated

convergence theorem yield

lim
n→∞

β (bn) = lim
n→∞

EQ
[
δ
+
c (X)1{δy(X)> bnδc(X)}

]
− lim

n→∞
EQ
[
δ
−
c (X)1{δy(X)> bnδc(X)}

]
= 0−EQ[δ

−
c (X)]< B.

The inequality follows from the assumption that B > EQ[δc(X)1{δc(X)< 0}] =−EQ[δ
−1
c (X)].

As β (b) is non-increasing, we have either {b≥ 0 : β (b)≤ B}= [r,∞) or {b≥ 0 : β (b)≤ B}=

(r,∞) for some r ∈ R≥0 = {x ∈ R : x≥ 0}. It follows that 0≤ ηB < ∞.

Proof of (ii): Let b ∈R. For any sequence bn ↑ b, by the dominated convergence theorem

we have

lim
bn↑b

β (bn) = lim
bn↑b

EQ[δ
+
c (X)1{δy(X)> bnδc(X)}]− lim

bn↑b
EQ[δ

−
c (X)1{δy(X)> bnδc(X)}]

=EQ[δ
+
c (X)1{δy(X)≥ bδc(X)}]−EQ[δ

−
c (X)1{δy(X)> bδc(X)}].

=EQ[δ
+
c (X)1{δy(X)> bδc(X)}]+EQ[δ

+
c (X)1{δy(X) = bδc(X)}]

−EQ[δ
−
c (X)1{δy(X)> bδc(X)}].

=β (b)+EQ[δ
+
c (X)1{δy(X) = bδc(X)}]

This yields

lim
x→b−

β (x) = β (b)+EQ
[
δ
+
c (X)1

{
δy(X) = bδc(X)

}]
. (1.50)

Similar steps now starting with any sequence bn ↓ b produce that

lim
x→b+

β (x) = β (b)−EQ
[
δ
−
c (X)1

{
δy(X) = bδc(X)

}]
. (1.51)

As β (·) is non-increasing, it has at most countably many discontinuities, which occur at values
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b for which either EQ[δ
+
c (X)1{δy(X) = bδc(X)}]> 0 or EQ[δ

−
c (X)1{δy(X) = bδc(X)}]> 0 or

both.

Now, if B > β (ηB) and ηB > 0, by definition of ηB we have that β (η ′) > B for any

η ′ < ηB. Combined with (1.50), we obtain

β (ηB)< B≤ β (ηB)+EQ
[
δ
+
c 1{δy(X) = ηBδc(X)}

]
,

which implies that EQ[δ
+
c (X)1{δy(X) = ηBδc(X)}]> 0 and a1 ∈ [0,1].

Next, if B < β (ηB), by defnition of ηB we have β (η ′)≤ B for any η ′ > ηB. Combining

this with (1.51), we obtain

β (ηB)−EQ
[
δ
−
c (X)1

{
δy(X) = ηBδc(X)

}]
≤ B < β (ηB) .

This implies EQ[δ
−
c (X)1{δy(X) = ηBδc(X)}]> 0 and a2 ∈ [0,1].

For the last claim of (ii), write

EQ [δc(X) f ∗B(x)] =EQ
[
δc(X)1

{
δy(X)> ηBδc(X)

}]
+a1EQ

[
δc(X)1

{
δy(X) = ηBδc(X)

}
1{δc(X)> 0}

]
+a2EQ

[
δc(X)1

{
δy(X) = ηBδc(X)

}
1{δc(X)< 0}

]
. (1.52)

When β (0)> B, there are 3 scenarios for β (ηB): (i) β (ηB) = B and ηB > 0; (ii) β (ηB)< B and

ηB > 0; or (iii) β (ηB)> B and ηB ≥ 0. For scenario (i), we have a1 = a2 = 0 and the result holds

as EQ[δc(X)1{δy(X)> ηBδc(X)}] = β (ηB) = B. For scenario (ii), a2 = 0 and (1.52) becomes

EQ [δc(X) f ∗B(x)] =EQ
[
δc(X)1

{
δy(X)> ηBδc(X)

}]
+

B−β (ηB)

EQ
[
δ
+
c (X)1

{
δy(X) = ηBδc(X)

}]EQ
[
δ
+
c (X)1

{
δy(X) = ηBδc(X)

}]
= B.
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For scenario (iii), a1 = 0 and (1.52) becomes

EQ [δc(X) f ∗B(x)] =EQ
[
δc(X)1

{
δy(X)> ηBδc(X)

}]
− β (ηB)−B

EQ
[
δ
−
c (X)1

{
δy(X) = ηBδc(X)

}]EQ
[
δ
−
c (X)1

{
δy(X) = ηBδc(X)

}]
= B.

This completes the proof of (ii).

Proof of Theorem 1.3.1.

The existence of ηB ≥ 0, a1,a2 ∈ [0,1] such that either ηB = a1 = a2 = 0 (then f ∗

simplifies to f ∗) when K( f ∗)≤ B or else (ηB,a1,a2) are such that K( f ∗) = B when K( f ∗)> B

follows from Lemma 1.A.8. To see this note β (0) = K( f ∗), where β (·) is defined in Lemma

1.A.8. Thus, the statement about the budget being used entirely when K( f ∗)> B is stated directly

in Lemma 1.A.8. When β (0) = K( f ∗)≤ B, ηB as defined in Lemma 1.A.8 is equal to zero and

then both a1 = a2 = 0 also from their definitions there.

Next we need to verify that f ∗ satisfies (1.6), i.e. is an optimal budget-constrained

treatment policy. Let r : X → [0,1] denote any other stochastic treatment assignment rule that

satisfies the budget constraint K(r)≤ B. As in Sun et al. (2021), we proceed by verifying that

EQ [δy(X) f ∗B(x)]≥ EQ [δy(X)r(X)] .

By the definition of f ∗, when δy(x) > ηBδc(x) we also have f ∗B(x)− r(x) ≥ 0. Hence

δy(x)( f ∗B(x)− r(x)) ≥ ηBδ (x)( f ∗B(x)− r(x)) in this case. When δy(x) < ηBδc(x), we have

f ∗B(x)− r(x) ≤ 0 and hence δy(x)( f ∗B(x)− r(x)) ≥ ηBδ (x)( f ∗B(x)− r(x)) in this case as well.

It follows that

EQ [δy(X)( f ∗B(x)− r(X))]≥ηBEQ [δc(X)( f ∗B(x)− r(X))] . (1.53)
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There are two possible scenarios: K( f ∗) ≤ B or else K( f ∗) > B. When K( f ∗) ≤ B, we have

ηB = 0 and hence the right-hand-side of (1.53) is zero implying f ∗ is optimal. If, alternatively,

K( f ∗)> B, then we know that K( f ∗) = B and K(r)≤ B. Thus

EQ[δc(X)( f ∗B(x)− r(X))] = K( f ∗)−K(r)≥ 0.

Now the right-hand-side of (1.53) is non-negative (as ηB ≥ 0) and f ∗ is again optimal.

Lastly we need to show that if

EQ[1{δy(X) = ηBδc(X)}] = 0, (1.54)

then f ∗ is deterministic and unique (in an almost sure sense). It is clear from the form of f ∗

that it is almost surely equivalent to 1{δy(x)> ηBδc(x)} in this setting. Additionally, with the

choices of ηB,a1,a2 given in Lemma 1.A.8 this will be true for all x ∈X . To see that this

follows from the proof of Lemma 1.A.8, by (1.50) and (1.51) there, β (b) is continuous in this

scenario so that β (ηB) = B when ηB > 0; this implies a1 = a2 = 0 when ηB > 0. When ηB = 0,

we must have β (0)≤ B and then again a1 = a2 = 0 as defined in Lemma 1.A.8.

To check uniqueness, let r(x) be any other treatment assignment rule that satisfies the

budget constraint K(r) ≤ B and is not a.s. equal to f ∗B(x). When ηB = 0, r must then assign

treatment for a subset of X with positive probability that has negative CATE or else fail to assign

treatment to some subset of X that has positive CATE with positive probability (or both). This

results in lower expected welfare than f ∗, so r cannot be optimal. When ηB > 0, the argument

is similar to that showing f ∗ is optimal. When ηB > 0, its definition in Lemma 1.A.8 indicates

that K( f ∗) = β (0) > B (and from (1.52) in Lemma 1.A.8, it follows that ηB > 0 in this case

must be the unique choice for which the expected budget of f ∗ is B). P( f ∗B(x) ̸= r(x))> 0 then

implies that for some subset of X with positive probability we must have f ∗B(x)− r(x) > 0

when δy(x) > ηBδc(x) or else f ∗B(x)− r(x) < 0 when δy(x) < ηBδc(x) (or both). This implies
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that the inequality in (1.53) is strict. As f ∗ uses up the entire budget (1.53) now implies the

left-hand-side is strictly positive, which concludes the proof.

Proofs for Subsection 1.3.3: Initial Properties of the Gibbs Posterior

Proof of Lemma 1.3.1. First we derive the result in (1.17). There are two possible scenarios.

First, if Λ(0)≤B, i.e. the “cost” at u= 0 is within budget, then ρ̃A,H,λ ,0 ∈ EB and ρ̃A,H,λ ,0 = ρλA,π

in the notation of Corollary 1.A.1. Then the result follows from Corollary 1.A.1 (a). Note that

this scenario captures the case when B = ∞, i.e. when there is no budget constraint.

In the second scenario, Λ(0)> B (and B < ∞). Assume this is case for the remainder of

the proof of property (1.17). First, we will show that this implies Λ(u) is (strictly) decreasing in

u and that there exists a unique uB > 0 such that Λ(uB) = B. Note below that at any point u≥ 0,

because the derivatives of the integrands are dominated by integrable functions on intervals of

the form (u−a,u+b), some a,b > 0, and as Λ(u) is easily extended in definition to negative

values of u in neighborhoods of 0, we can exchange differentiation and integration. We have

d
du

Λ(u)

=
d

du

[(∫
Θ

H (θ)exp [−λ (A(θ)+uH (θ))]dπ (θ)

)(∫
Θ

exp [−λ (A(θ)+uH (θ))]dπ (θ)

)−1
]

=−λ

∫
Θ

H2 (θ)dρ̃A,H,λ ,u (θ)+λ

(∫
Θ

H (θ)dρ̃A,H,λ ,u (θ)

)2

=−λVθ∼ρ̃A,H,λ ,u [H (θ)]

< 0, (1.55)

where Vθ∼ρ̃A,H,λ ,u
[H(θ)] denotes the variance of H(θ) when θ ∼ ρ̃A,H,λ ,u. Note the strict

inequality of the last line holds because the distribution of H(θ) induced by ρ̃A,H,λ ,u is degenerate

only when the distribution of H(θ) induced by π is degenerate. If this were the case, (1.16)

would imply that Λ(0) < B. Hence the strict inequality when Λ(0) ≥ B, which includes our

current Λ(0)> B scenario.

Now, note that (1.16) implies there exist ε1,η > 0 such that π({θ : H(θ)≤ B− ε1}) =
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η > 0. Let ε2 be such that 0 < ε2 < ε1. Letting Mh and Ma be such that |H(θ)| ≤ Mh and

|A(θ)| ≤Ma for all θ (as these functions are assumed bounded), we have

∫
Θ

H (θ)dρ̃A,H,λ ,u (θ)

≤ (B− ε2)+Mh

∫
Θ

1{H (θ)> B− ε2}dρ̃A,H,λ ,u (θ)

= (B− ε2)+Mh

∫
Θ

1{H (θ)> B− ε2}exp [−λ (A(θ)+uH (θ))]dπ (θ)∫
Θ
(1{H (θ)≤ B− ε1}+1{H (θ)> B− ε1})exp [−λ (A(θ)+uH (θ))]dπ (θ)

≤ (B− ε2)+Mh

∫
Θ

1{H (θ)> B− ε2}exp [−λ (A(θ)+uH (θ))]dπ (θ)∫
Θ

1{H (θ)≤ B− ε1}exp [−λ (A(θ)+uH (θ))]dπ (θ)

≤ (B− ε2)+Mh

(
exp [−λu(B− ε2)]

exp [−λu(B− ε1)]

)(
exp [λMa]

η exp [−λMa]

)
= (B− ε2)+ exp [−λu(ε1− ε2)]

(
Mh exp [2λMa]

η

)
.

As ε1− ε2 > 0, for large enough values of u it holds that Λ(u)< B. Then, as Λ(u) is continuous

and strictly decreasing in u it follows that there is a unique uB > 0 such that Λ(uB) = B.

To finish the proof the property in (1.17), we need to show that when Λ(0)> B, ρ̃A,H,λ ,uB

is the optimal probability measure on Θ for the minimization problem. Replacing A in Corollary

1.A.1 (a) with the A+uBH as given above and noting that ρ̃A,H,λ ,uB = ρλ (A+uBH),π , we have that

for any ρ ∈ EB,

ρ̃A,H,λ ,uB

= argmin
ρ∈Pπ (Θ)

[∫
Θ

{A(θ)+uBH (θ)}dρ (θ)+
1
λ

DKL (ρ,π)

]
(1.56)

= argmin
ρ∈Pπ (Θ)

[∫
Θ

{A(θ)+uBH (θ)}dρ (θ)+
1
λ

DKL (ρ,π)−uBB
]

= argmin
EH,B

[∫
Θ

A(θ)dρ (θ)+
1
λ

DKL (ρ,π)+uB

(∫
Θ

H (θ)dρ (θ)−B
)]

(1.57)

= argmin
{ρ∈Pπ (Θ):

∫
Θ

H(θ)dρ(θ)=B}

[∫
Θ

A(θ)dρ (θ)+
1
λ

DKL (ρ,π)+uB

(∫
Θ

H (θ)dρ (θ)−B
)]

,

(1.58)
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where the third equality holds in our specific setting because ρ̃A,H,λ ,uB ∈ EH,B and EH,B⊂Pπ(Θ).

The fourth equality follows similar reasoning. Next note that for any ρ ∈ EH,B, as uB > 0,

∫
Θ

A(θ)dρ (θ)+
1
λ

DKL (ρ,π)≥
∫

Θ

A(θ)dρ (θ)+
1
λ

DKL (ρ,π)+uB

(∫
Θ

H (θ)dρ (θ)−B
)

(1.59)

≥
∫

Θ

A(θ)dρ̃A,H,λ ,uB (θ)+
1
λ

DKL
(
ρ̃A,H,λ ,uB,π

)
, (1.60)

where (1.60) follows from (1.57) and the fact that
∫

Θ
H(θ)dρ̃A,H,λ ,uB(θ) = B. Because the

inequality in (1.59) is strict whenever
∫

Θ
H(θ)dρ < B it follows from (1.58) that ρ̃A,H,λ ,uB is the

argmin when Λ(0)> B, completing the proof of the property in (1.17).

Next we need to prove the property in (1.18). This property is trivial when B = ∞.

Assume B < ∞ for the remainder of the proof. Let

h(u) =
∫

Θ

A(θ)dρ̃A,H,λ ,u(θ)+u
(∫

Θ

H(θ)dρ̃A,H,λ ,u(θ)−B
)
+

1
λ

DKL
(
ρ̃A,H,λ ,u,π

)
.

By the definition of uB, we need to show that the supremum of h(u) over u≥ 0 is achieved at uB.

Observe that by Corollary 1.A.1 (a), as ρ̃A,H,λ ,u = ρλ (A+uH),π in the notation there,

∫
Θ

{A(θ)+uH(θ)}dρ̃A,H,λ ,u(θ)+
1
λ

DKL(ρ̃A,H,λ ,u,π)

=− 1
λ

log
[∫

Θ

exp [−λ (A(θ)+uH(θ))]dπ(θ)

]
. (1.61)

Utilizing this it is straightforward to derive that

d
du

h(u) =
∫

Θ
H(θ)exp [−λ (A(θ)+uH(θ))]dπ(θ)∫
Θ

exp [−λ (A(θ ′)+uH(θ ′))]dπ(θ ′)
−B

= Λ(u)−B, (1.62)
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where we may exchange differentiation and expectation following similar reasoning as before.

In the proof of the property in (1.17) it is shown that Λ(u) is strictly decreasing on [0,∞)

when Λ(0) ≥ B. When Λ(0) > B, by the definition of uB we have Λ(uB) = B with uB > 0. It

follows that the supremum of h(u), which is continuous in u, is achieved at uB. This is because,

from (1.62), the derivative of h(u) is positive on [0,uB), zero at uB and decreasing on (uB,∞). If

Λ(0) = B, we have that the supremum is achieved at 0, which is uB in this case by the definition

uB, as the derivative of h(u) is now zero at u = uB = 0 and negative for u ∈ (0,∞). Conversely, if

Λ(0)< B, nearly identical steps to those in the proof of the property in (1.17) show that Λ(u) is

non-increasing in u for u≥ 0. Hence in this case the derivative of h(u) is negative for u ∈ [0,∞)

and the supremum is achieved at 0, which by definition, is the value of uB when Λ(0)≤ B.

Proof of Lemma 1.3.2. Part (a). Given Assumptions 1.3.2 and 1.3.4 (i) for B ∈ R∪{∞}, this is

an immediate corollary of Lemma 1.3.1 taking A(θ) = Rn(θ) and H(θ) = Kn(θ).

Part (b). Again let A(θ) = Rn(θ), H(θ) = Kn(θ), and ρ̃A,H,λ ,u = ρ̂λ ,u in the notation

of Lemma 1.3.1. Observe that, for a fixed sample S, as the distribution of Kn(θ) induced by

θ ∼ ρ̂λ ,u is degenerate only when the distribution of Kn(θ) induced by π is degenerate, which is

assumed to not be the case (with probability one) by Assumption 1.3.4 (ii), Pn almost surely it

holds that ∫
Θ

Kn(θ)dρ̂λ ,u

cannot take any value b that does not satisfy

π ({θ : Kn(θ)< b})> 0.

It follows that, Pn almost surely,

π

({
θ : Kn(θ)< B̂(ρ̂λ ,u)

})
> 0.
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Then, the result for part (b) follows by applying Lemma 1.3.1 with A(θ) =Rn(θ), H(θ) =Kn(θ),

and B = B̂(ρ̂λ ,u).

1.A.3 Proofs for Section 1.4

The proofs of Theorems 1.4.2 and 1.4.3 will utilize the following lemmas that follow

from Lemma 1.3.1. We again utilize the notation in (1.19) and (1.20) for EB and ÊB, respectively.

Lemma 1.A.9 (a) Let Assumptions 1.3.2 and 1.3.4 (i) hold for B∈R. For any λ > 0 and B′ ≥ B,

Pn almost surely it holds that

min
ÊB′

[∫
Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π)

]
= sup

u≥0

[∫
Θ

Rn(θ)dρ̂λ ,u(θ)+u
(∫

Θ

Kn(θ)dρ̂λ ,u(θ)−B′
)
+

1
λ

DKL
(
ρ̂λ ,u,π

)]
.

(b) Let Assumptions 1.3.2 and 1.3.4 (i) hold for B ∈ R. The following properties hold

Pn almost surely. For any λ > 0 and B′ ≥ B, u∗(B′,λ ) exist, is unique, and satisfies that

u∗(B′,λ ) = 0 when
∫

Θ
K(θ)dρ∗

λ ,0(θ) ≤ B′ whereas, when
∫

Θ
K(θ)dρ∗

λ ,0(θ) > B′, u∗(B′,λ ) is

positive and satisfies
∫

Θ
K(θ)dρ∗

λ ,u∗(B′,λ )(θ) = B′. Additionally,

ρ
∗
λ ,u∗(B′,λ ) = argmin

EB′

[∫
Θ

R(θ)dρ(θ)+
1
λ

DKL(ρ,π)

]
,

and

min
EB′

[∫
Θ

R(θ)dρ(θ)+
1
λ

DKL(ρ,π)

]
= sup

u≥0

[∫
Θ

R(θ)dρ
∗
λ ,u(θ)+u

(∫
Θ

K(θ)dρ
∗
λ ,u(θ)−B′

)
+

1
λ

DKL

(
ρ
∗
λ ,u,π

)]
.

(c) Let Assumptions 1.3.2 and 1.3.4 (ii) hold. For any B′ ≥ B(ρ̂λ ,u), the following event
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occurs Pn almost surely

min
ρ∈EB′

[∫
Θ

R(θ)dρ(θ)+
1
λ

DKL (ρ,π)

]
= sup

a≥0

[∫
Θ

R(θ)dρ
∗
λ ,a(θ)+a

(∫
Θ

K(θ)dρ
∗
λ ,a(θ)−B′

)
+

1
λ

DKL

(
ρ
∗
λ ,a,π

)]
.

Proof of Lemma 1.A.9. Part (a). When

π (θ ∈Θ : Kn(θ)< B)> 0

holds for B, it also holds for B′ ≥ B. Therefore part (a) follows from Lemma 1.3.1 with

A(θ) = Rn(θ), H(θ) = Kn(θ), ρ̃A,H,λ ,u = ρ̂λ ,u and combining the statements in (1.17) and

(1.18).

Part (b). When

π (θ ∈Θ : K(θ)< B)> 0

holds for B, it also holds for B′≥B. Then the result follows from Lemma 1.3.1 with A(θ) =R(θ),

H(θ) = K(θ), and ρ̃A,H,λ ,u = ρ∗
λ ,u.

Part (c). Note that by Assumption 1.3.4 (ii), as ρ̂λ ,u and π are each absolutely continuous

with respect to the other, we have that the distribution of K(θ) induced by θ ∼ ρ̂λ ,u is not

degenerate. Therefore,

π

({
θ : K(θ)<

∫
Θ

K(θ)dρ̂λ ,u = B(ρ̂λ ,u)

})
> 0.

It follows that for any B′ ≥ B(ρ̂λ ,u), we have

π
(
{θ : K(θ)< B′}

)
> 0.

Then, the result of part (c) follows from applying Lemma 1.3.1 with A(θ) = R(θ), H(θ) = K(θ),
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and ρ̃A,H,λ ,u = ρ∗
λ ,u and then combining equations (1.17) and (1.18) there.

Proofs for Subsection 1.4.1: Regret Bounds and Oracle-Type Inequalities

Proof of Theorem 1.4.1. Part (a). When Vn(θ) = Rn(θ), V (θ) = R(θ), and Mℓ = My, we have

the setup for Theorem 1.A.1 with

ℓv(Z,θ) =
(

Y D
e(X)

− Y (1−D)

1− e(X)

)
( f ∗(X)− fθ (X)),

L(θ) = V (θ), and Ln(θ) = Vn(θ). Note that, by Assumption 1.3.1, parts (iii) and (iv), we

have that −Mℓ/2κ ≤ ℓv(Z,θ)≤Mℓ/2κ a.s. Similarly, when Vn(θ) = Kn(θ), V (θ) = K(θ), and

Mℓ = Mc, we have the setup for Theorem 1.A.1 now with

ℓv(Z,θ) =
(

CD
e(X)

−C(1−D)

1− e(X)

)
fθ (X),

and again taking L(θ) =V (θ) and Ln(θ) =Vn(θ). Again Assumption 1.3.1, parts (iii) and (iv),

yields that −Mℓ/2κ ≤ ℓv(Z,θ)≤Mℓ/2κ a.s.

Given this setup, we apply Theorem 1.A.1 in the same way for either of the settings for

L(θ),Ln(θ) and Mℓ. We need an appropriate choice for D(·, ·) and to then verify the condition in

(1.31). Importantly, in either setting we have that, for any θ ∈Θ, ℓv(Z1,θ), . . . , ℓv(Zn,θ) is an iid

set of random variables taking values in [−Mℓ/2κ,Mℓ/2κ] almost surely. For either s ∈ {−1,1},

take D[Ln(θ),L(θ)] = s(Ln(θ)−L(θ)). We need to verify the condition in (1.31) and determine

an appropriate f (λ ,n). Start with s = 1. Then, by Hoeffding’s lemma (see, for example, Massart
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(2007), page 21), for any θ ∈Θ,

EPn [exp(λ [Ln(θ)−L(θ)])] = EPn

[
exp

(
λ

n

n

∑
i=1

(ℓv(Zi,θ)−EP [ℓv(Zi,θ)])

)]

=
n

∏
i=1

EP

[
exp
{

λ

n
(ℓv(Zi,θ)−EP [ℓv(Zi,θ)])

}]
≤

n

∏
i=1

exp
(

λ 2M2
ℓ

8κ2n2

)
= exp

(
λ 2M2

ℓ

8κ2n

)
(1.63)

Nearly identical steps in the s=−1 case, now applying Hoeffding’s lemma to−ℓv(Zi,θ) produce

that

EPn [exp(λ [L(θ)−Ln(θ)])]≤ exp
(

λ 2M2
ℓ

8κ2n

)
. (1.64)

Integrating with respect to π , (1.63) and (1.64) yield that

∫
Θ

EPn [λ s(Rn(θ)−R(θ))]dπ(θ)≤ exp
(

λ 2M2
ℓ

8κ2n

)
, s ∈ {−1,1}.

We can reverse the order of integration on the left-hand of the above inequality, as π is indepen-

dent of the sample by Assumption 1.3.3. Therefore, condition (1.31) in Theorem 1.A.1 holds

with f (λ ,n) = λ 2M2
ℓ /(8nκ2). Applying Theorem 1.A.1 completes the proof for Part (a).

Part (b). We utilize the same notation in terms of ℓv(Z,θ) in the two scenarios for Vn(θ),

V (θ), and Mℓ as in part (a). Let E1 denote the event that the following inequality holds,

DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

)
≤

λ
√

2(My +uMc)

κ
√

n

√
log
(
2
√

n
)
+ log

2
ε
+

λ 2 (My +uMc)
2

2nκ2 . (1.65)

Note that by Lemma 1.A.3, Pn(E1)≥ 1− ε/2.

Next, let E2 denote the event that the following inequality holds,

(∫
Θ

[Vn(θ)−V (θ)]dρ̂λ ,u(θ)

)2

≤
M2

ℓ

2nκ2

[
DKL

(
ρ̂λ ,u,ρ

∗
λ ,u

)
+ log

(
2
√

n
)
+ log

2
ε

]
. (1.66)
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In the setup of Theorem 1.A.2 (b), take

ℓ(Z,θ) =
(
ℓv(Z,θ)+

Mℓ

2κ

)(
κ

Mℓ

)
.

Then, for any θ ∈Θ, ℓ(Z,θ) ∈ [0,1] (P almost surely). Applying Theorem 1.A.2 (b) yields that

Pn(E2)≥ 1− ε/2.

Then, the following a union bound argument,

Pn (E1∩E2) = 1−Pn (Ec
1 ∪Ec

2)

≥ 1−Pn (E1)−Pn (E2)

≥ 1− ε

2
− ε

2
= 1− ε,

yields that events E1 and E2 occur jointly with probability greater than 1− ε . In the intersection

of these events, plugging (1.65) into (1.66) produces the result in part (b).

Part (c). The proof follows similar steps to that in part (b). Define E1 the same way as in

part (b). Now, E2 is defined to be the event that

∫
Θ

s [Vn(θ)−V (θ)]dρ̂λ ,u(θ)≤
1
λ

DKL(ρ,π)+
1
λ

[
λ 2M2

ℓ

8nκ2 + log
2
ε

]
.

By part (a), Pn(E1)≥ 1− ε/2. Then, event E2 is defined the same way is in the proof of part

(b), P(E1∩E2)> 1−ε by a union bound argument, and combining the inequalities in E1 and E2

produces the statement of part (c).

Proof of Theorem 1.4.2.

Part (a). Let E1 denote the event that, for all ρ ∈Pπ(Θ) simultaneously it holds that

∫
Θ

R(θ)dρ(θ)≤
∫

Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π)+
1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
. (1.67)
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Let E2 denote the event that, for all ρ ∈Pπ(Θ) simultaneously it holds that

∫
Θ

Rn(θ)dρ(θ)≤
∫

Θ

R(θ)dρ(θ)+
1
λ

DKL(ρ,π)+
1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
. (1.68)

Lastly, let u∗ = u∗(B,λ/2) as specified in Definition 1.3.3 and let E3 denote the event that

∫
Θ

Kn(θ)dρ
∗
λ/2,u∗(θ)−

∫
Θ

K(θ)dρ
∗
λ/2,u∗(θ)≤

√
M2

c log 3
ε

2nκ2 , (1.69)

where ρ∗
λ/2,u is given in Definition 1.3.2.

By Theorem 1.4.1 (a), applied to each s ∈ {−1,1} with Vn(θ) = Rn(θ), V (θ) = R(θ),

and by Lemma 1.A.4, respectively, we have

Pn (E1)≥ 1− ε

3
, Pn (E2)≥ 1− ε

3
, and Pn (E3)≥ 1− ε

3
.

Applying a union bound argument as in the proof of Theorem 1.4.1 (b), it holds that Pn(E1∩

E2∩E3)≥ 1− ε . From the remainder of the proof, we work assuming the intersection of these

three events. We show the event in Theorem 1.4.2 (a) is implied by their intersection, hence the

event of interest contains this intersection and has probability greater than or equal 1− ε .

We consider two possible scenarios in conjuncture with events E1, E2, and E3. In the first

scenario, suppose that ∫
Θ

Kn(θ)dρ
∗
λ/2,u∗(θ)≤ B. (1.70)
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In this case ρ∗
λ/2,u∗ ∈ ÊB, where ÊB is given by (1.20). Starting from (1.67) with ρ = ρ̂λ ,û,

∫
Θ

R(θ)dρ̂λ ,û(θ)≤
∫

Θ

Rn(θ)dρ̂λ ,û(θ)+
1
λ

DKL(ρ̂λ ,û,π)+
1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]

= min
ρ∈ÊB

{∫
Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π)

}
+

1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]

≤
∫

Θ

Rn(θ)dρ
∗
λ/2,u∗(θ)+

1
λ

DKL(ρ
∗
λ/2,u∗,π)+

1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
.

The second equality above follows from Lemma 1.3.2 (a). Now, consider (1.68) with ρ = ρ∗
λ/2,u∗ .

Plugging this inequality into the right-hand side of the above inequality produces

∫
Θ

R(θ)dρ̂λ ,û(θ)≤
∫

Θ

R(θ)dρ
∗
λ/2,u∗(θ)+

2
λ

DKL(ρ
∗
λ/2,u∗ ,π)+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]

= min
ρ∈EB

{∫
Θ

R(θ)dρ(θ)+
2
λ

DKL(ρ,π)

}
+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]

≤ min
ρ∈EB

{∫
Θ

R(θ)dρ(θ)+
2
λ

DKL(ρ,π)

}
+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2 ,

where the equality in the second row follows from Lemma 1.A.9 (b) and the final inequality

holds as û≥ 0. Thus the result of part (a) holds in the first scenario described by (1.70), noting

that for ρ ∈P(Θ), R( fG,ρ) =
∫

Θ
R(θ)dρ(θ).

In the second and only remaining scenario, we consider when

∫
Θ

Kn(θ)dρ
∗
λ/2,u∗(θ)> B. (1.71)

If we set

B′ =
∫

Θ

Kn(θ)dρ
∗
λ/2,u∗(θ), (1.72)
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then it holds that ρ∗
λ/2,u∗ ∈ ÊB′ . Again starting from the event in (1.67) with ρ = ρ̂λ ,û, we obtain

∫
Θ

R(θ)dρ̂λ ,û(θ)

≤
∫

Θ

Rn(θ)dρ̂λ ,û(θ)+
1
λ

DKL(ρ̂λ ,û,π)+
1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]

=
∫

Θ

Rn(θ)dρ̂λ ,û(θ)+
1
λ

DKL(ρ̂λ ,û,π)+ û
(∫

Θ

Kn(θ)dρ̂λ ,û(θ)−B
)
+

1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
(1.73)

=
∫

Θ

Rn(θ)dρ̂λ ,û(θ)+ û
(∫

Θ

Kn(θ)dρ̂λ ,û(θ)−B′
)
+

1
λ

DKL(ρ̂λ ,û,π)

+ û
(∫

Θ

Kn(θ)dρ
∗
λ/2,u∗(θ)−B

)
+

1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
(1.74)

≤ sup
u≥0

[∫
Θ

Rn(θ)dρ̂λ ,u(θ)+u
(∫

Θ

Kn(θ)dρ̂λ ,u(θ)−B′
)
+

1
λ

DKL(ρ̂λ ,u,π)

]
+ û
(∫

Θ

Kn(θ)dρ
∗
λ/2,u∗(θ)−B

)
+

1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]

= min
ρ∈ÊB′

{∫
Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π)

}

+ û
(∫

Θ

Kn(θ)dρ
∗
λ/2,u∗(θ)−B

)
+

1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
(1.75)

≤ min
ρ∈ÊB′

{∫
Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π)

}
+ û

√
M2

c log 3
ε

2nκ2 +
1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
(1.76)

≤
∫

Θ

Rn(θ)dρ
∗
λ/2,u∗(θ)+

1
λ

DKL(ρ
∗
λ/2,u∗ ,π)+ û

√
M2

c log 3
ε

2nκ2 +
1
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
(1.77)

≤
∫

Θ

R(θ)dρ
∗
λ/2,u∗(θ)+

2
λ

DKL(ρ
∗
λ/2,u∗,π)+ û

√
M2

c log 3
ε

2nκ2 +
2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
(1.78)

= min
ρ∈EB

{∫
Θ

R(θ)dρ(θ)+
2
λ

DKL(ρ,π)

}
+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2 . (1.79)

In the above, step (1.73) follows from the properties of û = û(B,λ ) in Lemma 1.3.2 (a). In step

(1.74) we simply added and subtracted ûB′ with B′ given in (1.72). Step (1.75) follows from
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Lemma 1.A.9 (a). Step (1.76) follows from (1.69) and the observation that
∫

Θ
K(θ)dρ∗

λ/2,u∗(θ)

is always less than or equal to B by Lemma 1.A.9 (b). Step (1.77) follows from fact that

ρ∗
λ/2,u∗ ∈ ÊB′ by the construction of B′ in (1.72). (1.78) follows from (1.68) with ρ = ρ∗

λ/2,u∗ and

lastly (1.79) follows from Lemma 1.A.9 (b).

It follows that the result in part (a) also holds in the second scenario in (1.71) which

completes the proof for this part.

Part (b). Now, let E1 denote the event that, for all ρ ∈Pπ(Θ) simultaneously it holds

that

∫
Θ

R(θ)dρ(θ)≤
∫

Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π)+
1
λ

[
λ 2M2

y

8nκ2 + log
4
ε

]
. (1.80)

Let E2 denote the event that

∫
Θ

Rn(θ)dρ̂λ ,u(θ)+u
∫

Θ

Kn(θ)dρ̂λ ,u(θ)+
1
λ

DKL
(
ρ̂λ ,u,π

)
≤
∫

Θ

R(θ)dρ
∗
λ ,u(θ)+u

∫
Θ

K(θ)dρ
∗
λ ,u(θ)+

1
λ

DKL(ρ
∗
λ ,u,π)+

√
(My +uMc)2 log(4/ε)

2nκ2 ,

(1.81)

and let E3 denote the event that

∫
Θ

K(θ)dρ̂λ ,u(θ)−
∫

Θ

Kn(θ)dρ̂λ ,u(θ)

≤
√

2(My +uMc)

κ
√

n

√
log
(
2
√

n
)
+ log

4
ε
+

λ (My +uMc)
2

2nκ2 +
1
λ

[
λ 2M2

c
8nκ2 + log

4
ε

]
=U1 (ε;λ ,u,n)+

1
λ

[
λ 2M2

c
8nκ2 + log

4
ε

]
(1.82)

By Theorem 1.4.1 (a), applied with s = −1, Vn(θ) = Rn(θ), V (θ) = R(θ), and Mℓ = My, we

have that Pn(E1) = ε/4. By Lemma 1.A.7, Pn(E2) = ε/4. And lastly, by Theorem 1.4.1 (c)

with Vn(θ) = Kn(θ), V (θ) = K(θ), and Mℓ = Mc, it holds that Pn(E3) = ε/2. Again applying a
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union bound argument similar to that in the proof of Theorem 1.4.1 (b), we have

Pn (E1∩E2∩E3)≥ 1− ε.

As in part (a), we prove the result by showing that the intersection of these events implies the

event in the result.

Recall,

B
(
ρ̂λ ,u

)
=
∫

Θ

K(θ)dρ̂λ ,u(θ) and B̂
(
ρ̂λ ,u

)
=
∫

Θ

Kn(θ)dρ̂λ ,u(θ).

Then, the event E3 described in (1.82) can be stated

B
(
ρ̂λ ,u

)
− B̂

(
ρ̂λ ,u

)
≤U1 (ε;λ ,u,n)+

1
λ

[
λ 2M2

c
8nκ2 + log

4
ε

]
. (1.83)
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Now, starting from (1.80) with ρ = ρ̂λ ,u,

∫
Θ

R(θ)dρ̂λ ,u(θ)

≤
∫

Θ

Rn(θ)dρ̂λ ,u(θ)+
1
λ

DKL(ρ̂λ ,u,π)+
1
λ

[
λ 2M2

y

8nκ2 + log
4
ε

]

=
∫

Θ

Rn(θ)dρ̂λ ,u(θ)+u
(∫

Θ

Kn(θ)dρ̂λ ,u− B̂
(
ρ̂λ ,u

))
+

1
λ

DKL(ρ̂λ ,u,π)+
1
λ

[
λ 2M2

y

8nκ2 + log
4
ε

]

=
∫

Θ

Rn(θ)dρ̂λ ,u(θ)+u
∫

Θ

Kn(θ)dρ̂λ ,u +
1
λ

DKL(ρ̂λ ,u,π)

−uB
(
ρ̂λ ,u

)
+u
(

B
(
ρ̂λ ,u

)
− B̂

(
ρ̂λ ,u

))
+

1
λ

[
λ 2M2

y

8nκ2 + log
4
ε

]

≤
∫

Θ

R(θ)dρ
∗
λ ,u(θ)+u

∫
Θ

K(θ)dρ
∗
λ ,u(θ)+

1
λ

DKL(ρ
∗
λ ,u,π)+

√
(My +uMc)2 log(4/ε)

2nκ2

−uB
(
ρ̂λ ,u

)
+u
(

B
(
ρ̂λ ,u

)
− B̂

(
ρ̂λ ,u

))
+

1
λ

[
λ 2M2

y

8nκ2 + log
4
ε

]
(1.84)

=
∫

Θ

R(θ)dρ
∗
λ ,u(θ)+u

(∫
Θ

K(θ)dρ
∗
λ ,u(θ)−B

(
ρ̂λ ,u

))
+

1
λ

DKL(ρ
∗
λ ,u,π)+

√
(My +uMc)2 log(4/ε)

2nκ2

+u
(

B
(
ρ̂λ ,u

)
− B̂

(
ρ̂λ ,u

))
+

1
λ

[
λ 2M2

y

8nκ2 + log
4
ε

]

≤
∫

Θ

R(θ)dρ
∗
λ ,u(θ)+u

(∫
Θ

K(θ)dρ
∗
λ ,u(θ)−B

(
ρ̂λ ,u

))
+

1
λ

DKL(ρ
∗
λ ,u,π)+

√
(My +uMc)2 log(4/ε)

2nκ2

+uU1 (ε;λ ,u,n)+
1
λ

[
λ 2
(
M2

y +uM2
c
)

8nκ2 +(1+u) log
4
ε

]
(1.85)

≤ sup
a≥0

[∫
Θ

R(θ)dρ
∗
λ ,a(θ)+a

(∫
Θ

K(θ)dρ
∗
λ ,a(θ)−B

(
ρ̂λ ,u

))
+

1
λ

DKL(ρ
∗
λ ,a,π)

]
+

√
(My +uMc)2 log(4/ε)

2nκ2 +uU1 (ε;λ ,u,n)+
1
λ

[
λ 2
(
M2

y +uM2
c
)

8nκ2 +(1+u) log
4
ε

]

= min
ρ∈EB(ρ̂

λ ,u)

{∫
Θ

R(θ)dρ(θ)+
1
λ

DKL(ρ,π)

}

+

√
(My +uMc)2 log(4/ε)

2nκ2 +uU1 (ε;λ ,u,n)+
1
λ

[
λ 2
(
M2

y +uM2
c
)

8nκ2 +(1+u) log
4
ε

]
.

(1.86)

In the above, (1.84) follows from plugging in (1.81), (1.85) follows from plugging in (1.83), and

lastly (1.86) follows from Lemma 1.A.9 (c). Switching the notation to
∫

Θ
R(θ)dρ(θ) = R( fG,ρ)
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for ρ ∈P(Θ) and utilizing the definition of U2 (ε;λ ,u,n), the above yields the statement in part

(b) of the Theorem.

Proofs for Subsection 1.4.2: Normal Prior

Proof of Theorem 1.4.3. We will use the following properties in the proofs of part (a)

and (b). For treatment assignment rules of the form in (1.10), when ∥θ∥ ̸= 0, it holds that

fθ (x) = fθ/∥θ∥(x) for all x ∈X . As we are presuming that θ ̸= 0 and θ u ̸= 0 (almost surely),

with probability one we can find a values θ and θ u such that ∥θ∥= 1 and ∥θ u∥= 1. We assume

θ and θ u are selected to have this property for the remainder of the proof. Below, for integration

over Θ = Rq, we write
∫
. . . in place of

∫
Rq . . .

Observe that for θ ,θ1 ∈ Rq such that ∥θ1∥= 1 and ∥θ∥ ̸= 0,

R(θ)−R(θ1) =W ( fθ )−W ( fθ1) (1.87)

= EQ [(Y1−Y0)( fθ (X)− fθ1(X))]

≤MyEP [|1{φ(X)⊺θ > 0}−1{φ(X)⊺θ1 > 0}|] (1.88)

= MyP [(φ(X)⊺θ)(φ(X)⊺θ1)< 0]

= MyP
[(

φ(X)⊺
θ

∥θ∥

)
(φ(X)⊺θ1)< 0

]
≤Myν

∥∥∥∥ θ

∥θ∥
−θ1

∥∥∥∥ (1.89)

≤My2ν ∥θ −θ1∥ , (1.90)

where (1.87) follows from the definition of welfare regret, (1.88) follows from Assumption 1.3.1

(iii) and the fact that the distribution of X is determined by P as well as Q, (1.89) follows from

Assumption 1.4.3, and (1.90) follows from the fact that with θ ,θ1 as above,

∥∥∥∥ θ

∥θ∥
−θ1

∥∥∥∥≤ ∥θ −θ1∥.
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As a consequence of (1.90), for any σ > 0,

∫
R(θ)dΦθ1,σ2(θ) = R(θ1)+

∫
[R(θ)−R(θ1)]dΦθ1,σ2(θ)

≤ R(θ1)+2Myν

∫
∥θ −θ1∥dΦθ1,σ2(θ)

≤ R(θ1)+2Myνσ
√

q, (1.91)

where we have used the fact that for θ ∼Φθ1,σ2 , ||θ −θ1|| ∼ σH1/2 with H ∼ χ2(q). Then, by

Jensen’s inequality, EσH1/2 ≤ σ(EH)1/2 = σ(q)1/2.

