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Abstract

Recent empirical work has provided evidence for pure rea-
soning in infancy, a capacity permitting flexible integration
of multiple sources of information to form rational expecta-
tions about novel events (Teglas et al., 2011). However, the
neural underpinnings of this capacity have remained elusive.
In this work, we present the first ecologically rational, neural-
level account of these findings on pure reasoning in human in-
fants. Our work bridges two dominant approaches in compu-
tational developmental psychology, i.e. neural-network models
and Bayesian modeling, substantiating the view that intuitive
physics in infancy might, at least partly, involve heuristics:
a set of simple, fast, resource-efficient, approximation algo-
rithms that yield sufficiently good results.
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nality; heuristics; infants

Introduction
Building on extensive research on infant reasoning abilities,
recent experimental work (Teglas et al., 2011) has provided
evidence for pure reasoning in preverbal infants: the ability
to flexibly combine multiple sources of information to form
rational expectations about events that the infant has never
directly experienced. This finding was used to support the
view that preverbal infants are equipped with a rich, abstract
system of physics knowledge capable of near-perfectly simu-
lating object movements (the Bayesian ideal observer model)
(Teglas et al., 2011). That interpretation is a simplified ver-
sion of the intuitive physics engine hypothesis which main-
tains that humans possess a rich, symbolic, intricate knowl-
edge of physics, a system of knowledge analogous to com-
puter game engines used for simulating realistic scenarios
(Battaglia, Hamrick, & Tenenbaum, 2013; Ullman, Spelke,
Battaglia, & Tenenbaum, 2017). Here, we consider an alter-
native explanation based on heuristics: a set of simple, fast,
resource-efficient, approximation algorithms that yield suffi-
ciently good results (Gigerenzer & Todd, 2000).

In this work, we present the first neural-level account of
the empirical findings supporting pure reasoning in preverbal
infants (Teglas et al., 2011). Our model focuses on learning
simple, high-level physical principles by young infants, al-
lowing them to effectively reason about the physics of their
environment. This is consistent with a substantial body of
work maintaining that cognition is predominantly driven by
heuristics — a set of simple, fast, resource-efficient, approx-
imation algorithms that often work quite well in practice

(Gigerenzer & Gaissmaier, 2011; Gigerenzer & Selten, 2002;
Gigerenzer & Todd, 2000).

Additionally, we showcase how simple heuristics could
be mechanistically implemented using Neural Probability
Learner and Sampler (NPLS), a neural network model that
has provided a unified account of human adults’, human in-
fants’, and chimpanzees’ learning and use of probabilities
across a range of probabilistic tasks (Shultz & Nobandegani,
2022a, 2022b).

Figure 1: Schematic illustration of the stimuli used in (Teglas
et al., 2011). After an occluder hid the balls for 0, 1, or 2 s, a
ball was seen to fall out of a container. The exiting ball was
either a majority-colored ball or a minority-colored ball, and
either close to, or far from, the exit when last visible. Figure
adapted from (Teglas et al., 2011).

In the experiment on pure reasoning in preverbal infancy
(Teglas et al., 2011), 12-month-old infants saw movies of 3
blue balls and 1 red ball bouncing randomly inside a con-
tainer, which had an opening at the bottom (Figure 1). Af-
ter an occluding screen hid the balls for 0, 1, or 2 s, a ball
was seen to fall out of the container. The exiting ball was ei-
ther blue (more numerous) or red (less numerous), and either
close to, or far from, the exit when last visible. Infants’ sur-
prise at the outcome was assessed by recording their looking
time after the resulting exit. How the infants integrated num-
ber and closeness was conditional on the amount of time the
balls were hidden from view. With a near 0 s occlusion, in-
fants used only distance information to predict the color of the
exiting ball. With a 2 s occlusion, they used only number in-
formation. And with a 1 s occlusion, they used a combination
of distance and number. There was no significant interaction
between number and distance in any of the three occlusion-
time conditions, suggesting that infants considered the two
cues additively. Infants were more surprised, and thus looked
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longer, at an unexpected than at an expected outcome.

Methods
Neural Probability Learner and Sampler (NPLS)
Our proposed neural-network model has two modules, each
implemented using the NPLS system (Shultz & Nobande-
gani, 2022a). NPLS has two major components: an enhanced
version of sibling-descendant cascade-correlation (SDCC)
for learning probabilities, and a version of Markov-chain
Monte Carlo (MCMC) to use the network connection weights
in reverse to make inferences about events (Nobandegani &
Shultz, 2017).

