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ABSTRACT 

A generalization of the multinomial logit (MNL) model is developed 

for cases in which discrete alternatives are ordered so as to induce 

stochastic correlation among alternatives in close proximity. The model 

belongs to the Generalized Extreme Value class introduced by McFadden, 

and is therefore consistent with random utility maximization. If the 

true model is nearly MNL, iterative estimation on an ordinary MNL 

computer package provides approximate parameter estimates and a test for 

the hypothesized failure of the MNL's "independence from irrelevant 

alternatives" assumption. A straightforward extension can handle cases 

where observations have been selected on the basis of a truncated choice 

set. The model's properties are investigated through a numerical 

example, and through two empirical applications whose rather 

unsatisfactory results are very briefly described. 
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of Transportation Studies, University of California, Irvine. Of the many 
people providing helpful comments, I especially want to acknowledge David 
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I. INTRODUCTION 

The popularity of discrete choice models has led to their application 

in a number of situations where the alternatives can be ordered in some 

natural way. Examples include choice of occupation, number of 

automobiles owned, time of day of travel to work, biological effects of 

pesticides, and degree of labor force participation. Standard 

econometric models, however, impose stringent requirements on the degree 

of independence between the unobserved influences on various choices. 

The most well known is the "independence from irrelevant alternatives 11 

(IIA) property of the multinomial logit (NML) model, which requires that 

the stochastic components of utility attached to the alternatives be 

independent (McFadden, 1973). 

Yet in any of the examples above, it is plausible that unobserved 

traits will tend to affect the desirability of two or more alternatives 

similarly. A parent 1 s disparaging view of education may make all 

higher-status occupations less likely to be chosen. A family 1 s 

recreational pursuits may raise the desirability of owning two, three, or 

four cars. The need to transport a child to school may favor a certain 

group of possible schedules for a work trip. Formally, each of these 

implies correlation among the unobserved random utility components for 

alternatives which are close together on the natural ordering. I call 

this situation one of proximate covariance. 

One way such correlations might arise is if the dependent variable is 

only a discrete representation of an underlying continuous variable. 1 

1I have encountered considerable resistance to the idea of using 
discrete models for such cases. Yet the literature contains many 
examples, and there is frequently no viable alternative. See, for 
example, Amemiya 1 s (1981, p. 1518) discussion and grudging approval of 
Perloff and Wachter (1979), who for practical reasons used MNL on 
interval data even when the continuous data were available. 



Ben-Akiva and Watanatada (1981) derive an MNL model from such a case. 

They carefully spell out the content of the IIA assumption, but do not 

discuss its validity. This paper questions its validity and proposes a 

way both to test and to correct for violation. 
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The model proposed in this paper permits a quite flexible covariance 

pattern, the main requirement being that for fixed i, the correlation 

between random utility components for alternatives i and j be a 

nonincreasing function of li-jl. The model can, but need not, impose 

zero correlations between certain pairs of alternatives; in this feature 

it may be preferred to the nested logit (NL) model which must have some 

zero correlations. Like NL, the model proposed here is a member of the 

Generalized Extreme Value class, and therefore is consistent with random 

utility maximization and has MNL as a special case. 

Two others models have been proposed for ordered alternatives, and 

discussed by Amemiya (1981) and Maddala (1983). One is the "ordered" or 

"ordered response'' model, in which an ogive function is specified for the 

sum of the first (or last) k choice probabilities. 1 I show in the 

appendix that when this function is logistic (as in Deacon and Shapiro, 

1975), the model is a special case of MNL. Thus while it may be 

1see Crawford and Pollack (1982) for a more precise treatment of 
this and other concepts of ordering. Beggs et al. (1979) use the name 
"ordered logit" for a model which predicts not just the most preferred 
alternative but the entire preference ranking of alternatives. The 
problem addressed here should not be confused with correlation between 
successive sample members such as appears in panel data (Heckman, 1981; 
Cardell, 1977; Poirier & Ruud, 1982) and in spatial cross-sectional data 
(Fisher, 1971). 



appealing for its parsimonious specification, it still suffers from a 

restrictive correlation structure. 

The other is the "sequential'' model, a special case of which is 

proposed independently by Sheffi (1979). This model is suitable when 

anyone choosing alternative n would always prefer n-1 to n-2, n-2 
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to n-3, and so forth; note that the direction of the ordering makes a 

difference here. Maddala warns that "these models are valid only if the 

random factors influencing responses at various stages are independent" 

(1983, p. 51), an unlikely assumption in most cases. Furthermore, it can 

be shown1 that the sequential model is not a random utility model, but 

rather a peculiar limiting case of the nested logit model. 