Following nearly identical steps, now starting with the definition of the expected costs

K(θ) and K(θ), it is straightforward to derive that, for θ ,θ1 ∈ Rq such that ∥θ1∥ = 1 and

∥θ∥ ̸= 0,

K (θ)−K (θ1)≤Mc2ν ∥θ −θ1∥ ,

and for σ > 0, ∫
K(θ)dΦθ1,σ2(θ)≤ K (θ1)+2Mcνσ

√
q. (1.92)

Lastly, before considering part (a) and (b) separately, note that by Lemma 1.A.5, with

σπ = 1/
√

q, σρ = 1/(2
√

nq), and ∥θ1∥= 1,

DKL

(
Φ

θ1,σ
2
ρ
,Φ0,σ2

π

)
=

q
2

[
1

4n
+ log(4n)

]
. (1.93)

Part (a). We consider the posterior distribution ρ̃ = Φ
θ ,σ2

ρ
with σρ = 1/(2

√
nq) so that

DKL(ρ̃,π) is given by (1.93). Next, define

B′ = B+
νMc√

n
. (1.94)

Assumptions 1.3.2 and 1.3.3 are met and Assumptions 1.4.3 and 1.3.4 are assumed to

hold so we can apply Theorem 1.4.2 (a). Starting from there, with probability at least 1− ε we
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have

∫
R(θ)dρ̂λ ,û(θ)

≤ min
ρ∈EB

{∫
R(θ)dρ(θ)+

2
λ

DKL(ρ,π)

}
+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2

=
∫

R(θ)dρ
∗
λ/2,u∗(θ)+

2
λ

DKL(ρ
∗
λ/2,u∗ ,π)+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2 (1.95)

=
∫

R(θ)dρ
∗
λ/2,u∗(θ)+u∗

(∫
K(θ)dρ

∗
λ/2,u∗(θ)−B

)
+

2
λ

DKL(ρ
∗
λ/2,u∗,π)

+
2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2 (1.96)

=
∫

R(θ)dρ
∗
λ/2,u∗(θ)+u∗

(∫
K(θ)dρ

∗
λ/2,u∗(θ)−B′

)
+

2
λ

DKL(ρ
∗
λ/2,u∗,π)

+u∗
(
B′−B

)
+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2

≤ sup
u≥0

[∫
R(θ)dρ

∗
λ/2,u +u

(∫
K(θ)dρ

∗
λ ,u(θ)−B′

)
+

2
λ

DKL(ρ
∗
λ ,u,π)

]

+u∗
(
B′−B

)
+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2

= min
ρ∈EB′

{∫
R(θ)dρ(θ)+

2
λ

DKL (ρ,π)

}
+u∗

νMc√
n
+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2

(1.97)

In the above, (1.95) and (1.96) follow from Lemma 1.A.9 (b) while (1.97) follows from applying

Lemma 1.A.9 (b) and the definition of B′ in (1.94).

From (1.92) with θ in the place of θ1 and with σρ = 1/(2
√

nq), we have

∫
K(θ)dρ̃(θ) =

∫
K(θ)dΦ

θ ,σ2
ρ
(θ)≤ K

(
θ
)
+

νMc√
n
≤ B′ (1.98)

as, by the definition of θ , K(θ)≤ B. Therefore ρ̃ ∈ EB′ . From (1.97), we have, with probability
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at least 1− ε ,

∫
R(θ)dρ̂λ ,û(θ)

≤ min
ρ∈EB′

{∫
R(θ)dρ(θ)+

2
λ

DKL (ρ,π)

}
+u∗

νMc√
n
+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2

≤
∫

R(θ)dρ̃(θ)+
2
λ

DKL (ρ̃,π)+u∗
νMc√

n
+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2

≤ R
(
θ
)
+

νMy√
n
+

q
λ

[
1
4n

+ log(4n)
]
+u∗

νMc√
n
+

2
λ

[
λ 2M2

y

8nκ2 + log
3
ε

]
+ û

√
M2

c log 3
ε

2nκ2 .

In the last step, we have applied the properties in (1.91) and (1.93) with θ taking the role of θ1.

Plugging in λ = κ
√

nq/My and rearranging terms then produces the result in (a) with

U1(n;q) =
√

q
n

[
νMy√

q
+

My

κ

(
1
4
+

1
4n

)]
.

Part (b). As a starting point, we utilize the setup and initial steps of the proof of Theorem

1.4.2 (b). Assume the same the definitions of events E1, E2 and E3 as in (1.80), (1.81), (1.82),

respectively. Following that proof up to (1.85), we have that with probability at least 1− ε ,

∫
R(θ)dρ̂λ ,u(θ)

≤
∫

R(θ)dρ
∗
λ ,u(θ)+u

(∫
K(θ)dρ

∗
λ ,u(θ)−B

(
ρ̂λ ,u

))
+

1
λ

DKL(ρ
∗
λ ,u,π)

+

√
(My +uMc)2 log(4/ε)

2nκ2 +uU1 (ε;λ ,u,n)+
1
λ

[
λ 2 (M2

y +uM2
c
)

8nκ2 +(1+u) log
4
ε

]
,

(1.99)

where B(ρ̂λ ,u) =
∫

K(θ)dρ̂λ ,u = K( fG,ρ̂λ ,u
) and U1 (ε;λ ,u,n) is defined in Theorem 1.4.2 (b).

Now we will consider the posterior ρ̃ = Φ
θ u,σ2

ρ
with σρ = 1/(2

√
nq). Utilizing (1.93)
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with π as described in the theorem, now with θ u in place of θ1, with probability one we have

DKL(ρ̃,π) =
q
2

[
1
4n

+ log(4n)
]
. (1.100)

Additionally, we now define

B′ = B
(
ρ̂λ ,u

)
+

νMc√
n
. (1.101)

From (1.92) with θ u in the place of θ1 and with σρ = 1/(2
√

nq), with probability one we have

∫
K(θ)dρ̃(θ) =

∫
K(θ)dΦ

θ u,σ2
ρ
(θ)≤ K

(
θ u
)
+

νMc√
n
≤ B′, (1.102)

because, by the definition of θ u we have K(θ u)≤ B
(
ρ̂λ ,u

)
(a.s.). It follows that with probability

one, ρ̃ ∈ EB′ .
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Returning to (1.99), we have, with probability at least 1− ε ,

∫
R(θ)dρ̂λ ,u(θ)

≤
∫

R(θ)dρ
∗
λ ,u(θ)+u

(∫
K(θ)dρ

∗
λ ,u(θ)−B

(
ρ̂λ ,u

))
+

1
λ

DKL(ρ
∗
λ ,u,π)+

√
(My +uMc)2 log(4/ε)

2nκ2

+uU1 (ε;λ ,u,n)+
1
λ

[
λ 2
(
M2

y +uM2
c
)

8nκ2 +(1+u) log
4
ε

]

≤
∫

R(θ)dρ
∗
λ ,u(θ)+u

(∫
K(θ)dρ

∗
λ ,u(θ)−B′

)
+

1
λ

DKL(ρ
∗
λ ,u,π)+

√
(My +uMc)2 log(4/ε)

2nκ2

+u
(
B′−B

(
ρ̂λ ,u

))
+uU1 (ε;λ ,u,n)+

1
λ

[
λ 2
(
M2

y +uM2
c
)

8nκ2 +(1+u) log
4
ε

]

≤ sup
a≥0

[∫
R(θ)dρ

∗
λ ,a(θ)+u

(∫
K(θ)dρ

∗
λ ,a(θ)−B′

)
+

1
λ

DKL(ρ
∗
λ ,a,π)

]
+

√
(My +uMc)2 log(4/ε)

2nκ2 +u
(

νMc√
n

)
+uU1 (ε;λ ,u,n)+

1
λ

[
λ 2
(
M2

y +uM2
c
)

8nκ2 +(1+u) log
4
ε

]
(1.103)

= inf
ρ∈EB′

[∫
R(θ)dρ(θ)+

1
λ

DKL (ρ,π)

]
+

√
(My +uMc)2 log(4/ε)

2nκ2

+u
(

νMc√
n

)
+uU1 (ε;λ ,u,n)+

1
λ

[
λ 2
(
M2

y +uM2
c
)

8nκ2 +(1+u) log
4
ε

]
(1.104)

≤
∫

R(θ)dρ̃(θ)+
1
λ

DKL (ρ̃,π)+

√
(My +uMc)2 log(4/ε)

2nκ2

+u
(

νMc√
n

)
+uU1 (ε;λ ,u,n)+

1
λ

[
λ 2
(
M2

y +uM2
c
)

8nκ2 +(1+u) log
4
ε

]
(1.105)

≤ R
(
θ u
)
+

νMy√
n
+

q
2λ

[
1

4n
+ log(4n)

]
+

√
(My +uMc)2 log(4/ε)

2nκ2

+u
(

νMc√
n

)
+uU1 (ε;λ ,u,n)+

1
λ

[
λ 2
(
M2

y +uM2
c
)

8nκ2 +(1+u) log
4
ε

]
(1.106)

Above, (1.103) follows from (1.101) and the fact that the supremum there is greater than or

equal to the object it replaces, (1.104) follows from Lemma 1.A.9 (c), (1.105) follows from

having ρ̃ ∈ EB′ with probability one, and lastly (1.106) follows from (1.91), with θ u in place

of θ1 and σρ = 1/(2
√

nq) in place of σ , and utilizing (1.100). Plugging in λ as given in part

(b), straightforward manipulations of the expression in (1.106) show that the inequality can be
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written

R
(

fG,ρ̂λ ,u

)
≤ R

(
θ u
)
+

My +uMc

κ

[
U2(n;q,u,ε)+U3(n;q,u,ε)+U4(n;q,u)

]
,

where

U2(n;q,u,ε) =

√
q log(2

√
n)+
√

2u
√

log(2
√

n)+ log 4
ε√

n
= O

(
logn√

n

)
,

U3(n;q,u,ε) =

√
log(4/ε)

2 + 1√
q(1+u) log 4

ε√
n

= O

(
1√
n

)
,

and

U4(n;q,u) =
κν +

√
q
( 1

8n +
u
2

)
√

n
+

√
q
n

(
M2

y +uM2
c

8(My +uMc)
2

)
= O

(
1√
n

)
.

Proofs for Subsection 1.4.3: The Majority Vote Treatment Rule

Proof of Theorem 1.4.4. First, note that

fmv,ρ(x) = 1
{∫

Θ

fθ (x)dρ(θ)>
1
2

}
≤ 2

∫
Θ

fθ (x)dρ(θ) = 2 fG,ρ(x). (1.107)

To see this, note that when
∫

Θ
f (x)dρ(θ)≤ 1/2, fmv,ρ = 0 hence the left-hand size of

the above inequality is zero while the right-hand size is non-negative and the inequality holds.

When
∫

Θ
fθ (x)dρ(θ) > 1/2, the left hand side is 1 while the right hand side must be greater

than 1, so the inequality holds in all cases.

Next we will show that for any x ∈X ,

(
δy(x)−ηB(ρ)δc(x)

)(
f ∗B(ρ)(x)− fmv,ρ(x)

)
≤ 2

(
δy(x)−ηB(ρ)δc(x)

)(
f ∗B(ρ)(x)− fG,ρ(x)

)
.

(1.108)

To see this, first consider x ∈X such that f ∗B(ρ)(x) = 1{δy(x)−ηB(ρ)δc(x) > 0} = 0. In this
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case, δy(x)−ηB(ρ)δc(x)≤ 0 and we have

(
δy(x)−ηB(ρ)δc(x)

)(
f ∗B(ρ)(x)− fmv,ρ(x)

)
=
∣∣δy(x)−ηB(ρ)δc(x)

∣∣ fmv,ρ(x)

≤ 2
∣∣δy(x)−ηB(ρ)δc(x)

∣∣ fG,ρ(x)

= 2
(
δy(x)−ηB(ρ)δc(x)

)(
f ∗B(ρ)(x)− fG,ρ(x)

)
,

where the inequality follows from (1.107). To verify (1.108), we now need to check that it holds

for x∈X such that f ∗B(ρ)(x) = 1{δy(x)−ηB(ρ)δc(x)> 0}= 1. In this case, δy(x)−ηB(ρ)δc(x)>

0, so (1.108) reduces to

(
f ∗B(ρ)(x)− fmv,ρ(x)

)
≤ 2

(
f ∗B(ρ)(x)− fG,ρ(x)

)
. (1.109)

First consider x ∈X such that fmv,ρ(x) = 1. Then the left-hand size is zero while the right

hand side is non-negative as fG,ρ ∈ [0,1] and f ∗B(ρ)(x) = 1 in the current assumed setting, so the

condition holds. Lastly, if fmv,ρ(x) = 0, so that
∫

Θ
fθ (x)dρ(θ)≤ 1/2, in the current setting with

f ∗B(ρ)(x) = 1 we then have

2
(

f ∗B(ρ)(x)− fG,ρ(x)
)
= 2

(
1−

∫
Θ

fθ (x)dρ(θ)

)
≥ 2

(
1− 1

2

)
= 1

= f ∗B(ρ)(x)− fmv,ρ(x).

Hence (1.108) holds for all x ∈X . Taking the expectation of both sides of that inequality with

respect to a draw of X from Q then yields that

LB(ρ)
(

fmv,ρ
)
≤ 2LB(ρ)

(
fG,ρ

)
. (1.110)
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To complete the proof, we need to verify that

LB(ρ)
(

fG,ρ

)
= RB(ρ)

(
fG,ρ

)
. (1.111)

Now there are two possibilities to consider. The first is when ηB(ρ) = 0. In this case, we have

LB(ρ)
(

fG,ρ

)
= EQ

[
δy(X)

(
f ∗B(ρ)− fG,ρ

)]
=W

(
f ∗B(ρ)

)
−W

(
fG,ρ

)
= RB(ρ)

(
fG,ρ

)
.

And in the only remaining case, when ηB(ρ) > 0, we also have K( f ∗B(ρ)) = B(ρ) by Theorem

1.3.1. As, by the definition of B(ρ), it also holds that K( fG,ρ) = B(ρ), we have

LB(ρ)
(

fG,ρ

)
= EQ

[
δy(X)

(
f ∗B(ρ)− fG,ρ

)]
−ηB(ρ)EQ

[
δc(X)

(
f ∗B(ρ)− fG,ρ

)]
= EQ

[
δy(X)

(
f ∗B(ρ)− fG,ρ

)]
−ηB(ρ)

[
K
(

f ∗B(ρ)
)
−K

(
fG,ρ

)]
= EQ

[
δy(X)

(
f ∗B(ρ)− fG,ρ

)]
= RB(ρ)

(
fG,ρ

)
.

Hence (1.111) holds and combined with (1.110) this completes the proof.
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Chapter 2

Binary Forecast and Decision Rules via
PAC-Bayesian Model Aggregation

Abstract

We consider a PAC-Bayesian model aggregation approach to binary decision or forecast rules

when different decision-outcome pairs may have asymmetric payoffs that can vary with observed

covariates. The approach estimates a probability distribution over a class of models from which

majority vote or stochastic decision rules can be derived. Adopting a utility-based measure of

loss considered in Granger and Machina (2006), we show the PAC-Bayesian methodology is well

suited to this setting. Non-asymptotic training sample bounds and oracle inequalities familiar in

form to counterparts from the 0/1-loss literature are derived for the utility-based setting. The

decision rules perform competitively in simulation experiments, achieving higher expected utility

than several methods proposed in recent literature. The approach is also well suited to data-rich

modeling environments; a constrained version of the learning algorithm produces utility-oriented

decision rules with similarities to support vector machines.

2.1 Introduction

Forecasting an uncertain binary outcome arises in a variety of economic decision-making

problems. Predicting whether or not a loan will be repaid or which direction an asset price

will move are examples where a decision maker’s action may vary in tandem with a binary
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forecast. In general, a decision maker may incur costs or benefits that vary depending on the

prediction-outcome pair when making a decision such as to grant or decline a loan. Additionally,

payoffs may vary with covariates observed prior to realizing the outcome of interest and these

covariates may also influence the likelihood of the outcome. For example, as noted in Elliott and

Lieli (2013), development finance institutions may view failing to grant a loan that would be

repaid as being more costly when the entity is deemed beneficial to a vulnerable population. At

the same time, observable characteristics that quantify this need could be correlated with whether

or not a loan will be repaid.

It is well known that there are many successful classification algorithms suitable to a

variety of applications. However, asymmetric loss can be a crucial element to decision making

and most popular classifiers are not designed around this feature. Maximizing a likelihood

function or minimizing a zero-one loss function, or a convex surrogate, does not typically

weigh the relative costs of false negatives and false positives according to the preferences of

the decision maker. Recently, Elliott and Lieli (2013) proposed a maximum-utility approach.

Given a class of parametric decision rules, {a(x,θ) : Rd → {−1,1}, θ ∈ Θ}, which map

covariates X ∈ Rd to a binary decision or forecast, the parameters θ̂ ∈ Θ are selected as those

that maximize the empirical expected utility of the decision maker. Here the binary action or

forecast a is associated with an uncertain outcome Y with aligned categories {−1,1}. The utility

maximization framework will be the starting point for our analysis.

There is not a large econometric literature geared at this setting for data-rich environ-

ments. First, we point out some recent developments. Su (2020) notes that the trade-off between

model class complexity and the propensity to over-fit carries through from empirical risk min-

imization to the utility maximization setting. He situates the maximum-utility problem in the

structural risk minimization paradigm of Vapnik (1982). Building on the analysis of Bartlett

et al. (2002), Koltchinskii (2001), and others, he considers a hierarchy of potential model classes

with increasing complexity and derives distribution-free and data-driven penalties to select an

appropriate model class and decision rule. Another approach was recently considered by Babii
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et al. (2020) who replace non-convex objects that arise in the utility-maximization problem with

convex surrogates.

Here we approach utility-based decision rules from the PAC-Bayesian framework. For a

collection (or collections) of decision models associated with a measurable parameter space, this

will entail estimating a probability distribution over the model parameters. Then decisions are

made by aggregating over all possible decision rules, placing the greatest weight on subsets of

the parameter or model space associated with the lowest empirical loss. We adopt a utility-based

measure of loss considered in Granger and Machina (2006). Several prior works consider binary

classification from the PAC-Bayesian point of view including McAllester (1999b), Langford

and Shawe-Taylor (2003), McAllester (2003b), Catoni (2007), Germain et al. (2015), and others.

We build in particular on the work of Catoni (2007), Germain et al. (2009), and Alquier et al.

(2016). When the utility function is bounded, a lemma of Maurer (2004) enables several key

steps of the analysis to proceed as one would in the 0/1 loss setting. This trick is also noted in

Germain et al. (2015). In the non-bounded case, our setting turns out to be well suited to higher

level assumptions like those in Alquier et al. (2016), where the PAC-Bayesian analysis allows

for more general loss functions.

Although estimating a probability measure over a parameter space to form decision rules

may seem unfamiliar, it is possible to view a variety of decision rules or classifiers in this light.

For example, given covariates X ∈Rd , a set of transformations φ j(X) : Rd→R for j = 1, . . . ,M,

and some estimated parameter vector θ̂ ∈Θ = RM, consider predicting Y ∈ {−1,1} with

Ŷ = sign

[
M

∑
j=1

φ j(X)θ̂ j

]
.

The estimated parameter vector θ̂ could come from the method of support vector machine (SVM)

or the MU procedure of Elliott and Lieli (2013). Both SVM and MU can result in predictions of

the above form. Alternatively, consider the probability distribution ρ̂(θ) over Θ given by the
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multivariate normal N(θ̂ , IM) distribution. In this case, it holds that

sign

[∫
Θ

sign

{
M

∑
j=1

φ j(X)θ j

}
dρ̂(θ)

]
= sign

[
M

∑
j=1

φ j(X)θ̂ j

]
, (2.1)

as can be seen in Section 2.3.2. The left-hand side above can be interpreted as taking a weighted

majority vote over the class of models of the form

sign

[
M

∑
j=1

φ j(X)θ j

]
, θ ∈Θ,

where ρ̂ determines the weights that different regions of Θ receive. On the other hand, the

right-hand side of (2.1) takes the same form as the SVM and MU rules. The PAC-Bayesian

approach provides a tractable path to analyzing useful theoretical attributes of decision rules

centered around data-dependent distributions ρ̂ , including those for the SVM and MU methods.

This analysis guides the choice of distributions that we focus on in this paper. More broadly,

while the PAC-Bayesian framework is useful for deriving competitive learning models (our

focus here), this tractable path to analyzing potentially complicated models is a key point of

interest itself in the machine learning literature. For example, Neyshabur et al. (2017) derive

generalization bounds for deep neural networks in a PAC-Bayesian framework.

There are several attractive characteristics of the PAC-Bayesian approach to utility-

oriented decision rules. It allows for a very flexible selection of the decision model class (or

classes). Almost any classification model with real parameters can be accommodated. Rather

than estimating these parameters by minimizing a 0/1 loss, convex surrogate, or likelihood

function, a probability distribution over the parameters that is dependent on a measure of

empirical utility is constructed. This puts the greatest weight on regions of the parameter space

with high empirical utility and then one can aggregate over potential models in a way that favors

these regions. Although the analysis is frequentist in nature, estimation tools from the Bayesian

literature such as Markov Chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC)
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can be applied, sidestepping potential difficulties with computational complexity. By utilizing

variational or change-of-measure formulas, the approach allows us to derive training sample

bounds that hold with high probability. Additionally, model aggregation can alleviate model

misspecification and estimation noise; see, for example, Jiang and Tanner (2008) and Freund

et al. (2004) where this is analyzed in different 0/1-loss-based classification settings. Both of

these papers utilize exponentially weighted aggregators similar to that employed here. Lastly,

as pointed out in Elliott and Lieli (2013), the utility-maximizing decision rule is not unique. It

is not unusual in many settings to identify several models with identical or similar in-sample

performances but with different out-of-sample performances. Model aggregation makes sense in

the context of multiple solutions or multiple near-solutions.

The main contributions of this paper are as follows. We add to the toolbox available for

estimating binary choice or forecast rules when the decision maker faces asymmetric payoffs

that may depend on the value of observable covariates. The methodology is well suited to data-

rich environments and the decision/forecast rules perform very competitively against existing

alternatives, exhibiting noticeable gains in expected utility in the simulation environments also

studied in Elliott and Lieli (2013) and Su (2020). We develop training sample bounds and

oracle inequalities for the decision rules. These are similar in form to existing PAC-Bayesian

bounds in alternative settings such as the 0/1 loss which is nested by the utility-based loss

adopted here. We show that the theoretical insights, training sample bounds, and modeling

guidance of the PAC-Bayesian classification literature can be applied to the utility-oriented

setting. Additionally, we illustrate how these concepts and decision rules can be adapted to

accommodate the situation with multiple model classes of interest and provide practical guidance

regarding implementation. Finally, we try to keep the presentation self-contained and expand on

details of the approach. While the PAC-Bayesian methodology has not gained a lot of traction or

exposure in the econometric literature, its flexibility and analytical tractability in a variety of

machine learning problems suggest that it may prove useful in future econometric applications.

The paper is structured as follows. In Section 2.2 we introduce the decision model
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and PAC-Bayesian framework. In Section 2.3, we establish the theoretical properties of the

PAC-Bayesian decision rules and derive a constrained version of the model, which is easier to

implement and provides insight to the PAC-Bayesian machinery in this setting. In Section 2.4

we discuss implementation and estimation, and in Section 2.5 we carry out a simulation study.

Section 2.6 concludes. Proofs are given in the appendix.Forecasting an uncertain binary outcome

arises in a variety of economic decision-making problems. Predicting whether or not a loan will

be repaid or which direction an asset price will move are examples where a decision maker’s

action may vary in tandem with a binary forecast. In general, a decision maker may incur costs

or benefits that vary depending on the prediction-outcome pair when making a decision such

as to grant or decline a loan. Additionally, payoffs may vary with covariates observed prior to

realizing the outcome of interest and these covariates may also influence the likelihood of the

outcome. For example, as noted in Elliott and Lieli (2013), development finance institutions may

view failing to grant a loan that would be repaid as being more costly when the entity is deemed

beneficial to a vulnerable population. At the same time, observable characteristics that quantify

this need could be correlated with whether or not a loan will be repaid.

2.2 Forecasting Framework

2.2.1 Model

To frame the decision problem, we adopt the setting of Elliott and Lieli (2013), tying a

binary action or decision to forecasting a binary outcome. This is the standard decision-theoretic

framework analyzed in, for example, Granger and Machina (2006). In addition to the discussion

below, we refer the reader to Granger and Machina (2006), Elliott and Lieli (2013), and the

references therein for further theoretical considerations and additional applications of our setting

to problems in economics and other sciences.

The decision maker’s problem is to choose an action a ∈ {−1,1} given an observable

vector of covariates X ∈ Rd with support X ⊂ Rd . The actions are defined in a broad sense and
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are categorically aligned with a binary outcome variable Y ∈ {−1,1} that is not observable at

the time of decision making. Conditional on X = x, the outcome variable Y follows a Bernoulli

distribution with parameter P(x) where

P(x) = Pr(Y = 1|X = x). (2.2)

The payoff or utility function of the decision maker is U(a,Y,X). U : {−1,1}×{−1,1}×X →

R represents the preferences of the decision maker and is assumed known. We allow that the

payoff U(a,y,x) is a nontrivial function of x. The table below illustrates the payoff function

under X = x with different combinations of (a,Y ).

State

Action Y = 1 Y =−1

a = 1 U (1,1,x) U (1,−1,x)

a =−1 U (−1,1,x) U (−1,−1,x)

As a primary application of this setting, we may regard a as a forecast of the outcome

of a future random variable Y , or alternatively as an action taken based on the predicted binary

outcome of Y . Then U(a,y,x) is the payoff when the forecast or action is a, the realized value of

Y is y, and the covariate vector is equal to x. In this application, we expect that

U (1,1,x)>U (1,−1,x) and U (−1,−1,x)>U (−1,1,x) for all x ∈X . (2.3)

That is, a correct prediction delivers a higher payoff than an incorrect prediction.

As a second application, our setting can be cast as a 2×2 game where Nature plays Y

and the decision maker plays a. More specifically, Nature plays a mixed strategy: for a given

X = x, Nature plays Y = 1 with probability P(x) and plays Y =−1 with probability 1−P(x). In

this case, (2.3) states that there is no dominating strategy for the decision maker.
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We formalize (2.3) along with a self-explanatory technical condition as an assumption

below.

Assumption 2.2.1 (i) For all x ∈X ,

U (1,1,x)−U (−1,1,x)> 0

and

U (−1,−1,x)−U (1,−1,x)> 0;

(ii) for all (a,y) ∈ {−1,1}2, U(a,y, ·) is Borel measurable.

2.2.2 Utility Maximizing Actions

Given X = x, a decision maker’s action is optimal if it maximizes her conditional expected

utility, i.e., a∗ is optimal if

a∗ ∈ argmax
a

E [U (a,Y,X) |X = x] . (2.4)

Here a∗ depends on the observed value x. To signify this, we write it as a∗(x). We can

alternatively formulate the decision maker’s problem in terms of a loss function. We think about

the loss of an action a as the amount by which the resulting utility differs from that of a perfect

forecast if Y were known when the decision is made. Given Assumption 2.2.1(i), a perfect

forecast would entail setting the category of action a to that of Y ; we denote this unobtainable

action based on the realization of Y by aR. To motivate the form of the loss function, note that

(2.4) is equivalent to

a∗ ∈ argmin
a

E [U(aR,Y,X)−U(a,Y,X)|X = x] . (2.5)
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With aR = Y by Assumption 2.2.1(i), we define the loss function ℓ : {−1,1}2×X → R by

ℓ(a,y,x) =U(y,y,x)−U(a,y,x). (2.6)

This utility-induced loss function is called the point-forecast/point-realization loss function in

Granger and Machina (2006). Clearly,

ℓ(a,y,x) =

 0, if a = y

U(y,y,x)−U(a,y,x)> 0, if a ̸= y.

In general, ℓ(a,y,x) ̸= ℓ(y,a,x), and so the loss function is not symmetric. In terms of the loss

function, we have

a∗ ∈ argmin
a

E [ℓ(a,Y,X)|X = x] . (2.7)

We can now derive a solution of (2.7) (equation (2.9) below), which is also obtained in

Elliott and Lieli (2013). When X = x and a = 1, the expected loss is

E[ℓ(1,Y,X)|X = x] = (1−P(x))ℓ(1,−1,x).

When X = x and a =−1, the expected loss is

E[ℓ(−1,Y,X)|X = x] = P(x)ℓ(−1,1,x).

Now, if we let

b(x) = ℓ(1,−1,x)+ ℓ(−1,1,x),

c(x) =
ℓ(1,−1,x)

b(x)
=

ℓ(1,−1,x)
ℓ(1,−1,x)+ ℓ(−1,1,x)

, (2.8)

then a little algebra shows that an optimal decision rule, i.e., the one that obtains the lowest
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possible expected loss, is to set a∗(x) = 1 if and only if P(x)> c(x). This can be written as

a∗(x) = sign [P(x)− c(x)] , (2.9)

where sign(z) = 1 for z > 0 and sign(z) =−1 for z≤ 0.

For intuition, under Assumption 2.2.1 and provided that P(x)< 1, a∗(x) in (2.9) can be

restated as setting a = 1 if and only if

P(x)
1−P(x)

>
ℓ(1,−1,x)
ℓ(−1,1,x)

=
U (−1,−1,x)−U (1,−1,x)

U (1,1,x)−U (−1,1,x)
.

If we think of a as a prediction of Y based on X = x, then ℓ(1,−1,x)=U(−1,−1,x)−U(1,−1,x)

is the ex post missed utility from a false positive prediction (i.e., take a = 1 when Y =−1) and

ℓ(−1,1,x) =U(1,1,x)−U(−1,1,x) is the ex post missed utility from a false negative prediction

(i.e., take a =−1 when Y = 1). The optimal decision rule sets a = 1 only when the odds ratio of

the event Y = 1 relative to the event Y = 0 is greater than the false positive to false negative loss

ratio. As the relative cost of a false positive gets larger, a greater odds ratio is required for an

optimal utility-based decision rule to permit the action a = 1.

In terms of b(x) and c(x) , the point-realization loss function in (2.6) can be written as

ℓ(a,y,x) = ψ(x,y) ·1{y ̸= a} , (2.10)

where

ψ(x,y) = b(x)
[

y+1
2
− yc(x)

]
=U(y,y,x)−U(−y,y,x)> 0. (2.11)

This can be easily verified. Therefore,

a∗ ∈ argmin
a

E [ψ(X ,Y )1{Y ̸= a}|X = x] . (2.12)
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The decision maker knows the payoff function U (a,y,x) and hence b(x) ,c(x) , and

ψ(x,y). She does not know P(x), the only piece of information that is still missing in solving the

above minimization problem. To make an optimal decision, she has to estimate P(x) based on

the sample {(Xi,Yi)}n
i=1. One of her options would be to choose a proxy m(x) for the unknown

P(x) from some class of functions. Her task is then to learn the most suitable m for a decision

rule of the form a(x) = sign [m(x)− c(x)]. In considering such options, we will maintain the

following additional sampling and distributional assumptions.

Assumption 2.2.2 (i) {(Xi,Yi)}n
i=1 is an iid sample; (ii) Xi ∈X and Yi ∈ {−1,1} ; (iii) The

joint distribution function of (X ,Y ) is P(X ,Y ) where P(X ,Y ) is a probability measure over

(X ×{−1,1},Bx⊗By) where Bx is the Borel σ -algebra associated with X and By consists

of all subsets of {−1,1}; (iv) There exists some Kψ > 0 such that

E exp
{

λ
2
ψ(X ,Y )2}≤ exp

{
K2

ψλ
2
}

for all λ such that |λ | ≤ 1
Kψ

.

The condition on the moment generating function in Assumption 2.2.2(iv) specifies that

the random variable ψ(X ,Y ) is sub-Gaussian (c.f. Proposition 2.5.2 (iii) and Definition 2.5.6 of

Vershynin (2018)). Given that ψ(x,y) =U(y,y,x)−U(−y,y,x), this assumption requires that the

payoffs from a correct decision (or alternatively, the costs from an incorrect decision) must be

sub-Gaussian. This is a fairly mild requirement and accommodates, for example, any underlying

utility function that is bounded, a condition that is assumed in Elliott and Lieli (2013) and Su

(2020). Here benefits and costs of correct or incorrect decisions do not have to be bounded

provided that the tails of the distribution decay exponentially.

In terms of the resulting action rule am∗(x) = sign [m∗(x)− c(x)], the conditional opti-

mization problem (2.12) is equivalent to the unconditional optimization problem

m∗ ∈ argmin
m∈M

E {ψ (X ,Y )1{Y ̸= sign [m(X)− c(X)]}} , (2.13)
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where M is the space of all measurable functions from X to R. To implement the optimal m∗,

the decision maker could solve the sample version of the above problem,

m̂∗ ∈ argmin
m∈M

1
n

n

∑
i=1

ψ (Xi,Yi)1{Yi ̸= sign [m(Xi)− c(Xi)]} ,

and let

am̂∗ (x) = sign [m̂∗(x)− c(x)] .

The M estimator m̂∗ is motivated from utility maximization, and we will refer to it as

the maximum utility (MU) estimator. The MU estimator is clearly different from the maximum

likelihood estimator defined as

m̂∗MLE = argmax
m∈M

1
n

n

∑
i=1

{
Yi +1

2
logm(Xi)+

(
1− Yi +1

2

)
log [1−m(Xi)]

}
,

where we have assumed that m(Xi) ∈ (0,1) .1 The likelihood function is motivated statistically

without accounting for the payoff differences under different actions and states of the world.

Implementation of the optimal strategy requires searching over the whole space of

measurable functions M . This is a formidable task. In addition, such a method may not

generalize well. In practice, we restrict attention to a parameterized subclass of M . Denote this

collection of models by MΘ ⊂M where each model m(x,θ)∈MΘ is determined by parameters

θ ∈ Θ and Θ⊂ Rq is the parameter space with potentially q ̸= d, where d is the dimension of

X . We delay specifying the functional form of m(x,θ) for now. The MU estimator over MΘ

selects the model parameter θ̂ by solving

θ̂ ∈ argmin
θ∈Θ

1
n

n

∑
i=1

ψ (Xi,Yi)1{Yi ̸= sign[m(Xi,θ)− c(Xi)]} .

Such an estimator has been considered in Elliott and Lieli (2013). In the special case that the loss

1If this is not the case, we can take a transform such as the logistic transform so that the transformed version is
in (0,1).
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functions ℓ(1,−1,x) and ℓ(−1,1,x) are equal to the same constant function, we have c(x) = 1/2

and ψ(x,y) = [ℓ(1,−1,x)+ ℓ(−1,1,x)]/2, which is also a constant function. Hence,

θ̂ ∈ argmin
θ∈Θ

1
n

n

∑
i=1

1{Yi ̸= sign[m(Xi,θ)− c(Xi)]} .

In this case, the MU estimator reduces to the maximum score estimator of Manski (1975, 1985).

Su (2020) considers model selection in the MU framework. There, model selection is based on a

penalized MU estimator where the additive penalty regularizes the complexity of the model class

and controls the generalization error.

A key observation from Elliott and Lieli (2013) is that m∗ and m̂∗ may not be unique.

Consider the sample problem as an example. If m̂∗ is a solution, then any function m̂(x) that

satisfies

sign [m̂∗(x)− c(x)] = sign [m̂(x)− c(x)]

is also a solution. Each crossing point of P(x) and c(x) corresponds to a region of X where m̂∗

and m̂ may disagree out of sample even if both achieve the same in-sample empirical utility. This

provides an incentive to consider ensemble methods. In the presence of multiple solutions, it is

reasonable to average or aggregate models with high empirical utility rather than trying to select

a solution.

2.2.3 PAC-Bayesian Framework

Instead of model selection, we consider model aggregation in this paper. We do so within

the PAC-Bayesian framework. In this subsection, we introduce some definitions and concepts

central to this approach before considering statistical properties of the resulting decision rules in

Section 2.3.

Most generally, we work with RΘ, a parameterized subclass of the set of measurable

functions from X to {−1,1}, characterized by a parameter space Θ. The typical example we
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deal with here and in our simulations is the setting where

RΘ = {sign [m(x,θ)− c(x)] : m ∈MΘ} , (2.14)

where again MΘ is a parameterized subclass of the space of measurable functions m : X → R

that are characterized by the parameter space Θ⊂ Rq associated with q model parameters.

For actions a(x,θ)∈RΘ (determined by θ ∈Θ), with some abuse of notation, we denote

the utility-induced, point-realization loss by

ℓ(θ ,y,x) = ψ(x,y)1{y ̸= a(x,θ)} ,

where ψ(x,y) is defined in (2.11). Additionally, for any θ ∈Θ, define the risk function R(θ) and

its empirical counterpart Rn(θ) by

R(θ) = E[ℓ(θ ,Y,X)], (2.15)

Rn(θ) =
1
n

n

∑
i=1

ℓ(θ ,Yi,Xi). (2.16)

Whereas the MU approach selects a single θ̂ ∈ Θ by minimizing Rn(θ) over Θ, here

we will place a non-negative weighting on each θ in the form of a probability measure on Θ

and then take actions based on aggregation over all possible models. The goal is to construct a

probability measure ρ(·) on Θ that may depend on the sample {(Xi,Yi)}n
i=1. The PAC-Bayesian

framework allows us to identify bounds on functionals of R(θ) that depend on Rn(θ) and hold

with high probability. These bounds can then guide the choice of ρ . We will need to integrate

over both the sample space and the parameter space, and we make the following assumption.

Assumption 2.2.3 (i) (Θ,Bθ ) is a measurable space where Bθ is the standard σ -algebra on

Θ and is countably generated; (ii) (θ ,x) 7→ a(x,θ) : (Θ×X ,Bθ ⊗Bx)→ ({−1,1},Ba) is a

measurable function where Ba = By.

129



Assumption 2.2.3 contains some technical conditions that address measurability concerns.

By a probability measure ρ(·) on Θ that may be sample dependent, we mean a regular conditional

probability measure ρ(z, ·) where z ∈ (X ×{−1,1})×n. That is, for any fixed S ∈Bθ , ρ(z,S) :

((X ×{−1,1})×n,(Bx⊗By)
⊗n)→ R+ is measurable in z and for any fixed z, the map S 7→

ρ(z,S) : Bθ → R+ is a probability measure. For conciseness, we suppress the potential reliance

of ρ on the particular sample set z. Given some deterministic probability measure π , we will

work with the Kullback-Leibler (KL) divergence between π and ρ ,

DKL (ρ,π) =


∫

Θ
log
[

dρ

dπ
(θ)
]

dρ(θ), if ρ ≪ π

∞, else.

We will consider only the case that ρ ≪ π (a.s.) in this paper. The requirement in Assumption

2.2.3 that Bθ is countably generated serves to ensure that objects such as DKL(ρ,π) are mea-

surable. For further measure-theoretic consideration, we refer the reader to Catoni (2004), in

particular Proposition 1.7.1 and its proof on pages 50-54. There the measurability of DKL(ρ,π)

when ρ and π may be regular conditional probability measures is demonstrated under conditions

that are met by our assumptions.

Given a probability measure ρ(·) over Θ, there are a few ways to form a decision rule.

Among them, the Gibbs method and the majority vote method are widely used. The Gibbs

method associated with ρ draws a value, say θ◦, randomly according to ρ and then takes the

action based on θ◦. Mathematically, we let θ◦ ∼ ρ and we take

aG,ρ(x) = aθ◦(x).

That is, we play a mixed strategy based on the distribution ρ . With some abuse of the notation,
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the average risk of the Gibbs method associated with ρ is

R
(
aG,ρ

)
=
∫

Θ

R(θ)dρ(θ) = Eθ∼ρEX ,Y∼P(X ,Y )ψ(X ,Y )1{Y ̸= a(X ,θ)} , (2.17)

which is referred to as the Gibbs risk in the literature. Above, Eθ∼ρ is the expectation with

respect to the distribution of θ , and EX ,Y∼P(X ,Y ) is the expectation with respect to the distribution

of (X ,Y ) . We adopt the same convention hereafter.

The Gibbs risk R
(
aG,ρ

)
is the expectation of the risk function R(θ) under measure ρ(·).

It is thus a linear functional of ρ (·) . More precisely, if ρ = αρ1 +(1−α)ρ2 for some ρ1 and

ρ2 and a constant α , then R
(
aG,ρ

)
= αR

(
aG,ρ1

)
+(1−α)R

(
aG,ρ2

)
. The linearity makes the

Gibbs risk more amenable to theoretical analysis.

For the majority vote method, which is also called the Bayes method, the action is defined

according to

aB,ρ(x) = sign
{

Eθ∼ρa(x,θ)
}
.

Such a method aggregates the actions {a(x,θ) : θ ∈ Θ} to obtain the prevailing action. For

intuition, suppose that θ1, . . . ,θN are N i.i.d. draws from ρ and consider the action

aB,N(x) = sign

{
1
N

N

∑
j=1

a(x,θ j)

}
.

Provided that Eθ∼ρa(x,θ) ̸= 0, we have aB,N (x) a.s.→ aB,ρ (x) as N → ∞ for each x. Note that

aB,N (x) = 1 if and only if more than half of the actions {a(x,θ j)}N
j=1 are equal to 1 so this is

akin to a weighted majority vote of the parameter values in Θ. The risk of the majority vote (also

called the Bayes risk) associated with ρ is defined by

R
(
aB,ρ

)
= EX ,Y∼P(X ,Y )ψ(X ,Y )1

{
Y ̸= aB,ρ(X)

}
= EX ,Y∼P(X ,Y )ψ(X ,Y )1

{
Y ̸= sign

{
Eθ∼ρa(X ,θ)

}}
.
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The Bayes risk is clearly not linear in ρ.

In practice, the majority vote method or the Bayes method delivers numerically more

stable results than the Gibbs method, but the latter is easier to analyze. However, the Bayes risk

is upper bounded by twice the Gibbs risk as shown in the following lemma.

Lemma 2.2.1 Let Assumption 2.2.1, Assumptions 2.2.2(ii) and (iii), and Assumption 2.2.3 hold.

Then, for any probability measure ρ on Θ,

R
(
aB,ρ

)
≤ 2R

(
aG,ρ

)
.

Lemma 2.2.1 extends the “factor 2” bound for the majority vote method in the machine

learning literature to the utility-based, point-realization loss setting. This property is well

documented in the case of 0/1 loss (e.g., Langford and Shawe-Taylor (2003), McAllester

(2003a), and Germain et al. (2015)). Here, we use Lemma 2.2.1 only to justify using the Gibbs

risk as a surrogate for the majority vote risk. The loose bound in the lemma is enough for this

purpose. Langford and Shawe-Taylor (2003) show that the factor of 2 can sometimes be reduced

to (1+ε) for some small ε > 0. Lacasse et al. (2006) and Germain et al. (2015) show that tighter

bounds on R(aB,ρ) can be obtained in the 0/1 loss setting and in a related loss variant.

To choose ρ to guide our decisions, we follow the PAC-Bayesian approach. Let P(Θ) be

the set of probability measures on (Θ,Bθ ). The first ingredient is a reference or prior probability

measure π . We make the following assumption:

Assumption 2.2.4 π ∈P (Θ) is a (deterministic) probability measure that does not depend on

the sample.