SDCC is a deterministic, discriminative, neural-network
algorithm that constructs networks in a relatively autonomous
manner (Baluja & Fahlman, 1994). As in its predecessor,
cascade-correlation (CC), SDCC training starts with a two-
layer network comprising only input and output layers, and
gradually constructs a deeper network by recruiting single
hidden units individually, as needed, to reduce network sum-
of-squared error. Each recruited hidden unit has been trained
to correlate its activation with current network error so that
it can readily use that unit’s error-detection ability to even-
tually reduce that error. Unlike classical cascade-correlation
(CC), which installs each hidden unit on its own unique layer,
SDCC installs the best candidate on the current highest hid-
den layer (as a sibling), or on the next higher layer (as a de-
scendant), depending on which candidate correlates best with
current network error. Sibling units do not receive any in-
put from each other. SDCC thus constructs a variety of net-
work topologies, dependent on the training set and the net-
work’s individual construction history. Like its predecessor
CC, SDCC uses symmetric sigmoidal activation functions
on its hidden units (with range -0.5 to +0.5). For probabil-
ity learning, NPLS uses an asymmetric sigmoidal activation
function for output units (with range 0 to 1).

SDCC learning and development alternates between two
phases: output phase and input phase. In output phase, SDCC
adjusts output connection weights to reduce network error.
When error reduction stagnates, the algorithm changes to in-
put phase to recruit a new hidden unit, adjusting weights en-
tering candidate units to increase the covariance between their
activations and network error. In each of these two phases,
stagnation is detected when there is no progress greater than
a threshold parameter for the number of training epochs spec-
ified by a patience parameter. There is also an outer loop
with its own threshold and patience parameters to monitor
progress over learning cycles, where each such cycle com-
prises an input phase and the next output phase (Shultz &
Doty, 2014). With this ability, NPLS can learn any unnormal-
ized multivariate probability distribution from examples that
specify whether or not an output occurs in the presence of a
particular input (Kharratzadeh & Shultz, 2016). Importantly,
in NPLS, the relevant probabilities are not supplied as learn-
ing targets, but rather emerge naturally from neural-network
learning of event sequences.

CC and SDCC have been used to simulate many empiri-
cal phenomena in cognitive development (Shultz, 2003, 2012;
Shultz & Fahlman, 2010). They both recruit as many hidden
units as needed to solve the problem being learned, captur-
ing both development (via unit recruitment) and learning (via
weight adjustment), thus showing how learning and develop-
ment can work together. Their coverage of developmental
phenomena is typically better than that achieved by symbolic
rules or static neural-networks (Shultz, 2013, 2017). In a con-
structive fashion, they start small and build new knowledge
on top of existing knowledge. These constructive networks
simulate qualitatively distinct stages because of naturally fo-
cusing on the largest current source of error with their cur-
rent computational power before having to extend that power.
To permit learning of probabilistic outcomes, SDCC within
NPLS stops when learning progress stagnates. It turns out
that this is also the point at which output activations match the
probabilities being learned (Shultz & Nobandegani, 2022a).

A useful parameter in NPLS is score-threshold (ST). Tech-
nically, ST is the maximum distance from target training val-
ues (in this case 0 or 1) considered to be correct. The default
value of ST in NPLS is .4, providing a region of uncertainty
around the .5 midpoint of the asymmetric sigmoid activation
function. NPLS networks are run in learning-cessation mode
to ensure that they quit learning when no further progress is
being made in error reduction. Here we set ST to .52 to in-
troduce some realistic additional variation into the learning
process. With the default .4 ST, NPLS processing is typically
much more precise than human processing.

The second major component in NPLS is the use of an
MCMC sampling algorithm to simulate how infants could use
the learned connection weights in reverse to generate exam-
ple predictions of which balls would exit the container at each
of the three time periods. Effectively, this converts a deter-
ministic neural network into a probabilistic generative model
(Nobandegani & Shultz, 2017).

Simulations
We simulate the infant results reported by Teglas et al. (2011)
with a neural-network model comprising two modules (Fig-
ure 2). These modules are implemented by a pair of NPLS
networks that each receive binary-coded versions of the same
input used in the infant experiments, i.e., information on num-
ber and distance. See Shultz & Nobandegani (2022a) for de-
tails on binary-coding of inputs in NPLS.