II. THE ORDERED GEV MODEL 

McFadden (1978) has proposed a class of random utility models known 

as generalized extreme value (GEV) which have some of the computational 

properties of the MNL. Both MNL and NL are special cases. Letting 

j = l, ••• ,J index the set of alternatives, a GEV model is derived from a 

defined on the orthant y. > 0 which is 
J -

nonnegative, homogeneous of degree one, tending toward +00 when any of 

its arguments tend toward +00
, and whose n-th partial derivatives (with 

respect to distinct arguments) are nonnegative for odd n and 

1Appendix available from the author. 



nonpositive for even n. Any such function defines a cumulative 

distribution function (cdf) 

( l ) 

whose marginal distribution with respect to each variate is the extreme 

value distribution: 

( 2) k F ( e:k) = limF( {ej}) = exp[-ckexp(-e:k)J 

e: j-+<x:>' 

j;lk 

and where o .. = l 
lJ 

if i = j and 0 
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otherwise. If random utilities {e:.,j=l, •.• ,J} follow distribution (1), 
J 

and Vj are observable utility components (sometimes called "strict 

utility" in the decision theory literature), then total utility 

(3) U. = V. + e:., j = l, ••• ,J 
J J J 

is maximized at alternative k with probability 

(4) 

where Gk denotes the k-th partial derivative of G. 

The MNL model is derived from the function 

( 5) 

Its cdf (1) is a product of univariate extreme value distribution functions 

each of the form 



(6) 

and (4) yields the familiar form for choice probabilities: 

( 7) 

The two-level NL model results from the function 

where Br C {l, ••. ,J} is one of an exhaustive and mutually exclusive 

collection of R subsets of alternatives which define the "tree 

structure." Its cdf (1) is a product of R multivariate extreme value 

cdf's each of the form 

(9) 

The NL choice probability derived from (4) can be written as the 

conditional probability of choosing an alternative from within a group 

times the probability of choosing that group: 

( 10) 

5 



where Bs is the subset containing k and where 

( ll) Ir= logLexp(V/pr) 

jEBr 

defines the inclusive value of subset Br. Note that each factor in 

(10) has the MNL form. 

It can be shown that only alternatives within a group Br in the 
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NL model have stochastic terms which are correlated with each other, and 

this correlation is inversely related to Pr• We wish to describe a 

case where only alternatives which lie close to each other along a 

natural ordering are correlated. To accomplish this, let the alternative 

labels j increase along this natural ordering, 1 and define a GEV 

model as follows: 

DEFINITION l: The Ordered Generalized Extreme Value (OGEV) model of 

discrete choice is the GEV model resulting from the function 

(12) 

where M is a positive integer, pr and wm are constants satisfying 

(13) 

( 14) w > 0 , m-

r = l, ••• ,J+M 

m = 0, ••• ,M 

1Dale Poirier has pointed out to me that the model could easily be 
modified to deal with a cyclical ordering such as seasonality. This 
would require replacing the first summation in (12) by summation from 
r = 1 to J, and the second by summation over j E Br when r > M 
and j € BrUBJ+r when r ~ M. In this way there are J subsets 
Br, each with (M+l) members. 



(15) 

and where 

( 16) B = {j 
r 

M 

L wm = l 
m=O 

{l, ••. ,J}lr-M .s_ j < r} 
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The main difference between this definition and the NL model defined 

by (8) is that the subsets Br overlap. Each of the (J+M) subsets 

contains up to (M+l) contiguous alternatives; for example with M=2, 

B1 = {l }, B2 = {l,2}, B3 = {l,2,3}, B4 = {2,3,4}, BJ= {J-2,J-l,J}, 

BJ+l = {J-1,J}, and BJ+M = {J}. By including subsets with less than 

(M+l) alternatives when those alternatives lie at one end of the 

ordering, we ensure that each alternative belongs to exactly (M+l) 

different subsets. Since each subset can have its own parameter pr' 

this provides considerable flexibility to the correlation patterns. The 

desired property of proximate covariance comes from the fact that the 

covariance between any two alternatives receives a contribution from each 

s.ubset to which they belong in common; the closer they are together the 

more common subsets they belong to. Any two alternatives separated by 

fewer than M alternatives on the ordering belong to at least one common 

subset Br, hence have a nonzero covariance (provided P < l). r 

PROPOSITION l: The OGEV model is of the GEV class and reduces to MNL 

when P = l r for a 11 r. 