We will denote the set of probability measures on (Θ,Bθ ) that are absolutely continuous

with respect to π by Pπ(Θ). Assumption 2.2.4 is essential in PAC-Bayesian analysis. For

example, our analysis will involve the sample version of the Gibbs risk, defined for ρ ∈P(Θ)
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by

Rn(aG,ρ) =
∫

Θ

Rn(θ)dρ =
n

∑
i=1

∫
Θ

ℓ(θ ,Yi,Xi)dρ(θ). (2.18)

If ρ is derived from {Xi,Yi}n
i=1, (2.18) is difficult to work with because

∫
Θ
ℓ(θ ,Yi,Xi)dρ(θ) is

not iid and so Rn(aG,ρ) is not a sum of iid terms. However, for any measurable function A(θ),

the so-called change-of-measure inequality states that for any ρ ∈Pπ(Θ),

∫
Θ

A(θ)dρ(θ)≤ log
[∫

Θ

exp(A(θ))dπ(θ)

]
+DKL(ρ,π), (2.19)

provided the integrals are well defined. When both ρ(·) and A(·) depend on the sample and

exhibit complicated dependence, it may not be easy to control
∫

Θ
A(θ)dρ(θ). But when π does

not depend on the sample, (2.19) can provide a manageable upper bound. Although the change of

measure inequality is simple and easy to prove, it is foundational to the PAC-Bayesian approach.

See McAllester (2003b) and references therein for further discussion. (2.19) is stated below as

Corollary 2.2.1(b), and a proof is given in the appendix. Some choices for π are discussed in

Sections 2.3.2 and 2.4.

Given the pre-specified π , we choose ρ to minimize the sample Gibbs risk Rn(aG,ρ) in

(2.18), subject to the constraint that ρ is not too different from π . We utilize the KL divergence

to measure the difference between two probability measures. Mathematically, we solve the

constrained minimization problem:

min
ρ∈Pπ (Θ)

∫
Θ

Rn(θ)dρ(θ) s.t. DKL(ρ,π)≤C,

for some constant C. Alternatively, we use the Lagrangian form and solve the unconstrained

minimization problem

min
ρ∈Pπ (Θ)

[∫
Θ

Rn(θ)dρ(θ)+
1
λ

DKL(ρ,π)

]
, (2.20)
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where λ > 0 is a constant. Theoretical justification for this choice of optimization problem is

given in Section 2.3.

Let M (Θ) be the set of measurable functions on (Θ,Bθ ) and

M π
b (Θ) =

{
A : A ∈M (Θ) and

∫
Θ

exp(A(θ))dπ (θ)< ∞

}
,

which is a subset of M (Θ) that has a finite exponential moment under π. To obtain a closed-

form solution to 2.20, we provide the following lemma and corollary, which will also be used

repeatedly for establishing other results.

Lemma 2.2.2 For π ∈P(Θ) and A ∈M (Θ) such that −A ∈M π
b (Θ), let ρA,π ∈Pπ(Θ) be

the probability measure on Θ with the Radon–Nikodym (RN) derivative with respect to π given

by
dρA,π (θ)

dπ (θ)
=

exp(−A(θ))∫
Θ

exp
(
−A
(
θ̃
))

dπ
(
θ̃
) .

Then for any probability measure ρ ∈Pπ (Θ) we have

log
[∫

Θ

exp(−A(θ))dπ (θ)

]
=−

[∫
Θ

A(θ)dρ (θ)+DKL (ρ,π)

]
+DKL

(
ρ,ρA,π

)
. (2.21)

Corollary 2.2.1 (a) For A, π , ρ , and ρA,π as in Lemma 2.2.2, we have

ρA,π = arg min
ρ∈Pπ (Θ)

[∫
Θ

A(θ)dρ (θ)+DKL (ρ,π)

]
(2.22)

and

min
ρ∈Pπ (Θ)

[∫
Θ

A(θ)dρ (θ)+DKL (ρ,π)

]
=− log

[∫
Θ

exp(−A(θ))dπ (θ)

]
.

(b) For any A (·) ∈M π
b (Θ) , π ∈P(Θ), ρ ∈Pπ(Θ),

∫
Θ

A (θ)dρ (θ)≤ log
[∫

Θ

exp(A (θ))dπ (θ)

]
+DKL (ρ,π) .
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Lemma 2.2.2 and Corollary 2.2.1(a) provide a closed-form solution to the minimization

problem in (2.20). Let

ρ̂λ := arg min
ρ∈Pπ (Θ)

[∫
Θ

Rn (θ)dρ (θ)+
1
λ

DKL (ρ,π)

]
. (2.23)

Then it follows from Corollary 2.2.1(a) that ρ̂λ = ρλRn,π . Given λ and π , ρ̂λ will be our primary

choice of probability measure for deriving decision rules through a majority vote or Gibbs

method. We present this as a definition.

Definition 2.2.1 ρ̂λ is a (random) probability measure on Θ with the following RN derivative

with respect to π :
dρ̂λ

dπ
(θ) =

exp [−λRn (θ)]∫
Θ

exp
[
−λRn

(
θ̃
)]

dπ
(
θ̃
) .

ρ̂λ is sometimes called the Gibbs posterior. From a Bayesian perspective, we may regard

π as the prior distribution for the parameter θ ∈ Θ and ρ̂λ as the posterior distribution. Such

a Bayesian interpretation may help us understand the approach, but it is not necessary. In

fact, this interpretation is valid only if exp [−λRn (θ)] is proportional to a likelihood function.

The approach we use is a frequentist one, and exp [−λRn (θ)] does not have to be a likelihood

function. The definition of ρ̂λ is motivated from the minimization problem in (2.23), not from any

Bayesian principle. In particular, there does not have to be a likelihood function or a complete

model. All we need is the empirical risk based on the utility-based loss function. Also, π does

not have to be a prior distribution. It can be any distribution that does not depend on the sample.

However, for easy references, we may still refer to π as the prior and ρ̂λ as the posterior. More

generally, any ρ determined from the sample may be referred to as a posterior distribution.

The probability measure ρ̂λ can be regarded as an adjusted version of π. Consider two

parameters θ1 ∈Θ and θ2 ∈Θ. If Rn (θ1)< Rn (θ2), then exp [−λRn (θ1)]> exp [−λRn (θ2)] for

any λ > 0. Hence, relative to π, ρ̂λ assigns more weights to θ1 than to θ2. The distributional

adjustment, therefore, favors the parameter value that delivers a smaller in-sample empirical

135



risk. The degree of adjustment is determined by the tuning parameter λ . On the one hand, if λ

approaches zero, then ρ̂λ approaches π , and there will be no adjustment. On the other hand, if

λ →+∞, then ρ̂λ assigns all weights to the minimizers of Rn (θ) , provided that the minimizers

are in the support of the prior π. We will investigate the choice of λ in subsequent sections.

2.3 PAC-Bayesian Analysis Under Utility-Based Loss

In this section, we derive PAC-Bayesian bounds on the Gibbs risk and oracle inequalities

for decision rules based on ρ̂λ in Definition 2.2.1 for the utility-induced loss setting. The

bounds provide justification for focusing on the minimization problem in (2.20). They are

non-asymptotic training set bounds that hold for a user-specified confidence level. The oracle

inequalities illustrate a sense in which ρ̂λ is close to the probability measure we would select

if R(θ) were known. We also consider a constrained version of the problem in (2.20) which

illustrates the mechanics of the methodology and produces decision rules with similarities

to support vector machines. Lastly, we consider the formulation when one is interested in

aggregating multiple decision model classes.

For a probability measure ρ on Θ that may depend on the sample, an integral step in PAC-

Bayesian analysis is to establish an upper bound for D[R(aG,ρ),Rn(aG,ρ)] where D : R2
+→ R is

a measure of the difference between the Gibbs risk R(aG,ρ) defined in (2.17) and its empirical

counterpart Rn(aG,ρ) defined in (2.18). We will often focus on the case D(r1,r2) = r1− r2, i.e.,

when

D
[
R
(
aG,ρ

)
,Rn
(
aG,ρ

)]
=
∫

Θ

R(θ)dρ(θ)−
∫

Θ

Rn (θ)dρ(θ).

Let ε > 0 be a small constant. The initial aim is to establish the following result: for some upper

bound Bn(π,ρ,ε) we have

Pr
{

D
[
R
(
aG,ρ

)
,Rn
(
aG,ρ

)]
≤ Bn(π,ρ,ε) for all ρ ∈Pπ(Θ) simultaneously

}
≥ 1−ε. (2.24)
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We can use such a bound to choose ρ̂ ∈Pπ(Θ) so that the Gibbs risk of ρ̂ , R(aG,ρ̂), is minimized

with high probability. We will see that this leads to the minimization problem in (2.20).

For a given D(·, ·) , we can regard D[R(aG,ρ̂),Rn(aG,ρ̂)] as a measure of the generalization

error under the Gibbs method for ρ̂ . If Bn(π, ρ̂,ε) decays to zero for any ε > 0 as n increases,

then the above inequality implies a low generalization error with high probability (i.e., with

probability at least 1− ε for any small ε). In this case, we say that Rn(aG,ρ̂) =
∫

Θ
Rn(θ)dρ̂(θ)

is probably (the high probability part) and approximately correct (the low generalization error

part) for R(aG,ρ̂) =
∫

Θ
R(θ)dρ̂(θ). The PAC framework, introduced by Valiant (1984), evaluates

learning mechanisms via the probability (prescribing a confidence level) that the resulting rule

will approximate an optimal rule at some level of accuracy. As noted in Shalev-Shwartz and

Ben-David (2014), which includes an excellent introduction to PAC analysis, this framework

has broad appeal, has been extended in scope (e.g. Haussler (1992)), and has been utilized in

several foundational analyses (e.g. Vapnik (1982), Vapnik (1992), and Vapnik (2013)). In the

PAC-Bayesian framework, rather than centering attention on learning mechanisms that settle

on a particular instance in the parameter space, the focus rests on PAC statements for objects

concerning distributions over models or model parameters. The approach then has flavors of

both Probably Approximately Correct (PAC) learning and Bayesian learning. Hence it can be

called PAC-Bayesian learning. As we discussed previously, the Bayesian part is a misnomer, and

we use “PAC-Bayesian” in the absence of a better term.

2.3.1 Bounds and Oracle Inequalities for the Decision Rule

Here we establish PAC-Bayesian and oracle bounds under Assumptions 2.2.1 – 2.2.4.

We begin with the following bound of the form in (2.24).

Theorem 2.3.1 Let Assumptions 2.2.1, 2.2.2, and 2.2.3 hold. Let D : R+×R+→ R be convex

over the range of (ψ(x,y),ψ(x,y)) where ψ is defined in (2.11) and depends on the utility

function U(a,y,x). Assume there exists a function f (λ ,n) and an interval I ⊆ R∗+ = {λ ∈ R :
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λ > 0} such that for all λ ∈ I,

∫
Θ

E exp(λD [R(θ) ,Rn (θ)])dπ(θ)≤ exp( f (λ ,n)). (2.25)

Then for any ε ∈ (0,1],

Pr
{

D
[
R
(
aG,ρ

)
,Rn
(
aG,ρ

)]
≤

f (λ ,n)+ log 1
ε
+DKL (ρ,π)

λ
for all ρ ∈Pπ(Θ) simultaneously

}

≥ 1− ε. (2.26)

There is a fairly well established path to results like Theorem2.3.1 in the literature.

For example, Bégin et al. (2016) lays out a blueprint for deriving such bounds in the 0/1 loss

setting that is general enough to encompass many results identified in the previous literature.

The above bound combines elements of Theorem 4.2 in Alquier et al. (2016) and Theorem

18 in Germain et al. (2015). Theorem 2.3.1 is proved in the Appendix. Alquier et al. (2016)

refer to condition (2.25) as the Hoeffding assumption. In situations where D[R(θ),Rn(θ)] may

become unbounded almost surely for certain values of θ , such a condition can allow for valid

and nontrivial PAC-Bayesian bounds provided that π(θ) is chosen judiciously. We will also

note that D in Theorem 2.3.2 may depend on λ provided that for each λ ∈ I it is convex over

the range of (ψ(x,y),ψ(x,y)). In our analysis, when D depends on λ in this way, it will be the

case that the resulting high probability inequality simplifies so that the left-hand-side contains an

object of interest and does not depend on λ .

To produce the main bounds and oracle inequalities of interest, we combine the above

theorem with the following lemma.

Lemma 2.3.1 Let Assumptions 2.2.1 – 2.2.4 hold.

(a) For s ∈ {−1,1}, let D(r1,r2) = s(r1− r2), so that

D [R(θ) ,Rn (θ)] = s(R(θ)−Rn (θ)) .
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Then for λ > 0, (2.25) holds with

f (λ ,n) =
λ 2
[
K2

ψ +µ2
ψ

]
n

,

where Kψ is the constant in Assumption 2.2.2 and µψ = Eψ(X ,Y ). Additionally, if

Umax = sup
a,y,x
|U(a,y,x)|< ∞, (2.27)

then for λ > 0, (2.25) holds with

f (λ ,n) =
λ 2U2

max
2n

.

(b) Assume (2.27) holds. Let

D(r1,r2) = F (r1)− r2,

where

F (r) := Fn,λ (r) =−
n
λ

log
{

1− r
2Umax

[
1− exp

(
−2Umaxλ

n

)]}
. (2.28)

Then, for λ > 0, (2.25) holds with

f (λ ,n) = 0.

(c) Assume (2.27) holds. Let

D(r1,r2) = max
{

r1−
λU2

max
2n

− r2, F (r1)− r2

}
,

where F is defined as in (2.28). Then, for λ > 0, (2.25) holds with

f (λ ,n) = 0.

Theorem 2.3.1 combined with Lemma 2.3.1 produces the following result.

Theorem 2.3.2 Under Assumptions 2.2.1 – 2.2.4, for λ > 0 and ε ∈ (0,1] we have the following
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properties.

(a) For s ∈ {−1,1}, the following event occurs with probability at least 1− ε for all ρ ∈Pπ(Θ)

simultaneously:

∫
Θ

s [R(θ)−Rn (θ)]dρ(θ)≤ 1
λ

[
λ 2

n

(
K2

ψ +µ
2
ψ

)
+DKL (ρ,π)+ log

1
ε

]

where Kψ is the constant in Assumption 2.2.2 and µψ = Eψ(X ,Y ). If (2.27) holds, then the term

(K2
ψ +µ2

ψ) can be replaced by U2
max/2.

(b) If (2.27) holds, then the following event occurs with probability at least 1− ε for all ρ ∈

Pπ(Θ) simultaneously:

∫
Θ

R(θ)dρ(θ)≤F−1
n,λ

(∫
Θ

Rn (θ)dρ(θ)+
1
λ

DKL(ρ,π)+
1
λ

log
1
ε

)
.

where F−1
n,λ (r) is the inverse function of Fn,λ (r) :

F−1
n,λ (r) = 2Umax

1− exp
(
−λ

n · r
)

1− exp
(
−λ

n ·2Umax

) .
(c) Define

Uλ ,π,ρ(ε) =
∫

Θ

Rn(θ)dρ(θ)+
1
λ

[
λ 2U2

max
2n

+DKL (ρ,π)+ log
1
ε

]
, (2.29)

UF
λ ,π,ρ(ε) = F−1

n,λ

(∫
Θ

Rn (θ)dρ(θ)+
1
λ

DKL(ρ,π)+
1
λ

log
1
ε

)
. (2.30)

If (2.27) holds, the following event occurs with probability at least 1− ε for all ρ ∈Pπ(Θ)

simultaneously: ∫
Θ

R(θ)dρ(θ)≤min
{

Uλ ,π,ρ(ε),U
F
λ ,π,ρ(ε)

}
.

When Umax < ∞, the bounds in Theorem 2.3.2(a), (b), and (c) can be computed from

the sample for a learned ρ , be it of the form in Definition 2.2.1 or that in Section 2.3.2 or some
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other form. In the Umax < ∞ setting, part (c) can provide an improvement over the bounds in

part (a) and (b) which are, respectively, similar in form to bounds in Alquier et al. (2016) and

Catoni (2007). Setting s = 1 in Theorem 2.3.2(a), we obtain, with probability at least 1− ε for

all ρ ∈Pπ(Θ) simultaneously:

∫
Θ

R(θ)dρ(θ)≤
[∫

Θ

Rn (θ)dρ(θ)+
1
λ

DKL (ρ,π)

]
+

1
λ

[
λ 2

n

(
K2

ψ +µ
2
ψ

)
+ log

1
ε
.

]

The above bound and the bound in 2.3.2(b) are slight variants of one another. Note that for a

given λ , if we choose ρ to minimize the upper bound for R(aG,ρ) =
∫

Θ
R(θ)dρ(θ) in either of

the inequalities we are led back to the minimization problem in (2.20). The bound in Theorem

2.3.2(b) is similar in form to Theorem 1.2.6 in Catoni (2007) for the 0/1 loss. It is recovered

from the distance measure D in Lemma 2.3.1(b) similarly to Germain et al. (2009) who focus on

the 0/1 loss setting.

When s = 1, Theorem 2.3.2(a) gives us

Pr
{∫

Θ

[R(θ)−Rn (θ)]dρ(θ)≤ Bn(π,ρ,ε) for all ρ ∈Pπ(Θ) simultaneously
}
≥ 1− ε,

for

Bn,λ (π,ρ,ε) =
λ

n

(
K2

ψ +µ
2
ψ

)
+

1
λ

[
log

1
ε
+DKL (ρ,π)

]
.

Setting λ proportional to n1/2 yields the following best rate of the PAC bound Bn,λ (π,ρ,ε) :

Bn,λ (π,ρ,ε) = Op

(
1√
n

)
.

On the other hand, for the function F−1
n,λ (·) in Theorem 2.3.2(b), we have, using exp(x)≥ 1+ x

for all x ∈ R,

F−1
n,λ (r) = 2Umax

1− exp
(
−λ

n · r
)

1− exp
(
−λ

n ·2Umax

) ≤ Cn

1− exp(−Cn)
r
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where Cn =
λ

n ·2Umax. Hence, Theorem 2.3.2(b) implies that

Pr
{∫

Θ

[R(θ)−Rn (θ)]dρ(θ)≤ Bn,C(π,ρ,ε) for all ρ ∈Pπ(Θ) simultaneously
}
≥ 1− ε,

where

Bn,Cn(π,ρ,ε) =

[
Cn

1− exp(−Cn)
−1
]∫

Θ

Rn (θ)dρ(θ)

+
2Umax

n
1

1− exp(−Cn)

[
log

1
ε
+DKL(ρ,π)

]
.

When Rn (θ)> 0, setting Cn proportional to (n
∫

Θ
Rn (θ)dρ(θ))−1/2 yields the following best

rate of the PAC bound Bn,Cn(π,ρ,ε) :

Bn,Cn(π,ρ,ε) = Op

(√∫
Θ

Rn (θ)dρ(θ)

n

)
.

It should be noted, however, that we cannot choose λ in Cn according to the data for the bounds

in Theorem 2.3.2. We consider valid bounds when λ is data-dependent, for example when it is

chosen via cross-validation in Theorems 2.3.4 and 2.3.5.

When P(X ,Y ) and ρ are such that Rn(aG,ρ) =
∫

Θ
Rn (θ)dρ(θ) is very small, the PAC

bound from Theorem 2.3.2(b) can be smaller than that in Theorem 2.3.2(a). For a given λ ,

Theorem 2.3.2(c) says that we can take the better of the two, without applying any union bound

arguments that require a reduction in ε . On the other hand, Theorem 2.3.2(b) and (c) only

provide upper bounds for
∫

Θ
R(θ)dρ(θ) while 2.3.2(a) provides both an upper bound and a

lower bound.

Note that Theorem 2.3.2 holds for all ρ simultaneously. Setting ρ(·) equal to ρ̂λ (·) in

Theorem 2.3.2(a) and (c), we can obtain the following theorem.

Theorem 2.3.3 Let Assumptions 2.2.1 – 2.2.4 hold. Then for ε ∈ (0,1] each of the following

holds with probability at least 1− ε:
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(a) ∫
Θ

R(θ)dρ̂λ ≤
∫

Θ

Rn (θ)dρ̂λ +
1
λ

DKL (ρ̂λ ,π)+
1
λ

λ 2
(

K2
ψ +µ2

ψ

)
n

+ log
1
ε

 ,
(b)

∣∣∣∣∫
Θ

R(θ)dρ̂λ −
∫

Θ

Rn (θ)dρ̂λ

∣∣∣∣≤ 1
λ

DKL (ρ̂λ ,π)+
1
λ

λ 2
(

K2
ψ +µ2

ψ

)
n

+ log
2
ε


(c)

∫
Θ

R(θ)dρ̂λ ≤ min
ρ∈Pπ (Θ)

[∫
Θ

R(θ)dρ(θ)+
2
λ

DKL(ρ,π)

]
+

2
λ

λ 2
(

K2
ψ +µ2

ψ

)
n

+ log
2
ε

 .
If (2.27) holds, (K2

ψ +µ2
ψ) can be replaced by U2

max/2 in (a)-(c).

(d) When (2.27) holds,

∫
Θ

R(θ)dρ̂λ (θ)≤min
{

Uλ ,π,ρ̂λ
(ε),UF

λ ,π,ρ̂λ
(ε)
}
,

where Uλ ,π,ρ̂λ
(ε) and UF

λ ,π,ρ̂λ
(ε) are given by (2.29) and (2.30) with ρ set to ρ̂λ .

Theorem 2.3.3(a) provides a PAC-Bayesian bound for the generalization error of the

Gibbs method. When Umax < ∞, choosing the rate-optimal λ = κ
√

n for some constant κ > 0

gives us

Pr
{∫

Θ

R(θ)dρ̂λ (θ)≤
∫

Θ

Rn (θ)dρ̂λ (θ)+
1

κ
√

n

[
DKL (ρ̂λ ,π)+ log

1
ε

]
+

κU2
max

2
√

n

}
≥ 1− ε.

(2.31)

Therefore, the PAC generalization error decays to zero at the rate of 1/
√

n.

Theorem 2.3.3(b) allows us to construct a (1− ε) confidence interval CIλ ,π (ε) for
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∫
Θ

R(θ)dρ̂λ (θ):

CIλ ,π (ε) =
[
Lλ ,π (ε) ,Uλ ,π (ε)

]
,

where

Lλ ,π (ε) =
∫

Θ

Rn (θ)dρ̂λ −
1
λ

DKL (ρ̂λ ,π)−
1
λ

λ 2
(

K2
ψ +µ2

ψ

)
n

+ log
2
ε

 ,

Uλ ,π (ε) =
∫

Θ

Rn (θ)dρ̂λ +
1
λ

DKL (ρ̂λ ,π)+
1
λ

λ 2
(

K2
ψ +µ2

ψ

)
n

+ log
2
ε

 .

Let

UF
λ ,π (ε) = F−1

n,λ

(∫
Θ

Rn (θ)dρ̂λ +
1
λ

DKL(ρ̂λ ,π)+
1
λ

log
2
ε

)
.

Then the upper limit of CIλ ,π (ε) can be replaced by min(Uλ ,π (ε) ,UF
λ ,π (ε)), leading to a shorter

confidence interval. This follows from a union bound argument as in the proof of Theorem

2.3.3(a). Note that UF
λ ,π (ε) above is equal to UF

λ ,π,ρ̂λ
(ε/2) in equation (2.30). If there is a natural

bound for
∫

Θ
R(θ)dρ̂λ (θ) , such as 0 for the lower bound or 2Umax for the upper bound, we

should make an obvious modification to the above interval.

Theorem 2.3.3(c) shows that the estimated probability measure ρ̂λ (·) strikes almost the

best trade-off between the average risk
∫

Θ
R(θ)dρ (θ) and the regularization term 2

λ
DKL (ρ,π) .

The best trade-off that solves the minimization problem is given by the distribution ρλR/2 with

the following RN derivative

dρλR/2

dπ
(θ) =

exp
[
−λ

2 R(θ)
]

∫
Θ

exp
[
−λ

2 R(θ)
]

dπ (θ)
.

This follows from Corollary 2.2.1(a). Note that R(θ) is not feasible and is only known to an

oracle. Hence, ρλR/2 is not feasible and the bound in the theorem is an oracle-type risk bound.

Theorem 2.3.3(c) can be interpreted as selecting the best probability measure in Pπ (Θ) .
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Ideally, we select ρ (θ) ∈Pπ (Θ) to minimize the average risk
∫

Θ
R(θ)dρ (θ) . An oracle who

knows R(θ) can solve for the best ρ∗ (θ) , namely, ρ∗ = argminρ∈Pπ (Θ)

∫
Θ

R(θ)dρ (θ) . Not

knowing R(θ) , we replace it by the empirical estimator Rn (θ) and add a regularization term to

the objective function. That is, we solve the optimization problem in (2.23). The selected ρ̂λ can

not be expected to be as good as ρ∗. However, Theorem 2.3.3(c) shows that it is almost as good

as a second best oracle solution ρλR/2.

In practice, λ will be chosen by cross-validation. However, cross validating λ inhibits

the use of Theorems 2.3.2 and 2.3.3 for deriving risk bounds or confidence intervals. We mention

two methods for dealing with this. First, we can employ an idea from Catoni (2007) for deriving

bounds that do not rely on λ . This entails combining a union-bound argument with Theorem

2.3.2 and leads to the following theorem.

Theorem 2.3.4 Let Assumptions 2.2.1 – 2.2.4 hold and let α > 1 and ε ∈ (0,1]. Assume (2.27)

holds. Each event below holds with probability at least 1− ε .

(a) For s ∈ {−1,1} and for all ρ ∈Pπ (Θ) simultaneously,

∫
Θ

s [R(θ)−Rn(θ)]dρ(θ)≤ inf
λ>1

{
α

λ

[
λ 2U2

max
2n

+ log
1
ε
+DKL(ρ,π)+2log

log
(
α2λ

)
logα

]}

(b) For s ∈ {−1,1} and any λ̃ > 1 which may be chosen based on the sample,

∫
Θ

s [R(θ)−Rn(θ)]dρ̂
λ̃
(θ)≤ α

λ̃

 λ̃ 2U2
max

2n
+ log

1
ε
+DKL(ρ̂λ̃

,π)+2log
log
(

α2λ̃

)
logα


(c) Let

F−1
n,λ ,α (r) = 2Umax

1− exp
(
−λ

n · r
)

1− exp
(
− λ

αn ·2Umax

) ,
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and define

Uλ ,π,ρ,α(ε) =
∫

Θ

Rn(θ)dρ(θ)+
α

λ

[
λ 2U2

max
2n

+ log
1
ε
+DKL(ρ,π)+2log

log
(
α2λ

)
logα

]
,

UF
λ ,π,ρ,α(ε) = F−1

n,λ ,α

(∫
Θ

Rn (θ)dρ(θ)+
1
λ

DKL(ρ,π)+
1
λ

[
log

1
ε
+2log

log
(
α2λ

)
logα

])
.

For all ρ ∈Pπ (Θ) simultaneously,

∫
Θ

R(θ)dρ(θ)≤ inf
λ>1

{
min

[
Uλ ,π,ρ,α(ε),U

F
λ ,π,ρ,α(ε)

]}
.

(d) For any λ̃ > 1 that may be chosen based on the sample,

∫
Θ

R(θ)dρ̂
λ̃
(θ)≤min

[
U

λ̃ ,π,ρ̂
λ̃
,α(ε),U

F
λ̃ ,π,ρ̂

λ̃
,α(ε)

]
.

Theorem 2.3.4 is stated for the case where Umax < ∞, i.e., a setting where the bounds can

be computed without knowledge of the DGP. However, the bounds in parts (a) and (b) have valid

counterparts in the more general case where we would replace U2
max/2 by K2

ψ +µ2
ψ . Following

similar arguments to those producing the confidence interval CIλ ,π (ε) after Theorem 2.3.3, a

confidence interval for
∫

Θ
R(θ)dρ̂

λ̃
can be derived from Theorem (2.3.4) that is valid when ρ̂

λ̃
is

such that λ̃ is data-dependent. Note that in parts (a) and (c) the infimum is taken over all λ > 1.

The condition that λ > 1 is fairly reasonable in relation to the bounds that motivate the decision

rules. To see this, in the bounded utility setting, suppose that U : {−1,1}2×X → [−Umax,Umax]

is replaced with the normalized utility Ũ = U/(2Umax), which of course does not alter the

underlying preferences. Then Ũmax = supa,y,x |Ũ(a,y,x)|= 1/2, so that the point-forecast loss

based on this utility function satisfies 0≤ ℓ̃(θ ,y,x)≤ 1. With this normalization, any observed

loss is then a percentage of the largest possible loss rather than relying on potentially arbitrary

146



utils. With this normalization, for any 0 < λ ≤ 1, both the bounds in parts (a) and (b) of Theorem

2.3.2 are such that the right-hand side is trivial (i.e., it is at least 1) whenever ε < exp(−1).

Focusing on λ > 1 restricts attention to values for which confidence in the bounds is more

reasonable.

A second method for obtaining bounds or confidence intervals when λ̃ is data-dependent

is to build from bounds in the literature where the PAC-Bayesian analysis does not utilize this

temperature parameter. For example, the following result is also obtained in Maurer (2004) and

Germain et al. (2015). While these authors do not explicitly consider loss functions that vary

with X , some results there carry through when the utility function is bounded.

Lemma 2.3.2 Let Assumptions 2.2.1 – 2.2.4 hold and assume that (2.27) holds. Let

D(r1,r2) =
n
λ

[
kl
(

r2

2Umax
,

r1

2Umax

)]
, where kl(a,b) = a log

a
b
+(1−a) log

1−a
1−b

.

Then, for λ > 0, condition (2.25) in Theorem 2.3.1 holds with

f (λ ,n) = logξ (n), where ξ (n) :=
n

∑
k=1

(
n
k

)(
k
n

)k(
1− k

n

)n−k

.

That kl(·, ·) is convex follows from Theorem 2.7.2 of Cover and Thomas (2006) and we

adopt the convention that 0 log0 = 0 , a log a
0 = ∞ if a > 0 and 0log 0

0 = 0. Note that kl(a,b) is

the KL-divergence between two Bernoulli random variables with success probabilities a and b

respectively. It can be shown (c.f. Lemma 19 in Germain et al. (2015) and references therein)

that
√

n≤ ξ (n)≤ 2
√

n. Theorem 2.3.1 combined with Lemma 2.3.2 produce the first part of

the following theorem. The second part follows from an application of Pinsker’s inequality,

2(a−b)2 ≤ kl(a,b).

Theorem 2.3.5 Let Assumptions 2.2.1 – 2.2.4 hold and assume that (2.27) holds. For ε > 0,

each of the following holds with probability at least 1− ε .
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(a) for all ρ ∈Pπ(Θ) simultaneously,

kl

(
Rn(aG,ρ)

2Umax
,
R
(
aG,ρ

)
2Umax

)
≤ 1

n

[
logξ (n)+ log

1
ε
+DKL(ρ,π)

]
.

(b) for all ρ ∈Pπ(Θ) simultaneously,

∣∣∣∣∫
Θ

R(θ)dρ(θ)−
∫

Θ

Rn(θ)dρ(θ)

∣∣∣∣≤ 2Umax

√
1

2n

(
logξ (n)+ log

1
ε
+DKL(ρ,π)

)
.

As discussed in Germain et al. (2015), (a) is a slight improvement over similar bounds

that have arisen in earlier PAC-Bayesian literature. One option to derive a bound for

∫
Θ

Rn(θ)dρ̂
λ̃
(θ)

is to solve the inequality in (a) numerically. As the bounds in Theorem 2.3.5 do not depend on λ

and are valid for any ρ ∈Pπ(Θ), they produces bounds for ρ̂
λ̃

when λ̃ is data dependent.

Lastly, the generalization bounds for the loss function can be used to obtain generalization

bounds for the utility function directly. To this end, denote

Un(θ) =
1
n

n

∑
i=1

[U(a(X ,θ),Y,X)] =
1
n

n

∑
i=1

U(Yi,Yi,Xi)−Rn (θ)

and U(θ) = E[U(a(X ,θ),Y,X)] = EU(Y,Y,X)−R(θ) .

Also let

BU =Umax

√
2log 2

ε

n
.

Then we have the following corollary of earlier bounds for
∫

Θ
[R(θ)−Rn(θ)]dρ̂(θ).

Corollary 2.3.1 For ε > 0, let ρ̂ be a probability distribution over Θ and let BR(ρ̂) be a high
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probability (at least 1− ε/2) bound for
∫

Θ
[R(θ)−Rn(θ)]dρ̂(θ), i.e. BR(ρ̂) satisfies

Pr
{∫

Θ

[R(θ)−Rn(θ)]dρ̂(θ)≤ BR (ρ̂)

}
≥ 1− ε

2
.

Then

Pr
(∫

Θ

U(θ)dρ̂ (θ)≥
∫

Θ

Un(θ)dρ̂ (θ)− (BU +BR (ρ̂))

)
≥ 1− ε.

For example, if we are considering decision rules using ρ̂
λ̃

with data dependent λ̃ > 1, under the

assumptions of Theorem 2.3.4(a) and for α > 1 we can take

BR(ρ̂λ̃
) =

α

λ̃

 λ̃ 2U2
max

2n
+ log

1
ε
+DKL(ρ̂λ̃

,π)+2log
log
(

α2λ̃

)
logα

 .
2.3.2 Linear Decision Rules in the Utility Setting

By definition, the estimator ρ̂λ solves

ρ̂λ := argmin
ρ∈Pπ (Θ)

[∫
Θ

Rn (θ)dρ (θ)+
1
λ

DKL (ρ,π)

]
.

The distribution is not standard and must be approximated by numerical methods such as MCMC

or tempered SMC (the latter is discussed in Section 2.4). Here, we consider a restrictive class of

posteriors from a parametric family. In particular, we consider the case that both ρ and π are

normal. Specifically, we assume that under π

θ =
(
θ1,θ2, ...,θq

)′ ∼ N(µπ ,Σπ),

and under ρ

θ =
(
θ1,θ2, ...,θq

)′ ∼ N(µρ ,Σρ),

where µπ and µρ are the mean vectors and Σπ and Σρ are the covariance matrices.
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Lemma 2.3.3 The KL divergence between ρ : N(µρ ,Σρ) and π : N(µπ ,Σπ) on Rq is

DKL (ρ,π) =
1
2
(
µρ −µπ

)′
Σ
−1
π

(
µρ −µπ

)
+

1
2
[
tr
(
ΣρΣ

−1
π

)
−q
]
− 1

2
log

det
(
Σρ

)
det(Σπ)

.

We further assume that RΘ is described by (2.14) and that for x ∈X ,

m(x,θ) =
q

∑
j=1

φ j(x)θ j = φ(x)′θ , θ ∈ Rq (2.32)

for some set of feature transformations {φ1(x), . . . . ,φq(x)} where φ j(x) : X → R. For example,{
φ1(x), . . . ,φq(x)

}
can consist of transforms of the observable variables using any set of basis

functions. Another case of interest would be the setting where RΘ is specified by

RΘ =
{

a(x,θ) = sign
(
φ(x)′θ

)
: θ ∈ Rq} (2.33)

This is analogous to the setting of Germain et al. (2009) in the 0/1 loss setting. For example,

one could take {φ1(x), . . . . ,φq(x)} to be a set of decision stumps, with a fixed number of stumps

and predetermined thresholds for each component of x ∈ Rd . We focus on (2.32) below, but the

results are easily adjusted to the setting of (2.33), simply drop the term c(x).

Before proceeding, we note that the majority vote or Bayes method in this setting takes a

particularly convenient form. For any fixed X , note that under θ ∼ N(µρ ,Σρ) we have

φ(X)′θ − c(X)∼ N
(
φ(X)′µρ − c(X),φ(X)′Σρφ(X)

)
,

and therefore it follows that

Eθ∼ρsign
[
φ(X)′θ − c(X)

]
= 2Φ

(
φ(X)′µρ − c(X)√

φ(X)′Σρφ(X)

)
−1.
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Hence the majority vote takes the form

aB,ρ(X) = sign
{

Eθ∼ρsign
[
φ(X)′θ − c(X)

]}
= sign

{
2Φ

(
φ(X)′µρ − c(X)√

φ(X)′Σρφ(X)

)
−1

}
= sign

[
φ(X)′µρ − c(X)

]
.

That is, the decision rule in this case is straightforward to calculate and depends directly on a

linear combination of a set of mappings from X to R. Additionally, we will utilize the following

lemma.

Lemma 2.3.4 Under the normal prior and posterior setting described above,

∫
Θ

Rn (θ)dρ (θ) =
1
n

n

∑
i=1

ψ(Xi,Yi)Φ

(
−

V
(
Xi,Yi,µρ

)√
φ(Xi)′Σρφ(Xi)

)
.

where

V
(
Xi,Yi,µρ

)
= Yi

[
φ(Xi)

′
µρ − c(Xi)

]
.

Given Lemma 2.3.4, the minimization problem then reduces to the following problem:

(
µ̂ρ ,Σ̂ρ

)
:= arg min

µρ ,Σρ

{
1
n

n

∑
i=1

ψ (Xi,Yi)Φ

(
−

V
(
Xi,Yi,µρ

)√
φ(Xi)′Σρφ(Xi)

)
+

1
λ

DKL (ρ,π)

}
.

When µπ = 0, Σπ = diag
(

σ2
π, j

)
, and Σρ = diag

(
σ2

ρ, j

)
, we have

DKL (ρ,π) =
1
2

q

∑
j=1

µ2
ρ, j

σ2
π, j

+
1
2

[
q

∑
j=1

σ2
ρ, j

σ2
π, j
−q

]
− 1

2

q

∑
j=1

log
σ2

ρ, j

σ2
π, j

=
1
2

[
q

∑
j=1

µ2
ρ, j

σ2
π, j

+
q

∑
j=1

(
σ2

ρ, j

σ2
π, j
− log

σ2
ρ, j

σ2
π, j

)
−q

]
,
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and the minimization problem becomes

(
µ̂ρ , σ̂

2
ρ

)
:= arg min

µρ ,σ2
ρ

1
n

n

∑
i=1

ψ (Xi,Yi)Φ

− V
(
Xi,Yi,µρ

)√
∑

q
j=1 σ2

ρ, jφ j(Xi)2

+
1

2λ

q

∑
j=1

(
µ2

ρ, j

σ2
π, j

+
σ2

ρ, j

σ2
π, j
− log

σ2
ρ, j

σ2
π, j

)
.

(2.34)

Given the estimator σ̂2
ρ = (σ̂2

ρ,1, ..., σ̂
2
ρ,q), we have

µ̂ρ := argmin
µρ

1
n

n

∑
i=1

ψ (Xi,Yi)Φ

− V
(
Xi,Yi,µρ

)√
∑

q
j=1 σ̂2

ρ, jφ j(Xi)2

+
1

2λ

q

∑
j=1

µ2
ρ, j

σ2
π, j

 .

The first term can be regarded as the empirical loss function for µρ , and the second term is a

weighted L2 regularizer. If all of
{

σ̂2
ρ, j

}
converge to zero, which is expected, then

Φ

− V
(
Xi,Yi,µρ

)√
∑

q
j=1 σ̂2

ρ, jφ j(Xi)2

≈ 1
{

V
(
Xi,Yi,µρ

)
< 0
}
.

In addition to the weighted L2 regularization, the PAC-Bayesian approach, therefore, also replaces

the indicator

1
{

V
(
X ,Y,µρ

)
< 0
}
,

which is not smooth, by a smooth function

Φ(−V
(
X ,Y,µρ

)
/h),

for a small h. Smoothing and regularization are two built-in features of the PAC-Bayesian

approach.

In the econometric literature, smoothing has been proposed to overcome the technical

difficulties behind the maximum score estimator. See, for example, Horowitz (1992). In in-

strumental variable quantile regressions where an indicator function is present in the criterion

function, Kaplan and Sun (2017) discuss several benefits of smoothing, including variance reduc-
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tion and computational convenience. The PAC-Bayesian approach provides another justification

for smoothing.

Lastly, we consider a particular form of the restrictive model considered here that will be

utilized in the simulation section and is easier to implement. When Σπ = Σρ = IM and µπ = 0,

we seek only to estimate µρ and the optimization problem is now equivalent to

µ̂ρ = argmin
µρ

λ

n

n

∑
i=1

ψ(Xi,Yi)Φ

(
−

V
(
Xi,Yi,µρ

)
||φ(Xi)||

)
+

1
2
||µρ ||2. (2.35)

The resulting decision rule is given by

a(x, µ̂ρ) = sign[φ(x)′µ̂ρ − c(x)].

Here λ is a hyperparameter we will choose via cross-validation. Alternatively, the version

corresponding to the model class in (2.33) would drop the term c(Xi), and is just a weighted

version of the model derived in Germain et al. (2009), where the only difference in the objective

function above is the weighting term ψ(Xi,Yi). Germain et al. (2009) utilizes the 0/1 based loss

version of this model with {φ1(X), . . . ,φM(X)} taken as a set of weak learning decision stumps

and show that the estimator performs competitively against AdaBoost in terms of misclassification

rates on several real world data sets.

Note that (2.35) exhibits similarities with the soft-margin support vector machine, which

selects µ̂svm to minimize the objective function

C
n

∑
i=1

[
1−Yiφ(Xi)

′
µρ

]
+
+

1
2
||µρ ||2

for some constant C > 0 and has classification rule a(x, µ̂svm) = sign[φ(x)′µ̂svm]. In the restrictive

PAC-Bayesian objective function in (2.35), a bounded and smooth “sigmoid” loss replaces the

hinge loss of the SVM and now the terms in the objective function are weighted by ψ(Xi,Yi), the
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missed payoff from an incorrect decision.

2.3.3 PAC-Bayesian Multi-Model Aggregation

Here we consider the situation where there are multiple binary decision model classes of

interest. Section 2.3.1 is general enough to encompass this setting with only some notational

changes and reinterpretations. Here we detail the changes in the model space, prior specification,

and posterior distribution, and present some implications relevant to implementation in this

setting.

Suppose there are now K models indexed by k = 1,2, ...,K. Let θ(k) ∈ Rqk be the param-

eter vector for model k. The number of parameters qk can be different for a different model. For

example, different decision boundaries may consist of a different subset of covariates, and the

size of the subset can be different. Denote θ =
(
k,θ(k)

)
. The first component of θ signifies the

model class, and the second component signifies the model parameter given the model class in

the first component. The parameter space for θ is

Θ = ∪K
k=1
(
k×Θ(k)

)
,

where Θ(k) is the parameter space for θ(k). Given θ =
(
k,θ(k)

)
∈ Θ, the action function, now

denoted by a(k)(x,θ(k)), maps the covariate space X to a binary action. The single model setting

in Section 2.3.1 can be regarded as a special case here with k = K = 1.

As before, we equip Θ with the standard σ -algebra denoted by Bθ . PAC-Bayesian

learning for model aggregation works in the same way as before. We need to specify a “prior”

distribution π over the (model, parameter)-pairs
{(

k,θ(k)
)}

in the measurable space (Θ,Bθ ) and

then use the performances of different pairs to update π to obtain an “evidence-based” distribution.