The number network implements an instantiation of a sim-
ple numerosity heuristic, operationalizing a high-level prin-
ciple of physics according to which a majority-colored item
is more likely to randomly exit a container than a minority-
colored item, provided that the content of the container is
sufficiently shuffled over time. The distance network imple-
ments an instantiation of distance heuristic, operationalizing
another high-level principle of physics according to which an
item closest to an exit is more likely to randomly exit than
items that are farther away.
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Figure 2: Schematic illustration of the neural-network model
accounting for the empirical findings of (Teglas et al., 2011).
The number network (blue oval) and the distance network
(orange oval) are implemented as specialized networks, each
implementing a simple heuristic. For the two extreme experi-
mental conditions (t = 0, 2), one specialized network is fully
operative (full weight, w = 1), while the other is suppressed
(null weight, w = 0). For the intermediate condition (t = 1),
the model takes the average of the recommendations made by
the specialized number and distance networks.

Prior to simulating the reasoning experiment, the num-
ber network (implementing an instantiation of the numerosity
heuristic) is trained to predict that a majority-colored ball is
more likely to be randomly selected than a minority-colored
ball. With a frequency ratio of 3:1, those probabilities are .75
vs .25. Similarly, the distance network (implementing an in-
stantiation of the distance heuristic) is trained to predict that
a ball closest to an exit is more likely to randomly exit than
balls that are farther away; using again a 3:1 distribution,
those probabilities are .75 vs .25. These target probabilities
are never provided to the networks but instead emerge natu-
rally from neural-network learning of event sequences. We
assume that infants have such visual experiences independent
of any participation in a psychology experiment that pits dis-
tance and number cues against each other. The choice of the
3:1 distribution for the distance network allows for minimal
assumptions about the effect of closeness, by having identical
distributions for effects of numerosity and closeness, hence
liberating the simulated infants from having to make currently
unsupported assumptions about whether the distance network
should be trained on a different distribution, and if so, what
that distribution should be. Importantly, as long as the dis-
tance network captures the simple, intuitive understanding
that a closer ball has a higher chance of exiting the container,
all our simulation findings qualitatively hold, highlighting the
robustness of our results.

The rationality of the network implementing the distance
heuristic follows from the intuitive principle that physical ob-
jects barely move during an extremely short time interval.
The rationality of the network implementing the numerosity
heuristic rests on the high-level principle that drawing from a
collection of objects shuffled many times is mathematically
equivalent to random sampling. Therefore, the use of the

number network is well-justified for relatively long occlusion
periods, while the use of the distance network is well-justified
for extremely short occlusion periods.

In simulating the infant experiment (Teglas et al., 2011),
we assume that the distance network is invoked in the short-
est occlusion condition (i.e., the near 0 s occlusion period),
while the number network is invoked in the longest occlu-
sion condition (i.e., the 2 s occlusion period). As such, net-
work selection is justified by ecological rationality (Todd &
Gigerenzer, 2007, 2012; Nobandegani & Shultz, 2019), ac-
cording to which selected heuristics are well-adapted to the
environmental conditions in which they are used. Relatedly,
recent work has effectively cast heuristic selection as a form
of rational meta-reasoning (Lieder & Griffiths, 2017).

Our use of a number network is further supported by re-
cent evidence that young infants form accurate probabilistic
expectations based on numerosity, performing accurate prob-
abilistic inferences similar to those studied here (Denison,
Reed, & Xu, 2013; Xu & Garcia, 2008). Also, several stud-
ies showed children’s and preverbal infants’ sensitivity to dis-
tance in their causal judgments (Schlottmann & Surian, 1999;
Scholl & Tremoulet, 2000), physical reasoning (Teglas et al.,
2011), and integration of physical information (Wilkening,
1981), lending support to our use of a distance network.

Each NPLS network begins learning with just 1 input unit
and 1 output unit. With an error-inducing score-threshold
of .52, these networks recruit from 0-4 hidden symmetric-
sigmoid units, whose activations range from -.5 to .5. The
output unit has an asymmetric sigmoid activation function
with output ranging from 0-1. The most common network
topologies are 3 hidden units on 1 layer (for a 1-3-1 structure),
or 2 hidden units on 1 layer and 1 on another layer (for a 1-2-
1-1 or 1-1-2-1 structure). We run 20 networks in each of the
12 cells of the experiment: 2 numbers x 2 distances x 3 time
periods. After training, these networks are tested on the ball
exiting in each of the 12 experimental conditions. Both out-
put activations (reflecting probability learning) and network
error (reflecting looking time and surprise) are recorded.