PROOF: G is nonnegative because of the condition (14). Its 

homogeneity of degree one can be checked directly. Since the weights are 

nonnegative and at least one is strictly positive, (13) implies that G 

tends to infinity when any of its arguments does. The partial 



derivatives alternate in sign because of (13). (15) guarantees that 

when pr= 1 for all r, G reduces to (5). Q.E.D. 

The next proposition states that the OGEV model has the desired 

property of proximate covariance. The bivariate cdf of any two 

stochastic elements is a mixture of multinomial logit cdf's and 

components of nested logit cdf's, with fewer of the latter as the 

alternatives get farther apart. 

PROPOSITION 2: Each of the stochastic utility elements ck in 

the OGEV model has a univariate marginal distribution which is extreme 

8 

value according to 
M Pk+ 

(2) with parameter ck = :E w m. Any two stochastic 
m=O m 

utility elements cj and ck are independent if lj-kl > M; if 

0 < k-j 2 M 

provided a 11 

( 17) 

where 

their bivariate marginal distribution has a cdf which, 

wm are strictly positive, is given by 

j+M P 
• IT HNLr(c. - p logw . , ck - p logw k) 

r=k J r r-J r r-

k-j-1 

=~ 
m=O 

PROOF: The proof follows directly by substituting (12) into (1) and 

letting the appropriate arguments tend to infinity. Q.E.D. 



The OGEV choice probabilities are obtained directly from (4): 

k+M 

( 18a) Pk=~ q(klBr)Q(Br) 
r=k 

where 

(18b) q(klB) r 

w kexp(Vk/p) r- r = ---~-,..--
exp {Ir) 

( 18c) 
exp ( p I ) 

Q (Br) = _.,.J..,..,+M:-:--_r_r __ 

:E exp( p I ) 
s=l s s 

( 18d) Ir = log""' w .exp(VJ./p ) L..J r-J r 
"EB J r 

Note that Pk is a sum of (M+l) terms, each resembling the choice 

probability (10) for a nested logit model. It looks like an expansion 

of Pk into conditional probabilities of the MNL form, but it is not 

because the sets B are not mutually exclusive. We therefore cannot r 

perform the analogue of the sequential estimation of the NL model 

(McFadden, 1981) since we cannot observe which B was "chosen" by a r 

given individual. (More formally, it is because the log-likelihood 

function does not separate into two terms each of the MNL form). We 

can, however, use maximum likelihood. In practice, it usually will be 

necessary to reduce the number of free parameters by imposing equality 

restrictions on wm and/or on pr' and by fixing M in advance. 

For example, given integer M, the following has just one parameter in 

addition to those describing the strict utilities: 

9 



DEFINITION 2: The Standard OGEV model is the OGEV model for which 

w = 1/(M+l) for all m, and p = p for all r. m r 

10 

For the simplest case, M=2, the Standard OGEV model is generated by 

and has choice probabilities 

V /p 
with the convention that er = 0 for r < l or r > J. 

Intuitively, the OGEV model causes Pk to be diminished if there 

is an attractive alternative £ nearby, because the latter will 

increase the denominator of (18b) for each B containing £. This r 
effect is greater the more sets B contain both £ and k, and the r. 

smaller are the corresponding Pr· 
1
At the extreme p + 0 for a 11 r 

J 

r, 

Pk tends to nkexp(Vk)/ ~ nJ.exp(VJ.), 
J=l 

where nk is the number of sets 

has the largest1 strict utility. 

Br within which alternative k 

In this limit the probability of 

choosing an alternative dominated by all its M neighbors on each side 

1An N-way tie involving alternative k within a set Br 
contributes 1/N to nk. 



is 0. This limit is in fact a valid random utility model whose cdf is 

continuous but whose density function is discontinuous at points 

e:j = E"k whenever lj-kl ~ M. 

Proposition 2 and the intuitive argument above make it plausible to 

expect E"j and e:k to be more closely correlated the smaller 

11 

is lj-kl. However, the correlation computed from the cdf (17) cannot be 

written in closed form. 1 Table l reports the results of some numerical 

integrations for the Standard OGEV Model, which confirm the expected 

pattern. It appears the model is able to generate correlations up to 

about 0.7. The correlations increase only slightly as p is decreased 

from 0.5, particularly for large M, which could lead to relatively flat 

likelihood functions in this range. 