The final decision rule involves aggregating the actions of all (model, parameter)-pairs using the

evidence-based distribution.

To specify a distribution π over Θ, we first specify the distribution π (k) over the model

154



classes k = 1, ...,K and then specify the distribution π
(
θ(k)|k

)
over θ(k) ∈Θ(k) given the model

class k. Let K ◦ be a subset of K : ={1,2, ...,K} and Θ◦(k) be a measurable subset of Θ(k). Then

Θ◦ = ∪k∈K ◦(k×Θ◦(k)) is a measurable subset of Θ. Based on π (k) and π
(
θ(k)|k

)
, π (Θ◦) is

defined as

π (Θ◦) = ∑
k∈K ◦

[
π (k) ·

∫
Θ◦
(k)

dπ
(
θ(k)|k

)]
.

With some abuse of notation2, we write the measure π as

π (θ) := π
((

k,θ(k)
))

= π (k)π
(
θ(k)|k

)
for θ =

(
k,θ(k)

)
. (2.36)

This gives a general characterization of any distribution on (Θ,Bθ ).

Given a π ∈P(Θ), we denote the family of all distributions on (Θ,Bθ ) that is absolutely

continuous with respect to π as Pπ (Θ) . The evidence-based distribution we consider will belong

to Pπ (Θ) . For any ρ ∈Pπ (Θ), define the Kullback–Leibler divergence between ρ and π as

DKL (ρ,π) =
K

∑
k=1

{∫
Θ(k)

log

[
ρ (k)
π (k)

·
dρ
(
θ(k)|k

)
dπ
(
θ(k)|k

)]dρ
(
θ(k)|k

)}
ρ (k) .

This is the same definition as before but is tailored to the model aggregation setting with new

interpretations of θ ∈Θ and the distribution over Θ.

Let M (Θ) be the set of measurable functions on (Θ,Bθ ) and

M π
b (Θ) =

{
A : A(·, ·) ∈M (Θ) and

K

∑
k=1

[∫
Θ(k)

exp
(
A
(
k,θ(k)

))
dπ
(
θ(k)|k

)]
π (k)< ∞

}
,

which is a subset of M (Θ) that has a finite exponential moment under π. In this setting, Lemma

2.2.2 can be stated as follows.

Lemma 2.3.5 For π ∈P(Θ) and A ∈M (Θ) such that −A ∈M π
b (Θ), let ρA,π ∈Pπ(Θ) be

2Here the meaning of π (·) depends on the argument supplied. We could write π (θ) as πθ (θ) ,π (k) as πk (k)
and π

(
θ(k)|k

)
as πθ (k)|k

(
θ(k)|k

)
but we opt for a more economical notation. This should not cause any confusion.
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the probability measure on Θ defined by

ρA,π (θ) = ρA,π (k) ·ρA,π
(
θ(k)|k

)
, for θ =

(
k,θ(k)

)
,

where

ρA,π (k) =
π (k)νA (k)

∑
K
j=1 π ( j)νA ( j)

,

dρA,π
(
θ(k)|k

)
dπ
(
θ(k)|k

) =
exp
(
−A
(
k,θ(k)

))
νA (k)

,

and

νA (k) =
∫

Θ(k)

exp
(
−A
(
k, θ̃(k)

))
dπ
(
θ̃(k)|k

)
.

That is, for any measurable set Θ◦ = ∪k∈K ◦(k×Θ◦(k))⊆Θ,

ρA,π (Θ
◦) = ∑

k∈K ◦

[
ρA,π (k) ·

∫
Θ◦
(k)

dρA,π
(
θ(k)|k

)]
.

Then, for any probability measure ρ ∈Pπ (Θ) we have

log

[
K

∑
k=1

π (k)νA (k)

]

=−

{
DKL (ρ,π)+

K

∑
k=1

[∫
Θ(k)

A
(
k,θ(k)

)
dρ
(
θ(k)|k

)]
ρ (k)

}
+DKL

(
ρ,ρA,π

)
.

Note that log
[
∑

K
k=1 π (k)νA (k)

]
does not depend on ρ. It follows from Lemma 2.3.5 that

arg min
ρ∈Pπ (Θ)

{
DKL (ρ,π)+

K

∑
k=1

[∫
Θ(k)

A
(
k,θ(k)

)
dρ
(
θ(k)|k

)]
ρ (k)

}

= arg min
ρ∈Pπ (Θ)

DKL
(
ρ,ρA,π

)
= ρA,π . (2.37)

With the above details for the model aggregation setting, we can return to the optimization

problem similar to that in (2.20). Let Rn
(
k,θ(k)

)
be the empirical risk under model k with
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parameter θ(k) :

Rn
(
k,θ(k)

)
=

1
n

n

∑
i=1

ψ(Xi,Yi)1
{

Yi ̸= a(k)(Xi,θ(k))
}
.

We now solve

min
ρ∈Pπ (Θ)

[
E(k,θ(k))∼ρ

[
Rn(k,θ(k))

]
+

1
λ

DKL(ρ,π)

]
. (2.38)

To characterize the solution to the above minimization problem, we define the data-

dependent measure on K as

ρ̂λ (k) =
π (k) v̂λ (k)

∑
K
j=1 π ( j) ν̂λ ( j)

(2.39)

and the data-dependent measure ρ̂λ

(
θ(k)|k

)
on Θ(k) in terms of its RN derivative with respect to

π
(
θ(k)|k

)
as

dρ̂λ

(
θ(k)|k

)
dπ
(
θ(k)|k

) =
exp
(
−λRn

(
k,θ(k)

))
ν̂λ (k)

, k = 1, . . . ,K,

where

ν̂λ (k) =
∫

Θ(k)

exp
(
−λRn

(
k,θ(k)

))
dπ
(
θ(k)|k

)
.

Based on ρ̂λ (k) and ρ̂λ

(
θ(k)|k

)
, we form the data-dependent measure ρ̂λ (θ)∈P (Θ) according

to

ρ̂λ (Θ
◦) = ∑

ℓ∈L ◦

[
ρ̂λ (k) ·

∫
Θ◦
(k)

dρ̂λ

(
θ(k)|k

)]
. (2.40)

This is our evidence-based distribution over (model, parameter)-pairs.

Letting

A
(
k,θ(k)

)
= λRn

(
k,θ(k)

)
,

Lemma 2.3.5 and equation (2.37) thereafter show that ρ̂λ (θ) solves the problem in (2.38).

One approach to evaluate decision rules based on ρ̂λ (θ) is to simulate this distribution

via reversible jump MCMC. Alternatively, as we consider in this paper, when the majority vote

classifier is the object of interest, the form of ρ̂λ (θ) is amenable to the SMC method. For the

single model class setting, the SMC approach is described in Section 2.4. One benefit of the SMC
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approach is that the procedure based on a single model class is easily adapted to the multiple

model class setting. When the form of π
(
θ(k)|k

)
does not depend on the choice for π(k), this

can reduce the computational burden if one is interested in choosing the prior component π(k)

over K from a set of potential distributions over K via cross-validation.

To see this, note that the majority vote (or, Bayesian) decision rule based on ρ̂λ is

aB,ρ̂λ
(x) = sign

{
E(k,θ(k))∼ρ̂λ

a(k)(x,θ(k))
}
= sign

{
K

∑
k=1

ρ̂λ (k) â(k) (x)

}
, (2.41)

where

â(k) (x) :=
∫

Θ(k)

a(k)(x,θ(k))dρ
λ̂

(
θ(k)|k

)
.

For a single model class RΘ(k) with a given π
(
θ(k)|k

)
, under general conditions the SMC

procedure produces accurate estimators for â(k) (x) and v̂λ (k), both of which depend only on

π
(
θ(k)|k

)
. These objects can be computed separately for each k ∈K according to the single

model class SMC procedure. Then, for a given π(k) over K , (2.39) can be used to construct

ρ̂λ (k) and the majority vote rule is computed via (2.41). If one is interested in cross-validating

the choice of π(k) from some set of distributions on K and the distributions π
(
θ(k)|k

)
do not

depend on π(k) for k ∈K , then the objects â(k) (x) and v̂λ (k) need only be computed once

per cross-validation sample. This is in contrast to running a reversible jump MCMC procedure

for each choice of π(k) and can be beneficial when the number of decision model classes is

not very large. If the number of model classes was very large, say, in an explanatory variable

selection setting where the total number of explanatory variables is greater than the sample

size, then an alternative computational strategy would be needed (to avoid running the SMC

procedure independently for each model class). See, for example, Guedj (2013) for a discussion

of PAC-Bayesian analysis and implementation for binary outcomes in such a setting.
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2.4 Implementation

Here we consider implementation choices and describe some settings of the computational

procedures that are applied in our simulations in Section 2.5. In Section 2.4.1 we discuss prior

choices and consider examples for RΘ. The RΘ considered center on decision models similar

to those in Su (2020) and Elliott and Lieli (2013), some of which are used in our simulations.

However, it should not be too difficult to make adjustments if a different model class is desired.

In Section 2.4.2 we discuss the calculation of µ̂ρ in (2.35) associated with the linear decision rule

discussed at the end of Section 2.3.2. We also outline an implementation of the SMC algorithm

of Del Moral et al. (2006) in our setting in Section 2.4.2.

2.4.1 Model and Prior Choices

First we consider two specifications for RΘ of the form in (2.14) that are also considered

in Su (2020). These consist of specifying a functional form for m(x,θ) ∈MΘ and the associated

parameter space Θ. Then we consider potential choices for the prior probability distribution π .

The RΘ specifications allow for m(x,θ) to be fairly general and are appropriate for a setting

where the number of explanatory variables d is not large relative to the sample size n. If d is

larger than n, the choices of function class and prior utilized in Guedj (2013) (Chapter 3) would

be an option; an MCMC-based approach would be more appropriate in such a setting rather than

the SMC procedure in Section 2.4.2.

In many empirical applications, we have a nondecreasing collection of parameterized

function classes {MΘ(k)}
K
k=1 for K ∈ N where MΘ(i) ⊂MΘ( j) for i < j. In a single model

class setting, we can take MΘ to be MΘ(k) for some k ∈K = {1, . . . ,K} with parameter space

Θ=Θ(k). In the multiple model class setting of Section 2.3.3, we can take MΘ =∪K
k=1MΘ(k) with

parameter space Θ = ∪K
k=1(k×Θ(k)). While the inclusion of the model class k as a component

of the parameter θ may seem redundant when the model classes are nested, it simplifies the prior

specification and allows for generalization when the model classes are not nested.
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Example 1 We consider polynomial transformations on X of order at most k ∈ K . For

X ⊂ Rd , the polynomial transformation of order at most k will have qk =
(d+k

k

)
parameters,

and it is defined as

M poly
Θ(k)

=

{
m(x,θ) =

qk

∑
j=1

θ jφ j(x), θ(k) = (θ1, . . . ,θqk) ∈ Rqk

}
,

where the summation is over all monomials φ j(x) = ∏
d
ℓ=1 x

p jℓ
ℓ with ∑

d
ℓ=1 p jℓ ≤ k and p jℓ ∈

N∪{0}. The parameter space associated with M poly
Θ(k)

is Θ(k) = Rqk .

Example 2 Define Λ(v) = (1+ exp(−v))−1. With the same parameter set Θ(k) = Rqk as in

Example 1, define the function space

M logistic
Θ(k)

=
{

m(x,θ) = Λ( f (x,θ)) : f (x,θ) ∈M poly
Θ(k)

}
.

Now we consider some options for specifying the prior. First consider when MΘ and

Θ correspond to a single model class, i.e., MΘ = MΘ(k) for some fixed k ∈ K . In cases

where it is reasonable to bound the parameter space Θ (for example, one could possibly replace

Θ = Rqk with a bounded subset of Rqk given some knowledge about the distribution of P(X ,Y )),

a uniform prior over Θ is a potential choice. When Θ = Rqk , another choice is a multivariate

normal prior over Θ, for example, N(0,σ2
π Iqk) for some σ2

π > 0. In the multiple model class

setting with varying class complexity, a general strategy is to choose π that puts increasingly

less weight on regions of the parameter space that are increasingly more complex. A prior that

puts relatively more weight on very complex regions of the parameter space will tend to result in

larger DKL(ρ,π) terms in the bounds of Section 2.3.1 particularly as λ increases.

In our simulations, we use the following formulation for π in the Θ = ∪K
k=1(k×Θ(k))

setting. We specify π as in (2.36), taking π (θk|k) to be the N(0,σ2
π Iqk) distribution for k ∈K

with a fixed σ2
π > 0. To specify the model-class component π(k) of the prior, in addition to
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simpler schemes such as equal weighting, one choice we consider is to set

π(k) =
exp(−ηξ (k,n))

zη

, zη =
K

∑
k=1

exp(−ηξ (k,n)), (2.42)

where η ≥ 0 and ξ (k,n) : K ×N→ R+ is some measure of the complexity of model class

k. Potential building blocks for ξ (k,n) in the form of distribution-free model complexity

measurements are as follows. For k ∈K , define Mk,c≡{x 7→ sign(m(x,θ)−c(x)) : m∈MΘ(k)}

and denote the growth function3 of Mk,c by Πk,c(·). Let ψc(k,n) denote an upper bound for

Πk,c(n) and Vk,c denote an upper bound for the VC-dimension4 of Mk,c. That is, ψc(k,n) upper

bounds the maximum number of distinct ways that
{

sign(m(x,θ(k))− c(x)),θ(k) ∈Θk
}

can

classify any set of points in X n while Vk,c upper bounds the size of the largest sample that Mk,c

could classify without error. To penalizes complexity, ξ (k,n) can be taken to be an increasing

function of Vk,c, ψc(k,n), or both. In our simulations, we consider taking

ξ (k,n) =
√

logVk,c, (2.43)

and also cross-validate η in (2.42) from a finite set of values.

Remark 1 below contains additional details regarding Vk,c and ψc(k,n) for Examples 1

and 2. These points are also noted in Su (2020); we refer the reader to their Section 3.1 and the

references therein for additional discussion.

Remark 1 When MΘ(k) is specified as a vector space of real valued functions, the VC-dimension

of Mk,c is given by the dimension of MΘ(k) (c.f. Theorem 3.5 of Anthony and Bartlett (2009)).

In particular, M poly
Θ(k)

in Example 1 has dimension
(d+k

k

)
when X does not contain dummy

variables, and so we can take Vk,c =
(d+k

k

)
. For Example 2 with M logistic

Θ(k)
, Su (2020) shows that

the VC-dimension of Mk,c = {x 7→ sign(m(x,θ)− c(x)) : m ∈M logistic
Θ(k)

} can be bounded above

3For a collection H of functions from X to {−1,1}, ΠH : N → N is defined by ΠH (ℓ) =
max

(x1,...,xℓ)∈X ℓ
|{(h(x1), . . . ,h(xℓ)) : h ∈H }|

4The VC-dimension of Mk,c is the largest integer ℓ such that Πk,c(ℓ) = 2ℓ.
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by
(d+k

k

)
+ 1, and hence we can take Vk,c =

(d+k
k

)
+ 1. Regarding ψc(k,n), if Vk,c bounds the

VC-dimension of Mk,c, it follows from Theorems 3.5 and 3.6 in Anthony and Bartlett (2009) that

Πk,c(n) can be upper bounded by

ψc(k,n) =


2n, if n≤Vk,c(

en
Vk,c

)Vk,c
, if n >Vk,c.

2.4.2 Implementation for Methods in Section 2.3

In Section 2.5, our simulations evaluate the majority vote or Bayes method with the Gibbs

posterior ρ̂λ in Definition 2.2.1 and also with the linear decision rule in Section 2.3.2 associated

with the optimization problem in (2.35). Here we first detail our approach to computing µ̂ρ in the

latter case and then outline the SMC approach applied to implement ρ̂λ in the former and more

general case. We address only the single model class setting here. The discussion in Section

2.3.3 highlights how this can be adapted to the multiple model class setting for ρ̂λ .

First, we make a computational adjustment so that the choice of the hyperparameter λ is

invariant to the units of measurement of the utility function. For P∗ ⊆Pπ(Θ) and M ∈ N, note

that cross-validating λ ∈ {λ1, . . . ,λM} among distributions in

argmin
ρ∈P∗

[∫
Θ

Rn(θ)dρ(θ)+
1
λ

DKL (ρ,π)

]

is equivalent to cross-validating λ ∈ {λ1ψ̄, . . . ,λMψ̄} among distributions in

argmin
ρ∈P∗

[∫
Θ

R̄n(θ)dρ(θ)+
1
λ

DKL (ρ,π)

]
, (2.44)

where R̄n(θ) = Rn(θ)/ψ̄, and ψ̄ = n−1
∑

n
i=1 ψ(Xi,Yi). We work with the adjusted minimization

problem in (2.44). In the general setting where the Gibbs posterior ρ̂λ is considered, P∗ is

Pπ(Θ) whereas in the linear decision setting associated with the optimization problem in (2.35),
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P∗ is the set of normal distributions over Θ with an identity covariance matrix (and π is the

standard normal distribution).

To compute µ̂ρ in the setting of Section 2.3.2 discussed above, we follow a similar

strategy to that of Germain et al. (2009) who analyze the 0/1-loss version of this problem.

Incorporating the adjustment in (2.44) into the objective in (2.35), the optimization problem is

now

µ̂ρ = argmin
µρ

λ

n

n

∑
i=1

ψ(Xi,Yi)

ψ̄
Φ

(
−

V
(
Xi,Yi,µρ

)
||φ(Xi)||

)
+

1
2
||µρ ||2.

The gradient of the objective function above with respect to µρ is given by

−λ

n

n

∑
i=1

ψ(Xi,Yi)

ψ̄
Φ̇

(
Yi
[
φ(Xi)µρ − c(Xi)

]
||φ(Xi)||

)
Yiφ(Xi)

||φ(Xi)||
+µρ ,

where Φ̇ denotes the standard normal probability density function. For a given value of λ , µ̂ρ

is calculated by gradient descent. As there can be multiple local minima, we tried 15 random

starting points when λ/n≤ 10 and 100 random starting points when λ/n > 10. We performed

5-fold cross-validation to select λ ∈ {20,21, . . . ,218}. The discussion and references in Alquier

et al. (2016) suggest alternative implementation methods. These can be useful for the more

general settings in Section 2.3.2, for example when the covariance matrix Σρ is not set to the

identity matrix.

To implement the majority vote rule based on ρ̂λ in Definition 2.2.1, now with Rn(θ)

replaced by R̄n(θ), we utilize the tempering SMC procedure of Del Moral et al. (2006). While

MCMC is a typical choice for simulating from ρ̂λ , recently Ridgway et al. (2014) and Alquier

et al. (2016) have highlighted the usefulness of the SMC procedure in various PAC-Bayesian

settings. One benefit is that each run of the procedure produces a sample from each member

of a set of Gibbs posterior distributions corresponding increasing λ values. This can ease the

computational burden of cross-validation.

To touch on a few elements of the tempering SMC algorithm in our setting, assume
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Θ = Rq for some q ∈ N and that we are able to sample from a prior probability distribution π

over Θ. It is assumed that there is an increasing temperature ladder

0 = λ0 < λ1 < · · ·< λT , T ∈ N.

{λt}T
t=0 here is not generally the same set that was considered for cross-validation in the earlier

procedure for the linear decision rule. The temperature ladder is intended to be such that as λt

increases, the corresponding distributions ρ̂λt progress gradually from π = ρ̂λ0 to distributions

ρ̂λt with higher values of λt that are of greater interest. For each t = 0, . . . ,T , the SMC algorithm

produces a set of weighted samples, {W (i)
t ,θ

(i)
t }N

i=1 with W (i)
t > 0 and ∑

N
i=1W (i)

t = 1, of size N

and a scaling factor estimate Ẑt . The set of parameter draws {θ (i)
t }N

i=1 are referred to as particles

(there are N weighted particles for each t). SMC combines MCMC moves with sequential

importance sampling. This produces weighted particles that emulate, in terms of computing

expectations, samples from the probability distributions ρ̂λt associated with the densities

dρ̂λt

dπ
(θ) =

exp [−λt R̄n (θ)]

Zt
, Zt =

∫
Θ

exp [−λt R̄n (θ)]dπ(θ), t = 0,1, . . . ,T.

Under general conditions, for a ρ̂λT -integrable function ϕ : Θ→ R,

N

∑
i=1

W (i)
T ϕ

(
θ
(i)
T

)
a.s.→ Eθ∼ρ̂λT

ϕ(θ),

as N→∞ while ẐT is consistent for ZT . In our setting we are interested in ϕ(θ) = a(x,θ) where

a(x,θ) ∈RΘ, enabling us to compute the key ingredient to the majority vote decision rule. For

additional details regarding the SMC procedure and its applications, we refer to Del Moral et al.

(2006) and Jasra et al. (2007).

The SMC algorithm we apply in Section 2.5 is detailed below. We set the input parameters

τESS and N there equal to 1/2 and 1000, respectively. For the {λt}T
t=1 input, we adopt the piece-
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wise linear structure utilized in the simulations of Del Moral et al. (2006) and Jasra et al. (2007)

with T = 320 and λT = 1600. In particular, the first 20% of steps increase uniformly from 0 to

0.15×1600 (i.e. λ j = ( j/64)×240 for j = 1, . . . ,64), the next 40% of steps increase uniformly

from 240 to 0.4×1600 (i.e. λ j = 240+( j/128)×400 for j = 65, . . . ,192), and the last 40% of

steps increase uniformly from 640 to 1600 (i.e. λ j = 640+( j/128)×960 for j = 193, . . . ,320).

In practice, it may be beneficial to consider higher (or lower) values of λT and or include a greater

number of steps (higher T value). Depending on the data generating process, higher values of λT

can push some components such as Ẑt close to machine epsilon for t near T . One can experiment

a little to check that the temperature range doesn’t appear to be limited unnecessarily and if

increasing the number of steps improves performance in cross-validation samples. Alternatives

to the piece-wise linear ladder design are discussed in Del Moral et al. (2006) and Jasra et al.

(2007). Additionally, the SMC algorithm requires a resampling step. We utilize systematic

resampling, which is also outlined below. Additional algorithm choices and cross-validation

points are detailed below the algorithm descriptions.

Tempering SMC Algorithm

Input N (number of particles), τESS ∈ (0,1) (ESS threshold), {λt}T
t=1 (temperature ladder with

0 < λ1 < λ2 < · · ·< λT ).

Output {W (i)
t ,θ

(i)
t }N

i=1 for t = 0, . . . ,T , {Ẑt}T
t=1.

Step 1: initialization

• Set t← 0, Ẑ0← 1. For i = 1, . . . ,N, draw θ
(i)
0 ∼ π and set W (i)

0 ← 1/N.

Iterate steps 2 and 3

Step 2: Resampling
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• If {
N

∑
i=1

(
W (i)

t

)2
}−1

< τESSN,

resample
{

W (i)
t ,θ

(i)
t

}N

i=1
yielding equally weighted resampled particles

{
1
N ,θ

(i)
t

}N

i=1
and

set
{

W (i)
t ,θ

(i)
t

}N

i=1
←
{

1
N ,θ

(i)
t

}N

i=1
. Otherwise, leave

{
W (i)

t ,θ
(i)
t

}N

i=1
unaltered.

Step 3: Sampling

• Set t← t +1; if t = T +1, stop.

• For i = 1, . . . ,N, draw θ
(i)
t ∼ Kt(θ

(i)
t−1, ·), where Kt is an MCMC kernel with invariant

distribution ρλt , and evaluate the unnormalized importance weights

ω
(i)
t

(
θ
(i)
t−1

)
= exp

[
−(λt−λt−1)R̄n

(
θ
(i)
t−1

)]
.

• For i = 1, . . . ,N, set

W (i)
t ←

W (i)
t−1ωt

(
θ
(i)
t−1

)
∑

N
j=1W ( j)

t−1ωt

(
θ
( j)
t−1

) , Ẑt ← Ẑt−1×

{
N

∑
i=1

W (i)
t−1ωt

(
θ
(i)
t−1

)}
.

Resampling Algorithm (systematic resampling):

Input A set of (normalized) weights and associated particles,
{

W (i)
t ,θ

(i)
t

}N

i=1
for some t ∈

{0, . . . ,T}.

Output Resampled particles for equal weighting,
{

θ
(i)
t

}N

i=1

• Draw u∼U
[
0, 1

N

]
.

• Compute cumulative weights C(i) = ∑
i
m=1W (m)

t for i = 1, ...,N.
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• Set m← 1.

• For i = 1 : N

While u <C(i) do θ
(m)
t ← θ

(i)
t .

m← m+1, and u← u+1/N.

End For

For the MCMC kernel in the sampling step of the SMC algorithm, we use a Gaussian

random-walk Metropolis kernel with covariance matrix proportional to the empirical covariance

matrix of the current set of particles. We scale the empirical covariance of the step t particles

by 1/t which produced produced reasonable acceptance rates in the first simulated training

set across the various simulation setups. The priors utilized for the majority vote associated

with the Gibbs posterior in our simulations are described in Section 2.5 below. We use 5-fold

cross-validation to select λ from λt values for which t > 25.

2.5 Simulation Study

To investigate the performance of the utility-based PAC-Bayesian decision rules, we

consider two data generating processes and two sets of preferences, one set with each DGP. We

utilize the same simulation design as Elliott and Lieli (2013) and Su (2020). The DGPs and the

associated sets of preferences are as follows.

DGP 1: X = [−2.5,2.5], X ∼ 5×Beta(1,1.3)− 2.5, and P(x) = Λ(−0.5X + 0.2X3) where

Λ(·) is the logistic function described in Example 2 and recall P(x) is defined in (2.2).

• Preference 1: b(x) = 20 and c(x) = 0.5.

• Preference 2: b(x) = 20 and c(x) = 0.5+0.025X .
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DGP 2: X = [−3.5,3.5]2, covariates X1 and X2 are each uniformly distributed on [−3.5,3.5]

and are independent of one another, and P(x1,x2) = Λ(Q(1.5x1 +1.5x2)) where Q(v) = (1.5−

0.1v)exp{−(0.25v+0.1v2−0.04v3)}.

• Preference 3: b((x1,x2)) = 20 and c((x1,x2)) = 0.75.

• Preference 4: b((x1,x2)) = 20+40 ·1{|x1 + x2|< 1.5} and c((x1,x2)) = 0.75.

To evaluate the performance of a decision rule, we compute, by Monte Carlo simulation,

the ratio of its expected utility to the expected utility of the optimal decision in (2.9) if P(x) were

known. This metric is intuitive as utility has no natural unit, however the ratio changes when a

constant is added to the utility function. In Elliott and Lieli (2013) and Su (2020), this is dealt

with by choosing some normalization of the utility function. We follow the same normalization

and Monte Carlo setup as Su (2020), so that our simulation results can be compared directly to

theirs. Noting that

U(a,y,x) =
1
4

b(x) [y+1−2c(x)]a+
1
4

b(x) [y+1−2c(x)]+U(−1,y,x),

Su (2020) normalizes the utility function by setting U(−1,y,x) =−0.25b(x)[y+1−2c(x)] for

all x ∈X and multiplying the utility function by 4. For any decision rule an(x) : X →{−1,1},

this results in the following measurement that he calls the generalized expected utility,

S (an) = E {b(X)[Y +1−2c(X)]an(X)} .

With this normalization, denote

a∗(x) = sign[P(x)− c(x)], x ∈X ,

i.e., a∗ is the optimal forecast rule. Then define the relative generalized expected utility (RGEU)
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of any decision rule an by

RGEU(an)≡
E [S(an(X))]

S(a∗(X))
.

As noted in Su (2020), the RGEU of the decision rule an can be approximated by simulation as

RGEU(an) = E
[

S(a)
S(a∗)

]
≃ 1

S

S

∑
j=1

Sℓ, j
(
a|Dn, j

)
Sℓ, j(a∗)

.

Here, Sℓ, j(an|Dn, j) is the jth out of sample empirical utility with training sample size ℓ of the

decision rule an, which is estimated on the jth training sample Dn, j with training sample size

n. Sℓ, j(a∗) is the jth out-of-sample empirical utility with training sample size ℓ of a∗, and S

is the number of simulation replications. Still following Su (2020), we take n ∈ {500,1000},

ℓ= 5000, and S = 500.

We compare the following models. Firstly, we consider maximum likelihood estimators,

which are denoted by ML in Tables 1 and 2. For k = 1,2,3, the maximum likelihood estimator

presumes a logistic model linear in the polynomial transformations of the X up to order k.

Secondly, we consider the maximum utility estimator of Elliott and Lieli (2013) (denoted MU); it

is presumed that m(x,θ) belongs to the class of polynomial transformations of X for k = 1,2,3

for these decision rules. Hence the ML estimator is correctly specified for P(X) when k = 3

for DGP 1. Thirdly, we consider one of the best performing (in this simulation design) model

selection procedures from Su (2020), based on the simulated maximal discrepancy penalty. This

is a penalized version of the MU models here (selecting the best k among k = 1,2,3). This

model is denoted MU-SMD. Fourthly, we consider the linear PAC-Bayesian model associated

with (2.35) from Section 2.3.2 when the posterior is also constrained to be normal with identity

covariance matrix. Here we take {φ1, . . . ,φq3} to consist of the polynomial transformations of

X up to order 3. We normalize the data (using training sample mean and standard deviation)

as is common with SVM. This model is denoted PB-NP (NP for normal posterior). Lastly, we

consider the non-constrained PAC-Bayesian method whereby the decision rule is the majority
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vote associated with the Gibbs posterior ρ̂λ in Definition 2.2.1. In this case, we consider the

multiple model class setting of Section 2.3.3. For the model classes, we use consider 3 classes

of polynomial transformations on X of orders k ∈ {1,2,3} = K as specified in Example 1.

We cross-validate λ according to the temperature ladder described in Section 2.4.2 and take

π(θ(k)|k) to be N(0,4Iqk) for each k. These decision rules are denoted PB-GP (GP for Gibbs

posterior). To specify π(k) for k ∈K , we evaluate three choices. First, we take π(k) = 1/3

for k = 1,2,3; this is denoted EQ. Second, we take π(k) = qk/(∑
3
j=1 q j) where qk is defined in

Example 1 and denotes the number of parameters associated with model class k; this is denoted

NP. Third, we utilize the weights in (2.43) and cross-validate τ ∈ {2−2,2−1, . . . ,23}; this prior

choice is denoted CV in the tables.

The simulation results are presented in Tables 1 and 2 after the Conclusion. The utility-

based PAC-Bayesian decision models PB-GP and PB-NP perform very well, achieving higher

RGEU than the MU and MU-SMD decision rules across all preferences and DGPs. The margin

of the improvements is often sizable. Only the ML rule with a correctly specified DGP (ML

with k = 3 for DGP 1) outperforms the BP- models. However, whenever the ML procedure

is misspecified, it mostly performs quite poorly relative to all the utility-based methods. This

performance further deteriorates when the preferences vary with the covariates as they do for

Preferences 2 and 4. As shown in Elliott and Lieli (2013), the cubic MU (k = 3) is correctly

specified in both the DGP 1 and DGP 2 settings. However, it is also observed there that MU can

be prone to overfitting and aided by model selection procedures. Nonetheless, the PB- models

outperform against the MU-SMD procedure in this simulation setting as well.

The restricted PAC-Bayesian decision model, PB-NP, performs slightly worse than the

general version associated with the Gibbs posterior, PB-GP in most settings. However, the

margin between the PB-NP and PB-GP models is not always very sizable. This may suggest that

the restricted model can stand on its own, particularly when the sample size is larger or when

there is a set {φ j(x)}q
j=1 of interest that could be difficult to work into a more general Gibbs

posterior setting. For example, when {φ j(x)}q
j=1 is a larger set of weak learners as in Germain
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et al. (2009), the setting of Section 2.3.2 may be easier to implement. Lastly, we did not observe

much of an impact on the RGEU from cross-validating the choice of τ in the prior π(k).

2.6 Conclusion

An asymmetric payoff structure is often a salient feature of economic decision making

problems. For the binary decision/forecast problem where the decision maker faces asymmetric

payoffs that vary with observable variables, we propose a PAC-Bayesian approach. We show that

many key elements of the PAC-Bayesian classification literature can be extended to accommodate

this setting, deriving high probability training sample bounds and oracle inequalities that suggest

decision rules of interest. The decision rules perform very well against alternatives methods

in Monte Carlo experiments, allow for flexible functional decision rule forms, allow for valid

training-sample risk bounds and confidence interval computation, and can take advantage of

Bayesian estimation machinery.

Chapter 2 contains material being prepared for submission for academic publication. It is

joint work with Yixiao Sun. The dissertation author is a primary author of this material.
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Table 1. Relative generalized expected utility, n = 500

DGP 1 P(x) = Λ(−0.5x+0.2x3)

Preference b(x) = 20, c(x) = 0.5 b(x) = 20, c(x) = 0.5+0.025x

π class weighting: EQ NP CV EQ NP CV
PB-GP 81.74 81.28 80.72 81.84 81.82 80.41

PB-NP 74.21 77.13
MU-SMD 65.54 58.87

Poly. order: k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
ML 34.16 29.57 93.09 9.13 10.92 94.37
MU 51.02 52.85 65.74 32.40 43.80 53.26
DGP 2 P(x) = Λ(Q(1.5x1 +1.5x2)), Q(v) = (1.5−0.1v)

exp(0.25v+0.1v2−0.04v3)

Preference b(x) = 20, c(x) = 0.75 b(x) = 20+1|x1 + x2|< 1.5, c(x) = 0.75

π class weighting: EQ NP CV EQ NP CV
PB-GP 72.81 72.62 72.49 61.77 61.65 61.40

PB-NP 69.75 56.45
MU-SMD 68.81 52.84

Poly. order: k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
ML 60.17 58.75 59.48 29.52 27.87 33.81
MU 66.71 51.87 67.69 48.35 33.14 51.47

Note: The MATLAB packages glmfit and simulannealbnd with default settings for each
algorithm were used to compute the ML and MU models. The code implementing the ML, MU
and MU-SMD models was provided by the author of Su (2020).
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Table 2. Relative generalized expected utility, n = 1000

DGP 1 P(x) = Λ(−0.5x+0.2x3)

Preference b(x) = 20, c(x) = 0.5 b(x) = 20, c(x) = 0.5+0.025x

π class weighting: EQ NP CV EQ NP CV
PB-GP 87.73 87.86 87.47 90.81 90.65 90.43

PB-NP 81.52 88.83
MU-SMD 70.75 67.30

Poly. order: k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
ML 30.92 30.03 96.97 7.12 6.26 97.42
MU 53.24 58.19 69.50 36.91 49.13 60.41

DGP 2 P(x) = Λ(Q(1.5x1 +1.5x2)), Q(v) = (1.5−0.1v)
exp(0.25v+0.1v2−0.04v3)

Preference b(x) = 20, c(x) = 0.75 b(x) = 20+1|x1 + x2|< 1.5, c(x) = 0.75

π class weighting: EQ NP CV EQ NP CV
PB-GP 78.61 78.46 78.25 70.09 70.18 69.86

PB-NP 73.72 63.75
MU-SMD 71.94 59.72

Poly. order: k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
ML 58.71 57.36 59.40 27.16 24.15 31.14
MU 69.97 58.14 70.81 54.92 39.24 55.97

Note: The MATLAB packages glmfit and simulannealbnd with default settings for each
algorithm were used to compute the ML and MU models. The code implementing the ML, MU
and MU-SMD models was provided by the author of Su (2020).
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Appendices

2.A Appendix of Proofs for Chapter 2

2.A.1 Proofs for Section 2.2

Proof of Lemma 2.2.1. First we will show that for any (x,y) ∈X ×{−1,1},

ψ (x,y)1
{

y ̸= aB,ρ(x)
}
≤ 2Eθ∼ρψ(x,y)1{y ̸= a(x,θ)} . (2.45)

To show this, note that ψ(x,y)> 0 by Assumption 2.2.1 (i) and the fact that ψ(x,y) =U(1,1,x)−

U(−1,1,x) when y = 1 and ψ(x,y) = U(−1,−1,x)−U(1,−1,x) when y = −1. Therefore,

(2.45) holds when y = aB,ρ(x) = sign
{

Eθ∼ρa(x,θ)
}

as then the left hand side is zero. When

y ̸= aB,ρ(x), this implies that y · Eθ∼ρa(x,θ) ≤ 0. Therefore in the alternative case when

y ̸= aB,ρ(x),

ψ(x,y)1
{

y ̸= aB,ρ
}
= ψ(x,y)

≤ ψ(x,y)
{

1− yEθ∼ρa(x,θ)
}

= 2Eθ∼ρψ(x,y)
1
2
{1− y ·a(x,θ)}

= 2Eθ∼ρψ(x,y)1{y ̸= a(x,θ)} .

This shows that (2.45) holds. By (2.45) and the monotonicity of expectation,

EX ,Y∼P(X ,Y )ψ (X ,Y )1
{

Y ̸= aB,ρ(X)
}
≤ 2EX ,Y∼P(X ,Y )Eθ∼ρψ(X ,Y )1{Y ̸= a(X ,θ)} .
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The statement of Lemma 2.2.1 then follows from an application of Fubini’s theorem.

Proof of Lemma 2.2.2. By definition, we have

DKL
(
ρ,ρA,π

)
=
∫

Θ

log
[

dρ

dρA,π
(θ)

]
dρ(θ)

=
∫

Θ

log

{
dρ

dπ
(θ)

[
dρA,π

dπ
(θ)

]−1
}

dρ(θ)

=
∫

Θ

[
log

dρ

dπ
(θ)− log

exp(−A(θ))∫
Θ

exp
(
−A
(
θ̃
))

dπ
(
θ̃
)]dρ (θ)

=
∫

Θ

A(θ)dρ (θ)+
∫

Θ

log
[∫

Θ

exp
(
−A
(
θ̃
))

dπ
(
θ̃
)]

dρ (θ)+
∫

Θ

[
log

dρ

dπ
(θ)

]
dρ (θ)

=
∫

Θ

A(θ)dρ (θ)+ log
[∫

Θ

exp(−A(θ))dπ (θ)

]
+
∫

Θ

[
log

dρ

dπ
(θ)

]
dρ (θ)

=
∫

Θ

A(θ)dρ (θ)+ log
[∫

Θ

exp(−A(θ))dπ (θ)

]
+DKL (ρ,π) .

Hence,

log
[∫

Θ

exp(−A(θ))dπ (θ)

]
=−

[∫
Θ

A(θ)dρ (θ)+DKL (ρ,π)

]
+DKL

(
ρ,ρA,π

)
.

Proof of Corollary 2.2.1.

Part (a). Since ρA,π = argminρ∈Pπ (Θ)DKL
(
ρ,ρA,π

)
and the left hand side of (2.21) does

not depend on ρ, we have

ρA,π = arg max
ρ∈Pπ (Θ)

−
[∫

Θ

A(θ)dρ (θ)+DKL (ρ,π)

]
= arg min

ρ∈Pπ (Θ)

[∫
Θ

A(θ)dρ (θ)+DKL (ρ,π)

]
.
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By (1.29), we then have

min
ρ∈Pπ (Θ)

[∫
Θ

A(θ)dρ (θ)+DKL (ρ,π)

]
=
∫

Θ

A(θ)dρA,π (θ)+DKL
(
ρA,π ,π

)
=− log

[∫
Θ

exp(−A(θ))dπ (θ)

]
.

Part (b). Taking A =−A in Lemma 2.2.2, we obtain that for any probability measure

ρ ∈Pπ (Θ),

log
[∫

Θ

exp(A (θ))dπ (θ)

]
=

[∫
Θ

A (θ)dρ (θ)−DKL (ρ,π)

]
+DKL

(
ρ,ρ−A,π

)
. (2.46)

Note that DKL
(
ρ,ρ−A,π

)
≥ 0. It follows from (2.46) that

log
[∫

Θ

exp(A (θ))dπ (θ)

]
=

[∫
Θ

A (θ)dρ (θ)−DKL (ρ,π)

]
+DKL

(
ρ,ρ−A,π

)
≥
[∫

Θ

A (θ)dρ (θ)−DKL (ρ,π)

]
.

This implies that

∫
Θ

A (θ)dρ (θ)≤ DKL (ρ,π)+ log
[∫

Θ

exp(A (θ))dπ (θ)

]
.

2.A.2 Proofs for Section 2.3.1

Proof of Theorem 2.3.1. Let A(θ) = λD [R(θ) ,Rn (θ)] and λ ∈ I. (2.25) and Fubini’s theorem

imply that ∫
Θ

exp(λD [R(θ) ,Rn (θ)])dπ(θ)< ∞
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holds almost surely. Therefore, by Corollary 2.2.1 (b), the event

{∫
Θ

λD [R(θ) ,Rn (θ)]dρ(θ)

≤ log
[∫

Θ

exp(λD [R(θ) ,Rn (θ)])dπ(θ)

]
+DKL(ρ,π) for all ρ ∈Pπ(Θ) simultaneously

}
(2.47)

occurs with probability one. Applying Jensen’s inequality to the object on the left-hand side of

the inequality in this event, we obtain that

Pr
{

λD
[
R
(
aG,ρ

)
,Rn
(
aG,ρ

)]
≤ log

[∫
Θ

exp(λD [R(θ) ,Rn (θ)])dπ(θ)

]
+DKL(ρ,π) for all ρ ∈Pπ(Θ) simultaneously

}
= 1. (2.48)

Next, we establish a high-probability bound for log [
∫

Θ
exp(λD [R(θ) ,Rn (θ)])dπ (θ)]

using the Markov inequality: for any constant C,

Pr
{

log
[∫

Θ

exp(λD [R(θ) ,Rn (θ)])dπ (θ)

]
>C

}
≤ Pr

{[∫
Θ

exp(λD [R(θ) ,Rn (θ)])dπ (θ)

]
> expC

}
≤

E [
∫

Θ
exp(λD [R(θ) ,Rn (θ)])dπ (θ)]

expC

=

∫
Θ

E exp(λD [R(θ) ,Rn (θ)])dπ (θ)

expC
≤ exp( f (λ ,n)−C) .

where the equality follows from Fubini’s theorem and the last inequality follows from (2.25).

Solving the equation exp( f (λ ,n)−C) = ε for C, we find

C = f (λ ,n)+ log
1
ε
.
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So

Pr
{

log
[∫

Θ

exp(λD [R(θ) ,Rn (θ)])dπ (θ)

]
≤ f (λ ,n)+ log

1
ε

}
≥ 1− ε.

Note that the above high probability bound does not involve ρ. Combining this with (2.48), we

have

Pr

{
D
[
R
(
aG,ρ

)
,Rn
(
aG,ρ

)]
≤

f (λ ,n)+ log 1
ε
+DKL (ρ,π)

λ
for all ρ ∈Pπ(Θ) simultaneously

}

≥ 1− ε. (2.49)

The proof of Lemma 2.3.1 below will utilize the following two lemmas.

Lemma 2.A.1 Let X be a random variable with EX = 0 such that for some constant K > 0, the

MGF of X2 satisfies

E exp
(
λ

2X2)≤ exp
(
K2

λ
2) for all λ such that |λ | ≤ 1

K
. (2.50)

Then

E exp(λX)≤ exp
(
K2

λ
2) for all λ ∈ R.