Results
Under these parameters, the networks learn their probability
distributions to a high level of accuracy (Figure 3). Mean out-
put activations (with SDs) over 20 networks trained on num-
ber are presented in Figure 3 (top). These networks learn the
3:1 probability distribution of relative numbers of balls in-
side the container, ignoring information on distance from the
exit. As such, these networks come to expect that a majority-
colored-ball exit is about 3 times more likely than a minority-
colored-ball exit, indicative of the numerosity heuristic. A
repeated measures ANOVA reveals a main effect of number,
F(1,19) = 392, p < .001,η2

p = .954, no effect of distance,
F(1,19) = .879, p = .36,η2

p = .044, and no interaction be-
tween number and distance, F(1,19) = 1.077, p = .328,η2

p =
.05.

Comparable results for networks trained on distance from
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the exit are shown in Figure 3 (bottom) in the 0 s condition.
These networks come to expect exit of the closest ball with
a probability of about .75, regardless of ball color frequency,
indicative of the distance heuristic. In this case, there is a
main effect of distance, F(1,19) = 428, p < .001,η2

p = .957,
no effect of number, F(1,19) = 1.335, p = .262,η2

p = .066,
and no interaction, F(1,19) = 1.05, p = .317,η2

p = .053.
Considering the high levels of statistical significance

reached, the networks undoubtedly perform more accurately
than the infants they are simulating. This shows that these
networks are well suited to learning and representing proba-
bility distributions. To match the lesser precision of infants,
we could run the networks with higher score-thresholds, re-
sulting in less learning and fewer hidden units.

The probability distributions in Figure 3 document the
knowledge required to implement and explain the surprise
reactions. Neural network modelers often use network er-

Figure 3: (Top) Mean output activations over 20 networks
trained on number. These networks learn the 3:1 probability
distribution of relative numbers of balls inside the container
(see Figure 1), and ignore any information regarding their dis-
tance from exit before the occurrence of occlusion. (Bottom)
Mean output activations over 20 networks trained on distance
from exit. These networks learn a 3:1 probability distribution
and come to expect exit of the closest ball with a probability
of about .75, regardless of ball color, indicative of the distance
heuristic.

ror as a measure of surprise at unexpected vs. expected out-
comes (Althaus, Gliozzi, Mayor, & Plunkett, 2020; Oakes,
Madole, & Cohen, 1991; Shultz & Cohen, 2004). This mod-
eling choice is well justified as network error quantitatively
captures the gap between observation (the stimuli presented
to participants) and expectation (what stimuli participants ex-
pect to receive). Surprise in infants is typically measured as
increased looking time at an unexpected outcome, as com-
pared to an expected outcome.

Figures 4 (top) and 4 (middle) plot network error to ex-
pected and unexpected outcomes for number and distance
networks, respectively. Like the infants in the 2 s oc-
clusion condition (Teglas et al., 2011), number networks
show more error, indicating surprise, to exit of a minority-
colored ball than a majority-colored ball (Figure 4 (top)).
A repeated-measures ANOVA reveals a main effect of num-
ber, F(1,19) = 393, p < .001,η2

p = .954, but not distance,
F(1,19) = 1.0, p = .330,η2

p = .05, and no interaction be-
tween distance and number, F(1,19) = 1.0, p = .330,η2

p =
.05, as in the infant experiments (Teglas et al., 2011).

Analogously, like infants in the 0 s condition (Teglas et al.,
2011), distance networks display higher error, signaling sur-
prise, to exiting of a ball positioned far from the exit than a
ball close to the exit (Figure 4 (middle)). ANOVA results
here show a main effect of distance, F(1,19) = 428, p <
.001,η2

p = .958, no effect of number, F(1,19) = 1.034, p =

.322,η2
p = .052, and no interaction, F(1,19) = 1.064, p =

.315,η2
p = .053, as in the infant experiments (Teglas et al.,

2011).
To simulate the condition with a 1 s delay between exit and

occlusion removal, there is no training and no special net-
work. Instead, we assume that our system infers what hap-
pens when both number and distance effects are operative,
by taking the mean of the error predictions from each pair of
number and distance networks. As a 1 s delay is halfway be-
tween a 0 s and a 2 s delay, it is plausible to assume that the in-
fants are maximally uncertain as to which of the two networks
should be used, and hence rely equally on both for making
an inference. These means are plotted in Figure 4 (bottom),
along with SDs.

As with the infants in the 1 s condition (Teglas et al.,
2011), there are now main effects for both number, F(1,19)=
119, p < .001,η2

p = .862, and distance, F(1,19) = 370, p <

.001,η2
p = .951. As with the infants (Teglas et al., 2011),

there is no significant interaction effect, F(1,19) = 0.00, re-
flecting additive use of number and distance information.