III. APPROXIMATION WHEN THE MODEL IS ALMOST MULTINOMIAL LOGIT 

As already noted, the OGEV model cannot in general be estimated using 

computer software designed for MNL. However, if the departure from MNL 

is small in the sense that pr are near one, there is a procedure 

involving iteration of MNL-type estimations which provides a good 

approximation. It uses "pseudo-variables" whose values for a given 

1In the case M=l, there is a theoretical upper limit of 1/✓2 = 
.707 on ri,i+l' where rij is the correlation between E"i and E"j. 
This limit is imposed by the requirements that r. ·+2 = 0, and that the 

l , l 

covariance matrix of e:i,e:i+l'E"i+2 be positive definite. A similar 
approach for M=2 yields ri,i+l ~ Ji12 = .866. 
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Table l 

Correlation Between cj and ck: Standard 0GEV 

M k-j p 

0.9 0.5 0. l 

l l .094 .354 .427 

3 l • 142 .546 .643 
3 2 .094 .354 .397 
3 3 .047 • 172 • 192 

5 l • 158 .612 .673 
5 2 • 126 .481 .532 
5 3 .094 .354 .393 
5 4 .062 .232 .259 
5 5 .031 • 114 • 133 

10 l • 172 .674 .686 
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alternative1 involve the utilities (estimated in the previous 

iteration) of nearby alternatives. Such a variable would not be allowed 

in a true MNL model based on random utility maximization: In fact, 

McFadden, Train, and Tye (1977) suggest including pseudo-variables as a 

test for departures from MNL, though they do not suggest how to construct 

them. The procedure described below constructs a pseudovariable suitable 

for testing the particular type of departure from MNL embodied in the 

OGEV model, and also provides approximate estimates of the parameters 

p • r 

Let a = l - p << l 
r r 

for all 

as a linear function of observable variable vector with 

coefficient vector B. The idea is to find pseudovariables Nr, 

which may depend on B, such that the OGEV choice probability (18) can 

be approximated by the MNL-like formula: 

(19) 
J 

o'Nk)/ ~ exp(B'zj 
j=l 

+ o'N.) 
J 

V. 
J 

where - l J+M I N. = (N., ••• ,N. ) 
J J J 

is a column vector whose r-th component is 

is the value of pseudo-variable Nr at alternative j. Expanding (18) 

and (19) in Taylor series, we find they are identical up to first order in 

a if 

1As is evident from (19), I place the alternative subscript on the 
variable rather than the coefficient. A single variable thus takes on 
values for each alternative and each sample member. In the terminology 
of Maddala (1983, p. 42), this is the "conditional logit" rather than the 
"multinomial logit" formulation. As Maddala shows, the two are 
equivalent, so I have followed his lead in disregarding the semantic 
distinction and referring to both as MNL. 



(20) N~ 

where P~ 
J 

J 

w .(V. - I 0
) = 

r-J J r 

= 

0 

is given by (7), and 
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:E O 0 j E B -w log WJl,-r(P Jl,/P j) r-j 
, r 

Jl,EB 
r 

, j </. Br 

I~ by (18d) with set to one. 

To estimate, let each iteration be as follows. Starting with some 

initial value S (S = 0 may be used for the initial iteration), compute 

{N~} from (20) and treat them as fixed in (19); an ordinary MNL step 
J 

A A A 

then provides an estimate a and a new S. Keep iterating until S 

changes negligibly. While this procedure is not guaranteed to converge, 

it has done so fairly quickly in a number of applications, so long as 

lorl do not exceed about 0.75. An equality constraint or= a, rEBm, 

is easily dealt with by replacing the corresponding {Nr} by the single 

variable NB= L Nr. 
rEB 

m 

The estimate a also provides a simple way to test whether the 

model does depart from MNL. It can be shown 1 that under the null 

hypothesis a= 0, the usual MNL covariance matrix provided at the last 

iteration is a consistent estimate of the true covariance matrix of the 
A 

estimated parameters S and a. This may seem surprising in light 

of numerous examples in econometrics of two-stage estimators where 

standard errors are underestimated by the output of a standard algorithm 

at the second stage. The reason the 11 naive 11 procedure works in this case 

is that S and a are estimated simultaneously in each MNL step. 

1Appendix available from the author. 