Proof of Lemma 2.A.1. This follows from the proof of Proposition 2.5.2 in Vershynin (2018),

pages 22-23.

Lemma 2.A.2 Let X be any random variable taking values in [0,1] with EX = µ . Denote X =

(X1, . . . ,Xn) where X1, . . . ,Xn are iid realizations of X. Let X′= (X ′1, . . . ,X
′
n) where X ′1, . . . ,X

′
n are

iid realizations of a Bernoulli random variable X ′ with probability of success µ . If f : [0,1]n→R

is convex, then

E [ f (X)]≤ E
[

f
(
X′
)]
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Proof of Lemma 2.A.2. This lemma is due to Maurer (2004). Another proof with more details

is given in Germain et al. (2015); see Lemmas 51 and 52 there. For intuition, we can regard X′

as a mean-preserving spread of X and − f as the utility function. Then the lemma says that X is

preferred by an expected utility maximizer having concave utility − f (·) .

Proof of Lemma 2.3.1.

Part (a). Let (X ,Y )∼ P(X ,Y ) and let µψ = Eψ(X ,Y )< ∞ where finiteness follows from

Assumption 2.2.2 (iv). Recall that under Assumption 2.2.2 (iv), there exists a constant Kψ > 0

such that

E exp
{

λ
2
ψ(X ,Y )2}≤ exp

(
K2

ψλ
2
)

for all λ such that |λ | ≤ 1
Kψ

. (2.51)

Now for either s ∈ {−1,1} and any θ ∈Θ, consider

s [Eℓ(θ ,Y,X)− ℓ(θ ,Y,X)] = s [E (ψ(X ,Y )1{Y ̸= a(X ,θ)})−ψ(X ,Y )1{Y ̸= a(X ,θ)}] .

(2.52)

Recall that ψ(X ,Y )> 0. Using (a−b)2 ≤ a2 +b2 for a > 0 and b > 0, we have

E exp
{

λ
2 (s [E {ψ(X ,Y )1{Y ̸= a(X ,θ)}}−ψ(X ,Y )1{Y ̸= a(X ,θ)}])2

}
≤ E exp

{
λ

2
ψ(X ,Y )2 +λ

2 (E {ψ(X ,Y )})2
}
.

Additionally,

E exp
{

λ
2
ψ(X ,Y )2 +λ

2
µ

2
ψ

}
≤ exp

(
λ

2
[
K2

ψ +µ
2
ψ

])
for any λ such that |λ | ≤ 1/Kψ , which follows from (2.51). Seeing as 1/(K2

ψ +µ2
ψ)

1/2 < 1/Kψ ,

the following condition holds

E exp
{

λ
2 (s [Eℓ(θ ,Y,X)− ℓ(θ ,Y,X)])2

}
≤ exp

(
λ

2
[
K2

ψ +µ
2
ψ

])
,

for all λ such that |λ | ≤ 1/(K2
ψ +µ2

ψ)
1/2. As the expression in (2.52) has mean zero, Lemma
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2.A.1 yields that

E exp{λ (s [Eℓ(θ ,Y,X)− ℓ(θ ,Y,X)])} ≤ exp
([

K2
ψ +µ

2
ψ

]
λ

2
)

for all λ ∈ R. (2.53)

Applying (2.53),

E exp{λD [R(θ) ,Rn (θ)]}= E exp{λ s [R(θ)−Rn (θ)]}

= E exp

{
n

∑
i=1

[
λ

n
(s [Eℓ(θ ,Yi,Xi)− ℓ(θ ,Yi,Xi)])

]}

=
n

∏
i=1

E exp
{

λ

n
(s [Eℓ(θ ,Yi,Xi)− ℓ(θ ,Yi,Xi)])

}

≤
n

∏
i=1

exp

λ 2
[
K2

ψ +µ2
ψ

]
n2

= exp

λ 2
[
K2

ψ +µ2
ψ

]
n

 .

Taking an integral with respect to π yields

∫
Θ

E exp{λD [R(θ) ,Rn (θ)]}dπ(θ)≤ exp

λ 2
[
K2

ψ +µ2
ψ

]
n

 ,

implying the first expression for f (λ ,n).

To derive the second expression for f (λ ,n) in the case that the utility function is bounded,

note that ψ(x,y) =U(1,1,x)−U(−1,1,x) when y= 1 and ψ(x,y) =U(−1,−1,x)−U(1,−1,x)

when y =−1. When

Umax = sup
a,y,x
|U(a,y,x)|< ∞,

it follows that 0 ≤ ℓ(θ ,y,x) = ψ(x,y)1{y ̸= sign[m(x,θ)− c(x)]} < 2Umax under Assumption

2.2.1. By Hoeffding’s lemma (see, for example, Massart and Picard (2007), page 21), with
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s =−1, for any θ ∈Θ we have

E exp(λ [Rn (θ)−R(θ)]) = E exp

(
λ

n

n

∑
i=1

[ℓ(θ ,Yi,Xi)−Eℓ(θ ,Yi,Xi)]

)

=
n

∏
i=1

E exp
{

λ

n
[ℓ(θ ,Yi,Xi)−Eℓ(θ ,Yi,Xi)]

}
≤

n

∏
i=1

exp
(

λ 2U2
max

2n2

)
= exp

(
λ 2U2

max
2n

)
. (2.54)

Nearly identical steps in the s = 1 case, now with Hoeffding’s lemma applied to −ℓ(θ ,Yi,Xi),

i = 1, . . . ,n, produce that

E exp(λ [R(θ)−Rn (θ)])≤ exp
(

λ 2U2
max

2n

)
(2.55)

Integrating with respect to π , (2.54) and (2.55) yield that

∫
Θ

E exp(λ s [R(θ)−Rn (θ)])dπ (θ)≤ exp
(

λ 2U2
max

2n

)
, s ∈ {−1,1}.

This demonstrates that (2.25) holds with f (λ ,n) = λ 2U2
max

2n in the bounded utility setting.

Part (b). Again note that when the utility function is bounded by Umax we have 0 ≤

ℓ(θ ,y,x)< 2Umax under Assumption 2.2.1. Therefore ℓ(θ ,y,x)/(2Umax) ∈ [0,1]. Set

X =

(
ℓ(θ ,Y1,X1)

2Umax
, . . . ,

ℓ(θ ,Yn,Xn)

2Umax

)
,

and note that for any θ ∈Θ,

exp{λD(R(θ) ,Rn (θ))}= exp
[

λF (R(θ))−2Umaxλ · Rn (θ)

2Umax

]
= exp

{
λF (R(θ))− 2Umaxλ

n

n

∑
i=1

ℓ(θ ,Yi,Xi)

2Umax

}
(2.56)
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is a convex mapping of X. By (Maurer’s) Lemma 2.A.2,

E exp

{
λF (R(θ))− 2Umaxλ

n

n

∑
i=1

ℓ(θ ,Yi,Xi)

2Umax

}
≤ E exp

{
λF (R(θ))− 2Umaxλ

n

n

∑
i=1

X ′i

}
,

(2.57)

where X ′1, . . . ,X
′
n are iid Bernoulli random variables with success probability R(θ)/(2Umax) ∈

[0,1]. From here we can continue as in the proof of Corollary 2.2 in Germain et al. (2009). We

have for any θ ∈Θ,

E exp

{
λF (R(θ))− 2Umaxλ

n

n

∑
i=1

X ′i

}

= exp{λF (R(θ))}E exp

{
−2Umaxλ

n

n

∑
i=1

X ′i

}

= exp{λF (R(θ))}
n

∑
k=1

Pr

(
n

∑
i=1

X ′i = k

)
exp
(
−2Umaxλ

n
k
)

= exp{λF (R(θ))}
n

∑
k=1

(
n
k

)(
R(θ)
2Umax

)k(
1− R(θ)

2Umax

)n−k [
exp
(
−2Umaxλ

n

)]k

= exp{λF (R(θ))}
[(

R(θ)
2Umax

)
exp
(
−2Umaxλ

n

)
+

(
1− R(θ)

2Umax

)]n

= exp{λF (R(θ))}
{

1−
(

R(θ)
2Umax

)[
1− exp

(
−2Umaxλ

n

)]}n

,

where the second to last equality is from the binomial theorem. Now, noting that

exp{λF (R(θ))}=
{

1−
(

R(θ)
2Umax

)[
1− exp

(
−2Umaxλ

n

)]}−n

,

we have

E exp

{
λF (R(θ))− 2Umaxλ

n

n

∑
i=1

X ′i

}
= 1. (2.58)

Combining equations (2.56), (2.57), and (2.58), we have

E exp{λ [F (R(θ))−Rn (θ)]} ≤ 1, (2.59)
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and so equation (2.25) holds with f (λ ,n) = 0.

Part (c). Let θ ∈ Θ. If R(θ)− λU2
max/(2n) ≥ F (R(θ)), which is not random, then

clearly

D(R(θ),Rn(θ)) = R(θ)−λU2
max/(2n)−Rn(θ).

In this case,

E exp(λD[R(θ),Rn(θ)]) = E exp
(

λ

[
R(θ)− λU2

max
2n

−Rn(θ)

])
= exp

(
−λ 2U2

max
2n

)
E exp(λ [R(θ)−Rn(θ)])

≤ exp
(
−λ 2U2

max
2n

)
exp
(

λ 2U2
max

2n

)
= 1 (2.60)

where the inequality follows from (2.55). Alternatively, in the case that R(θ)−λU2
max/(2n)<

F (R(θ)), we have

D[R(θ),Rn(θ)] = F (R(θ))−Rn(θ).

Then, by (2.59),

E exp(λD[R(θ),Rn(θ)]) = E exp(λ [F (R(θ))−Rn (θ)])≤ 1. (2.61)

Integrating over Θ with respect to π , it follows from (2.60) and (2.61) that

∫
Θ

E exp(λD [R(θ) ,Rn (θ)])dπ(θ)≤ 1,

so condition (2.25) holds with f (λ ,n) = 0.

Proof of Theorem 2.3.2.

Part (a) follows directly from Theorem 2.3.1 and Lemma 2.3.1 (a) with D as in Lemma

2.3.1 (a).
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Part (b). Let D be as specified in Lemma 2.3.1 (b). It is straightforward to verifty that D

is convex. Note that

D(r1,r2) = Fλ ,n(r1)− r2 ≤ d

for any d ∈ R if and only if

1−
(

r1

2Umax

)[
1− exp

(
−2Umaxλ

n

)]
≥ exp

[
−λ

n
(r2 +d)

]
.

The latter is equivalent to

r1 ≤
2Umax

1− exp(−2Umaxλ/n)

{
1− exp

[
−λ

n
(r2 +d)

]}
:= F−1

λ ,n(r2 +d).

Setting r1 =
∫

Θ
R(θ)dρ(θ), r2 =

∫
Θ

Rn (θ)dρ(θ) and d = 1
λ

[
log 1

ε
+DKL(ρ,π)

]
and using

Theorem 2.3.1 and Lemma 2.3.1 (b) yields the desired result.

Part (c). Now let D be as specified in Lemma 2.3.1 (c). That D is convex follows from

the convexity of D specified in part (a) plus a constant, the convexity of D specified in part (b),

and the fact that the maximum of two convex functions is convex. Theorem 2.3.1 combined with

Lemma 2.3.1 (c) yields that

Pr
{

max
[∫

Θ

R(θ)dρ(θ)− λU2
max

2n
−
∫

Θ

Rn (θ)dρ(θ), F

(∫
Θ

R(θ)dρ(θ)

)
−
∫

Θ

Rn (θ)dρ(θ)

]
≤

DKL (ρ,π)+ log 1
ε

λ
f or all ρ ∈Pπ (Θ) simultaneously

}
≥ 1− ε

(2.62)

Now, observe that

max
[∫

Θ

R(θ)dρ(θ)− λU2
max

2n
−
∫

Θ

Rn (θ)dρ(θ), F

(∫
Θ

R(θ)dρ(θ)

)
−
∫

Θ

Rn (θ)dρ(θ)

]
≤

DKL (ρ,π)+ log 1
ε

λ
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holds if and only if

∫
Θ

R(θ)dρ(θ)≤
∫

Θ

Rn(θ)dρ(θ)+
1
λ

[
λ 2U2

max
2n

+DKL (ρ,π)+ log
1
ε

]
=Uλ ,π,ρ(ε),

and

∫
Θ

R(θ)dρ(θ)≤F−1
n,λ

(∫
Θ

Rn (θ)dρ(θ)+
1
λ

DKL(ρ,π)+
1
λ

log
1
ε

)
=UF

λ ,π,ρ(ε)

hold simultaneously. Additionally, the two inequalities directly above hold simultaneously if and

only if ∫
Θ

R(θ)dρ(θ)≤min
{

Uλ ,π,ρ(ε),U
F
λ ,π,ρ(ε)

}
.

Therefore,

{
max

[∫
Θ

R(θ)dρ(θ)− λU2
max

2n
−
∫

Θ

Rn (θ)dρ(θ), F

(∫
Θ

R(θ)dρ(θ)

)
−
∫

Θ

Rn (θ)dρ(θ)

]
≤

DKL (ρ,π)+ log 1
ε

λ
f or all ρ ∈Pπ (Θ) simultaneously

}

=

{∫
Θ

R(θ)dρ(θ)≤min
{

Uλ ,π,ρ(ε),U
F
λ ,π,ρ(ε)

}
f or all ρ ∈Pπ (Θ) simultaneously

}
.

(2.63)

Combined, (2.62) and (2.63) imply the result of Theorem 2.3.2 (c).

Proof of Theorem 2.3.3. Part (a). This part follows directly from Theorem 2.3.2 with s = 1 and

ρ = ρ̂λ .

Part (b). Define the events E1 and E2 :

E1 =


∫

Θ

R(θ)dρ̂λ (θ)≤
∫

Θ

Rn (θ)dρ̂λ (θ)+
1
λ

DKL (ρ̂λ ,π)+
λ 2
(

K2
ψ +µ2

ψ

)
n

+ log
2
ε

 ,

E2 =


∫

Θ

Rn (θ)dρ̂λ (θ)≤
∫

Θ

R(θ)dρ̂λ (θ)+
1
λ

DKL (ρ̂λ ,π)+
λ 2
(

K2
ψ +µ2

ψ

)
n

+ log
2
ε

 .
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Then

Pr(E1)≥ 1− ε

2
and Pr(E2)≥ 1− ε

2
.

So

Pr(E1∩E2) = 1−Pr(E c
1 ∪E c

2 )≥ 1−Pr(E c
1 )−Pr(E c

2 )

≥ 1− ε

2
− ε

2
= 1− ε.

But, the event given in Part (b) is just E1 ∩ E2. Hence, the inequality in Part (b) holds with

probability at least 1− ε .

Part (c). By the definition of ρ̂λ , we have

∫
Θ

Rn (θ)dρ̂λ (θ)+
1
λ

DKL (ρ̂λ ,π)≤
∫

Θ

Rn (θ)dρ (θ)+
1
λ

DKL (ρ,π)

for all ρ ∈Pπ(Θ) simultaneously. Hence, by part (a), with probability at least 1− ε/2:

∫
Θ

R(θ)dρ̂λ (θ)≤
∫

Θ

Rn (θ)dρ (θ)+
1
λ

DKL (ρ,π)+
λ 2
(

K2
ψ +µ2

ψ

)
n

+ log
2
ε


for all ρ ∈Pπ (Θ) simultaneously. Using Theorem 2.3.2 (a) now with s =−1, we have, with

probability at least 1− ε/2,

∫
Θ

Rn (θ)dρ (θ)≤
∫

Θ

R(θ)dρ (θ)+
1
λ

DKL (ρ,π)+
λ 2
(

K2
ψ +µ2

ψ

)
n

+ log
2
ε

 .
Therefore, with probability at least 1− ε,

∫
Θ

R(θ)dρ̂λ (θ)≤
∫

Θ

R(θ)dρ (θ)+
2
λ

DKL (ρ,π)+
2
λ

λ 2
(

K2
ψ +µ2

ψ

)
n

+ log
2
ε

 (2.64)
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for all ρ ∈Pπ (Θ) simultaneously. Hence, with probability at least 1− ε,

∫
Θ

R(θ)dρ̂λ (θ)≤ sup
ρ∈Pπ (Θ)

[∫
Θ

R(θ)dρ (θ)+
2
λ

DKL (ρ,π)

]
+

2
λ

λ 2
(

K2
ψ +µ2

ψ

)
n

+ log
2
ε

 .
In the case where Umax < ∞, we can follow the same steps based off Theorem 2.3.2 but with

(K2
ψ +µ2

ψ) replaced by U2
max/2.

Part (d). This follows directly from Theorem 2.3.2(c) with ρ = ρ̂λ .

Proof of Theorem 2.3.4.

Part (a). Let s ∈ {0,1}. For any ρ ∈P(Θ)π , including sample dependent ρ , let

Bn (λ1,λ2,z;ρ,π) =
1
λ1

[
λ 2

2 U2
max

2n
+ logz+DKL(ρ,π)

]
,

and define the event

En (λ1,λ2,z;ρ,π) =

{∫
Θ

s [R(θ)−Rn(θ)]dρ(θ)> Bn (λ1,λ2,z;ρ,π)

}
.

Note that by Theorem 2.3.2(a), Pr(En (λ ,λ ,1/ε;ρ,π))≤ ε for any λ > 0. Additionally, hold-

ing the other arguments constant, Bn (λ1,λ2,z;ρ,π) is decreasing in λ1, increasing in λ2, and

increasing in z. Hence

En (λ1,λ2,z;ρ,π)⊆ En

(
λ̃1,λ2,z;ρ,π

)
for λ̃1 ≥ λ1,

En (λ1,λ2,z;ρ,π)⊆ En

(
λ1, λ̃2,z;ρ,π

)
for λ̃2 ≤ λ2,

En (λ1,λ2,z;ρ,π)⊆ En (λ1,λ2, z̃;ρ,π) for z̃≤ z.

Now, fix α > 1. With some abuse of notation, the event of interest in Part (a) is the
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complement of the event En (α;ρ,π) defined by

En (α;ρ,π) :=

{∫
Θ

s [R(θ)−Rn(θ)]dρ(θ)> inf
λ>1

{
Bn

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)2

;ρ,π

)}}
.

Note that

En (α;ρ,π) =
⋃

λ>1

En

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)2

;ρ,π

)
.

But

⋃
λ>1

En

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)2

;ρ,π

)
⊆

∞⋃
k=0

⋃
λ∈(αk,αk+1]

En

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)2

;ρ,π

)
,

and for all λ ∈ (αk,αk+1] it holds that

En

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)2

;ρ,π

)
⊆ En

αk+1

α
,αk,

1
ε

(
log
(
α2 ·αk)

logα

)2

;ρ,π

 .

Hence

⋃
λ∈(αk,αk+1]

En

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)2

;ρ,π

)
⊆ En

αk+1

α
,αk,

1
ε

(
log
(
α2 ·αk)

logα

)2

;ρ,π

 ,

and

Pr(En (α;ρ,π))≤
∞

∑
k=0

Pr

 ⋃
λ∈(αk,αk+1]

En

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)2

;ρ,π

)
≤

∞

∑
k=0

Pr

En

αk+1

α
,αk,

1
ε

(
log
(
α2 ·αk)

logα

)2

;ρ,π


=

∞

∑
k=0

Pr

[
En

(
α

k,αk,
(k+2)2

ε
;ρ,π

)]

≤
∞

∑
k=0

ε

(k+2)2 =

(
1
6

π
2−1

)
ε < ε,
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where last inequality follows from Theorem 2.3.2(a). Therefore,

Pr(En (α;ρ,π)c)≥ 1− ε

This is the statement for Part (a).

Part (b). Applying Part (a) with ρ = ρ̂
λ̃

, the following event holds with probability

probability 1− ε

∫
Θ

s [R(θ)−Rn(θ)]dρ̂
λ̃
(θ)≤ inf

λ>1

{
α

λ

[
λ 2U2

max
2n

+ log
1
ε
+DKL(ρ̂λ̃

,π)+2log
log
(
α2λ

)
logα

]}
.

Then, Part (b) follows from the above and the observation that, for λ̃ > 1, it holds that

inf
λ>1

{
α

λ

[
λ 2U2

max
2n

+ log
1
ε
+DKL(ρ̂λ̃

,π)+2log
log
(
α2λ

)
logα

]}

≤ α

λ̃

 λ̃ 2U2
max

2n
+ log

1
ε
+DKL(ρ̂λ̃

,π)+2log
log
(

α2λ̃

)
logα

 .
Part (c). We proceed similarly to part (a). For any ρ ∈Pπ(Θ) that may be sample

dependent, define

Bn (λ1,λ2,z;ρ,π) =
∫

Θ

Rn(θ)dρ(θ)+
1
λ1

[
λ 2

2 U2
max

2n
+ logz+DKL(ρ,π)

]
,

and

BF
n (λ1,λ2,z;ρ,π)

=
2Umax

1− exp
(
−2λ1Umax

n

) {1− exp
[
−λ2

n

∫
Θ

Rndρ(θ)− 1
n

logz− 1
n

DKL (ρ,π)

]}
.
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Note that

Bn

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)
;ρ,π

)
=Uλ ,π,ρ,α(ε),

and

BF
n

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)2

;ρ,π

)

=
2Umax

1− exp
(
−2λUmax

αn

) {1− exp

[
−λ

n

∫
Θ

Rndρ(θ)− 1
n

log
1
ε

(
logα2λ

logα

)2

− 1
n

DKL (ρ,π)

]}

=
2Umax

1− exp
(
−2λUmax

αn

) {1− exp

[
−λ

n

(∫
Θ

Rndρ(θ)+
1
λ

log
1
ε

(
logα2λ

logα

)2

+
1
λ

DKL (ρ,π)

)]}

= F−1
n,λ ,α

(∫
Θ

Rndρ(θ)+
1
λ

log
1
ε

(
logα2λ

logα

)2

+
1
λ

DKL (ρ,π)

)
=UF

λ ,π,ρ,α(ε).

Now, holding the other arguments constant, notice that

min[Bn (λ1,λ2,z;ρ,π) ,BF
n (λ1,λ2,z;ρ,π)]

is decreasing in λ1, increasing in λ2, and increasing in z as Bn (λ1,λ2,z;ρ,π), BF
n (λ1,λ2,z;ρ,π)

both have these properties.

With some abuse of notation, define the two events:

E n(λ1,λ2,z;ρ,π) =

{∫
Θ

R(θ)dρ(θ)> min
[
Bn (λ1,λ2,z;ρ,π) ,BF

n (λ1,λ2,z;ρ,π)
]}

,

E n(α;ρ,π) =

{∫
Θ

R(θ)dρ(θ)> inf
λ>1

{
min

[
Bn (λ1,λ2,z;ρ,π) ,BF

n (λ1,λ2,z;ρ,π)
]}}

and notice that by Theorem 2.3.2 (c), Pr(E n(λ ,λ ,1/ε;ρ,π))≤ ε for any λ > 0.
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The event of interest in Part (c) is the complement of E (α;ρ,π). Now, we have

E n(α;ρ,π) =
⋃

λ>1

E n

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)2

;ρ,π

)

⊆
∞⋃

k=0

⋃
λ∈(αk,αk+1]

E n

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)2

;ρ,π

)
.

Hence, following arguments similar to those in part (a),

Pr
(
E n (α;ρ,π)

)
≤

∞

∑
k=0

Pr

 ⋃
λ∈(αk,αk+1]

E n

(
λ

α
,λ ,

1
ε

(
logα2λ

logα

)2

;ρ,π

)
≤

∞

∑
k=0

Pr

E n

αk+1

α
,αk,

1
ε

(
log
(
α2 ·αk)

logα

)2

;ρ,π


=

∞

∑
k=0

Pr

[
E n

(
α

k,αk,
(k+2)2

ε
;ρ,π

)]

< ε,

It follows that Pr
(
Ẽn (α;ρ,π)c)≥ 1− ε , which is the statement of interest for part (c).

Part (d) follows from Part (c) via steps parallel to those in the proof of Part (b).

Proof of Lemma 2.3.2. We will show that for all θ ∈Θ,

E exp
{

λD
(

R(θ)
2Umax

,
Rn(θ)

2Umax

)}
= E exp

{
n ·kl

(
Rn(θ)

2Umax
,

R(θ)
2Umax

)}
≤ ξ (n). (2.65)

Then the result follows from integrating over Θ with respect to π .

First consider any θ such that R(θ) = 0 or R(θ) = 2Umax. Recall

R(θ) = Eψ(X ,Y )1{aθ (X) ̸= Y},

ψ(X ,Y ) can be written ψ(X ,Y ) =U(Y,Y,X)−U(−Y,Y,X)≤ 2Umax, and ψ(X ,Y )> 0 by As-
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sumption 2.2.1. If R(θ) = 0 then it follows that we must have Pr(aθ (X) = Y ) = 1 and hence

1{aθ (Xi) ̸=Yi}= 0 for i = 1, . . . ,n (a.s.). Hence Rn(θ) = 0 in this case (a.s.), so that (2.65) holds.

If R(θ) = 2Umax, it follows that we must have Pr(ψ(X ,Y ) = 2Umax) = 1 and Pr(aθ (X) =Y ) = 0,

so that now Rn(θ) = 2Umax (a.s.) and again (2.65) holds.

When θ is such that R(θ) /∈ {0,2Umax}, the proof follows that in Theorem 1 of Maurer

(2004) or Lemma 19 in Germain et al. (2015) with minor adjustments. Note that

exp
{

λD
(

R(θ)
2Umax

,
Rn(θ)

2Umax

)}
= exp

{
n ·kl

(
1
n

n

∑
i=1

ℓ(θ ,Yi,Xi)

2Umax
,

R(θ)
2Umax

)}

is a convex function of X = (ℓ(θ ,Y1,X1)/2Umax, . . . , ℓ(θ ,Yn,Xn)/2Umax) and ℓ(θ ,x,y)/2Umax ∈

[0,1]. Then, by Lemma 2.A.2,

E exp
{

λD
(

R(θ)
2Umax

,
Rn(θ)

2Umax

)}
≤ E exp

{
n ·kl

(
1
n

n

∑
i=1

X ′i ,
R(θ)
2Umax

)}
(2.66)

where X ′1, . . . ,X
′
n are iid Bernoulli random variables with success probability R(θ)/(2Umax).

Denoting X ′ = ∑
n
i=1 X ′i ,

E exp
{

n ·kl
(

1
n

X ′,
R(θ)
2Umax

)}

= E

(
1
nX ′

R(θ)
2Umax

)X ′(
1− 1

nX ′

1− R(θ)
2Umax

)n−X ′

=
n

∑
k=0

Pr
(
X ′ = k

)( k
n

R(θ)
2Umax

)k(
1− k

n

1− R(θ)
2Umax

)n−k

=
n

∑
k=0

(
n
k

)(
R(θ)
2Umax

)k(
1− R(θ)

2Umax

)n−k
(

k
n

R(θ)
2Umax

)k(
1− k

n

1− R(θ)
2Umax

)n−k

=
n

∑
k=0

(
n
k

)(
k
n

)k(
1− k

n

)n−k

= ξ (n) (2.67)

Therefore (2.65) holds for any θ ∈Θ, completing the proof.
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Proof of Corollary 2.3.1. We have

∫
Θ

Un(θ)dρ̂ (θ)−
∫

Θ

U(θ)dρ̂ (θ)

=
1
n

n

∑
i=1

[U(Yi,Yi,Xi)−EU(Yi,Yi,Xi)]+
∫

Θ

[R(θ)−Rn (θ)]dρ̂ (θ) .

Using Hoeffding’s inequality, we have

Pr

1
n

n

∑
i=1

[U(Yi,Yi,Xi)−EU(Yi,Yi,Xi)]>Umax

√
2log 2

ε

n

≤ ε

2
.

Therefore,

Pr
(∫

Θ

Un(θ)dρ̂ (θ)−
∫

Θ

U(θ)dρ̂ (θ)> BU +BR (ρ̂)

)
≤ Pr

{
1
n

n

∑
i=1

[U(Yi,Yi,Xi)−EU(Yi,Yi,Xi)]> BU

}

+Pr
{∫

Θ

[R(θ)−Rn (θ)]dρ̂ (θ)> BR (ρ̂)

}
≤ ε

2
+

ε

2
= ε,

and the result follows.
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2.A.3 Proofs for Section 2.3.2

Proof of Lemma 2.3.3. By definition and via simple calculations, we have

DKL (ρ,π)

=−1
2

Eθ∼ρ

[
log

det
(
Σρ

)
det(Σπ)

+
(
θ −µρ

)′
Σ
−1
ρ

(
θ −µρ

)
− (θ −µπ)

′
Σ
−1
π (θ −µπ)

]

=−1
2

log
det
(
Σρ

)
det(Σπ)

− 1
2

[
M−Eθ∼ρ

(
θ −µρ +µρ −µπ

)′
Σ
−1
π

(
θ −µρ +µρ −µπ

)]
=−1

2
log

det
(
Σρ

)
det(Σπ)

− 1
2

[
M− tr

(
ΣρΣ

−1
π

)
−
(
µρ −µπ

)′
Σ
−1
π

(
µρ −µπ

)]
=

1
2
(
µρ −µπ

)′
Σ
−1
π

(
µρ −µπ

)
+

1
2
[
tr
(
ΣρΣ

−1
π

)
−M

]
− 1

2
log

det
(
Σρ

)
det(Σπ)

.

Proof of Lemma 2.3.4. We have

∫
Θ

Rn (θ)dρ (θ)

=
1
n

n

∑
i=1

ψ(Xi,Yi)Eθ∼ρ1
{

Yi ̸= sign
[
φ(Xi)

′
θ − c(Xi)

]}
=

1
n

n

∑
i=1

ψ(Xi,Yi)Eθ∼ρ1
{

Yi
[
φ(Xi)

′
θ − c(Xi)

]
≤ 0
}

=
1
n

n

∑
i=1

ψ(Xi,Yi)Eθ∼ρ1
{[

Yiφ(Xi)
′
θ −Yic(Xi)

]
≤ 0
}

=
1
n

n

∑
i=1

ψ(Xi,Yi)EZ∼N(0,Id)1
{[

Yiφ(Xi)
′
(

µρ +Σ
1/2
ρ Z

)
−Yic(Xi)

]
≤ 0
}

=
1
n

n

∑
i=1

ψ(Xi,Yi)PrZ∼N(0,Id)

{
Yiφ(Xi)

′
Σ

1/2
ρ Z ≤ Yi

[
c(Xi)−X ′i µρ

]}
=

1
n

n

∑
i=1

ψ(Xi,Yi)Φ

(
Yi
[
c(Xi)−φ(Xi)

′
iµρ

]√
φ(Xi)′Σρφ(Xi)

)
.
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2.A.4 Proofs for Section 2.3.3

Proof of Lemma 2.3.5. The proof is essentially the same as that for Lemma 2.2.2, but we can be

more explicit. By definition, we have

ρA,π (k)
π (k)

·
dρA,π

(
θ(k)|k

)
dπ
(
θ(k)|k

) =
νA (k)

∑
K
j=1 π ( j)νA ( j)

·
exp
(
−A
(
k,θ(k)

))
νA (k)

=
exp
(
−A
(
k,θ(k)

))
∑

K
j=1 π ( j)νA ( j)

.

Now, using the definition of the KL divergence, we have, for any ρ ∈Pπ (Θ) :

DKL
(
ρ,ρA,π

)
=

K

∑
k=1

{∫
Θ(k)

log

[
ρ (k)

ρA,π (k)
·

dρ
(
θ(k)|k

)
dρA,π

(
θ(k)|k

)]dρ
(
θ(k)|k

)
)

}
ρ (k)

=
K

∑
k=1


∫

Θ(k)

log

ρ (k)
π (k)

·
dρ
(
θ(k)|k

)
dπ
(
θ(k)|k

) [ρA,π (k)
π (k)

·
dρA,π

(
θ(k)|k

)
dπ
(
θ(k)|k

) ]−1
dρ

(
θ(k)|k

)
)

ρ (k)

=
K

∑
k=1

{∫
Θ(k)

[
log

(
ρ (k)
π (k)

·
dρ
(
θ(k)|k

)
dπ
(
θ(k)|k

))− log

(
exp
(
−A
(
k,θ(k)

))
∑

K
j=1 π ( j)νA ( j)

)]
dρ
(
θ(k)|k

)
)

}
ρ (k)

=
K

∑
k=1

{∫
Θ(k)

log

[
ρ (k)
π (k)

·
dρ
(
θ(k)|k

)
dπ
(
θ(k)|k

)]dρ
(
θ(k)|k

)}
ρ (k)

+
K

∑
k=1

[∫
Θ(k)

A
(
k,θ(k)

)
dρ
(
θ(k)|k

)]
ρ (k)+ log

[
K

∑
j=1

π ( j)νA ( j)

]

= DKL (ρ,π)+
K

∑
k=1

[∫
Θ(k)

A
(
k,θ(k)

)
dρ
(
θ(k)|k

)]
ρ (k)+ log

[
K

∑
j=1

π ( j)νA ( j)

]
.

Hence

log

[
K

∑
j=1

π ( j)νA ( j)

]

=−

{
DKL (ρ,π)+

K

∑
k=1

[∫
Θ(k)

A
(
k,θ(k)

)
dρ
(
θ(k)|k

)]
ρ (k)

}
+DKL

(
ρ,ρA,π

)
.
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Chapter 3

Asymptotic F Test in Regressions With
Observations Collected at High Frequency
Over Long Span

Abstract

This paper proposes tests of linear hypotheses when the variables may be continuous-time

processes with observations collected at a high sampling frequency over a long span. Utilizing

series long run variance (LRV) estimation in place of the traditional kernel LRV estimation,

we develop easy-to-implement and more accurate F tests in both stationary and nonstationary

environments. The nonstationary environment accommodates exogenous regressors that are

general semimartingales. Endogeneous regressors are allowed in a nonstationary environment

similar to cointegration models in the usual discrete-time setting. The F tests can be implemented

in exactly the same way as in the discrete-time setting. The F tests are, therefore, robust to

the continuous-time or discrete-time nature of the data. Simulations demonstrate the improved

size accuracy and competitive power of the F tests relative to existing continuous-time testing

procedures and their improved versions. The F tests are of practical interest as recent work by

Chang et al. (2021) demonstrates that traditional inference methods can become invalid and

produce spurious results when continuous-time processes are observed on finer grids over a long

span.
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3.1 Introduction

The advent of high-frequency data poses challenges for classical inference and modeling

procedures. For linear regression analysis with observations collected over time, as the grid

of observed times becomes finer, continuous-time properties of the underlying processes may

conflict with traditional assumptions framed in a discrete-time setting. An immediate concern is

the validity of inference procedures when the data generating processes may be continuous-time

in nature. Another concern is how we can automate inference procedures so that a researcher can

make fewer technical and theoretical modeling decisions. At what sampling frequency should a

researcher consider moving to an explicitly continuous-time framework? Should a researcher

convert a high-frequency sample into a lower-frequency sample before conducting regression

analysis in a discrete-time framework? If continuous-time modeling requires accounting for the

sampling frequency, what measurement constitutes a single unit of time? An hour, a day, or a

month? Designing trustworthy inference procedures in realistic sample sizes is also a concern.

In this paper, we propose statistical tests that aim to address the above concerns. Recently

Chang et al. (2021) considers statistical inference in this setting, highlighting how traditional

hypothesis tests can become spurious when observations are collected at a high frequency

over a long time span. They show that it is essential to use an autocorrelation-robust variance

or long run variance to construct test statistics and make valid inferences. They utilize the

continuous-time kernel LRV estimator developed in Lu and Park (2019). Adopting the traditional

asymptotic specification that ensures the consistency of the kernel LRV estimator, they show that

the test statistics are asymptotically chi-squared. One takeaway from Chang et al. (2021) is that

not all kernel-based LRV estimation procedures can be applied without explicitly accounting

for the continuous-time environment. A “high-frequency-compatible” bandwidth is desired.

Interestingly, the parametric plug-in bandwidth choice of Andrews (1991) is high-frequency-

compatible while the nonparametric analogue of Newey and West (1994) is not.

In this paper, we build on Chang et al. (2021) and propose convenient and trustworthy
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tests in regressions with high-frequency data collected over a long span. We consider both

common regressions with stationary regressors and cointegrating regressions with nonstationary

regressors. Due to self-normalization, our tests yield valid inferences in the continuous-time

setting and would also be valid if the observations were generated from a discrete-time process

satisfying standard linear regression assumptions. A practitioner does not have to make any

difficult decisions — they can simply use all the observed data, and they can compute the test

statistic and perform hypothesis testing in exactly the same way in both the discrete-time and

continuous-time settings.

We make several contributions along different dimensions. First, we adopt the more

recent fixed-smoothing asymptotic framework. In the discrete-time setting, it is well known

that randomness in LRV estimators can lead to significant size distortion of the associated

chi-squared tests in finite samples. The same problem is present in the continuous-time setting.

By employing the fixed-smoothing asymptotic framework as in Sun (2011, 2013), we show that

our test statistics are asymptotically F distributed in both stationary and nonstationary settings.

The F approximations capture the randomness of the LRV estimators and are more accurate than

the chi-squared approximations.

Second, the asymptotic F theory is based on the series LRV estimator, and in the supple-

mentary appendix, we characterize its asymptotic bias and variance in the high-frequency setting.

The series LRV estimator involves projecting the discretized data onto a sequence of orthonormal

basis functions and then taking an average of the outer products of the projection coefficients.

The number of orthonormal basis functions, denoted by K, is the smoothing parameter in this

type of nonparametric variance estimator. Based on the asymptotic bias and variance, we develop

a data-driven and automated choice of K in the high-frequency setting. Our rule of selecting K

extends that of Phillips (2005), which considers the series LRV estimator in the low-frequency

discrete-time setting1. Furthermore, we allow for a general class of orthonormal basis functions

1Typical examples of low-frequency discrete-time data include monthly and yearly data. The frequency here
refers to the sampling frequency, namely the number of times we can draw observations per unit of time. It does not
refer to the frequency in the frequency domain that measures the speed that a process completes a cycle.
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while Phillips (2005) focuses on sine and cosine functions. See Lazarus et al. (2018) for some

practical guidance on using the series LRV estimator with low-frequency discrete-time data.

Third, in a discrete-time cointegrating model, it is common to accommodate endogenous

regressors. Following this practice, we allow the regressors to be endogenous in the continuous-

time nonstationary setting. This constitutes another departure from Chang et al. (2021) which

considers only the case with exogenous regressors. To deal with the endogeneity, we follow

Hwang and Sun (2018), but we have to introduce some modifications to facilitate the asymptotic

analysis. However, the continuous-time test statistic is computationally identical to the discrete-

time statistic in Hwang and Sun (2018), and they are shown to have the same limiting F

distribution.

Finally, in the nonstationary setting with exogenous regressors, we establish the asymp-

totic F distribution for a wider class of regressor processes. The scaled regressor process may

converge to a general stochastic process that includes the Brownian motion as a special case.

To a great extent, our asymptotic F theory goes beyond its counterpart in the low-frequency

discrete-time setting where the nonstationary process is a unit root process and thus converges to

a Brownian motion after appropriate normalization.

The class of series LRV estimators is closely related to the class of kernel LRV estimators;

see, for example, the discussion in Sun (2011). In essence, a series LRV estimator can be regarded

as a kernel LRV estimator with a generalized kernel function. The fixed-K approach adopted

here is analogous to the “fixed-b” approach employed in Kiefer and Vogelsang (2005). Fixed-b

asymptotics can be developed for the kernel-based test statistics in Chang et al. (2021). However,

the limiting distributions are nonstandard and hard to use. They can also be nonpivotal in the

nonstationary setting (see Vogelsang and Wagner (2014) for the possible nonpivotality). This

provides further justification for the use of series LRV estimation in designing convenient and

accurate inference procedures in finite samples.

The rest of the paper is organized as follows. Section 3.2 considers the case where the

regressors are stationary, and Section 3.3 considers the nonstationary case with cointegration.
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Section 3.4 evaluates the finite sample performances of the proposed F tests, Section 3.5 presents

an empirical application, and Section 3.6 concludes. Proofs are given in the appendix. A

supplementary appendix develops the MSE-optimal choice of K in the stationary case and

recommends a rule of thumb for selecting K. Such a rule is adopted for both the stationary and

nonstationary cases in our simulation study.

3.2 The Case with Stationary Regressors

3.2.1 The basic setting

Consider a continuous-time regression of the form

Yt = X ′t β0 +Ut ,

where each of Yt ∈ R,Xt ∈ Rd×1 and Ut ∈ R is a continuous-time process for t ∈ [0,T ] with

sample paths that are right continuous with left limits (cadlag). We assume that Ut is stationary

and E(Ut |Xs,s∈ [0,T ]) = 0 for any t ∈ [0,T ]. In this section, we also assume that Xt is a stationary

process and defer the case with a nonstationary Xt to Section 3.3. An intercept can be included

in Xt in this section.

We do not observe the processes continuously. Instead, for some small sampling interval

δ , we observe {(xi,yi)}n
i=1 where

xi = Xiδ ,yi = Yiδ

for i = 1, . . . ,n and n = T/δ . Here, for notational simplicity, we have assumed that T/δ is an

integer. The discrete-time sample {(xi,yi)}n
i=1 satisfies

yi = x′iβ0 +ui, i = 1,2, . . . ,n,

where ui =Uiδ is unobserved. We are interested in testing H0 : Rβ0 = r versus H1 : Rβ0 ̸= r for
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some p×d matrix R with a full row rank p.

Given the discrete sample {(xi,yi)}n
i=1 , we estimate β0 by

β̂D =

(
n

∑
i=1

xix′i

)−1( n

∑
i=1

xiyi

)
.

Our test of H0 against H1 is based on the above estimator.

3.2.2 The test statistic

To test whether Rβ0 is equal to r, we often first find the rate of convergence of β̂D−β0,

establish the asymptotic distribution of a rescaled version of β̂D−β0 and then construct the test

statistic based on an estimated asymptotic variance. Instead of following these conventional steps,

we use heuristic arguments and construct the test statistic directly. The approximate variance of

β̂D−β0 is (
n

∑
i=1

xix′i

)−1

var

(
n

∑
i=1

xiui

)(
n

∑
i=1

xix′i

)−1

.

Based on this approximate variance formula, we construct the test statistic

FT = (Rβ̂D− r)′

R

(
n

∑
i=1

xix′i

)−1

v̂ar

(
n

∑
i=1

xiûi

)(
n

∑
i=1

xix′i

)−1

R′

−1

(Rβ̂D− r)/p,

where ûi = yi− x′iβ̂D and v̂ar(∑n
i=1 xiûi) is an estimator of the approximate variance of ∑

n
i=1 xiui.

In the above, dividing by p does not affect the properties of the test.

