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Abstract

Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and
inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the
major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass
pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both
saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can
also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple
points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel
production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial
glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail
saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than
commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be
converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these
studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification.
This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome
some of the barriers to production of inexpensive cellulosic biofuels.
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Introduction

Growing worldwide energy demands and the threat of global

warming has led nations to seek alternative sources of renewable

energy derived from wind, solar, and biomass. The transportation

sector relies mainly on liquid fuels, such as gasoline and diesel,

because they are energy dense and fungible. Development of

renewable liquid fuels, like bioethanol and advanced biofuels will

reduce reliance on fossil fuels. Currently, bioethanol is produced in

the United States mostly by hydrolysis and fermentation of corn

starch. Yet, starch from corn ethanol may not be the ideal carbon

source for fuel production in the long term [1]. Cellulosic biomass

provides a more sustainable source of fermentable sugar and it is

estimated that a billion tons are available annually in the US [2].

Roughly half of that biomass is composed of cellulose that, after

hydrolysis to glucose, can be fermented into cellulosic biofuels

[3,4]. Some of the few cellulosic biofuel companies in operation

the US, such as Poet (www.poet.com), extract glucose from

biomass by physical and chemical pretreatment to reduce its

recalcitrance followed by enzymatic saccharification to release

glucose from plant cell wall polymers [5,6,7].

Biomass recalcitrance is a difficult barrier to commercial

deployment of cellulosic biofuels, yet there are a few promising

pretreatments currently available or under development. For

example, pretreatment with ionic liquids (ILs), such as 1-ethyl-3-

methylimidazolium acetate ([C2mim][OAc]) dramatically reduces

biomass recalcitrance and enhances the enzymatic hydrolysis of

fermentable sugars [8,9]. The bioprocessing configuration in

Figure 1A outlines an IL-pretreatment scheme that reflects the

current state of the art (based on a survey of the literature) and
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highlights some potential problems associated with this configu-

ration. These problems include: 1) IL-pretreatment is frequently

conducted using 100% IL at high temperatures (120–160uC)

[8,10]; 2) ILs are currently expensive so any viable bioprocessing

scheme must include efficient IL recycling [11]; 3) this pretreat-

ment configuration requires extensive washing of the biomass post-

pretreatment to completely remove ILs, which can inhibit

downstream saccharification and fermentation [12,13,14]. Wash-

ing has a negative impact in this scheme, increasing costs through

energy-intensive evaporation or reverse osmosis recycling of ILs.

More recent studies have shown that lower IL concentrations

(25–50% w/v) in water may also be effective in pretreating

biomass, potentially reducing the amount of washing required

prior to enzymatic saccharification [15]. Pretreament with these

lower IL concentrations presents the possibility to explore

alternate, potentially more inexpensive, bioprocessing configura-

tions in which the washing step is removed. The configuration in

Figure 1B outlines one potential IL/water-based scheme that

combines IL-pretreatment and saccharification into a single pot,

followed by direct extraction of sugars. Brennen et al. demon-

strated that boronate complexes can extract up to 90% of sugars

from an aqueous IL solution [16]. In this configuration, the

boronate extraction method could be used to separate the sugars

away from the ILs, eliminating the requirement for extensive

washing. Boronate extraction may also separate sugars from any

biomass-derived inhibitors, which have been associated with other

types of pretreatment but have not been fully investigated in

regards to IL-pretreatment [17]. Other methods to extract sugars,

such as chromatography or membrane-based separation, could

also potentially be used at this step.

The single-pot configuration requires biomass-deconstructing

enzymes that are tolerant to concentrations of .20% IL. At these

high IL concentrations, glycoside hydrolase enzymes in commer-

cial biomass-degrading enzyme cocktails derived from filamentous

fungi are inactive [12,18]. However, glycoside hydolases have

been isolated from thermophilic and halophilic microbes that

tolerate up to 30% IL, suggesting that these enzymes may be good

targets for the development of IL-tolerant cellulase cocktails

[12,18,19,20]. These highly stable enzymes will be of use in IL-

pretreatment based bioprocessing platforms, and may also benefit

platforms that utilize thermophilic fuel production hosts, such as

Clostridium thermocellum or Thermoanaerobacterium saccharolyticum, for

simultaneous saccharification and fermentation (SSF) [21,22,23].