The intuition behind the procedure can best be illustrated by 

considering the standard OGEV model with M=l. There is just one 

pseudovariable, with values 

(21) 

with the convention v0 = VJ+l = - 00• Aside from the constant 

(which has no effect), N. takes on large positive values for those 
J 

15 

alternatives adjacent to unpopular alternatives. To the extent that the 

true model departs from MNL toward OGEV, being adjacent to an alternative 

with low utility makes a given alternative more likely to be chosen, 

since any stochastic effect favoring both will be magnified. For 

example, in choice among six ordered occupations, suppose numbers 3 and 4 

denote middle-status occupations and 3 is seldom chosen by females; then 

a (stochastic) preference for middle-status occupations will have a 

greater effect on P4 for a female than it would for a male, because 

for the male its effect would be spread more evenly between P3 and 

P4• If the data are generated by a process like this, the 

pseudo-variable N will show explanatory power, and its coefficient 

a will tend to be positive. 

IV. NUMERICAL EXAMPLE 

In this section a numerical example is constructed to illustrate the 

kind of situation for which the ordered logit model is designed. 

Properties of several models are compared, both for initial fit and for 

ability to predict results of exogenous changes. 
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Suppose a household can own zero, one, two, or three autos; denote 

these discrete alternatives by j = 1,2,3, and 4, respectively. There 

are three types of households: ''small" ones which prefer smaller numbers 

of cars, "large" ones which prefer larger numbers, and "medium-sized" 

households which are indifferent among numbers of autos. Most households 

(90%) are medium sized, and this group is split evenly among the 

available ownership alternatives; 5% of households are small and choose 

the smallest possible j, while 5% are large and choose the largest 

possible j. Table 2 shows a set of utilities for each group compatible 

with the above description. 

Now, suppose only alternatives l-3 are available to the members of an 

observed sample, so that the observed choice frequencies are as shown in 

the next to the last row of the table. The problem is to fit a choice 

model to these observed frequencies when household size is not observed. 

A reasonable specification might be U. = V. + €-
J J J 

with 

(22) 

and with the distribution of €. depending on the model. Note that the 
J 

true model may be characterized 1 by a= 0 and €. = U. distributed 
J J 

as in Table 2, from which we calculate correlations corr(E1,E2) = 

corr(E2,E3) = .688, corr(E1,E3) = -.053. 

This is just the kind of error structure for which the simple ordered 

logit model is appropriate (though not exact, since these €. do not 
J 

1This characterization is not unique, because of both the arbitrary 
constant in EUj (which is 0. l in Table 2) and, more importantly, the 
arbitrary constant which could be added to u. for any single 
household type (the latter would affect the ctlrrelations). 
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Table 2 

Parameters for Numerical Example 

Utility Choice Freguency 
Household Proportion 

Type of Total Ul u2 u3 u4 fl f2 f3 f4 

Small .05 2 l 0 -1 .05 .00 .00 

Medium .90 0 0 0 0 .30 .30 .30 

Large .05 0 1 2 3 .oo .oo .05 

Aggregate 1.00 . 35 .30 .35 
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have an extreme value distribution). The choice frequencies 11 pile up" at 

the extreme alternatives (j = l and j = 3) because of unobserved 

preferences which are systematic in the index j. It turns out that the 

standard OGEV model with M = l correctly recognizes this and uses the 

extra parameter p to help account for the larger observed frequencies 

of these two alternatives. This enables it to predict more accurately 

the results of removing or adding alternatives. 

Since household characteristics are not observed, only the chosen 

alternative distinguishes one observation from another. Hence the 

log-likelihood function, given the observed frequencies fj, is simply 

(23) 

3 

L(e) = L fj logPj(e) 
j=l 

where parameter vector e consists of a and, where relevant, p. 

Table 3 gives the parameter values maximizing L, as well as 

predictions for three scenarios: (A) removal of alternative 3 from the 

choice set, for example by prohibiting on-street parking in a 

neighborhood of two-car garages; (B) removal of alternative l from the 

choice set, for example by making all non-automotive forms of travel 

infeasible; (C) addition of a new alternative 4 (representing three cars) 

to the choice set, for example by removing a prohibitive tax on owning 

three cars. Predictions are made using the appropriate choice 

probability formula 1 from Section II. V. is calculated from (22), 
J 

replacing a by its estimated value a, except that v3 is set 

1The formula for sequential legit choice probability is 

k 

Pk= (l - P(k+l)lk) j~l P(j+l)lj where P(j+l)lj = [l + exp(Vj 
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to - 00 for scenario A, and v1 is set to - 00 for scenario B. 