We use the series estimator for the approximate variance. Let
{

φ j (·)
}

be some basis

functions on L2[0,1]. The series variance estimator is given by

v̂ar

(
n

∑
i=1

xiûi

)
=

1
K

K

∑
j=1

[
n

∑
i=1

φ j

(
i
n

)
xiûi

]⊗2

, (3.1)

where a⊗2 = aa′ for any vector a and K is a tuning parameter. When the basis functions can
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be paired naturally, we shall assume that K is even. Note that the basis functions are evaluated

at i/n instead of i/T. This is an important point, and our asymptotic theory relies crucially on

this construction. We have, therefore, effectively ignored the high-frequency nature of our time

series observations that are sampled from continuous time processes. The test statistic is then

FT = (Rβ̂D− r)′

R

(
n

∑
i=1

xix′i

)−1
1
K

K

∑
j=1

[
n

∑
i=1

φ j

(
i
n

)
xiûi

]⊗2( n

∑
i=1

xix′i

)−1

R′


−1

(Rβ̂D− r)/p.

(3.2)

The form of the test statistic is exactly the same as what we would use for a standard regression

with discrete time series. Importantly, there is no rescaling by n or T. To construct the test

statistic, we can ignore the fact that our observations come from sampling continuous-time

processes.

The test statistic FT takes a self-normalized form. This will become more transparent if

we consider the special case that d = p = 1 and K = 1. In this case, we take R = 1 without loss

of generality, and the test statistic becomes

FT =

(
∑

n
i=1 (xiui)

∑
n
i=1 φ

( i
n

)
(xiûi)

)2

:= (tT )
2 .

The numerator in the t statistic tT is a simple sum of xiui while the denominator is a weighted sum

of xiûi with non-diminishing and bounded weights. We expect the numerator and denominator

to be of the same order of magnitude no matter what δ is. As a result, tT and FT will be

stochastically bounded for any sampling interval δ . In this sense, the denominator normalizes

the numerator, and thus no additional normalization is needed. This form of self-normalization

leads to the invariance of our testing procedure to the sampling interval, which we will develop

in greater detail.
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3.2.3 Assumptions for the fixed-smoothing asymptotics

We consider the asymptotics along the limiting sequence δ → 0 and T → ∞. The asymp-

totics would best reflect the finite sample situation where the observations are collected at a high

frequency (δ → 0) over a long span (T → ∞). To develop the more accurate fixed-smoothing

asymptotic approximations, we hold K fixed as δ → 0 and T → ∞.

The fixed-smoothing asymptotics is developed under several assumptions. First and fore-

most, for any process Z = {Zt : t ∈ [0,T ]} in this section, we assume that it can be decomposed

into a continuous part and a pure-jump part:

Zt = Zc
t +Zd

t

where Zd
t = ∑0≤τ≤t ∆Zτ , ∆Zτ = Zτ −Zτ− and Zτ− = limt→τ−Zt . That is, we assume that {Zt}

is the sum of a continuous local martingale (i.e., Zc
t ) and a sum of jump terms (i.e., Zd

t ).

Next, we present other technical assumptions and provide some discussion on each.

Assumption 3.2.1 For Zt = XtUt , X ′t Xt ,

∑
0≤τ≤T

E ∥∆Zτ∥= O(T ) as T → ∞,

where for a matrix M, ∥M∥ is the Frobenius norm of M.

Assumption 3.2.1 is the same as the first part of Assumption A of Chang et al. (2021).

It imposes a restriction on the number and sizes of the jumps in {Zt}. The assumption is not

stringent and is satisfied, for example, for processes with compound Poisson type jumps if the

jump sizes are bounded in L1 and the jump intensity is proportional to T .

Assumption 3.2.2 For j = 1, . . . ,K, each function φ j(·) is twice continuously differentiable, and∫ 1
0 φ j(t)dt = 0. Also, {φ j (·)}K

j=1 form an orthonormal set in L2[0,1].
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Assumption 3.2.2 is very mild and is often maintained in the literature on orthonormal

series variance estimation; see, for example, Assumption 1(b) in Sun (2014a). The sine and

cosine basis functions (i.e., the Fourier basis functions)

φ2 j−1(r) =
√

2cos(2π jr) and φ2 j(r) =
√

2sin(2π jr) for j = 1, . . . ,K/2, (3.3)

satisfy this assumption. We will use the Fourier bases in our simulation study. For ease of

presentation, we set φ0 (·)≡ 1, the constant function.

Lemma 3.2.1 Let Assumptions 3.2.1 and 3.2.2 hold. For Zt = XtUt , X ′t Xt and zi = Ziδ ,

1
n

n

∑
i=1

φ j

(
i
n

)
zi =

1
T

∫ T

0
φ j

( t
T

)
Ztdt +Op

(
eδ ,T (Z)

)
, j = 0,1, . . . ,K

as δ → 0 and T → ∞,2 where

eδ ,T (Z) = ∆δ ,T (Z)+
δ

T
sup

t∈[0,T ]
∥Zt∥+δ

and

∆δ ,T (Z) = sup
τ,t∈[0,T ]

sup
|τ−t|≤δ

∥Zc
τ −Zc

t ∥

is the modulus of continuity of the continuous part of Z.

Lemma 3.2.1 shows that the discrete-time average is an approximation to the continuous-

time integral with the approximation error controlled by the modulus of continuity of Z, a

technical term δ supt∈[0,T ] ∥Zt∥/T that captures the edge effects, and the sampling interval δ .

In the proof of Lemma 3.2.1, we show that under Assumption 3.2.1, the effect of jumps on the

approximation error is of order Op (δ ) .

2This should be understood in the following way:
∥∥∥n−1

∑
n
i=1 φ j (i/n)zi−T−1 ∫ T

0 φ j (t/T )Ztdt
∥∥∥=Op

(
eδ ,T (Z)

)
.

We use the same convention when Op or op is used in matrix equalities.
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Assumption 3.2.3 For
{

φ j
}

satisfying Assumption 3.2.2,

1
T

∫ T

0
φ j

( t
T

)
XtX ′t dt = op (1) for j = 1, . . . ,K,

and
1
T

∫ T

0
XtX ′t dt = S+op (1)

for a positive definite matrix S as T → ∞.

To understand the assumption, let Xtk be the k-th element of Xt . Suppose Xt is stationary

and E |XtkXtlXskXsl| < ∞ for any k, l = 1,2, . . . ,d and any t,s ∈ [0,T ]. Assume further that

cov(XtkXtl,XskXsl) = fkl (t− s) for some bounded function fkl (·) satisfying fkl (τ)→ 0 as |τ| →

∞. Then, by the Fubini–Tonelli theorem,

E
1
T

∫ T

0
φ j

( t
T

)
XtX ′t dt = E

(
XtX ′t

)
· 1

T

∫ T

0
φ j

( t
T

)
dt = E

(
XtX ′t

)∫ 1

0
φ j (r)dr,

for all j = 0,1, . . . ,K. By the Fubini–Tonelli theorem and the dominated convergence theorem,

var
(

1
T

∫ T

0
φ j

( t
T

)
XtiXtkdt

)
=

1
T 2

∫ T

0

∫ T

0
φ j

( t
T

)
φ j

( s
T

)
cov(XtiXtk,XsiXsk)dtds

=
1

T 2

∫ T

0

∫ T

0
φ j

( t
T

)
φ j

( s
T

)
fkl (t− s)dtds

=
∫ 1

0

∫ 1

0
φ j (s)φ j (t) fkl (T (t− s))dtds→ 0

for j = 0,1, . . . ,K. Hence Assumption 3.2.3 holds for S = E (XtX ′t ) .

Assumption 3.2.4 For
{

φ j
}

satisfying Assumption 3.2.2,

1√
T

∫ T

0
φ j

( t
T

)
XtUtdt⇒Ω

1/2
∫ 1

0
φ j (r)dWd (r) jointly for j = 0,1,2, . . . ,K
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as δ → 0 and T → ∞, where Wd (r) is the d×1 standard Brownian motion process,

Ω = lim
T→∞

var
(

1√
T

∫ T

0
XtUtdt

)
=
∫

∞

−∞

ΓXU (τ)dτ,

ΓXU (τ) = E
[
XtUtUt−τX ′t−τ

]
, and Ω1/2 is a matrix square root of Ω so that Ω1/2

(
Ω1/2

)′
= Ω.

Assumption 3.2.4 is a multivariate CLT in the continuous-time setting. As in the discrete

time setting, there is a large body of literature on CLT’s for additive functionals in a continuous

time setting. For example, Rozanov (1960) establishes a CLT for additive functionals such

as T−1/2 ∫ T
0 φ j (t/T )XtUtdt. The sufficient conditions, which include a mixing condition and a

moment condition, are similar to those in the discrete time setting.

If a functional CLT (FCLT) holds such that T−1/2 ∫ [Tr]
0 XtUtdt⇒Ω1/2Wd (r) , then using

integration by parts and the continuous mapping theorem, we can show that Assumption 3.2.4

holds. Sufficient conditions for the FCLT for the class of functions of continuous-time stationary

ergodic Markov processes can be founded in Bhattacharya (1982). For more discussions, see

Equations 1–3 and remarks in Section 2 of Lu and Park (2019). Note that an FCLT is stronger than

necessary, but the gap between an FCLT and the above multivariate CLT may be of theoretical

interest only. Here we only need a multivariate CLT. This is an advantage of using a series

LRV estimator. If we use a kernel LRV estimator, then an FCLT is needed for developing

fixed-smoothing asymptotics.

Assumption 3.2.5 (i)
√

T eδ ,T (XU) = op (1) and (ii) eδ ,T (XX ′) = op (1) .

Assumption 3.2.5 is the same as Assumption D1 of Chang et al. (2021). Assumption

3.2.5(i) holds if
√

T δ = o(1),
√

T ∆δ ,T (XU) = op (1) and supt∈[0,T ] ∥XU∥ = op(
√

T/δ ). The

first condition, namely
√

T δ = o(1) , requires that δ → 0 fast enough as T → ∞, that is, the

continuous-time process has to be sampled frequently enough. The second condition, namely
√

T ∆δ ,T (XU) = op (1) , requires that the continuous part of {XtUt} does not fluctuate too much
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over the sampling intervals of length δ . Using the moment bounds in Fischer and Nappo (2009)

and the Markov inequality, we can obtain that

∆δ ,T (XU) = Op

[(
δ log

2T
δ

)1/2
]

if (XtUt)
c is an Ito process whose drift and diffusion coefficients satisfy some mild conditions. So

√
T ∆δ ,T (XU) = op (1) if T δ log(T/δ ) = o(1) . The third condition, namely supt∈[0,T ] ∥XU∥=

op(
√

T/δ ), requires that the maximum value of the process {XtUt} over [0,T ] does not ex-

plode too quickly as T grows. For example, if supt∈[0,T ] ∥XU∥= Op (T ) and
√

T δ = o(1) , then

supt∈[0,T ] ∥XU∥= Op (T ) = Op(
√

T δ ·
√

T/δ ) = op(
√

T/δ ) and the third condition holds. As-

sumption 3.2.5(ii) is of the same form as Assumption 3.2.5(i). With some obvious modifications,

our discussions on Assumption 3.2.5(i) can be applied to Assumption 3.2.5(ii).

3.2.4 Fixed-smoothing asymptotics

Define

β̂C =

[∫ T

0
XtX ′t dt

]−1[∫ T

0
XtYtdt

]
,

which is the least-square analogue of β̂D in the space L2 [0,T ] using the continuous-time data

{(Xt ,Yt) , t ∈ [0,T ]}. β̂C is not feasible, and we use it only as a benchmark for comparison.

We first show that
√

T [β̂D−β ] and
√

T [β̂C−β ] are asymptotically equivalent. Letting

Zt = XtUt and j = 0 in Lemma 3.2.1, we have

1
n

n

∑
i=1

xiui =
1
T

∫ T

0
XtUtdt +Op

(
eδ ,T (XU)

)
.

Multiplying the above equation by
√

T , we obtain

1
Λ(n,δ )

n

∑
i=1

xiui =
1√
T

∫ T

0
XtUtdt +op (1) ,
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where Λ(n,δ ) =
√

n/δ and we have used Assumption 3.2.5(i).

Using Lemma 3.2.1 with Zt = XtX ′t and j = 0 and Assumption 3.2.5(ii), we have

1
n

n

∑
i=1

xix′i =
1
T

∫ T

0
XtX ′t dt +op (1) .

Hence,

√
T
[
β̂D−β0

]
= [n/Λ(n,δ )]

[
β̂D−β0

]
=

(
1
n

n

∑
i=1

xix′i

)−1(
1

Λ(n,δ )

n

∑
i=1

xiui

)

=

(
1
T

∫ T

0
XtX ′t dt

)−1 1√
T

∫ T

0
XtUtdt +op (1)

=
√

T (β̂C−β0)+op (1) .

The above derivations show that Assumptions 3.2.1 and 3.2.5 ensure that
√

T (β̂D−β0)

and
√

T (β̂C−β0) are asymptotically equivalent. Invoking Assumptions 3.2.3 and 3.2.4, we

obtain the asymptotic distribution of
√

T (β̂D−β ). We present this and another key result, which

requires Assumption 3.2.2, in the lemma below.

Lemma 3.2.2 Let Assumptions 3.2.1–3.2.5 hold. Then

√
T (β̂D−β0) =

√
T (β̂C−β0)+op (1)⇒ S−1

Ω
1/2Wd (1)

and
1

Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
xiûi⇒Ω

1/2
∫ 1

0
φ j (r)dWd(r)

jointly for j = 1,2, . . . ,K.

Lemma 3.2.2 shows that β̂D converges to β0 at the rate of
√

T . For high-frequency data

sampled from a continuous-time process, the effective sample size is the time span T rather than
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the number of observations n. We do not obtain the rate of
√

n, which is the typical rate for the

discrete-time data with a fixed sampling interval (e.g., δ is fixed to be 1) and n weakly dependent

observations. The difference can be traced back to the unusual rate in the weak convergence

result:
1

Λ(n,δ )

n

∑
i=1

xiui⇒Ω
1/2Wd (1) .

Because {xiui} becomes highly correlated as δ → 0, in order to obtain a well-defined weak limit,

we need to normalize the sum ∑
n
i=1 xiui by Λ(n,δ ) :=

√
n/δ , which is larger than the usual

normalization factor
√

n by an order of magnitude.

Using Lemma 3.2.2, we have, under the null hypothesis:

FT = δΛ(n,δ )(Rβ̂D− r)′

×

R

(
1

δΛ(n,δ )2

n

∑
i=1

xix′i

)−1
1
K

K

∑
j=1

[
1

Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
xiûi

]⊗2(
1

δΛ(n,δ )2

n

∑
i=1

xix′i

)−1

R′

−1

×δΛ(n,δ )(Rβ̂D− r)/p

⇒ [RS−1
Ω

1/2Wd (1)]′
{

RS−1
Ω

1/2 1
K

K

∑
j=1

[∫ 1

0
φ j (r)dWd(r)

]⊗2

Ω
1/2S−1R′

}−1

RS−1
Ω

1/2Wd (1)/p.

In the above, rescalings by δΛ(n,δ ) , 1/Λ(n,δ ) or 1/(δΛ(n,δ )2) in the first equality are for

theoretical arguments only. In practice, the test statistic FT is computed according to the definition

in (3.2) without using any rescaling.

Note that RS−1Ω1/2Wd (r)
d
=
[
RS−1ΩS−1R′

]1/2Wp (r) for a p× 1 standard Brownian

motion process Wp (·) and that RS−1ΩS−1R′ is of a full rank. We have

FT ⇒ [Wp (1)]
′
{

1
K

K

∑
j=1

[∫ 1

0
φ j (r)dWp(r)

]⊗2
}−1

Wp (1)/p.

Under Assumption 3.2.2,
[∫ 1

0 φ j (r)dWp(r)
]⊗2

is iid Wishart distributed. The above

limiting distribution is equal to Hotelling’s T 2 distribution. In view of the relationship between
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the T 2 and F distributions (e.g., Bilodeau and Brenner (2010)), we have the following theorem.

Theorem 3.2.1 Let Assumptions 3.2.1 – 3.2.5 hold. Then, for a fixed K ≥ p,

FT ⇒
K

K− p+1
Fp,K−p+1,

where Fp,K−p+1 is the F distribution with degrees of freedom p and K− p+1.

If we use the OLS variance estimator that ignores the autocorrelation, we would construct

the test statistic as follows

FT,OLS =
(

Rβ̂D− r
)′
×

Rσ̂
2
u

(
n

∑
i=1

xix′i

)−1

R′

−1(
Rβ̂D− r

)
/p,

where σ̂2
u = n−1

∑
n
i=1 û2

i is an estimator of the variance σ2
u of Ut . Then

δFT,OLS =
√

T
(

Rβ̂D− r
)′
×

Rσ̂
2
u

(
1
n

n

∑
i=1

xix′i

)−1

R′

−1
√

T
(

Rβ̂D− r
)
/p

⇒
[
RS−1

Ω
1/2Wd (1)

]′
×
[
σ

2
u RS−1R′

]−1
[
RS−1

Ω
1/2Wd (1)

]
/p.

So, as δ → 0, FT,OLS→ ∞ with probability approaching one. Consequently, using FT,OLS for

inference can lead to the spurious finding of a significant relationship that does not actually exist.

See Chang et al. (2021) for more details. Such a result is also related to the following result

in Sun (2004): the t-statistic can be made convergent in a spurious regression when high-order

autocorrelations are properly accounted for.

To illustrate the key difference between the variance estimators underlying FT and FT,OLS,

consider the special case with K = d = p= 1. Then the ratio of the autocorrelation robust variance
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estimator to the OLS variance estimator is

[
∑

n
i=1 φ j

( i
n

)
(xiûi)

]2
σ̂2

u ∑
n
i=1 x2

i
=

Λ(n,δ )2

n

[
1

Λ(n,δ ) ∑
n
i=1 φ j

( i
n

)
xiûi

]2

σ̂2
u

1
n ∑

n
i=1 x2

i

=
1
δ
·

[
1

Λ(n,δ ) ∑
n
i=1 φ j

( i
n

)
xiûi

]2

σ̂2
u

1
n ∑

n
i=1 x2

i
.

Note that the second factor converges to a nondegenerate distribution. So the ratio will diverge at

the rate of 1/δ . That is, by ignoring the high-order autocorrelations of xiui, especially when δ is

small, the OLS variance estimator under-estimates the true variation of the OLS estimator by a

factor of 1/δ . This explains why FT is stochastically bounded while FT,OLS explodes as δ → 0

and T → ∞.

To implement the F test, we need to choose K. Ideally, we want to select K to tradeoff

the type I and type II errors of the F test, but this is well beyond the scope of this paper. In the

supplementary appendix, we consider the infeasible LRV estimator

Ω̂
∗ =

1
K

K

∑
j=1

[
1

Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
(xiui)

]⊗2

, (3.4)

and establish its asymptotic bias and variance under both a fixed K and a growing K (i.e., K→∞).

Note that Ω̂∗ can be regarded as an infeasible version of the variance estimator in (3.1) (after a

normalization), as {ui} are not observed. Based on the asymptotic mean square error (MSE) of

Ω̂∗, we obtain the MSE-optimal choice of K given in (3.28) in the supplementary appendix.

We recommend using a parametric AR(1) plug-in approach to obtain a data-driven value

for K. More specifically, we fit an AR(1) model to each component zi, j of {zi := xiui}n
i=1 :

zi, j = ρ jzi−1, j + ez j for j = 1,2, . . . ,d
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with the AR parameter and error variance estimated by

ρ̂ j =
∑

n
i=2 zi, jzi−1, j

∑
n
i=2 z2

i−1, j
and σ̂

2
j =

1
n

n

∑
i=2

(
zi, j− ρ̂ jzi−1, j

)2
.

On the basis of the above plug-in estimates, we compute

κ̂D =
1

8c2
φ ,2

(
d

∑
j=1

ρ̂2
j σ̂4

j(
1− ρ̂ j

)8

)−1( d

∑
j=1

σ̂4
j(

1− ρ̂ j
)4

)

and then let

K̂D = κ̂
1/5
D n4/5. (3.5)

Note that cφ ,2 = π2/6 when the Fourier basis functions in (3.3) are used. Our approach is similar

to what is proposed in Andrews (1991), but there is an important difference. We do not follow

Andrews (1991) and truncate the estimator of the AR coefficient from below, as otherwise we

will not have a “high-frequency compatible” choice of K. See the supplementary appendix for

more discussions and details.

To conclude this section, we have shown that, in the stationary case, we do not need to

change our estimation and inference methods to account for the fact that our observations are

collected at a high frequency with the sampling interval δ going to zero. We can use exactly

the same approach as we would do in the case with discrete-time observations where the time

distance between neighboring observations is fixed: the test statistic is constructed in the same

way, and the smoothing parameter is chosen in the same way. We do not need to choose a unit of

time to measure the sampling duration. The only caveat is that we should use a parametric AR(1)

plug-in to obtain the data-driven smoothing parameter. Using the nonparametric approach of

Newey and West (1994) will lead to a sub-optimal rate for the smoothing parameter. See Chang

et al. (2021) for the details.
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3.3 The Nonstationary Case

3.3.1 Exogenous Regressors

In this subsection, we consider linear hypothesis testing for cointegrating regressions in

the continuous-time setting. The model is

Yt = α0 +X ′t β0 +U0t (3.6)

where Xt ∈ Rd×1 is a nonstationary process, U0t ∈ R is a stationary process, {Xt} and {U0t}

are independent.3 As in the case with stationary regressors, only a discrete set of points

{xi = Xiδ ,yi = Yiδ}n
i=1 are observed. The discrete-time model is

yi = α0 + x′iβ0 +u0i

where u0i = U0,iδ . The object of interest is the slope parameter β0, and we aim at testing

H0 : Rβ0 = r against H1 : Rβ0 ̸= r where R ∈ Rp×d is of rank p. Note that here we single

the intercept out of the slope parameter, and the hypothesis of interest involves only the slope

parameter.

We consider the same limiting experiment where δ → 0 and T → ∞ for a fixed K.

Assumption 3.3.1 For eδ ,T (U0·) defined in the same way as in Lemma 3.2.1,

∑
0≤τ≤T

E |∆U0τ |= O(T ) and eδ ,T (U0·) = op (1) .

The above assumption is similar to Assumptions 3.2.1 and 3.2.5(i). It ensures that

Λ(n,δ )−1
n

∑
i=1

u0i = T−1/2
∫ T

0
U0tdt +op (1) .

3We use U0t instead of Ut to denote the error process because in the next subsection we will use Ut to denote
(U ′0t ,U

′
xt)
′. We shall use U0· to denote {U0t : t ∈ [0,T ]}.
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Assumption 3.3.2 For a sequence of d× d diagonal matrices (ΛT ) with diverging diagonal

elements  Λ
−1
T XTr

T−1/2 ∫ Tr
0 U0sds

⇒
 X◦ (r)

σ0W0(r)

 for σ0 > 0 and r ∈ (0,1]

as T → ∞, where X◦(·) is a continuous (a.s.) semimartingale, W0(·) is standard Brownian

motion, and X◦(·) and W0(·) are independent.

The weak convergence in Assumption 3.3.2 is defined on Dd+1[0,1], the space of cadlag

functions from [0,1] to R(d+1)×1 endowed with the Skorokhod topology. The assumption is

the continuous-time analogue of the traditional invariance principles. It is similar to Assump-

tion C2 in Chang et al. (2021) which points out that the assumption is satisfied for a wide

class of continuous-time processes. For general null recurrent diffusions and jump diffusions,

Kim and Park (2017) provides sufficient conditions under which Λ
−1
T XTr ⇒ X◦ (r). As dis-

cussed after Assumption 3.2.4, Lu and Park (2019) provides sufficient conditions under which

T−1/2 ∫ Tr
0 U0sds⇒ σ0W0(r).

For j = 1, . . . ,K, let

η j =
∫ 1

0
φ j(r)X◦(r)dr,

and

η = (η1, . . . ,ηK)
′ ∈ RK×d.

Assumption 3.3.3 With probability one, η ′η is of full rank d.

Assumption 3.3.3 requires that, with probability one, the L2[0,1] projection coefficients

of components of X◦ in the directions φ j, j = 1, . . . ,K, form d linearly independent vectors. For a

given choice of {φ j}K
j=1, such as the first K Fourier basis functions given in (3.3), this is satisfied

by virtually all continuous-time processes used in practice when K is large enough.

Now we detail the testing procedure. Assume that K ≥ d +1. The testing steps are as

follows:
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1. Create the transformed data {Wy
j,Wx

j}K
j=1 where

Wy
j =

1√
n

n

∑
i=1

φ j

(
i
n

)
yi, Wx

j =
1√
n

n

∑
i=1

φ j

(
i
n

)
xi. (3.7)

Denote the matrix forms of transformed data by

Wy = (Wy
1, . . . ,W

y
K)
′

K×1
, Wx = (Wx

1, . . . ,Wx
K)
′

K×d
.

2. Regress Wy on Wx without an intercept by OLS. This yields the transformed OLS estimator

β̂TOLS and the residual vector Ŵu0 :

β̂TOLS =
(
Wx′Wx)−1Wx′Wy, Ŵu0 =Wy−Wx

β̂TOLS. (3.8)

3. To test H0 : Rβ0 = r, we calculate the following test statistic

FTOLS =
1

σ̂2
0
(Rβ̂TOLS− r)′

[
R
(
Wx′Wx)−1 R′

]−1
(Rβ̂TOLS− r)/p, (3.9)

where

σ̂
2
0 =

1
K

K

∑
j=1

(Ŵu0
j )

2 =
1
K
Ŵu0′Ŵu0 . (3.10)

Define

Wu0
j =

1√
n

n

∑
i=1

φ j

(
i
n

)
u0i, Wu0 = (Wu0

1 , . . . ,Wu0
K )′

K×1
.

For j = 1, . . . ,K, let

ν j = σ0

∫ 1

0
φ j(r)dW0(r),

and

ν = (ν1, . . . ,νK)
′ ∈ RK×1.

The following lemma establishes the weak limits of Wx, Wu0, and β̂TOLS.

216



Lemma 3.3.1 Let Assumptions 3.2.2, 3.3.1–3.3.3 hold. Then, as δ → 0 and T → ∞,

(a) (n−1/2WxΛ
−1
T ,
√

δWu0)⇒ (η ,ν);

(b)
√

T ΛT (β̂TOLS−β0)⇒ (η ′η)−1 (η ′ν) .

Let R(ℓ, ·) and rℓ be the ℓ-th rows of R and r, respectively. Since we do not require

that all elements of (XTr) converge at the same rate, the rate of convergence of R(ℓ, ·) β̂TOLS

depends on the element of β̂TOLS that has the slowest rate of convergence among those elements

appearing in the ℓ-th restriction. To capture this, for ℓ= 1, . . . , p, we define the sets

Iℓ := { j : for j ∈ {1,2, . . . ,d} such that R(ℓ, j) ̸= 0},

which consists of the indices of the coefficients that appear in the ℓ-th restriction. When T is

large enough, the rate of convergence of R(ℓ, ·) β̂TOLS is given by
√

T min j∈Iℓ
ΛT ( j, j) . Let

Λ̃T = diag
(

min
j∈I1

ΛT ( j, j) , . . . , min
j∈Ip

ΛT ( j, j)
)
,

which is a p× p diagonal matrix.4 Then limT→∞ Λ̃T RΛ
−1
T = R◦ for a matrix R◦ ∈ Rp×d whose

(ℓ, j)-th element R◦ (ℓ, j) is equal to

R◦ (ℓ, j) = lim
T→∞

Λ̃T (ℓ,ℓ)R(ℓ, j)/ΛT ( j, j) = R(ℓ, j) lim
T→∞

[
min

m∈Iℓ

ΛT (m,m)/ΛT ( j, j)
]
. (3.11)

That is, R◦ is the same as R after we zero out the elements in each row of R for which the

corresponding coefficients can be estimated at a faster rate than the slowest rate for the coefficients

involved in this row. We require that R◦ be of row rank p, a condition that is clearly satisfied

when there is no heterogeneity in the rates of convergence, for example, R◦ = R when ΛT is a

scalar matrix.

4min j∈Iℓ
ΛT ( j, j) should be interpreted as the minimum of ΛT ( j, j) over j ∈Iℓ when T is large enough.
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Theorem 3.3.1 Let Assumptions 3.2.2, 3.3.1–3.3.3 hold. If K ≥ d +1 and limT→∞ Λ̃T RΛ
−1
T is

of rank p, then

FTOLS⇒
K

K−d
·Fp,K−d,

where Fp,K−d is the F distribution with degrees of freedom p and K−d.

Note that the asymptotic F theory does not depend on the specific form of the limiting

process X◦(·). In the proof of the theorem, we show that the asymptotic distribution conditional

on X◦(·) is an F distribution, which does not depend on the conditioning process X◦(·). Hence,

the asymptotic distribution is also the F distribution unconditionally. Asymptotic F theory in

a regression with nonstationary and exogenous regressors has been recently developed in Sun

(2022) for discrete time series. Since the limiting process X◦(·) can be highly nonstandard

and goes beyond what has been considered in Sun (2022), Theorem 3.3.1 has widened the

applicability of the asymptotic F theory. See Kim and Park (2017) for the nonstandard forms

that X◦(·) can take when {Xt} is a null recurrent diffusion process.

To implement the F test, we need to choose K. Note that the variance estimator in (3.10)

takes a form similar to that in the stationary case. The infeasible variance estimator can be

written as

σ̂
2
0 =

1
K

K

∑
j=1

[
1

Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
u0i

]2

,

which can be compared with Ω̂∗ defined in (3.1).

As a practical rule of thumb, we can adapt the data-driven procedure in the stationary

case and proceed as follows:

1. Estimate the model yi = α0 + x′iβ0 +u0i by OLS to obtain the residual

û0i = yi− α̂OLS− x′iβ̂OLS.

2. On the basis of {û0i} , use the series method to estimate the long run variance of {u0i} ,
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computing the AR(1) data-driven K̂D using the formula in (3.5).

3. Let K̂∗ = max(K̂D,d +3) and use K̂∗ to construct the transformed regression. Taking the

maximum between K̂D and d +3 ensures that the limiting F distribution has a finite mean.

4. Compute the F test statistic in the TOLS regression. Perform the asymptotic F test using

K̂∗

K̂∗−d
·Fp,K̂∗−d as the reference distribution.

We note in passing that an asymptotic F theory may also be developed based on the

usual OLS estimator in step 1 above rather than the transformed OLS estimator, but then a

series variance estimator with judiciously crafted basis functions has to be used. See Sun (2022)

for more details in the discrete-time setting. We will not pursue this extension and choose to

use a transformed regression, which can be regarded as a special case of the transformed and

augmented regression in the next subsection. Hwang and Sun (2018) provides some discussion

on the advantages of the transformed approach, including its robustness to contaminations whose

energy is concentrated at high frequencies in the frequency domain.

3.3.2 Endogenous Regressors

We consider the same model Yt = α0 +X ′t β0 +U0t as in the previous subsection, but we

now allow {Xt} to be endogenous. The cost of admitting endogeneity comes in the form of less

flexibility for the data generating process of the weak limit of Λ
−1
T XTr, r ∈ [0,1]. Namely, we

require that Λ
−1
T = T−1/2Id and that the limiting process be Brownian motion. As we discuss

shortly, this requirement is a natural adaptation of the discrete time literature on inference in

cointegrating regressions. For example, it is similar to the discrete time framework adopted in

Vogelsang and Wagner (2014) and Hwang and Sun (2018). It is an open question whether an

asymptotic F theory can still be developed for other forms of nonstationarity. As before, we only

observe a discrete set of points {(xi,yi)}n
i=1 satisfying yi = α0 + x′iβ0 +u0i. Again we want to

test H0 : Rβ0 = r against H1 : Rβ0 ̸= r.
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We maintain Assumption 3.3.1 regarding the stationary process {U0t} but now allow for

some forms of dependence between {Xt} and {U0t}. Towards this end, the assumption below is

similar to and replaces Assumption 3.3.2.

Assumption 3.3.4 As T → ∞, the following functional central limit theorem holds:

 1√
T

∫ Tr
0 U0sds

1√
T

XTr

⇒
 B0 (r)

Bx (r)

 := Ω
1/2

 W0 (r)

Wx (r)

 for r ∈ [0,1]

where Ω1/2
(

Ω1/2
)′

= Ω,

Ω =

 σ2
0

1×1
σ0x
1×d

σx0
d×1

Ωxx
d×d

 ,

and W0(·) and Wx(·) are independent standard Brownian motions.

The weak convergence requirement in Assumption 3.3.4 is a natural counterpart to

conditions in the discrete-time literature on co-integrating regressions. For example, replacing a

sum with an integral in the discrete time setting of Vogelsang and Wagner (2014) might suggest

modeling

Xt = X0 +
∫ t

0
Uxτdτ. (3.12)

for some stationary process
{

Uxt ∈ Rd×1, t ∈ [0,T ]
}

. Then Assumption 3.3.4 is equivalent

to an FCLT for the stationary process
{

Ut = (U ′0t ,U
′
xt)
′ ∈ Rd+1, t ∈ [0,T ]

}
provided that X0 =

op(T 1/2). However, the form in (3.12) is not particularly desirable, and Assumption 3.3.4 is more

flexible. For example, the data generating process in the non-stationary simulation environment

of Section 3.4 satisfies Assumption 3.3.4. There, {Xt} follows a two-dimensional Brownian

motion and {U0,t} is a stationary Ornstein Uhlenbeck process that may not be independent of

{Xt}. Alternatively to (3.12), we may view the continuous-time generalization of the setting in

Vogelsang and Wagner (2014) and Hwang and Sun (2018) as requiring that, up to terms that
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are op(T 1/2), {Xt} possesses some form of stationary increments that may be correlated with

U0t such that Assumption 3.3.4 holds. Viewing continuous time I(1) processes as nonstationary

processes with stationary increments is adopted, for example, in Comte (1999).

In our asymptotic development, it is convenient to use the Cholesky form of Ω1/2 so that

B(·) =

 B0(·)

Bx(·)

=

 σ0·xW0(·)+σ0xΩ
−1/2
xx Wx(·)

Ω
1/2
xx Wx(·)

 , (3.13)

where σ2
0·x = σ2

0 −σ0xΩ−1
xx σx0 and Ω

1/2
xx is a symmetric matrix square root of Ωxx such that

Ω
1/2
xx Ω

1/2
xx = Ωxx.

For j = 1, . . . ,K, define

η j =
∫ 1

0
φ j(r)Bx(r)dr, ξ j =

∫ 1

0
φ j(r)dBx(r),

ν̃ j =
∫ 1

0
φ j(r)dW0(r), ν j =

∫ 1

0
φ j(r)dB0(r) = σ0·xν̃ j +ξ

′
jθ0,

for θ0 = Ω−1
xx σx0 and

η = (η1, . . . ,ηK)
′ ∈ RK×d, ξ = (ξ1, . . . ,ξK)

′ ∈ RK×d, ζ = (η ,ξ ) ∈ RK×2d,

ν̃ = (ν̃1, . . . , ν̃K)
′ ∈ RK×1, ν = (ν1, . . . ,νK)

′ ∈ RK×1.

Then ν = ξ θ0 +σ0·xν̃ .

Next, we make an assumption similar to Assumption 3.3.3.

Assumption 3.3.5 With probability one, ζ ′ζ is of full rank 2d.

Let ∆̃xi = (xi− xi−1)/δ . Augmenting the discrete-time model by ∆̃xi, we obtain

yi = α0 + x′iβ0 + ∆̃x′iθ0 +u0·xi,
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where u0·x,i = u0i− ∆̃x′iθ0. Using the transformed variables {Wy
j,Wα

j ,Wx
j,W∆̃x

j ,Wu0·x
j }K

j=1 de-

fined similarly as in (3.7), we have

Wy
j =Wα

j α0 +Wx
jβ0 +W∆̃x

j θ0 +Wu0·x
j

where, for example, Wα
j = n−1/2

∑
n
i=1 φ j (i/n) and Wu0·x

j = n−1/2
∑

n
i=1 φ j (i/n)u0·x,i = Wu0

j −

W∆̃x
j θ0. Our test of H0 : Rβ0 = r is based on estimating the above transformed and augmented

regression by OLS. We call the estimator the TAOLS estimator. We outline the steps below:

1. Create the transformed variables {Wy
j,Wx

j,W∆̃x
j }K

j=1 and stack them to form the data

matrices Wy,Wx, and W∆̃x. For example, W∆̃x = (W∆̃x
1 , . . . ,W∆̃x

K )′ ∈ RK×d .

2. Regress Wy on Wx and W∆̃x by OLS. Do not include an intercept. Denote the coefficients

associated with Wx by β̂TAOLS, the coefficients associated with W∆̃x by θ̂TAOLS, and let

Ŵu0·x be the residual vector from this regression. Combining the matrices Wx and W∆̃x

into W̃= (Wx,W∆̃x), we can write these objects as

γ̂
2d×1
≡

β̂TAOLS

θ̂TAOLS

= (W̃′W̃)−1W̃′Wy, Ŵu0·x :=Wy−W̃γ̂. (3.14)

3. Calculate the test statistic

FTAOLS =
1

σ̂2
0·x

(Rβ̂TAOLS− r)′
[
R
(
Wx′M

∆̃xW
x)−1 R′

]−1
(Rβ̂TAOLS− r)/p, (3.15)

where M
∆̃x = IK−W∆̃x(W∆̃x′W∆̃x)−1W∆̃x′ and

σ̂
2
0·x =

1
K

K

∑
j=1

ˆ(W
u0·x
j )2 =

1
K
(Ŵu0·x)′Ŵu0·x . (3.16)

These three steps are identical to the procedure in Hwang and Sun (2018) except that
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∆̃xi, instead of ∆xi, is used in the augmented regression. Such a modification serves to facilitate

theoretical developments only. Since ∆̃xi is proportional to ∆xi, the modification has no effect on

the test statistic FTAOLS. For practical implementation, we can follow exactly the same procedure

as in Hwang and Sun (2018), utilizing ∆xi in place of ∆̃xi. There is no need to know the value

of δ or its unit. We note that the test statistic in (3.15) is constructed in the same way as in the

discrete-time setting.

Theorem 3.3.2 Let Assumptions 3.2.2, 3.3.1, 3.3.4, and 3.3.5 hold. Denote γ0 = (β ′0,θ
′
0)
′ and

ϒT =

T Id 0
d×d

0
d×d

Id

 .

(a) As T → ∞ for a fixed K,

[
(nT )−1/2Wx,δ 1/2W∆̃x,δ 1/2Wu0

]
⇒ (η ,ξ ,ν).

(b) As T → ∞ for a fixed K,

ϒT (γ̂− γ0)⇒ σ0·x
(
ζ
′
ζ
)−1

ζ
′
ν̃ .

In particular,

T (β̂TAOLS−β0)⇒ σ0·x
(
η
′Mξ η

)−1
η
′Mξ ν̃

d
= MN

[
0,σ2

0·x
(
η
′Mξ η

)−1
]
,

where Mξ = IK−ξ (ξ ′ξ )−1ξ ′ and “MN” stands for “mixed normal”.

(c) If K ≥ 2d +1, then, as T → ∞ for a fixed K,

FTAOLS⇒
K

K−2d
·Fp,K−2d,
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where Fp,K−2d is the F distribution with degrees of freedom p and K−2d.

Theorem 3.3.2 shows that the testing procedure of Hwang and Sun (2018) adapts to the

continuous-time setting without any modification: the asymptotic F test is, therefore, robust

to the sampling frequency of the data. From an applied point of view, we do not have to be

concerned about whether we have high-frequency data with a shrinking sampling interval (i.e.,

δ → 0) or discrete-time data with a fixed sampling interval (e.g., δ = 1). This gives us much

practical convenience.

To implement the above F test, we follow the procedure below, which is similar to that in

the exogenous case.

1. Estimate the model yi = α0 + x′iβ0 +u0i by OLS to obtain the residual

û0i = yi− α̂OLS− x′iβ̂OLS.

2. On the basis of {û0i} , use the series method to estimate the long run variance of {u0i} ,

computing the AR(1) data-driven K̂D using the formula in (3.5).

3. Let K̂∗ = max(K̂D,2d +3) and use K̂∗ to construct the transformed and augmented regres-

sion.

4. Compute the F test statistic in the TAOLS regression. Perform the asymptotic F test using

K̂∗

K̂∗−2d
·Fp,K̂∗−2d as the reference distribution.

3.4 Simulation Evidence

In this section, we conduct simulations to evaluate the finite-sample size and power

properties of the proposed F tests. For the stationary setting, we consider the model

Yt = β01 +Xtβ02 +Ut , 0≤ t ≤ T,
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with β01 = 0 and β02 = 1. We test H0 : (β01,β02)
′ = (0,1)′ versus H1 : (β01,β02)

′ ̸= (0,1)′. (Xt)

and (Ut) are chosen as stationary Ornstein-Uhlenbeck (OU) processes described by

dXt =−κxXtdt +σxdVt and dUt =−κuUtdt +σudWt ,

where (κx,σx) = (0.1020,1.5514), (κu,σu) = (6.9011,2.7566), and (Vt) and (Wt) are indepen-

dent standard Brownian motions. The parameter values of the OU processes are obtained from

Chang et al. (2021), who estimate (κx,σx) by fitting an OU process to 3-month T-bill rates

from 1971 to 2016 and estimate (κu,σu) by fitting an OU process to the residuals obtained by

regressing 3-month eurodollar rates on these T-bill rates. As an alternative to an OU explanatory

variable process, we also consider the process Xt =Ct−µc where

dCt = κx (µc−Ct)dt +σx
√

CtdVt ,

and Vt is again standard Brownian motion. This corresponds to Feller’s Square Root (SR) process.

In this setting, we keep the OU process {Ut} as described above (again with {Wt} independent

of Vt) and (µc,κx,σx) = (4.8196,0.1794,0.9367) where these parameters come from fitting the

SR process to 3-month T-bill rates from 1971 to 2016.

In the nonstationary setting, we consider the model

Yt = α0 +X1,tβ01 +X2,tβ02 +U0t , 0≤ t ≤ T,

with α0 = 0,β01 = 1,β02 = 1. We test H0 : (β01,β02)
′ = (1,1)′ versus H1 : (β01,β02)

′ ̸= (1,1)′.

In this setting, we model (X j,t), j ∈ {1,2}, as Brownian motions and (U0t) as a stationary OU

process. In particular, for j ∈ {1,2}, we have

dX j,t = σ jdZ j,t and dU0t =−κuU0tdt +σudZ3,t ,
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where σ1 = σ2 = 0.0998, (κu,σu) = (1.5717,0.0097), and


Z1,t

Z2,t

Z3,t

=


1 0 0

ϕ
√

1−ϕ2 0

ϕ
ϕ−ϕ2√

1−ϕ2

√
1−
(

ϕ2 + (ϕ−ϕ2)2

1−ϕ2

)



W1,t

W2,t

W3,t

 .

Here W1,t , W2,t , and W3,t are independent standard Brownian motions and ϕ ≥ 0. In this setup,

each (Z j,t), j ∈ {1,2,3}, is a standard Brownian motion and Corr(Zk,t ,Zℓ,t) = ϕ when k ̸= ℓ.

The parameter values here also originate from Chang et al. (2021); (σ1) comes from fitting

a Brownian motion process to log US/UK exchange rate spot price data from 1979 to 2017.