In this study, we used thermoohilic enzymes to develop an IL-

tolerant cellulase cocktail, called ‘‘JTherm’’, which is compatible

with the single-pot bioprocessing configuration outlined in

Figure 1B. We took a hybrid approach where we combined

native enzymes produced by a thermophilic bacterial community

with recombinant thermostable enzymes. In addition, to validate

the IL-pretreatment bioprocessing scheme in Figure 1A we

assessed the impacts of hydrolyzates of IL-pretreated biomass

produced by both JTherm and a commercial cocktail on fuel

production in an E. coli strain engineered to produce FAEEs, a fuel

equivalent to biodiesel.

Results

A thermophilic bacterial consortium with biomass
degrading activity

Previously, several thermophilic (60uC) switchgrass-adapted

microbial communities were found to produce thermophilic

Figure 1. A flow diagram of two potential biomass-to-biofuel bioprocessing configurations that utilize IL-pretreatment. A) Diagrams
a configuration based on methods currently established in the literature and lists some potential barriers to commercialization (Problems). B) This
configuration combines IL-pretreatment and saccharification into a single pot and may overcome barriers outlined in A (as listed in the solutions
section), but requires an IL-tolerant cellulase cocktail, such as JTherm.
doi:10.1371/journal.pone.0037010.g001

Ionic-Liquid Tolerant Cellulase Cocktail
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glycoside hydrolases that were IL-tolerant [18]. One of these

consortia was then perturbed with a variety of biomass-derived

carbon sources and found to produce higher levels of endogluca-

nases when grown on microcrystalline cellulose (McCel) [24]. In

this study, the enzymes produced by the McCel-adapted

consortium were used as the endoglucanase component of an

IL-tolerant enzymatic cocktail. The microbial community profile

of this consortium was generated by amplicon pyrosequencing of

SSU (small subunit) rRNA genes, and bacterial populations related

to Thermus thermophilus, gram-positive thermophilic Paenibacilli, and

Rhodothermus marinus, some of which are know biomass degraders,

were found to compose 97% of the community (Figure 2)

[25,26,27,28].

A variety of glycoside hydrolase (GH) activities were detected in

the supernatant recovered from the McCel-adapted consortium,

including high levels of endoglucanase and xylanase activity

(Table 1). MS-based proteomic measurements of the supernatant

identified 124 proteins produced by the McCel-adapted consor-

tium, with the most abundant proteins functionally grouping

around sugar transport (ABC transporters), and the cell wall of

gram positive bacteria (S-layer homology domain proteins).

Proteins involved in sugar metabolism (glycoside hydrolases, sugar

isomerases, sugar binding proteins, and sugar transporters) and

oxidative stress (superoxide dismutase and catalase) were also

frequent among the proteins detected in the supernatant (data not

shown). The proteomics identified six glycoside hydrolase proteins

in the supernatant, including 3 endoglucanases (GH5/9) and one

cellobiohydrolase (GH48) (Table 2). A xylanase and an arabino-

furanosidase were also identified. Mapping of these proteins to

phylogenetic bins in metagenome demonstrated that they were

expressed by the Paenibacillus population (see methods). In an

attempt to correlate the activities measured in the supernatant

with the proteomics, zymography was use to determine the

number and molecular weight of endoglucanases and xylanases

produced by the consortia (Figure S1). The supernatant harbored

five or six major CMC-reactive bands and four xylan-reactive

bands. Several of the glycoside hydrolases identified by the

proteomics have predicted molecular weights that correspond to

three of the major endoglucanases and one minor endoxylanases

identified in the zymograms.

Formulation of the JTherm cellulase cocktail
A cellulase cocktail requires a minimum of three types of

glycoside hydrolase enzymes to efficiently liberate glucose from

biomass: endoglucanase, cellobiohydrolase (CBH), and b-glucosi-

dase (BG) [29]. The McCel-adapted consortium produced

relatively low levels of CBH and BG activities (Table 1). To

create a more efficient cellulase cocktail, the endoglucanase-rich

supernatant recovered from the consortium was supplemented

with a recombinant CBH (CBM3-GH5 of CelB) from Caldicellu-

losiruptor saccharolyticus and BG from Thermotoga petrophila. The

activity of this cocktail, called JTherm, was validated by it’s a

ability to saccharify IL-pretreated switchgrass (Table 1; Figure 3)

[30].

To find the optimal ratio of cellulase enzymes for JTherm to

deconstruct IL-pretreated switchgrass, a fixed supernatant con-

centration from the McCel-adapted consortium (0.66) was mixed

with variable amounts of CBH and BG (0.5 to 4 mg of each

enzyme/g biomass). These mixtures were tested for their ability to

release glucose from the pretreated switchgrass at 70uC (Figure 3).