It is convenient for scenarios A and B to let P2, the predicted 

share of alternative 2, serve as a basis for comparing models; note that 

the true result is PA= p8 = .5, since alternative 2 will be 2 2 

chosen by half the medium-sized households and all the large (scenario A) 

or small (scenario B) households. For scenario C, the table shows 

P~, the predicted share of the newly added alternative, whose true 
C value is P4 = .275 (.90/4 from the medium-sized and .05 from the 

large households. Scenario C is not considered for the NL model because 

the new tree structure is ambiguous. 

In order to give MNL a fairer comparison with OGEV and NL, each of 

which has two parameters, a two-parameter MNL model is also estimated. 

It is specified by v1 = a1, v2 = 0, v3 = a3• It should be noted 

that two parameters are sufficient to fit these data exactly in terms of 

aggregate shares, so our performance test must rely on predictions. 

We see from Table 3 that the OGEV model gives the best predictions. 

Although the 1-parameter MNL model estimates a correctly, it does not 

fit the initial shares exactly; this qualifies its success in correctly 

predicting P2 in scenarios A and B, since the change in P2 is 

underpredicted (an analyst using one-parameter MNL would predict a 50% 

increase in number of people owning one car, rather than the actual 

66.7%). One-parameter MNL also underpredicts the shift to newly added 

alternative 4 in Scenario C. Two-parameter MNL under-predicts the change 

in P2 from either scenario A or B, and provides no basis for 

prediction under scenario C (since we would not know what to assume 

for v4). Using NL, the fitted parameters achieve a compromise such 

that the shift toward alternative 2 is overpredicted in one scenario 



Table 3 

Results of Numerical Example 

Estimated 
Parameters 

a a, Ci.3 

TRUE VALUES 

FITTED MODELS: 

MNL: 1-parameter .000 

MNL: 2-parameter • 154 • 154 

OGEVa .000 

NL (1;2,3)b .103 

NL (l,2,;3)c -.103 

Sequential Legit .431 

3Standard OGEV with M = 1. 

bTree structure: B1 = {l}; B2 = {2,3}. 

cTree structure: B1 = {1,2}; B2 = {3}. 

Fitted 
Shares 

p P, p2 

.35 .30 

.33 .33 

.35 .30 

.5850 .35 .30 

.6675 .35 .30 

.6675 .35 .30 

.39 .24 
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Predicted 
Shares 

PA 
2 

PB 
2 

Pc 
4 

.50 .50 .275 

.50 .50 .250 

.46 .46 

.50 .50 .269 

.53 .46 

.46 .53 

.61 .39 .223 



and underpredicted in the other. Sequential logit gives worse fit and 

worse predictions than any of the other models. 

Estimating OGEV by the first-order approximation procedure of 

Section III yields an initial a of 0, and the pseudovariable 

j = 1,3 

j = 2 . 

Further iterations give a= O and -p = .5552. With this & and P, 
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predictions for the three scenarios are identical to those shown in the 

table for the exact OGEV model. Note that N captures the positional 

"advantage" of whatever alternatives are at the extreme ends of the 

choice set, so that (19) correctly attributes the observed higher choice 

frequencies for these alternatives to the correlation structure; because 

changes in the choice set cause appropriate changes in N through 

equation (20), this positional advantage is correctly transferred to the 

new choice set inherent in each of the three scenarios, thereby resulting 

in the good predictions. Though it is risky to generalize from such a 

simple example, it appears the first-order approximation may do very well 

at predicting even when p differs substantially from one. 

V. DEPENDENT VARIABLE FROM A TRUNCATED CHOICE SET 

In general, GEV models cannot be estimated consistently from 

observations on only a subset of the available alternatives. MNL is the 

only known exception. The Ordered GEV model, however, provides a way of 

incorporating unobserved portions of the choice set into the error 

structure. This section shows the form taken by the choice probabilities 



conditional on a choice from a contiguous subset j = l, .•• ,J when the 

true model is Ordered GEV on a larger choice set. 