(κu,σu) are estimated by fitting an OU process to the residuals from regressing log US/UK

exchange rate forward prices on the log US/UK exchange rate spot prices. We consider both

ϕ = 0 (the exogeneous case) and ϕ = 0.75 (the endogenous case).

In addition to the baseline values of κx and κu, we also multiply κx and κu by 4 and

1/4, allowing for variation in the mean reversion parameters of the stationary elements of the

simulations. As the mean reversion parameter gets closer to zero, the stationary OU (or SR)

process becomes more persistent and in the OU case behaves more like a nonstationary Brownian

motion.

In both the stationary and nonstationary settings, we consider T = 30 and T = 60. The

stochastic processes are generated using the transition densities of Brownian motion, OU, and

SR processes except in the nonstationary case when ϕ = 0.75. In this case, transition densities

are used to generate all processes except that Ut is constructed via Euler’s method once Z3,t

is generated. Discrete samples are collected at various frequencies between δ = 1/252 and

δ = 1/4. In each scenario, we replicate the simulation 5000 times.

To implement the testing procedures described in the earlier sections, we utilize the sine

and cosine basis functions given in (3.3) and choose K via the data-driven procedures described

in Sections 3.2 and 3.3. In our figures described below, results corresponding to these tests are
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denoted “Series F”, and there are different figures for the stationary and nonstationary settings.

As K increases, in both the stationary and nonstationary settings, the limiting distributions of

the test statistics approach the scaled chi-squared distribution χ2
p/p. The scaled chi-squared

approximation can also be obtained by letting K → ∞,δ → 0 and T → ∞ jointly5. Utilizing

the critical values from this distribution with our test statistics, we denote the resulting results

by “Series Chi2.” In the figures for the nonstationary setting, “Series F” and “Series Chi2” are

reserved for the procedure outlined in Subsection 3.3.2 that can accommodate endogeneity.

These labels are replaced by “S-EXO F” and “S-EXO Chi2” , respectively, for the procedures

designed where {Ut} is assumed exogenous described in Subsection 3.3.1.

To compare the F tests with some existing tests, we carry out the kernel-based tests of

Chang et al. (2021). For their tests, we employ the quadratic spectral (QS) kernel and utilize

Andrews (1991)’s bandwidth selection procedure, which is among the best performers in the

simulations in Chang et al. (2021). In our figures, the results corresponding to the QS kernel are

denoted “Kernel Chi2.” To include the fixed-b version of their tests, we note that the test statistics

of Chang et al. (2021) in the stationary setting and the nonstationary setting with exogeneous

regressors, without any change in form, have fixed-b counterparts in the discrete-time settings of

Kiefer and Vogelsang (2005) and Jin et al. (2006), respectively. Utilizing arguments similar to

what we present here and in Vogelsang and Wagner (2014), it is not difficult to ascertain that the

limiting distributions identified in these papers are also applicable in our simulation set up with

exogenous regressors. In the cointegrating regression with endogenous regressors, the fixed-b

asymptotics of Jin et al. (2006) is not applicable to the test statistic of Chang et al. (2021), as

it does not account for endogeneity. To use the fixed-b asymptotics of Vogelsang and Wagner

(2014), which accounts for endogeneity, we have to run a different set of regressions and alter

the test statistic. This would require further theoretical development and is not considered in our

simulations. The tests utilizing the fixed-b approximations of Kiefer and Vogelsang (2005) and

Jin et al. (2006) for the test statistics in Chang et al. (2021) are denoted by “Kernel fixed-b” in

5The scaling factor of 1/p arises because the test statistics are scaled by p.
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our figures.

3.4.1 Size study

Figures 2 – 5 display the empirical sizes (i.e., the null rejection probabilities) in the

different simulation scenarios.

Figures 2 and 3 show that in the stationary setting, the series-based F test exhibits less

size distortion than all chi-squared tests under consideration. The improvement in the size

accuracy of the F test over the chi-square tests is more visible when the underlying OU or SR

processes have smaller mean reversion parameters κx and κu and thus become more persistent.

This is consistent with the literature on HAR inference in the discrete-time setting. See, for

example, Sun (2013), Sun (2014b), Sun et al. (2008), and Kiefer and Vogelsang (2005) for

simulation evidence and theoretical developments. The F test performs similarly to the fixed-b

version of the test in Chang et al. (2021) adapted from Kiefer and Vogelsang (2005). This is

expected, because both types of tests utilize nonparametric LRV estimators, and both are based

on fixed-smoothing asymptotic approximations. The advantage of the series-based F test is

that it is more convenient to use, as critical values are readily available from statistical tables

and standard programming environments. There is no need to simulate a nonstandard fixed-

smoothing asymptotic distribution, an unavoidable and formidable task if we use a kernel-based

fixed-smoothing test. We note in passing that all chi-squared tests have similar performances,

regardless of whether series-based or kernel-based LRV estimators are used. This provides

further simulation evidence that the type of LRV estimators used does not matter much. What

matters more is the reference distribution used in a testing procedure.

In the nonstationary setting with exogenous regressors, the performance of the F tests

relative to the fixed-b version of the test in Chang et al. (2021) adapted from Jin et al. (2006)

and the chi-squared tests is qualitatively similar to that in the stationary setting. In particular,

the F tests and the fixed-b test achieve more or less the same size control. However, the fixed-b

tests in this setting aren’t developed fully for the continuous-time setting. The validity of the
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fixed-b test relies not only on the exogeneity of the regressors but also crucially on the premise

that the limiting process (X◦) is a Brownian motion process. Similarly, the F-test of Subsection

3.3.2 designed for potential endogeneity also relies on a Brownian motion limiting process for its

validity. While this does not cause problems in our simulation setting where the premise holds,

the fixed-b asymptotic distribution and that associated with the F-test in Subsection 3.3.2 are,

in general, functionals of (X◦), which may contain additional nuisance parameters beyond its

scale. A benefit of our approach in Subsection 3.3.1 is that the conditioning argument in the

proof of Theorem 3.3.1 bypasses reliance on the distributional form of (X◦). Such a conditioning

argument does not go through if we use a kernel LRV estimator.

In the nonstationary setting with endogenous regressors, to the best of our knowledge,

the F test in Subsection 3.3.2 appears to be the only asymptotically valid test in the literature.

Unsurprisingly, it exhibits better size properties than the alternative tests from the pre-existing

literature, including the fixed-b version of the test in Chang et al. (2021). While the F-test

of Subsection 3.3.1 which assumes the error process {Ut} is exogenous appears to maintain

competitiveness against the F test of Subsection 3.3.2, this unfortunately is an artifact of the

particular DGPs in our simulation setting. In this simulation environment, it can be shown that

the limiting distribution of the exogeneity-based test is a noncentral F distribution that depends

on nuisance parameters. The F distribution used happens to be relatively close to the finite sample

distribution but will result in a poor approximation in general. We note that the presence of the

endogeneity bias can lead to a large size distortion, especially when the chi-square approximation

is used. For example, when ϕ = 0.75, T = 30, and κu is 1/4 of the baseline value, the null

rejection probability of the 5% chi-squared test of Chang et al. (2021) can be as high as 60%.

Figures 2 – 5 further show that the size properties of all tests are not sensitive to the

sampling interval δ , and all tests become more accurate when T increases. This is consistent

with our theoretical results that the effective sample size is T and is unrelated to δ . Intuitively,

for a given time span T, as δ decreases, the number of sampled observations n increases, but at

the same time, the sampled observations become more persistent. These two effects offset each
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other, leading to an effective sample size of T.

3.4.2 Power study

Figures 6 – 8 investigate the empirical power properties of the test procedures in finite

samples; the power is size-adjusted. To evaluate the power of the tests, we use the baseline

designs. When generating the data, each of the parameters being tested is multiplied by 1−ψ

for a range of ψ ∈ [0,1]. To keep the visualization simple, we focus only on the frequencies

δ = 1/252 and δ = 1/4. As there are only two different test statistics, ours and that in Chang

et al. (2021) and the power is size-adjusted, there are only two different sized-adjusted power

curves. The reported figures only display the comparison for the series-based approach in

Sections 3.2 and 3.3 and the kernel-based approach in Chang et al. (2021). In the figures, the

higher frequency δ = 1/252 is denoted “h”, and the lower frequency δ = 1/4 is denoted “l.”

Figures 6 and 7 show that, in the stationary setting, all tests have almost indistinguishable

power curves. In the nonstationary setting with exogenous regressors, the series-based tests

have competitive power relative to the kernel-based tests, although when T = 30 the former are

slightly less powerful most noticeably in the procedure that allows for endogeneity. This could

be explained by the MSE-optimality of the QS kernel among the second-order positive-definite

kernels. In the nonstationary setting with endogenous regressors, the comparison is not as

meaningful, as the tests of Chang et al. (2021) have significant size distortion. Nevertheless,

the series-based tests still have competitive power, especially when T = 60. When T = 30, the

series-based tests are somewhat less powerful.

Figures 6 and 8 also show that the power properties of all tests are not sensitive to the

choice of δ . In each scenario, the power curves for δ = 1/252 and δ = 1/4 are virtually identical.

This echoes the finding that the size properties are not sensitive to δ . In each scenario, all tests

become more powerful when T is larger, reflecting that it is the time span T, not the number of

observations n, that is the effective sample size.
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3.5 Empirical Application

Here we examine the series-based F test in an application to interest rate data that are

available at multiple sampling frequencies. In particular, we revisit an application appearing in

Chang et al. (2021), which focuses on characterizing the co-movements of interest rates among

securities with different times to maturity. As discussed in Chang et al. (2021), the ability of

the U.S. Federal Reserve System (FED) to influence long-term interest rates via the short-term

Federal Funds Rate (FFR) was challenged during the Global Financial Crisis (GFC) of 2008

when the zero lower bound for the FFR was reached. This partially motivated the FED’s adoption

of non-conventional policies such as quantitative easing. To investigate the dynamics between

short and long rates within their linear hypothesis testing methodology, Chang et al. (2021) test

for “parallel shifts” among securities with varying maturities. Here, “parallel shifts” refers to

changes in the yields of securities with different maturities tending to be of the same size and

direction. Chang et al. (2021) regress 10-year U.S. Treasury bond (T-bond) yields on 3-month

Treasury bill (T-bill) yields and consider data before and after the GFC separately. The existence

of “parallel shifts” would imply a slope coefficient near one, and Chang et al. (2021) find that,

prior to the GFC, there is no strong evidence against the null hypothesis of a unit slope coefficient.

This is consistent with the view that the FED was able to successfully influence long rates via

short rate policies prior to the GFC.

This regression setting, detailed below, is useful for evaluating our testing procedure

because it is simple and allows for the consideration of several hypothesis tests of varying

theoretical credibility. For example, the additional null hypothesis that the intercept coefficient is

zero states that, on average, the yield spread is zero. If the yields of U.S. government securities

of different duration differ based on compensation for interest rate risks and the expectations of

future interest rates, we may expect to reject this hypothesis. Additionally, as the setting has been

analyzed in Chang et al. (2021), we may contrast our methodology and results with theirs. We

find that the conclusions stemming from the F tests are largely in line with those from the testing
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procedures of Chang et al. (2021). We observe, however, that the F test for one hypothesis test of

interest produces a less ambiguous result at the daily sampling frequency and also bypasses a

subjective modeling decision that can inflate one of the test statistics analyzed in Chang et al.

(2021).

The continuous-time regression of interest is given by

Yt = α +Xtβ +Ut ,

where Yt is the yield (in percent) of 10-year T-bonds at time t and Xt is the yield of 3-month T-bills.

We observe {Xiδ}n
i=1 and {Yiδ}n

i=1 at three fixed sampling interval lengths, δ , corresponding

to daily, monthly, and quarterly frequencies. The number of observations n varies with δ as

each sample is derived from a fixed time span, but we do not complicate the notation here.

Recall, additionally, that the F test would be valid if applied to discrete time series under the

standard discrete-time assumptions. The two yield series of different maturities are available

from the Federal Reserve Economic Data (FRED) of the St. Louis FED. As in Chang et al.

(2021), we consider three null hypotheses independently of one another and we consider two

different sample windows. All hypothesis tests are performed twice, once utilizing data from

each sample window separately. The null hypotheses are Hα
0 : α = 0, Hβ

0 : β = 1, and Hα,β
0 :

α = 0 and β = 1 jointly. The first sample window includes data from 1962 to 2007 while the

second contains observations from 2008 to 2019.

The two interest rate series plotted at the various sampling frequencies are presented in

Figure 1. In Table 1, we present the test statistics associated with the various null hypotheses

for each sample window. Test statistics titled “Series-F” refer to the F test described in Section

3.2 designed around the stationary regression setting. Those under the header “Kernel-χ2” are

performed utilizing the kernel-based χ2 test of Chang et al. (2021) which they refer to as the

H-test. The χ2 tests (i.e., H-tests) in Figure 1 are calculated using the Andrews (1991) bandwidth

procedure which is “high-frequency-compatible” as discussed in Chang et al. (2021) and utilizing
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the QS kernel. Rejection of a null hypothesis at the 5% level is indicated by “∗” and rejection

at the 1% level is indicated by “∗∗”. P-values are included in brackets for testing the null of

“parallel shifts” Hβ
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Figure 1. 10-year Treasury bond and 3-month Treasury bill yields at the sampling frequencies
analyzed. A line at the beginning of 2008 demarcates the two sample windows.
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We can see from Table 1 that the results of the F tests are stable across all sampling

frequency choices. This is consistent with the theory developed earlier in the paper, namely that

the tests are valid for high-frequency observations over a long span and have direct counterparts

that are valid and familiar in the discrete-time setting when the sampling frequency is lower. For

the F tests, the statistical conclusions reached for each null hypothesis and sampling window

remain the same for each sampling frequency: all null hypotheses are rejected at the 1% level

except that we are unable to reject the “parallel shifts” hypothesis Hβ

0 at even the 5% significance

level in any frequency using data prior to the GFC. This evidence is consistent with the view that

the FED was able to control long rates via short-term policy rates prior to the GFC. Additionally,

there is evidence against the hypothesis of a zero average yield spread (Hα
0 , which is included in

Hα,β
0 ) before and after the GFC of 2008. This is consistent with the stylized fact that the yield

curve tends to be upward sloping. The results and conclusions of the F tests are thus in agreement

with the findings of Chang et al. (2021) where χ2-based tests with “high-frequency compatible”

bandwidths are utilized. Note that their findings are mirrored by those for the kernel-based

χ2 tests reported in Figure 1 which are computed according to their methodology. In contrast,

Chang et al. (2021) show that in this regression setting, tests that are not robust to the sampling

frequency or utilize a bandwidth choice that is not “high-frequency compatible” will reject Hβ

0

at the daily frequency.

Lastly, we discuss some differences between the F test and the kernel-based χ2 test of

Chang et al. (2021) in this application that may be indicative of the benefits of the F test. First,

note that for the kernel-based χ2 test using pre-GFC observations at the daily sampling frequency,

the test statistic surpasses the critical value for a 5% test but not that of a 1% test. Chang et al.

(2021) choose to view this as failing to reject the null hypothesis, requiring that the test statistic

surpass the 1% critical value to take a more conservative stance. To this end, they note that the

nominal size may understate the empirical rejection probability as observed in their (and our)

simulations. On the other hand, the F test statistic here fails to surpass the critical value for a 5%

test, corresponding to a p-value of 0.0787. As seen in our simulations and discussed in relation
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to the fixed-smoothing literature in Subsection 3.4.1, the F test can result in tests with more

accurate size. This example may be a case where some ambiguity regarding test significance is

avoided.

Table 1. Test statistics computed with observations collected at different sampling frequencies.
Brackets contain p-values. Rejection of a null hypothesis at the 5% level is indicated by “∗” and
rejection at the 1% level is indicated by “∗∗”. p-values are included in brackets for testing the
null of “parallel shifts” Hβ

0 based on the pre-GFC observations.

Sample: 1962-2007
Sampling Freq. Daily Monthly Quarterly

Test Stat. Series-F Kernel-χ2 Series-F Kernel-χ2 Series-F Kernel-χ2

Hα
0 18.73∗∗ 22.10∗∗ 18.77∗∗ 20.74∗∗ 19.96∗∗ 19.93∗∗

Hβ

0 3.69 4.30∗ 3.42 3.67 3.07 3.15
[0.0787] [0.03801∗] [0.0874] [0.0553] [0.1000] [0.0760]

Hα,β
0 17.75∗∗ 38.26∗∗ 18.97∗∗ 38.95∗∗ 21.26∗∗ 41.43∗∗

Sample: 2008-2019
Sampling Freq. Daily Monthly Quarterly

Test Stat. Series-F Kernel-χ2 Series-F Kernel-χ2 Series-F Kernel-χ2

Hα
0 87.19∗∗ 106.62∗∗ 87.68∗∗ 107.52∗∗ 129.07∗∗ 124.77∗∗

Hβ

0 81.44∗∗ 32.29∗∗ 81.59∗∗ 27.48∗∗ 37.94∗∗ 20.38∗∗

Hα,β
0 46.25∗∗ 113.73∗∗ 48.11∗∗ 116.19∗∗ 65.96∗∗ 127.73∗∗

Another point of interest for the F test in this example is as follows. Some of the test

statistics considered in Chang et al. (2021) may require/allow the researcher to determine a

continuous-time modeling parameter that could influence the test statistic’s magnitude. Such

a test statistic utilizes a (kernel-based) LRV estimator that, when utilizing the discrete-time

counterpart LRV estimator, requires a “high-frequency compatible” bandwidth parameter bn in

order to produce a valid test. One choice they consider is their continuous-time rule of thumb

(CRT). This is given by

bn = cna/δ
1−a,

where c > 0 and 0 < a < 1. In contrast to discrete-time rules of thumb for kernel-based LRV

bandwidth parameters, there is now a division by δ 1−a. However, δ depends on the unit of time
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that T is measured in, which may be subjective. Suppose we set c = 2.3019 and a = 1/5 and

wish to test Hβ

0 with daily observations between 1962 and 2007. These choices for a and c

correspond to a guideline in Andrews (1991) for the QS kernel in a discrete-time setting when

considering an AR(1) process with coefficient 0.5. (The observation below also holds with

similar test statistics and p-values if we choose the alternative discrete-time rule of thumb choices

c = 3/4 and a = 1/3, suggested in the undergraduate textbook Stock and Watson (2019); see

equation (16.17) there). If we assume T is measured in years, i.e., T = 46 years between 1962

and 2007, then δ = 1/252 for about 252 trading days in a year. Alternatively, suppose we think

that T should be measured in months so that T = 552 months. Then we may set δ = 1/21 for

roughly 21 trading days in a month. As we see below, this distinction changes the test conclusion.

Table 2. Test statistics computed with observations collected at a daily sampling frequency
during 1962-2007 for the “parallel shifts” hypothesis Hβ

0 . In addition to the test statistics from
earlier, additional kernel-based χ2 test statistics of Chang et al. (2021) are presented when
computed with the CRT using δ = 1/252 and δ = 1/21. Rejection of a null hypothesis at the 5%
level is indicated by “∗” and rejection at the 1% level is indicated by “∗∗”. p-values are included
in brackets.

Sample: 1962-2007, Daily Frequency
Stat. Series-F Kernel-χ2-AD Kernel-χ2-CRT, δ = 1/252 Kernel-χ2-CRT, δ = 1/21
Hβ

0 3.69 4.30∗ 4.46∗ 10.03∗∗

[0.0787] [0.0380] [0.0347] [0.0015∗∗]

Table 2 contains the test statistics computed from daily observations between 1962 and

2007 for the null hypothesis Hβ

0 . In addition to the test statistics considered earlier, it includes

two alternative calculations for the kernel-based χ2 test statistic, denoted by “Kernel-χ2-CRT,

δ = 1/252” and “Kernel-χ2-CRT, δ = 1/21.” These correspond to the choice of δ described

above. The corresponding test statistics from Table 1 are also included. The kernel-based χ2

test of Chang et al. (2021) reported earlier in Table 1 that is calculated utilizing the procedure of
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Andrews (1991) is now denoted “Kernel-χ2-AD.” Note that, like the F test statistic, this version

of the test statistic does not feature a direct reliance on a user inputted δ . From Table 2, we

see that changing δ from 1/252 to 1/21 increases the CRT-based test statistic to surpass the

critical value for a 1% test. If δ is chosen too large, we get a bandwidth that is too small for a

continuous-time process that varies slowly at higher frequency observations. The effect is similar

to using a “high-frequency incompatible” bandwidth, a setting explored in Chang et al. (2021)

that leads to spurious tests with divergent test statistics. This example suggests that tests which

do not rely on a user choosing δ , such as the F test or the test of Chang et al. (2021) that utilizes

the Andrews (1991) bandwidth procedure, may be more robust against debatable modeling

decisions that could impact statistical significance. In addition to potential size-accuracy benefits,

the F test adds to the available tests with this feature, and only one such test is discussed in

Chang et al. (2021).

3.6 Conclusion

This paper provides a simple approach to linear hypothesis testing that is robust to the

potential continuity of the underlying data generating processes. The test procedures demonstrate

reduced size distortion in finite samples relative to existing approaches and can accommodate

endogeneity in cointegration-type regressions. From a practical point of view, the tests have sev-

eral desirable characteristics. Their direct correspondence to analogous discrete-time procedures

clears the practitioner from modeling choices that could influence test results. Additionally, the

limiting distributions do not need any complicated simulations to derive critical values as some

discrete-time fixed-b approaches require; the tests rely only on standard F-distributions. In the

cointegrating regression setting with exogeneous regressors, more accurate tests are delivered

while maintaining greater generality with regard to the limiting behavior of the regressor process.

Lastly, in the working paper version (Pellatt and Sun (2022)) of this paper, we have shown that

our asymptotic F theory remains valid in the presence of additive measurement noises in the
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regressor error.

Chapter 3, in full, is a reprint of the material as it appears in Asymptotic F Test in

Regressions With Observations Collected at High Frequency Over Long Span 2022. Pellatt,

Daniel F.; Sun, Yixiao, Journal of Econometrics, 2022. Minor adjustments around the referencing

and title of an appendix have been made to integrate the format with that of this dissertation. The

dissertation author is a primary author of this material.
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Figure 2. Empirical sizes in the stationary simulation setting when Xt follows an OU process
and (κu,κx) are multiplied by factors of 4, 1 and 1/4.
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Figure 3. Empirical sizes in the stationary simulation setting when Xt follows an SR process and
(κu,κx) are multiplied by factors of 4, 1, and 1/4.
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Figure 4. Empirical sizes in the nonstationary simulation setting when κu is multiplied by factors
of 4 and 1.
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Figure 5. Empirical sizes in the nonstationary simulation setting when κu is multiplied by 1/4.
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Figure 6. Size-adjusted powers in the stationary setting when Xt is distributed according to the
OU process described in Section 3.4
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Figure 7. Size-adjusted powers in the stationary setting when Xt is distributed according to the
SR process described in Section 3.4
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Figure 8. Size-adjusted powers in the nonstationary setting. In the upper row, the explanatory
variables are exogenous (ϕ = 0). In the lower row the explanatory variables are endogenous
(ϕ = 0.75).
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Appendices

3.A Appendix of Proofs for Chapter 3

Proof of Lemma 3.2.1. We start by writing
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Using ∥∥Zt−Z(i−1)δ
∥∥≤ ∥∥∥Zc

t −Zc
(i−1)δ

∥∥∥+ ∑
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and Assumptions 3.2.1 and 3.2.2, we have
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n

∑
i=1

∫ iδ

(i−1)δ

∥∥∥∥[φ j

( t
T

)
−φ j

(
i−1

n

)]
Z(i−1)δ

∥∥∥∥dt

≤ 1
T

n

∑
i=1

∫ iδ

(i−1)δ

1
n

∣∣∣∣φ̇ j

(
t∗

n

)∣∣∣∣∥∥Z(i−1)δ
∥∥dt

≤ max
r∈[0,1]

∣∣φ̇ j (r)
∣∣ · δ

T
sup

t∈[0,T ]
∥Zt∥= Op

(
δ

T
sup

t∈[0,T ]
∥Zt∥

)
,

where φ̇ j (·) is the first order derivative of φ j (·) . Therefore,

1
n

n

∑
i=1

φ j

(
i
n

)
zi−

1
T

∫ T

0
φ j

( t
T

)
Ztdt = Op

(
∆δ ,T (Z)+

δ

T
sup

t∈[0,T ]
∥Zt∥+δ

)
= Op

(
eδ ,T (Z)

)
.

Proof of Lemma 3.2.2. We have shown that
√

T (β̂D−β ) =
√

T (β̂C−β )+op (1) . But

√
T (β̂C−β ) =

[
1
T

∫ T

0
XtX ′t dt

]−1[ 1√
T

∫ T

0
XtUtdt

]
⇒ S−1

Ω
1/2Wd (1) ,
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using Assumptions 3.2.3 and 3.2.4. Hence
√

T (β̂D−β )⇒ S−1Ω1/2Wd (1) .

For the second part of the lemma, we use the first part of the lemma and Lemma 3.2.1 to

obtain

1
Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
xiûi

=
1

Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
xi

[
ui− x′i

(
β̂D−β

)]
=

1
Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
xiui +

1
Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
xix′i ·Op

(
1√
T

)
.

=
1

Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
xiui +

1
n

n

∑
i=1

φ j

(
i
n

)
xix′i ·Op (1)

=
1√
T

∫ T

0
φ j

( t
T

)
XtUtdt +op (1)

where we have used Λ(n,δ )
√

T = n, Assumption 3.2.3, and Assumption 3.2.5(i). Under

Assumption 3.2.4, we then have

1
Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
xiûi⇒Ω

1/2
∫ 1

0
φ j (r)dWd(r)

for each j = 1,2, . . . ,K. The joint convergence over j = 1,2, . . . ,K holds by the Cramér–Wold

theorem.

Proof of Lemma 3.3.1. Part (a). We first consider n−1/2WxΛ
−1
T . Let gn : Dd[0,1]→ Dd[0,1] be

defined by

gn( f )(t) =
n

∑
i=1

f
(

i
n

)
1
{

t ∈
[

i−1
n

,
i
n

)}
+ f (1)1{t = 1}.

If the functions fn ∈Dd[0,1] are such that fn→ f for a continuous function f , then the continuity

of φ j in Assumption 3.2.2 implies that φ j (·) fn (·)→ φ j (·) f (·) in Dd[0,1] and φ j (·) f (·) is

a continuous function. It follows from the basic properties of the Skorokhod topology that

gn(φ j fn)→ φ j f . Using the weak convergence Λ
−1
T XTr⇒ X◦ (r) in Assumption 3.3.2 and the
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extended continuous mapping theorem (c.f. Theorem 1.11.1 of van der Vaart and Wellner (1996)),

we have gn(φ j(t)
(
Λ
−1
T XTt

)
) ⇒ φ j(t)X◦(t), t ∈ [0,1]. Combining this with the continuous

mapping theorem, we have

1√
n

Λ
−1
T Wx

j =
1
n

n

∑
i=1

φ j

(
i
n

)
Λ
−1
T xi =

1
n

n

∑
i=1

φ j

(
i
n

)
Λ
−1
T Xiδ

=
1
n

n

∑
i=1

φ j

(
i
n

)
Λ
−1
T X i

n T =
∫ 1

0
gn
(
φ j(t)Λ−1

T XTt
)

dt

⇒
∫ 1

0
φ j (r)X◦(r)dr := η j.

This holds jointly for j = 1, . . . ,K and therefore,

1√
n
Wx

Λ
−1
T ⇒ η . (3.18)

Next, under Assumption 3.3.1, Lemma 3.2.1 holds with Zt =U0t . Hence,

√
δWu0

j =

√
δ√
n

n

∑
i=1

φ j

(
i
n

)
u0i =

1
Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
u0i

=
1√
T

∫ T

0
φ j

( t
T

)
U0tdt +op (1) .

Let St = T−1/2 ∫ t
0 U0rdr for t ∈ (0,T ] and S0 = 0. Using the continuous mapping theorem and

integration by parts, we obtain, jointly for j = 1, . . . ,K,

√
δWu0

j =
∫ T

0
φ j

( t
T

)
dSt +op (1)

=
∫ 1

0
φ j (r)dSTr +op (1) = φ j (1)ST −φ j (0)S0−

∫ 1

0
STrφ̇ j (r)dr+op (1)

⇒ σ0φ j (1)W0(1)−σ0φ j (0)W0(0)−σ0

∫ 1

0
φ̇ j (r)W0(r)dr

= σ0

∫ 1

0
φ j (r)dW0(r),
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where the weak convergence follows from Assumption 3.3.2. Therefore,

√
δWu0 ⇒ ν . (3.19)

The joint convergence of Λ
−1
T XTt and T−1/2 ∫ Tt

0 U0rdr in Assumption 3.3.2 yields that

(3.18) and (3.19) hold jointly, i.e., (n−1/2WxΛ
−1
T ,
√

δWu0)⇒ (η ,ν).

Part (b). We write

Wy =Wx
β0 +Wu0 +α0Wα (3.20)

where

Wα = (Wα
1 , . . . ,W

α
K)
′ with Wα

j =
1√
n

n

∑
i=1

φ j

(
i
n

)
.

Note that for each j = 1, . . . ,K we have

1√
n

n

∑
i=1

φ j

(
i
n

)
=
√

n
1
n

n

∑
i=1

φ j

(
i
n

)
=
√

n
(∫ 1

0
φ j (r)dr+O

(
1
n

))
= O

(
1√
n

)
= o(1) .

Therefore,

Wy =Wx
β0 +Wu0 +op (1) . (3.21)

It then follows that

β̂TOLS =
(
Wx′Wx)−1 (Wx′ [Wx

β0 +Wu0 +op (1)]
)
, (3.22)

and so

β̂TOLS−β0 =
(
Wx′Wx)−1 (Wx′ [Wu0 +op (1)]

)
.
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By Part (a) and Assumption 3.3.3, we then have

√
T ΛT

[
β̂TOLS−β0

]
= n1/2

ΛT
√

δ

[
β̂TOLS−β0

]
=

[(
n1/2

ΛT

)−1 (
Wx′Wx)(n1/2

ΛT

)−1
]−1(

n1/2
ΛT

)−1
Wx′Wu0

√
δ (1+op (1))

⇒
(
η
′
η
)−1 (

η
′
ν
)
.

Proof of Theorem 3.3.1. By definition, Ŵu =Wy−Wxβ̂TOLS. Using (3.21) and (3.22), we then

have

Ŵu =Wx
β0 +Wu0 +op (1)−Wx (Wx′Wx)−1Wx′ [Wx

β0 +Wu0 +op (1)]

=
[
IK−Wx (Wx′Wx)−1Wx′

]
(Wu0 +op (1)) . (3.23)

Hence, by Lemma 3.3.1(i),

δ · σ̂2
0 =

1
K

√
δ (Wu0 +op (1))

′
[
IK−Wx (Wx′Wx)−1Wx′

]√
δ (Wu0 +op (1))

⇒ 1
K

ν
′Mην .

where Mη = IK−η(η ′η)−1η ′. Using Lemma 3.3.1(ii), we have, under H0,

√
T Λ̃T (Rβ̂TOLS− r) = (Λ̃T RΛ

−1
T )
√

T ΛT (β̂TOLS−β0)⇒ R◦
(
η
′
η
)−1 (

η
′
ν
)

249



and

nΛ̃
−1
T

[
R
(
Wx′Wx)−1 R′

]−1
Λ̃
−1
T

= nΛ̃
−1
T

{
Rn1/2

Λ
−1
T

[(
Wx

Λ
−1
T n−1/2

)′
Wx

Λ
−1
T n−1/2

]−1(
Rn1/2

Λ
−1
T

)′}−1

Λ̃
−1
T

=

{
Λ̃T RΛ

−1
T

[(
Wx

Λ
−1
T n−1/2

)′
Wx

Λ
−1
T n−1/2

]−1 (
Λ̃T RΛ

−1
T
)′}−1

⇒ [R◦
(
η
′
η
)−1 R′◦]

−1.

Therefore,

FTOLS =
1

σ̂2
0
(Rβ̂TOLS− r)′

[
R
(
Wx′Wx)−1 R′

]−1
(Rβ̂TOLS− r)/p

=
1
p

1
δ σ̂2

0
(Rβ̂TOLS− r)′

√
T Λ̃T

×nΛ̃
−1
T

[
R
(
Wx′Wx)−1 R′

]−1
Λ̃
−1
T ×

√
T Λ̃T (Rβ̂TOLS− r)

⇒ K
p

[
R◦(η ′η)−1η ′ν

]′(R◦ (η ′η)−1 R′◦
)−1 [

R◦(η ′η)−1η ′ν
]

ν ′Mην

=
K
p

Q′
(

R◦ (η ′η)−1 R′◦
)−1

Q

ν ′Mην/σ2
0

, (3.24)

where Q = R◦(η ′η)−1η ′ν/σ0. Now, conditional on η ,

Q′
(

R◦
(
η
′
η
)−1 R′◦

)−1
Q d
= χ

2
p, and ν

′Mην/σ
2
0

d
= χ

2
K−d.

Additionally, conditional on η , Mην and η ′ν are independent, as both Mην and η ′ν are normal

and the conditional covariance is

cov
(
Mην ,η ′ν

)
= Mηη = 0.
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Thus, conditional on η , the numerator and the denominator in (3.24) are independent chi-squared

variates. This implies that

K
p

Q′
(

R◦ (η ′η)−1 R′◦
)−1

Q

ν ′Mην/σ2
0

=
K

K−d

Q′
(

R◦ (η ′η)−1 R′◦
)−1

Q/p

ν ′Mην/
[
σ2

0 (K−d)
] d

=
K

K−d
Fp,K−d

conditional on η . But the conditional distribution does not depend on the conditioning variable

η , so it is also the unconditional distribution. This proves the second statement of the theorem.

Proof of Theorem 3.3.2. Part (a): Setting ΛT =
√

T Id and X◦ (r) = Bx (r) we can proceed nearly

identically to the proof of Lemma 3.3.1(a) to obtain that

[
(nT )−1/2Wx,δ 1/2Wu0

]
⇒ (η ,ν).

It remains to show that δ 1/2W∆̃x⇒ ξ jointly with the above convergence. The joint convergence

holds by the Cramér–Wold theorem. It remains to prove the marginal convergence δ 1/2W∆̃x⇒ ξ .

We have

δ
1/2W∆̃x

j =
1√
nδ

n

∑
i=1

φ j

(
i
n

)
[xi− xi−1] =

n

∑
i=1

φ j

(
i
n

)
T−1/2[xi− xi−1]

=
1
n

n−1

∑
i=1

[
φ j
( i

n

)
−φ j

( i+1
n

)]
1/n

T−1/2xi +φ j(1)T−1/2xn−φ j

(
1
n

)
T−1/2x0

=−1
n

n−1

∑
i=1

φ̇ j

(
i
n

)
T−1/2X i

n T +φ j(1)T−1/2XT −φ j

(
1
n

)
T−1/2X0

+Op

(
1
n

1
n

n−1

∑
i=1

T−1/2
∥∥∥X i

n T

∥∥∥) . (3.25)

Using the continuous mapping theorem and Assumption 3.3.4, we have

n−1
n−1

∑
i=1

T−1/2
∥∥∥X i

n T

∥∥∥⇒ ∫ 1

0
∥Bx (r)∥dr
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and hence the last term in (3.25) is of order Op (1/n) = op (1) . Therefore, using integration by

parts,

δ
1/2W∆̃x

j

=
1
n

n−1

∑
i=1

φ̇ j

(
i
n

)
T−1/2X i

n T +φ j(1)T−1/2XT −φ j

(
1
n

)
T−1/2X0 +op (1)

⇒−
∫ 1

0
φ̇ j(r)Bx(r)dr+φ j(1)Bx(1)−φ j(0)Bx(0)

=
∫ 1

0
φ j(r)dBx(r) = ξ j.

This holds jointly for j = 1, . . . ,K so that δ 1/2W∆̃x⇒ ξ .

Part (b). Following the same argument as in the proof Theorem 3.3.1, we can ignore the

intercept. To simplify the notation, we assume from the outset that there is no intercept in the

model so that

Wy =Wx
β0 +Wu0.

Given this, we have

γ̂−

 β0

0

=

 Wx′Wx Wx′W∆̃x

W∆̃x′Wx W∆̃x′W∆̃x


−1 Wx′Wu0

W∆̃x′Wu0

 .
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Recall that ϒT = diag(T Id,Id) . Using Part (a) and noting that δ 1/2/T = (nT )−1/2, we have

ϒT

γ̂−

 β0

0




=

δ
1/2

ϒ
−1
T

 (Wx)′Wx Wx′W∆̃x

(W∆̃x)′Wx W∆̃x′W∆̃x

ϒ
−1
T δ

1/2


−1

ϒ
−1
T δ

1/2

 Wx′Wu0δ 1/2

W∆̃x′Wu0δ 1/2


=

 (nT )−1/2Wx′Wx (nT )−1/2 (nT )−1/2Wx′W∆̃xδ 1/2

δ 1/2W∆̃xWx (nT )−1/2
δ 1/2W∆̃x′W∆̃xδ 1/2


−1 (nT )−1/2Wx′Wu0δ 1/2

δ 1/2W∆̃x′Wu0δ 1/2


⇒

 η ′η η ′ξ

ξ ′η ξ ′ξ


−1 η ′ν

ξ ′ν

 .

Plugging ν = σ0·xν̃ +ξ θ0 into the above limit, we have

ϒT

γ̂−

 β0

0


⇒

 η ′η η ′ξ

ξ ′η ξ ′ξ


−1 η ′ξ

ξ ′ξ

θ0 +σ0·x

 η ′η η ′ξ

ξ ′η ξ ′ξ


−1 η ′ν̃

ξ ′ν̃


=

 0

θ0

+σ0·x
(
ζ
′
ζ
)−1

ζ
′
ν̃ .

That is, ϒT (γ̂− γ0)⇒ σ0·x (ζ
′ζ )−1

ζ ′ν̃ . The first block of this result is T (β̂TAOLS − β0)⇒

σ0·x
(
η ′Mξ η

)−1
η ′Mξ ν̃ .

Part (c). First, it follows from Part (b) that under H0,

T (Rβ̂TAOLS− r) = RT (β̂TAOLS−β0)⇒ σ0·xR
(
η
′Mξ η

)−1
η
′Mξ ν̃ . (3.26)
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Next,

δ (Ŵu0·x)′Ŵu0·x

= δWu0′
[
I−W̃(W̃′W̃)−1W̃′

]
Wu0

= (
√

δWu0)′
[

I− (W̃δ
1/2

ϒ
−1
T )
[
(W̃δ

1/2
ϒ
−1
T )(W̃δ

1/2
ϒ
−1
T )′

]−1
(W̃δ

1/2
ϒ
−1
T )′

]√
δWu0

⇒ ν
′
(

I−ζ
(
ζ
′
ζ
)−1

ζ
′
)

ν = σ
2
0·xν̃

′
(

I−ζ
(
ζ
′
ζ
)−1

ζ
′
)

ν̃ = σ
2
0·xν̃

′Mζ ν̃ .

Hence,

δ σ̂
2
0·x =

1
K

δ (Ŵu0·x)′Ŵu0·x ⇒ 1
K

σ
2
0·xν̃

′Mζ ν̃ . (3.27)

Combining (3.26) and (3.27), we have

FTAOLS

=
1

σ̂2
0·x

(Rβ̂TAOLS− r)′
[
R
(
Wx′M

∆̃xW
x)−1 R′

]−1
(Rβ̂TAOLS− r)/p

=
1

pδ σ̂2
0·x

[RT (β̂TAOLS−β0)]
′{R[(nT )−1/2Wx′M

∆̃xW
x (nT )−1/2]−1R′}−1RT (β̂TAOLS−β0)

⇒

[
R
(
η ′Mξ η

)−1
η ′Mξ ν̃

]′ [
R
(
η ′Mξ η

)−1 R′
]−1 [

R
(
η ′Mξ η

)−1
η ′Mξ ν̃

]
/p

ν̃ ′Mζ ν̃/K

=
K
p

Q′
(

R
(
η ′Mξ η

)−1 R′
)−1

Q

ν̃ ′Mζ ν̃
,

where Q = R(η ′Mξ η)−1η ′Mξ ν̃ . Following the argument similar to that in the proof of Theorem

3.3.1, we can then show that FTAOLS⇒ K
K−2d ·Fp,K−2d.
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3.B Supplementary Appendix for Chapter 3

In this appendix, we develop an MSE-optimal rule for choosing K. Part of our theoretical

analysis is the high-frequency continuous-time counterparts of Phillips (2005), which develops a

rule for choosing K in LRV estimation for a fully observed discrete-time process. We allow for

more general basis functions while Phillips (2005) considers only sine and cosine basis functions.

Thus, even for usual discrete-time processes, our theoretical development goes beyond Phillips

(2005).

3.B.1 MSE-optimal Choice of K

To abstract away the technical issues that will not affect the practical implementation of

the proposed rule, we define the infeasible variance estimator as in the main text:

Ω̂
∗ =

1
K

K

∑
j=1

[
1

Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
(xiui)

]⊗2

.

Ω̂∗ is infeasible because ui is not observed. We choose K to minimize the asymptotic MSE of

Ω̂∗. We could alternatively follow Andrews (1991) to find the approximate and truncated MSE

of the feasible estimator Ω̂ and use it to guide the choice of K. These two approaches will lead to

the same formula for the MSE-optimal K. Here we opt for the simpler approach.

Assumption 3.B.1 The following hold:

(i)

var
[
vec(Ω̂∗)

]
= var

[
vec

(
Ω

1/2 1
K

K

∑
j=1

[∫ 1

0
φ j (r)dWd (r)

]⊗2

Ω
1/2

)]
(1+o(1))

as T → ∞ for both a fixed K and a growing K (i.e., K→ ∞).

(ii) Let ΓXU (τ) = E
(
XtUtUt−τX ′t−τ

)
. For some ι > 0, there exists positive constants C1
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and C2 such that

∥ΓXU (τ)∥ ≤C1 for all τ and ∥ΓXU (τ)∥ ≤C1τ
−(3+ι) for all |τ| ≥C2.

(iii) δ ∑
n−1
k=−n+1 (kδ )m

ΓXU (kδ )−
∫ T
−T τmΓXU (τ)dτ = O(δ ) for m = 0,2.

(iv) For some constant C > 0, sup j∈[K] supr∈[0,1]max
{∣∣φ j (r)

∣∣ , |φ̇ j (r) |/ j
}
≤C where φ̇ j

is the first order derivative of φ j and [K] := {1, . . . ,K} .

(v) If K→ ∞ as T → ∞, then, for some constant cφ ,2 ̸= 0,

lim
K→∞

[
− 1

K3

K

∑
j=1

1
2

∫ 1

0
φ j (r) φ̈ j (r)dr

]
= cφ ,2,

where φ̈ j is the second order derivative of φ j.

Assumption 3.B.1(i) is a high-level assumption. When K is fixed and Assumptions

3.2.1–3.2.5 hold,

Ω̂
∗⇒Ω

1/2 1
K

K

∑
j=1

[∫ 1

0
φ j (r)dWd (r)

]⊗2

Ω
1/2.