The Pearson correlation between mean network error and
mean infant looking time across the 12 experiment conditions
is .94, p < .01. This is identical to the Pearson correlation
of .94 between infant looking time and the Bayesian ideal
observer model (Teglas et al., 2011).

Discussion
We simulate these infant results with a novel neural-network
model comprising two modules (Figure 2). These modules
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are implemented by a pair of NPLS networks that each re-
ceive coded versions of the same number and distance input
used in the infant experiments (Teglas et al., 2011). A num-
ber network learns an instantiation of the number heuristic
according to which a majority-colored item is more likely to
randomly exit a container than a minority-colored item, pro-

Figure 4: (Top) Mean network error over 20 number net-
works, as a function of number and distance information,
along with SDs. (Middle) Mean network error over 20 dis-
tance networks, as a function of number and distance, along
with SDs. (Bottom) Mean network error (and SDs) over 20
networks. Our system infers what happens when both num-
ber and distance effects are operative, by taking the mean of
the error predictions from each pair of number and distance
networks.

vided that the content of the container is sufficiently shuffled,
while a distance network learns an instantiation of the dis-
tance heuristic according to which an item closest to an exit is
more likely to randomly exit than items that are farther away.
This probabilistic knowledge enables the networks to simu-
late surprise at unexpected outcomes, modeled as network er-
ror, the discrepancy between what is expected and what actu-
ally happens.

Importantly, as we discussed in the Simulations section,
the use of the number and distance heuristics in our model-
ing work is well-justified by ecological rationality, accord-
ing to which heuristics are well-adapted to the environmental
conditions in which they are used (Todd & Gigerenzer, 2007,
2012).

Past work (Shultz & Nobandegani, 2022a) has shown that
models similar to those used here can account for an exten-
sive series of empirical findings on infant learning and reason-
ing with probabilities, including sample-to-population and
population-to-sample generalizations (Xu & Garcia, 2008),
the emergence of the ability to generalize from samples to
populations at about 6 months of age (Denison et al., 2013),
and how probabilistic knowledge guides preverbal infant’s
choice behavior (Denison & Xu, 2010, 2014).

We also favor the neural network model presented here be-
cause it shows how relevant probability distributions can be
established. In contrast, Bayesian researchers typically sup-
ply probability distributions for free, even if they differ con-
siderably across different tasks. It is doubtful that specific
probability distributions would be supplied by biological evo-
lution because humans can succeed on tasks involving many
different distributions. It is more likely that human infants are
innately equipped with an ability to learn such distributions
from some experiences with the distributions. The idea that
innateness proposals should not be restricted to knowledge
representations has been well discussed elsewhere (Elman et
al., 1996; Shultz, 2003).

It is also worth noting that both the training and test phases
of the SDCC networks used in our work show remarkable
speed and efficiency and the relevant probabilities emerge
naturally at the network outputs, all of which elevates the psy-
chological plausibility of the proposed model.

It remains unknown how much of human intuitive physics
is innate and how much of it is learned through the course of
development. Perhaps, much like in the case of many other
areas of science dealing with successful, but radically differ-
ent and largely opposing, theories of the same empirical phe-
nomenon, the truth likely lies somewhere in between. Pre-
sumably, human infants come to this world with some innate,
but somewhat primitive, core knowledge of physics, e.g., that
the physical world comprises objects (Spelke, 2000). Infants
then expand on that knowledge presumably by way of learn-
ing simple, resource-efficient rules of thumb (aka heuristics),
collectively allowing them to make inferences about ordinary
physical events. Future research should explore how infants’
primitive physics knowledge supports the learning of formal
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physics knowledge later in development.
While many questions remain open, the work presented

here provides a fresh perspective on possible neural under-
pinnings of intuitive physics in preverbal infancy, substantiat-
ing the view that the remarkable array of physical knowledge
demonstrated by infants might be accounted for by a set of
simple, fast, resource-efficient heuristics approximating high-
level, intuitive physics principles. In the spirit of an extensive
body of work on the role of heuristics in human cognition
(Gigerenzer & Gaissmaier, 2011; Gigerenzer & Selten, 2002;
Gigerenzer & Todd, 2000), our work advocates understand-
ing a good deal of infant physics knowledge in terms of a bag
of heuristics: a set of simple, fast, rules of thumb that yield
sufficiently good results.
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