DEFINITION 3: The Extended Ordered GEV (EOGEV) model of discrete 

choice is the GEV model resulting from the function (12) with wr-j 

replaced by 

(24a) 

where ar are parameters and 

(24b) a = l - p r r 

22 

Making the weights depend on r in this way maintains the 

assumptions necessary for the model to be a GEV random-utility model, and 

ensures that it still has MNL as a special case. Equations (18) are 

still valid with w . r-J replaced by (24a) and Ir by: 

(24c) I' = I - a a r r r r ' 

in which case they become: 

k+m 

(25) 

:E w kexp[Vk/p - a (I 1 + ar)] r=k r- r r r 
pk= +M 

:E exp( p I') 
r=l r r 

The approximation for pr near one is 

(26) 

r where Nj 

otherwise. 

pk~ J 

:E exp[V. + :Ea N1: + :E ( a a )A1:J 
j=l J r r J r r r J 

is given by (20), and where Aj = -wr-j if j E Br and Aj = O 

Note that pseudo-variables A1 and N1 are collinear, as 
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are AJ+M and NJ+M; hence some equality restrictions are necessary to 

l l J+M J+M identify a, a, a , and a 

PROPOSITION 3: Suppose the true choice model is Ordered GEV with 

the alternative set B = {-J1+1, ••. ,0,l, .•• ,J+J2} and with strict utilities 

Vj, w~ere J1, J2 are nonnegative integers. Let B = {l, ••. ,J}, Br= 

{j E Bir< j < j+M} as before, and B = {j E Bir ~j ~j+M}. Then for - - r 
k EB, the choice probability conditional on some alternative from the 

subset B being chosen is given by an EOGEV model with strict utilities 

-V. = V., j EB, and with parameters 
J J 

{27) 

where 

{28) I = log~ w .exp(V./p) 
r ~ r-J J r 

"EB J r 

Note that Br 2 Br so that ar ~ O; also that for M+l ~ r ~ J, 

Br= Br hence ar = O. 

PROOF: The true choice probabilities Pk are given by (18) with B 

replaced by B, V by V, and I by I. For k E B, the conditional 

choice probability is 

{29) 

Using equations (24c) and (27) to write Ir= Ir+ ar, we see the 

numerators of (29) and (25) are identical. To show that the denominators 
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are also identical, reverse the order of summation in the denominator of 

(29) and use (18d), (24b), and (24c). Q.E.D. 

VI. EMPIRICAL APPLICATIONS 

The models discussed in this paper have been implemented on two data 

sets. Although computational feasibility has been established, the 

results do not give strong support for the model's applicability to these 

examples. For this reason, the examples and results are described only 

briefly; more detailed information can be obtained from the author. 

The first data set is one used previously with the MNL model (Small, 

1982) to study scheduling by automobile commuters facing congestion. The 

problem is to explain how far (in 5-minute intervals) a commuter's 

planned time of arrival deviates (in either direction) from the official 

work start time. Explanatory variables include several employer and 

employee characteristics, and a detailed description of how much travel 

time would be encountered for any of twelve alternative choices of 

arrival time. The most successful MNL model involved 9 variables; it was 

estimated here on a sample of 527 commuters each with 12 alternatives 

specified, ranging from 40 minutes early to 15 minutes late. 1 In the 

earlier paper I presented a heuristic test which, as one would expect a 

priori, suggested departures from MNL of the type dealt with here. 

Table 4 presents some selected results for five extensions of MNL. 

They are: (a) nested logit2 with the 9 11 earliest 11 alternatives and the 3 

lThe model is "Model 411 of Small (1982), p. 473. The sample of 
453 used in the earlier paper was expanded for the present study by 
reconstructing some previously missing data on carpooling. 

2see Small and Brownstone (1982) for further results on NL models 
using these data. 



Table 4 

Empirical Results: Trip Timing 

Model 

Nla OGEVb EOGEVC OGEVd EOGEVe 
,.. 

0. 76 0.75 0.37 0.76 0.38 p 
(0.13) (0.21) (0.15) (0.28) (0.33) _...,..._.,__ 

(l-p)a1 (X) 5.91 
(3.01) 

x2 statisticf 2.90 0.25 4.94 0.74 5.09 

Estimated standard errors are in parentheses. 

aNested logit: B1 = {1, ••• ,9} and B2 = {10,11,12}; Pl= P2 = p. 

bstandard Ordered GEV: M = 5 

CExtended Standard OGEV: M = 5, ar = O for r > 2. 

dsame as b, approximate estimator, one iteration starting with MNL 
values for {3. 

esame as c, approximate estimator, one iteration starting with MNL 
values for {3. 

fTwice the difference between the log likelihood achieved by the model 
and that achieved by MNL. 