So Assumption 3.B.1(i) says that the limit of the exact finite sample variance of vec(Ω̂∗) is equal

to the variance of its limiting distribution, namely the asymptotic variance. From a theoretical

point of view, this is plausible if we have enough moment conditions. Alternatively, we simply

use the asymptotic variance in place of the exact finite sample variance to obtain an approximate

MSE. This is, in fact, a typical approach for smoothing parameter choice in a nonparametric

setting when the exact finite sample variance is difficult, if not impossible, to obtain. For both a

fixed K and a growing K, we can show that an assumption similar to Assumption 2.3(b) in Lu

and Park (2019), Assumption 3.2.2, and Assumptions 3.B.1(ii)-(iv) are sufficient for Assumption

3.B.1(i). The details and proof are given in the supplementary appendix.

Assumption 3.B.1(ii) imposes that the covariance ∥ΓXU (τ)∥ is bounded above and

decays to zero at a certain rate. The assumption ensures that δ ∑
∞
k=−∞

(kδ )2 ∥ΓXU (kδ )∥ < ∞
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and
∫

∞

−∞
τ2 ∥ΓXU (τ)∥ < ∞ (see the proof Theorem 3.B.1). The summability condition can be

regarded as the continuous counterpart of the integrability condition. These conditions are often

imposed directly in the literature. For the latter condition, see, for example, Assumption 2.2 in

Lu and Park (2019) (pp. 239).

Assumption 3.B.1(iii) assumes that the discrete sum is a good approximation to the

integral. Note that

δ

n−1

∑
k=−n+1

(kδ )m
ΓXU (kδ )−

∫ T

−T
τ

m
ΓXU (τ)dτ

=
n−1

∑
k=−n+1

[∫ (k+1)δ

kδ

[(kδ )m
ΓXU (kδ )− τ

m
ΓXU (τ)]dτ

]
+O(δ )

=

[
n−1

∑
k=−n+1

max
t∈[kδ ,(k+1)δ ]

∂ [tmΓXU (t)]
∂ t

δ +O(1)

]
δ .

Therefore, Assumption 3.B.1(iii) holds if δ ∑
n−1
k=−n+1 maxt∈[kδ ,(k+1)δ ]

∥∥∥∂ [tmΓXU (t)]
∂ t

∥∥∥< ∞.

Assumptions 3.B.1(iv) and (v) contain some additional mild conditions on the basis

functions. The assumptions are satisfied for the sine and cosine basis functions (i.e., Fourier

bases) given in (3.3). For this set of Fourier bases, we have

φ̈2 j−1(r) =−
√

2(2π j)2 cos(2π jr) and φ̈2 j(r) =−
√

2(2π j)2 sin(2π jr) for j = 1, . . . ,K/2,

and hence

cφ ,2 =− lim
K→∞

1
K3

K

∑
j=1

1
2

∫ 1

0
φ j (r) φ̈ j (r)dr

= lim
K→∞

1
K3

K/2

∑
j=1

4π2 j2

2

[∫ 1

0
2sin(2π jr)2 dr+

∫ 1

0
2cos(2π jr)2 dr

]

= lim
K→∞

1
K3

K/2

∑
j=1

4π
2 j2 =

∫ 1/2

0
4π

2x2dx =
π2

6
.

For a kernel function k (·) with Parzen exponent q, the asymptotic bias of the kernel LRV
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estimator depends on the “Parzen parameter” ck,q defined by

ck,q = lim
x→0

1− k (x)
xq .

The parameter cφ ,2 in Assumption 3.B.1(v) plays the same role in series LRV estimation as ck,q

does in kernel LRV estimation. Here, the assumptions imposed on the basis functions ensure that

the resulting series LRV estimator is analogous to a kernel LRV estimator with a second-order

kernel (i.e., its Parzen exponent q is equal to 2). There are other sets of basis functions such as

Legendre polynomials that deliver series LRV estimators with asymptotic properties similar to

the kernel LRV estimators based on a first-order kernel (e.g., the Bartlett kernel). See Lazarus

et al. (2018) for more discussion. Hwang and Sun (2018) discusses why the set of Legendre

polynomials may not be a good choice. We focus on second-order series LRV estimators in this

paper.

Theorem 3.B.1 Let Assumption 3.B.1 hold.

(a) Under Assumption 3.B.1(i), as T → ∞, the variance of Ω̂∗ satisfies

var
[
vec(Ω̂∗)

]
=

1
K
(Ω⊗Ω)(Id2 +Kdd)(1+o(1)) ,

where Id2 is the d2×d2 identity matrix and Kdd is the d2×d2 commutation matrix.

(b) Under Assumptions 3.B.1(ii)–(v), as T → ∞ and K→ ∞, the bias of Ω̂∗ satisfies

E(Ω̂∗−Ω) =−cφ ,2
K2

T 2 B2 +o
(

K2

T 2

)
+O

(
δ +

(logn)2

T 2 +
1
T

)
,

where

B2 =
∫

∞

−∞

τ
2
ΓXU (τ)dτ.
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(c) Under Assumptions 3.B.1(ii)–(iv), as T → ∞ for a fixed K, the bias of Ω̂∗ satisfies

E(Ω̂∗−Ω) =− 1
T

cφ ,1B1 +o
(

1
T

)
+O

(
δ +

(logn)2

T 2 +
1
n

)
,

where

cφ ,1 = cφ ,1 (K) :=
1
2

1
K

K

∑
j=1

[
φ

2
j (1)+φ

2
j (0)

]
and B1 =

∫
∞

−∞

τΓXU (τ)dτ.

When K → ∞ and T → ∞, the variance and bias expressions are similar to those in

the case with discrete-time data. Their interpretations are also similar. For example, when

XtUt is positively autocorrelated such that ΓXU (τ)> 0 for all τ, then B2 > 0 and Ω̂∗ is biased

downward. This is analogous to the discrete-time case. Note that the dominating bias is equal

to −cφ K2T−2B2 instead of −cφ K2n−2B2. The latter can be shown to be the dominating bias

in the usual discrete-time case for a fixed time interval (e.g., δ = 1) with n observations. A

takeaway from this comparison is that the effective sample size of a high-frequency sample (i.e.,

δ → 0) from a continuous-time process is the time span T instead of the number of observations

n over this time span. When we use the effective sample size T in the bias expression, the

asymptotic bias depends only on B2, which is an intrinsic feature of the continuous-time process.

In particular, the asymptotic bias does not depend on δ . This may appear counter-intuitive. We

may argue that the process becomes more persistent for a smaller δ , and so we expect a larger

absolute bias for a smaller δ . Such an argument is valid if we represent the asymptotic bias in

terms of n, namely −cφ

(
K2n−2)(B2δ−2) . Smaller δ indeed leads to a larger bias for a given n,

but n becomes larger for a smaller δ . The net effect is that the asymptotic bias depends on the

effective sample size T but not n or δ separately.

Define6

MSE(Ω̂∗) = E
[
vec(Ω̂∗−Ω)′vec(Ω̂∗−Ω)

]
,

6It is possible to weigh different elements of vec(Ω̂∗−Ω) differently by defining

MSE(Ω̂∗) = E
[
vec(Ω̂∗−Ω)′W vec(Ω̂∗−Ω)

]
for some matrix W . Here we have implicitly chosen W to be an identity matrix.
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which is the mean square error of vec(Ω̂∗). It follows from Theorems 3.B.1 (i) and (ii) that

MSE(Ω̂∗)

= tr [{Ω⊗Ω}(Id2 +Kdd)]
1
K
+ c2

φ ,2vec(B2)
′ vec(B2)

K4

T 4

+o
(

1
K
+

K4

T 4

)
+O

(
δ

2 +
(logn)4

T 4 +
1

T 2

)
.

Ignoring the terms that will be shown to be of a smaller order and optimizing MSE(Ω̂∗) over K,

we obtain the formula7

K = κ (Ω,B2)
1/5 T 4/5, (3.28)

where

κ (Ω,B2) :=

(
tr [{Ω⊗Ω}(Id2 +Kdd)]

4c2
φ ,2vec [B2]

′ vec [B2]

)
.

When K = κ (Ω,B2)
1/5 T 4/5, the first two terms in MSE(Ω̂∗) are of order T−4/5. To

ensure the terms that we ignore are indeed of a smaller order, we require that

δ
2 +

(logn)4

T 4 +
1

T 2 = o
(

T−4/5
)
.

If we set δ = O(T−τ), then we require τ to be large enough. Such a requirement is compatible

with the sufficient conditions for Assumption 3.2.5(i).

In the case of usual discrete time series data with a fixed sampling time interval and n

observations, the optimal choice of K is given by

KD = κ (ΩD,B2D)
1/5 n4/5, (3.29)

7Given that K is an integer, we should round κ (Ω,B2)
1/5 T 4/5 up to the next integer and use it as K. We ignore

this for the theoretical analysis but implement it in the simulation study.
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where

κ (ΩD,B2D) :=
tr [{ΩD⊗ΩD}(Id2 +Kdd)]

4c2
φ ,2vec [B2D]

′ vec [B2D]
.

The formula is the same as that in (3.28) but with T replaced by n. See, for example, Phillips

(2005). In the above, ΩD and B2D are the discrete analogues of Ω and B2. If we use the formula

for K in (3.29) and set K = cn4/5 for some constant c > 0, then we obtain a sub-optimal rate

of K for the high-frequency data with a shrinking sample interval (i.e., δ → 0). The choice of

K = cn4/5 is too large for high-frequency data. For this type of data, the neighboring observations

are highly correlated, and a smaller K is desired.

Now suppose we pretend that {zi = xiui}n
i=1 is a discrete-time process with a fixed time

interval (e.g., δ = 1) and n observations, and we use a parametric AR(1) plug-in approach to

implement (3.29). As in the main text, we fit an AR(1) model to each component zi, j of zi :

zi, j = ρ jzi−1, j + ez j for j = 1,2, . . . ,d

with the AR parameter and error variance estimated by

ρ̂ j =
∑

n
i=2 zi, jzi−1, j

∑
n
i=2 z2

i−1, j
and σ̂

2
j =

1
n

n

∑
i=2

(
zi, j− ρ̂ jzi−1, j

)2
.

We then compute

κ̂D =
1

8c2
φ ,2

(
d

∑
j=1

ρ̂2
j σ̂4

j(
1− ρ̂ j

)8

)−1( d

∑
j=1

σ̂4
j(

1− ρ̂ j
)4

)
and let

K̂D = κ̂
1/5
D n4/5. (3.30)

The above data-driven choice does not require the value of δ , and hence we do not

need to pin down the unit of time in measuring the sampling intervals. Whether the length of

the sampling intervals is measured in seconds, hours, days, or months does not affect how we

compute K̂D. The value of K̂D is invariant to the unit of time, and an applied researcher does not
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have to choose a unit of time.

The question is whether the so-obtained K̂D is of the optimal order T 4/5 with probability

approaching one. On the surface, the answer is no, as K̂D is apparently of order n4/5. However,

under the AR(1) plug-in implementation, κ̂D is not a fixed constant. In fact, following Chang

et al. (2021) (Lemma 4.2), we can show that as δ → 0 and T → ∞,

ρ̂ j = 1− c1 jδ +op (δ ) and σ̂
2
j = c2 jδ +op (δ )

for some constants c1 j > 0 and c2 j > 0. Essentially,
{

zi, j
}

is a highly persistent process with the

autocorrelation approaching unity at the rate of δ . The smaller δ is, the higher the autocorre-

lation is. As δ → 0,
{

zi, j
}

is effectively a near unit root process with the innovation variance

proportional to the sampling interval δ . Plugging the above results into κ̂D yields

κ̂D =
1

8c2
φ

(
d

∑
j=1

(
c2 j
)2

δ 2(
c1 jδ

)8

)−1( d

∑
j=1

(
c2 j
)2

δ 2(
c1 jδ

)4

)
(1+op (1))

=
1

8c2
φ

(
d

∑
j=1

c2
2 j

c8
1 j

)−1( d

∑
j=1

c2
2 j

c4
1 j

)
δ

4 (1+op (1)) .

As a result,

K̂D = κ̂
1/5
D n4/5 =

 1
8c2

φ ,2

(
d

∑
j=1

c2
2 j

c8
1 j

)−1( d

∑
j=1

c2
2 j

c4
1 j

)1/5

δ
4/5n4/5 (1+op (1))

=

 1
8c2

φ ,2

(
d

∑
j=1

c2
2 j

c8
1 j

)−1( d

∑
j=1

c2
2 j

c4
1 j

)1/5

T 4/5 (1+op (1)) .

With probability approaching one, the rate of K̂D is the same as the optimal rate of T 4/5. So the

AR(1) plug-in implementation leads to a rate-optimal choice of K. Chang et al. (2021) call this

feature of the AR(1) plug-in implementation high-frequency compatible.

It should be noted that in the discrete-time setting it is typical to truncate the AR estimator
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at 0.97. See footnote 8 of Andrews (1991). Here, we should not follow this practice, as we rely

on the convergence of 1− ρ̂ j to zero at the rate of δ to achieve the high-frequency compatibility.

Had we truncated the initial AR estimator at 0.97 or any fixed number less than 1, κ̂D would be

bounded away from zero with probability approaching one. As a result, K̂D would be of order

n4/5 and we would lose the high-frequency compatibility. Computationally, without truncating

the initial AR estimator, we may have 1− ρ̂ j = 0 and encounter the “divided by zero” problem.

To avoid this, we can truncate the AR estimator so that 1− ρ̂ j is larger than the machine epsilon.

In practice, {ui}n
i=1 is of course not observed, so K̂D in (3.30) is computed utilizing {ẑi = xiûi}n

i=1

where ûi = yi− x′iβ̂D.

Note that the high-frequency compatible rate of K is of order T 4/5, which is smaller

than n4/5 by an order of magnitude. So, when T is small, K may be small too, and the fixed-K

asymptotics may be more accurate.

The above MSE-optimal choice of K is obtained under the rate assumption that K→ ∞

but at a slower rate than T. The so-obtained choice rule in (3.28) satisfies the rate assumption.

One may wonder whether we can obtain an MSE-optimal choice of K under the “fixed-K”

assumption that K is held fixed. The answer is no. Under the fixed-K asymptotics, Theorem

3.B.1 shows that the variance of Ω̂∗ is proportional to 1/K and the squared-bias is proportional

to 1/T 2. To minimize the dominating terms in the MSE, we would make K as large as possible.

Such an approach would then drive K to infinity and make it incompatible with the “fixed-K”

assumption to begin with. As an example, consider the case when d = 1 and the Fourier basis

functions in (3.3) are used. By Theorem 3.B.1 (i) and (iii), the dominating terms in the MSE are

1
T 2 B1 +

2
K

Ω
2,

as cφ ,1 (K) = 1
2

1
K ∑

K
j=1

[
φ 2

j (1)+φ 2
j (0)

]
= 1. It is now clear that there is no fixed-value of K that

minimizes the above: any fixed value of K is dominated by a larger value.

The above analysis shows that only the large-K asymptotic framework is theoretically
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coherent with an asymptotically optimal choice of K. Such an optimal choice of K is seemingly

incompatible with the distributional approximation obtained under the fixed-K asymptotic theory.

This is not the case, and we provide a justification here. Let Cα (p,K) be the (1−α)-quantile of

the fixed-K asymptotic distribution of FT , that is

Pr
(

K
K− p+1

Fp,K−p+1 > Cα (p,K)

)
= α.

Note that K/(K + p−1)Fp,K−p+1⇒ χ2
p/p as K→ ∞. Letting K→ ∞ in the above equation and

using the dominated convergence theorem, we obtain

Pr
(

χ
2
p/p > lim

K→∞
Cα (p,K)

)
= α.

This shows that limK→∞ Cα (p,K) = χ2
p,α/p, where χ2

p,α is the (1−α)-quantile of the chi-

squared distribution χ2
p. Therefore, under the large K asymptotics, Cα (p,K) is an asymptotically

valid critical value, even though it is based on the fixed-K asymptotic distribution. In the literature

on the fixed-smoothing asymptotics for discrete-time data with a fixed δ , it has been proved that

for the location models and linear regression models, critical values based on the fixed-smoothing

asymptotic distribution (i.e., K is fixed for series LRV estimation) are second-order correct under

the increasing-smoothing asymptotics (i.e., K→ ∞). See, for example, Sun (2013) for the case

with series LRV estimation and Sun (2014a) and Sun et al. (2008) for the case with kernel LRV

estimation.
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3.B.2 Proof of Theorem 3.B.1

Part (a): For notational simplicity, we assume that Ω1/2 is symmetric. Note that

var

[
vec

(
Ω

1/2 1
K

K

∑
j=1

[∫ 1

0
φ j (r)dWd (r)

]⊗2

Ω
1/2

)]

=
1

K2 var

[(
Ω

1/2⊗Ω
1/2
)

vec

(
K

∑
j=1

[∫ 1

0
φ j (r)dWd (r)

]⊗2
)]

=
1

K2

(
Ω

1/2⊗Ω
1/2
)

var

[
vec

(
K

∑
j=1

[∫ 1

0
φ j (r)dWd (r)

]⊗2
)](

Ω
1/2⊗Ω

1/2
)

=
1
K

(
Ω

1/2⊗Ω
1/2
)
(Id2 +Kdd)

(
Ω

1/2⊗Ω
1/2
)

=
1
K

(
Ω

1/2⊗Ω
1/2
)(

Ω
1/2⊗Ω

1/2
)
(Id2 +Kdd)

=
1
K
(Ω⊗Ω)(Id2 +Kdd) .

Hence, under Assumption 3.B.1(i), we have

var
[
vec(Ω̂∗)

]
=

1
K
(Ω⊗Ω)(Id2 +Kdd)(1+o(1)) .

Part (b): Before computing the bias when T → ∞ and K → ∞, we first show that

δ ∑
∞
k=−∞

|kδ |m ∥ΓXU (kδ )∥< ∞ for m = 0,1,2. Using Assumption 3.B.1(ii), we have

δ ∑
|k|<n
|kδ |m ∥ΓXU (kδ )∥= δ ∑

|kδ |≤C2

|kδ |m ∥ΓXU (kδ )∥+δ ∑
C2<|kδ |<n

|kδ |m ∥ΓXU (kδ )∥

≤ δ ∑
|kδ |≤C2

Cm
2 C1 +C1δ ∑

C2<|kδ |<n
|kδ |m (kδ )−(3+ι)

= 2Cm
2 C1δ ·C2

δ
+C1δ

m−2−ε
∑

C2<|kδ |<n
|k|−(3−m+ι)

≤ 2Cm+1
2 C1 +C1δ

m−2−ε ·O
(

C2

δ

)1−(3−m+ι)

= 2Cm+1
2 C1 +C1 ·O

(
C1−(3−m+ι)

2

)
= O(1) .
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So we have δ ∑
∞
k=−∞

|kδ |m ∥ΓXU (kδ )∥<∞. By the same argument, Assumption 3.B.1(ii) implies

that
∫

∞

−∞
|τ|m ∥ΓXU (τ)∥< ∞ for m = 0,1,2.

Next, we compute the bias of Ω̂∗ when T → ∞ and K→ ∞. Denote E
[
(xiui)(xℓuℓ)

′]=
Γxu (i− ℓ). Note that

E(Ω̂∗)

=
1
K

K

∑
j=1

[
1

Λ(n,δ )2

n

∑
i=1

n

∑
ℓ=1

φ j

(
i
n

)
φ j

(
ℓ

n

)
E (xiui)(xℓuℓ)

′
]

=
1
K

K

∑
j=1

1

Λ(n,δ )2

n

∑
i=1

n

∑
ℓ=1

φ j

(
i
n

)
φ j

(
ℓ

n

)
Γxu (i− ℓ)

=
1
K

K

∑
j=1

1

Λ(n,δ )2

n

∑
i=1

i−1

∑
k=i−n

φ j

(
i
n

)
φ j

(
i− k

n

)
Γxu (k)

=
1
K

K

∑
j=1

n

Λ(n,δ )2

n−1

∑
k=−n+1

{
1
n

n

∑
i=1

1
{

1
n
≤ i− k

n
≤ 1
}

φ j

(
i
n

)
φ j

(
i− k

n

)}
Γxu (k)

=
1
K

K

∑
j=1

δ

n−1

∑
k=−n+1

ω j,n

(
k
n

)
Γxu (k)

where

ω j,n

(
k
n

)
=

1
n

n

∑
i=1

1
{

1
n
≤ i− k

n
≤ 1
}

φ j

(
i
n

)
φ j

(
i− k

n

)
.

The bias is then equal to

Bn = EΩ̂
∗−Ω

=
1
K

K

∑
j=1

δ

n−1

∑
k=−n+1

[
ω j,n

(
k
n

)
−1
]

Γxu (k)+δ

n−1

∑
k=−n+1

Γxu (k)−Ω

:= B1n +B2n.
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For B2n, we use Assumption 3.B.1(iii) with m = 0 to obtain:

B2n = δ

n−1

∑
k=−n+1

Γxu (k)−Ω = δ

n−1

∑
k=−n+1

ΓXU (kδ )−Ω

= δ

n−1

∑
k=−n+1

ΓXU (kδ )−
∫ T

−T
ΓXU (τ)dτ +O

(
1

T 2

)
= O(δ )+O

(
1

T 2

)
,

where the O
(
T−2) term holds because under Assumption 3.B.1(ii),

∥∥∥∥∫ ∞

−∞

ΓXU (τ)dτ−
∫ T

−T
ΓXU (τ)dτ

∥∥∥∥
=

∥∥∥∥∫ ∞

−∞

1{|τ| ≥ T}ΓXU (τ)dτ

∥∥∥∥≤ 1
T 2

∫
∞

−∞

τ
21{|τ| ≥ T}∥ΓXU (τ)∥dτ

≤ 1
T 2

∫
∞

−∞

τ
2 ∥ΓXU (τ)∥dτ = O

(
1

T 2

)
.

For B1n, we have, using supr∈[0,1]
∣∣φ̇ j (r)

∣∣≤ jC in Assumption 3.B.1(iv):

ω j,n (ς) =
1
n

n

∑
i=1

1
{

1
n
≤ i

n
− ς ≤ 1

}
φ j

(
i
n

)
φ j

(
i
n
− ς

)
=

1
n

n

∑
i=1

1
{

1
n
+ ς ≤ i

n
≤ 1+ ς

}
φ j

(
i
n

)
φ j

(
i
n
− ς

)
=
∫ min(1+ς ,1)

max(0,ς)
φ j (r)φ j (r− ς)dr+O

(
j
n

)
:= ω j (ς)+O

(
j
n

)
,

uniformly over j = 1,2, . . . ,K and ς ∈ [−1,1] where

ω j (ς) =
∫ min(1+ς ,1)

max(0,ς)
φ j (r)φ j (r− ς)dr.
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Note that ω j (0) = 1. Then we have, as n→ ∞,

B1n =
1
K

K

∑
j=1

δ

n−1

∑
k=−n+1

[
ω j,n

(
k
n

)
−1
]

Γxu (k)

=
1
K

K

∑
j=1

δ

n−1

∑
k=−n+1

[
ω j

(
k
n

)
−1
]

Γxu (k)+δ

n−1

∑
k=−n+1

[
1
K

K

∑
j=1

O
(

j
n

)]
Γxu (k)

=
1
K

K

∑
j=1

δ

n−1

∑
k=−n+1

[
ω j

(
k
n

)
−1
]

Γxu (k)+O
(

K
n

)
δ

n−1

∑
k=−n+1

∥ΓXU (kδ )∥

=
1
K

K

∑
j=1

δ

n−1

∑
k=−n+1

[
ω j

(
k
n

)
−1
]

Γxu (k)+O
(

K
n

)
:= B̃1n +O

(
K
n

)
,

where B̃1n =
1
K ∑

K
j=1 δ ∑

n−1
k=−n+1

[
ω j
( k

n

)
−1
]

Γxu (k) .

Now,

B̃1n =
1
K

K

∑
j=1

δ

n−1

∑
k=−n+1

[
ω j

(
k
n

)
−1
]

Γxu (k)

= δ ∑
n/ logn<|k|≤n−1

[
1
K

K

∑
j=1

ω j

(
k
n

)
−1

]
Γxu (k)+δ ∑

|k|≤n/ logn

[
1
K

K

∑
j=1

ω j

(
k
n

)
−1

]
Γxu (k)

= B̃11,n + B̃12,n

where

B̃11,n = δ ∑
n/ logn<|k|≤n−1

[
1
K

K

∑
j=1

ω j

(
k
n

)
−1

]
Γxu (k)

≤ δ ∑
n/ logn<|k|≤n−1

∣∣∣∣∣ 1
K

K

∑
j=1

ω j

(
k
n

)
−1

∣∣∣∣∣
(

k
n/ logn

)2

∥ΓXU (kδ )∥

=C
(

logn
n

)2 1
δ 2

[
δ

∞

∑
k=−∞

(kδ )2 ∥ΓXU (kδ )∥
]
= O

(
(logn)2

T 2

)
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and

B̃12,n =
1
K

K

∑
j=1

δ ∑
|k|≤n/ logn

[
ω j

(
k
n

)
−1
]

Γxu (k)

=
1
K

K

∑
j=1

δ ∑
|k|≤n/ logn

[
ω j

(
k
n

)
−1
]

ΓXU (kδ )

=
1
K

K

∑
j=1

δ ∑
|k|≤n/ logn

[
ω̇ j (0)

k
n
+

1
2

ω̈ j

(
k̃
n

)(
k
n

)2
]

ΓXU (kδ )

=
1

nδ

[
1
K

K

∑
j=1

ω̇ j (0)

]
δ ∑
|k|≤n/ logn

kδΓXU (kδ )

+

(
1

nδ

)2 1
K

K

∑
j=1

δ ∑
|k|≤n/ logn

[
1
2

ω̈ j

(
k̃
n

)]
(kδ )2

ΓXU (kδ )

=
K2

T 2
1

K3

K

∑
j=1

1
2

ω̈ j (0)δ ∑
|k|≤n/ logn

(kδ )2
ΓXU (kδ )(1+o(1))+O

(
1

nδ

1
K

K

∑
j=1

ω̇ j (0)

)

=
K2

T 2

(
1

K3

K

∑
j=1

1
2

ω̈ j (0)

)(∫
∞

−∞

τ
2
ΓXU (τ)dτ

)
(1+o(1))+O

(
1

nδ

1
K

K

∑
j=1

ω̇ j (0)

)
.

Given that ω j (ς) =
∫ 1

ς
φ j (r)φ j (r− ς)dr, we have

ω̇ j (ς) =−φ j (ς)φ j (0)−
∫ 1

ς

φ j (r) φ̇ j (r− ς)dr,

ω̈ j (ς) =−φ̇ j (ς)φ j (0)+φ j (ς) φ̇ j (0)+
∫ 1

ς

φ j (r) φ̈ j (r− ς)dr =
∫ 1

ς

φ j (r) φ̈ j (r− ς)dr.

So

ω̇ j (0) =−φ
2
j (0)−

1
2
[
φ

2
j (1)−φ

2
j (0)

]
=−1

2
[
φ

2
j (1)+φ

2
j (0)

]
,

ω̈ j (0) =
∫ 1

0
φ j (r) φ̈ j (r)dr.
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Therefore, under Assumptions 3.B.1(iv) and (v), we have

B̃12,n =
K2

T 2
1

K3

K

∑
j=1

1
2

ω̈ j (0)δ ∑
|k|≤n/ logn

(kδ )2
ΓXU (kδ )

=
K2

T 2

(
1

K3

K

∑
j=1

1
2

∫ 1

0
φ j (r) φ̈ j (r)dr

)∫
∞

−∞

τ
2
ΓXU (τ)dτ (1+o(1))+O

(
1
T

)
=−K2

T 2 cφ

∫
∞

−∞

τ
2
ΓXU (τ)dτ (1+o(1))+O

(
1
T

)

as K→ ∞ and T → ∞.

Combining the above results yields the asymptotic bias formula for the case where K→∞

and T → ∞.

Part (c): As in the proof of Part (b), we have

Bn = E(Ω̂∗)−Ω := B̃12,n +O

(
K
n
+δ +

1
T 2 +

(logn)2

T 2

)
,

where

B̃12,n =
1
K

K

∑
j=1

δ ∑
|k|≤n/ logn

[
ω j

(
k
n

)
−1
]

ΓXU (kδ ) .

For the rest of the proof, we use arguments different from that for Part (b). Using ω j (0) = 1 and

ω̇ j (0) =−1
2

[
φ 2

j (1)+φ 2
j (0)

]
, we have

B̃12,n =
1
K

K

∑
j=1

δ ∑
|k|≤n/ logn

[
ω j

(
k
n

)
−1
]

ΓXU (kδ )

=
1
K

K

∑
j=1

1
n

δ ∑
|k|≤n/ logn

[
ω̇ j

(
k̃
n

)
k
]

ΓXU (kδ )

=
1
K

K

∑
j=1

1
n

1
δ

ω̇ j (0)

[
δ

∞

∑
k=−∞

[kδ ]ΓXU (kδ )+o(1)

]

=−1
2

1
T

(
1
K

K

∑
j=1

[
φ

2
j (1)+φ

2
j (0)

])∫ ∞

−∞

τΓXU (τ)dτ (1+o(1)) .
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Therefore,

Bn =−
1
2

1
T

(
1
K

K

∑
j=1

[
φ

2
j (1)+φ

2
j (0)

])∫ ∞

−∞

τΓXU (τ)dτ

+o
(

1
T

)
+O

(
1
n
+δ +

(logn)2

T 2

)
.

3.B.3 Sufficient conditions for Assumption 3.B.1(i)

We now provide sufficient conditions for Assumption 3.B.1(i). For notational simplicity,

we consider the case that vi = xiui is a scalar. The vector case requires only additional matrix

algebra. The underlying continuous time process is Vt = XtUt . Let v∗ = (v∗1, ...,v
∗
n) be a zero-

mean Gaussian sequence with the same covariance as v = (v1, ...,vn) . Then the fourth-order

cumulant κv,4 (ℓ1, ℓ2, ℓ3, ℓ4) of {vi}n
i=1 is defined to be

κv,4 (ℓ1, ℓ2, ℓ3, ℓ4) = E
(
vℓ1vℓ1+ℓ2vℓ1+ℓ3vℓ1+ℓ4

)
−E

(
v∗ℓ1

v∗ℓ1+ℓ2
v∗ℓ1+ℓ3

v∗ℓ1+ℓ4

)
.

We need the following assumption.

Assumption 3.B.2 (i) vi is fourth-order stationary with covariance Γv (k) = E (vivi−k) and

fourth-order cumulant κv,4 (ℓ1, ℓ2, ℓ3, ℓ4) ; (ii) there is a constant C that does not depend on δ or

n such that

δ
3

n−1

∑
ℓ1=−n+1

n−1

∑
ℓ2=−n+1

n−1

∑
ℓ3=−n+1

∣∣κv,4 (0, ℓ1, ℓ2, ℓ3)
∣∣<C.

Assumption 3.B.2(ii) is the discrete analogue of its continuous counterpart

∫ T

−T

∫ T

−T

∫ T

−T
κV,4 (0,r1,r2,r3)dr1dr2dr3 < ∞,

where κV,4 is the fourth order cumulant of {Vt} . The above condition is the same as Assumption

2.3(b) in Lu and Park (2019).
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Proposition 3.B.1 Let Assumptions 3.2.2, 3.B.1(ii)-(iv), and 3.B.2 hold. If K2 = o(n) and

K = o(T ) , then as δ → 0 and T → ∞,

var(Ω̂∗) = var

 1
K

K

∑
j=1

[
1

Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
vi

]⊗2
=

1
K

2Ω
2 (1+o(1))

for both a fixed K and a growing K (i.e., K→ ∞), that is, Assumption 3.B.1(i) holds.

Proof of Proposition 3.B.1. In the following, we write ∑
K
j1=1 ∑

K
j2=1 as ∑ j1, j2 when there is no

possibility of confusion. All results in this proof hold for both a fixed K and large K unless stated

otherwise. We have

var(Ω̂∗) = var

 1
K

K

∑
j=1

[
1

Λ(n,δ )

n

∑
i=1

φ j

(
i
n

)
vi

]2


=
1

K2Λ(n,δ )2 ∑
j1, j2

n

∑
i1,i2,i3,i4

φ j1(
i1
n
)φ j1(

i2
n
)φ j2(

i3
n
)φ j2(

i4
n
)E [(vi1vi2−Evi1vi2)(vi3vi4−Evi3vi4)]

=
1

K2Λ(n,δ )2 ∑
j1, j2

E
n

∑
i1=1

i1−1

∑
k1=i1−n

n

∑
i2=1

i2−1

∑
k2=i2−n

φ j1(
i1
n
)φ j1(

i1− k1

n
)φ j2(

i2
n
)φ j2(

i2− k2

n
)

× (vi1vi1−k1−Evi1vi1−k1)(vi2vi2−k2−Evi2vi2−k2) .

Let

φ j1, j2, j3, j4 (i1, i2,k1,k2) = φ j1(
i1
n
)φ j2(

i2
n
)φ j3(

k1

n
)φ j4(

k2

n
), φ j1, j2, (i1, i2) = φ j1(

i1
n
)φ j2(

i2
n
),

µ4 (i1, i2,k1,k2) = E (vi1vi1−k1vi2vi2−k2) , µ
∗
4 (i1, i2,k1,k2) = E

(
v∗i1v∗i1−k1

v∗i2v∗i2−k2

)
.

Recall that v∗ = (v∗1, ...,v
∗
n) is a zero-mean Gaussian sequence with the same covariance as
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v = (v1, ...,vn) . We have

µ
∗
4 (i1, i2,k1,k2)

:= E
(
v∗i1v∗i1−k1

v∗i2v∗i2−k2

)
= E

(
v∗i1v∗i1−k1

)
E
(
v∗i2v∗i2−k2

)
+E

(
v∗i1v∗i2

)
E
(
v∗i1−k1

v∗i2−k2

)
+E

(
v∗i1v∗i2−k2

)
E
(
v∗i1−k1

v∗i2
)

= E (vi1vi1−k1)E (vi2vi2−k2)+E (vi1vi2)E (vi1−k1vi2−k2)+E (vi1vi2−k2)E (vi1−k1vi2) .

By definition, µ4 (i1, i2,k1,k2)−µ∗4 (i1, i2,k1,k2) = κv,4 (i1,−k1, i2− i1, i2− k2− i1) . So

var(Ω̂∗)

=
1

K2Λ(n,δ )4 ∑
j1, j2

n

∑
i1=1

i1−1

∑
k=i1−n

n

∑
i2=1

i2−1

∑
k=i2−n

φ j1, j1, j2, j2 (i1, i1− k1, i2, i2− k2)κv,4 (i1,−k1, i2− i1, i2− k2− i1)

+
1

K2Λ(n,δ )4 ∑
j1, j2

n

∑
i1=1

i1−1

∑
k=i1−n

n

∑
i2=1

i2−1

∑
k=i2−n

φ j1, j1, j2, j2 (i1, i1− k1, i2, i2− k2)E (vi1vi2)E (vi1−k1vi2−k2)

+
1

K2Λ(n,δ )4 ∑
j1, j2

n

∑
i1=1

i1−1

∑
k=i1−n

n

∑
i2=1

i2−1

∑
k=i2−n

φ j1, j1, j2, j2 (i1, i1− k1, i2, i2− k2)E (vi1vi2−k2)E (vi1−k1vi2)

:= I1 + I2 + I3.

Using
∣∣φ j1, j1, j2, j2 (i1, i2,k1,k2)

∣∣≤C for some constant C, which holds under Assumption
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3.2.2, we obtain

|I1|

≤ 1

K2Λ(n,δ )4 ∑
j1, j2

n

∑
i1=1

i1−1

∑
k1=i1−n

n

∑
i2=1

i2−1

∑
k=i2−n

∣∣φ j1, j1, j2, j2 (i1, i2,k1,k2)
∣∣ |κv,4 (i1,−k1, i2− i1, i2− k2− i1)|

≤ C

K2Λ(n,δ )4 ∑
j1, j2

n

∑
i1=1

i1−1

∑
k1=i1−n

n

∑
i2=1

i2−1

∑
k=i2−n

|κv,4 (i1,−k1, i2− i1, i2− k2− i1)|

=
C

K2Λ(n,δ )4 ∑
j1, j2

n

∑
i1=1

i1−1

∑
k1=i1−n

i1−1

∑
ℓ1=i1−n

i1+ℓ1−1

∑
k2=i1+ℓ1−n

|κv,4 (0,−k1− i1,k1−2i1, i2− k2−2i1)|

≤ n/δ 3

Λ(n,δ )4
C
K2 ∑

j1, j2

(
δ

3
n−1

∑
ℓ1=−n+1

n−1

∑
ℓ2=−n+1

n−1

∑
ℓ3=−n+1

|κv,4 (0, ℓ1, ℓ2, ℓ3)|
)

= O
(

1
T

)
,

where we have used Assumption 3.B.2.

It remains to consider I2 and I3. Using change of variables repeatedly, we have

I2 =
1

K2Λ(n,δ )4 ∑
j1, j2

n

∑
i1=1

i1−1

∑
k1=i1−n

n

∑
i2=1

i2−1

∑
k2=i2−n

φ j1, j1, j2, j2 (i1, i1− k1, i2, i2− k2)

×Γv (i2− i1)Γv (i2− i1− (k2− k1))

=
1

K2Λ(n,δ )4 ∑
j1, j2

n

∑
i1=1

i1−1

∑
k1=i1−n

n

∑
i2=1

i2−1

∑
k2=i2−n

φ j1, j2 (i1, i2)φ j1, j2 (i1− k1, i2− k2)

×Γv (i2− i1)Γv (i2− i1− (k2− k1))

=
1

K2Λ(n,δ )4 ∑
j1, j2

n

∑
i1=1

i1−n

∑
i=i1−1

i1−1

∑
k1=i1−n

i1−i−1

∑
k2=i1−i−n

φ j1, j2 (i1, i1− i)φ j1, j2 (i1− k1, i1− i− k2)

×Γv (−i)Γv (−i− (k2− k1))

=
1

K2Λ(n,δ )4 ∑
j1, j2

{
n

∑
i1=1

i1−1

∑
i=i1−n

φ j1, j2 (i1, i1− i)Γv (i)

}2

=
δ 2

K2 ∑
j1, j2

{
n−1

∑
i=−n+1

[
1
n

n

∑
i1=1

1
{

1
n
≤ i1− i

n
≤ 1
}

φ j1

(
i1
n

)
φ j2

(
i1− i

n

)]
Γv (i)

}2

.
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For any ς ∈ [0,1], define

ω j1, j2,n (ς) =
1
n

n

∑
i1=1

1
{

1
n
≤ i1

n
− ς ≤ 1

}
φ j1

(
i1
n

)
φ j2

(
i1
n
− ς

)
.

Then

I2 =
δ 2

K2 ∑
j1, j2

[
n−1

∑
i=−n+1

ω j1, j2,n

(
i
n

)
Γv (i)

]2

.

Under Assumptions 3.2.2 and 3.B.1(iv), we have

ω j1, j2,n (ς) =
1
n

n

∑
i1=1

1
{

1
n
+ ς ≤ i1

n
≤ 1+ ς

}
φ j1

(
i1
n

)
φ j2

(
i1
n
− ς

)
=
∫ min(1+ς ,1)

max(0,ς)
φ j1 (r)φ j2 (r− ς)dr+O

(
max( j1, j2)

n

)
:= ω j1, j2 (ς)+O

(
max( j1, j2)

n

)
,

uniformly over j1, j2 ∈ [K] . That is, there exists a constant C not dependent on j1, j2, ς , or

K such that
∣∣ω j1, j2,n (ς)−ω j1, j2,n (ς)

∣∣≤C ( j1 + j2)/n. We can choose C large enough so that

sup j1, j2,ς
∣∣ω j1, j2 (ς)

∣∣≤C. Hence, for

I21 =
δ 2

K2 ∑
j1, j2

[
n−1

∑
i=−n+1

ω j1, j2

(
i
n

)
Γv (i)

]2

,

we have

I2 = I21 +O

[
δ 2

K2 ∑
j1, j2

(
max( j1, j2)

n

) n−1

∑
i=−n+1

|Γv (i)|
]

= I21 +O

[
δ

K2 ∑
j1, j2

(
max( j1, j2)

n

)
δ

n−1

∑
i=−n+1

|Γv (i)|
]

= I21 +O
(

δ

K2
K3

n

)
= I21 +O

(
1
K

T K2

n2

)
= I21 +o

(
1
K

)
,
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as T K2/n2 = o(1) . In the above, we have used δ ∑
n−1
i=−n+1 |Γv (i)| < ∞, which holds under

Assumption 3.B.1(ii).

Note that under Assumptions 3.2.2 and 3.B.1(iv), we have

ω j1, j2 (0) = 1{ j1 = j2} ,

ω̇ j1, j2 (ς) =−φ j1 (ς)φ j2 (0)−
∫ 1

ς

φ j1 (r) φ̇ j2 (r− ς)dr,

where ω j1, j2 (0) = 1{ j1 = j2}, which follows from the orthonormality of
{

φ j
}
. So,

sup
j1, j2,ς

∣∣ω̇ j1, j2 (ς)
∣∣<C j2

for some constant C > 0.

Using the above expressions of the derivatives and taking a Taylor expansion, we have,

for i∗ (i) ∈ [0, i],

I21 =
δ 2

K2 ∑
j1, j2

[
n−1

∑
i=−n+1

ω j1, j2

(
i
n

)
Γv (i)

]2

=
δ 2

K2 ∑
j1, j2

[
n−1

∑
i=−n+1

Γv (i)1{ j1 = j2}+
n−1

∑
i=−n+1

ω̇ j1, j2

(
i∗ (i)

n

)
i
n

Γv (i)

]2

=
δ 2

K2 ∑
j1, j2

(
n−1

∑
i=−n+1

Γv (i)1{ j1 = j2}
)2

+
2

K2 ∑
j1= j2

(
n−1

∑
i=−n+1

Γv (i)

)(
δ

n−1

∑
i=−n+1

ω̇ j1, j2

(
i∗ (i)

n

)
i
n

δΓv (i)

)

+
δ 2

K2 ∑
j1, j2

[
n−1

∑
i=−n+1

ω̇ j1, j2

(
i∗ (i)

n

)
i
n

Γv (i)

]2

=
1

K2

K

∑
j=1

(
δ

n−1

∑
i=−n+1

Γv (i)

)2

+O
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where we have used δ ∑
n−1
i=−n+1 |i|δ |Γv (i)|< ∞, which holds under Assumption 3.B.1(ii).

Now under Assumption 3.B.1(iii) with m = 0 and Assumption 3.B.1(ii), we have

δ

n−1

∑
i=−n+1

Γv (i) = δ

n−1

∑
i=−n+1

ΓV (iδ )→Ω.

Therefore, we have proved that I2 = Ω/K (1+o(1)) . Similar arguments can be invoked to show

that I3 = Ω/K (1+o(1)) . Details are omitted here. Combining the results for I1, I2, and I3 yields

the desired result: var(Ω̂∗) = 2Ω2/K (1+o(1)).
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