25 
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"latest" alternatives forming groups B1 and B2, respectively, and with 

~ = ~ = P; (b) Standard Ordered GEV with M = 5; {c) Extended Ordered 

GEV as in (b) but with provision for a single a1 representing effects 

of eliminating from the sample commuters who chose to arrive more than 40 

minutes early for work; (d) and (e) incomplete estimation of the 

first-order approximations to (b) and (c), respectively, stopping after 

just one iteration. The first three extensions were estimated by full 

information maximum likelihood (FIML), 1 the other two using a standard 
2 MNL package. 

These results show that the OGEV model, though performing plausibly, 

does not perform as well as NL (as judged by likelihood achieved), nor is 

it better than MNL at conventional significance levels (the one-sided 

test of p < l against p = l rejects the null at a 12% level). 

EOGEV, in contrast, rejects MNL rather too vigorously: The algorithm 

tried to make a1 infinite. I conclude that EOGEV is misinterpreting 

1The likelihood function and its first derivatives were programmed 
as FORTRAN functions; the second derivatives were approximated by the 
expected value of the cross-product of the first derivatives (as in the 
algorithm by Berndt et al., 1974); and the modified quadratic 
hill-climbing method of Goldfeld and Quandt (1972) was applied, as 
embodied in their numerical optimization package GQOPT. 

For models giving parameter estimates in the proper range, this 
procedure proved quite reasonable in cost. The OGEV model converged in 3 
iterations (starting from the MNL parameter estimates and p = l), 
requiring 7 function evaluations and using 36 seconds of central 
processing time on the IBM 3033 computer at Princeton University. The NL 
model (starting from l for p and O for all other parameters) 
required 5 iterations, 12 function evaluations, and 26 seconds. However, 
reasonable starting values sometimes resulted in the algorithm getting 
"stuck" for unknown reasons, so a certain amount of trial and error must 
be anticipated. Also, trials at various starting values are advisable to 
guard against non-uniqueness of local maxima. 

2QUAIL, developed by D. McFadden and others, required 8 seconds of 
cpu time to estimate MNL, and an additional 14 seconds to estimate one 
iteration of the approximation for EOGEV. 
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some spurious effect, perhaps a misspecification of the determination of 

very early arrivals. On the brighter side, the rather simple programming 

required to estimate a single iteration of Section Ill's procedure 

provides a good approximation to the FIML estimates of p, and gives 

ample warning of an excessively large a1 in the extended model. 

The other application attempted was to reestimate the model of 

automobile ownership in Train (1980). In order to keep the problem 

manageable, I ignored the simultaneity between this decision and choice 

of travel mode to work (a major focus of Train's paper). Thus I 

attempted to model auto ownership alone, first as independent of and then 

as conditional upon modal choice. Although this sufficed to obtain 

plausible MNL models, all attempts to generalize to ordered GEV resulted 

in violations of the conditions p < 1. Again, the first-order r -

approximation gave warning that FIML estimation would not produce results 

compatible with the model. 

These limited results suggest that the model presented in this paper 

is sensitive to misspecification. Thus the first priority of the 

researcher should be to provide an adequate set of explanatory variables, 

for which MNL is probably satisfactory as a tool for exploratory work. 

The extra complication involved in the Ordered GEV model may or may not 

pay off in additional quantitative precision, depending on whether or not 

the data are sufficiently numerous and accurate to measure the rather 

subtle effects that such ordering produces. 



APPENDIX 

The class of 11 ordered 11 or 11 ordered-response 11 models defined by 

Amemiya (1981, pp. 1513-1516) and Maddala (1983, pp. 46-49) are of the 

general form P1 + .•• +Pk= F(Wk), k = l, •.• ,J-1, where F is a 

cumulative distribution function, Wk depends on data vector x and 

on unknown parameters, and w1 < w2 < ••• < WJ-l· (In Maddala, this 

holds after relabelling the alternatives in reverse order.) If F is 

logistic, we have an ordered logit model. Now define 

k = 2, ••• ,J-1 

Substitution into equation (7) yields P1 + ••• +Pk= F(Wk), with 

F logistic. That is, the ordered logit model is identical to an MNL 

defined with these Vj. Furthermore, in Madalla and in all but one of 

Amemiya's examples, the restriction Wk= yk - x'S is imposed, 

making ordered logit a rather strongly restricted MNL model. 
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