The saccharification reactions were performed in M9TE medium

(M9 minimal medium with added trace elements), which is

Figure 2. A pie chart showing the percent relative abundance of each taxon in the McCel-adapted thermophilic bacterial consortia.
SSU pyrosequencing was conducted to identify community members. Only members with a relative abundance greater than 1% are reported.
Relative abundance is calculated as a percentage of the total number of SSU reads for the community. The closest taxon to each organism in the
community is reported in the legend. The percent identity between the consortial and closest taxon SSU sequence is in parentheses.
doi:10.1371/journal.pone.0037010.g002

Table 1. Glycoside hydrolase activities produced by the
thermophilic community.

Enzyme Activity (U/ml) STDEV

Endoglucanase 0.466 0.015

Cellobiohydrolase 0.014 0.001

b-D-glucosidase 0.041 0.001

Endoxylanase 1.319 0.013

a-L-arabinofuranosidase 0.210 0.010

b-D-xylosidase 0.018 0.001

Endoglucanase and endoxylanase activities were determined using the DNS
assay on carboxymethyl cellulose or birtchwood xylan. Other activities were
assessed using p-nitrophenyl substrates. U = mmol/min and is reported as the
mean and standard deviation of triplicate experiments.
doi:10.1371/journal.pone.0037010.t001

Ionic-Liquid Tolerant Cellulase Cocktail
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commonly used for growth of E. coli to enable downstream

microbial fuel production. While the supernatant alone released

0.4 mM glucose and 1 mM cellobiose from IL-pretreated

switchgrass (4% of the total glucan), it released 22 mM of glucose

(36% of the total glucan) when supplemented with 0.5 mg of CBH

and BG/g of switchgrass (Figure 3A). In the absence of the

supernatant, the same amount of CBH and BG released 4 times

less glucose (6.1 mM), indicating a synergistic interaction between

the glycoside hydrolase enzymes in the supernatant and the added

recombinant enzymes (Figure 3B). At the highest CBH/BG

loading tested (4 mg/g biomass) this synergistic relationship was

lost; the levels of glucose release were similar to that of the two

recombinant enzymes alone (36 mM vs. 30 mM glucose, respec-

tively). However, a greater proportion of the total glucan content

was converted to glucose (,50 to 60%) at those enzyme loadings.

Combining the supernatant with the CBH or BG individually

released limited amounts (,10 mM) of glucose and cellobiose,

indicating that both enzymes are required for efficient hydrolysis

(data not shown).

Tolerance of JTherm and CTec2 to temperature and ionic
liquids

The JTherm cocktail (formulated with 0.5 mg of BG and CBH/

g biomass) and the commercial cocktail CTec2 (Novozymes) were

profiled for their ability to liberate glucose from IL-pretreated

switchgrass at high temperatures and in the presence of

[C2mim][OAc] (Figure 4). The activity of the JTherm cocktail

was highest at 50uC, yet it retained 97 and 65% of its activity at 70

and 80uC, respectively (Figure 4). JTherm was most active in the

presence of ILs at 50uC (78 and 54% activity in 10 and 20% IL

(w/v), respectively). This IL tolerance was slightly lower at 70uC,

and JTherm even retained some activity in ILs at 80uC. The

CTec2 cocktail however showed minimal activity at higher

temperatures (70–80uC) or in the presence of ILs (23% activity

in 10% (w/v) IL at 50uC).

JTherm and CTec2 switchgrass hydrolysate analysis and
FAEE biodiesel production

JTherm and CTec2 IL-pretreated switchgrass hydrolysates were

tested for their ability to be converted into biofuel by a strain of E.

coli engineered to produce FAEEs. To estimate the conversion

efficiency of the hydrolysates, fuel production was compared to

control medium containing only purified sugars, glucose and/or

xylose (Figure 5) [5]. The hydrolysates were scaled up to produce

sufficient amounts of sugars for microbial fuel production using

higher biomass (10% w/v) and enzyme (1 mg of BG and CBH/g

biomass for JTherm) loadings. Hydrolysates produced by JTherm

at 70uC were light brown and those from CTec2 at 50uC were

Table 2. Cellulase and xylanase from the thermophilic community identified by proteomics.

Predicted Function Source Organism IMG gene_oid Protein (AA) pfam pfam info

Endoglucanase Paenibacillus 2061998357 768 00759; 00942 Glyco_hydro_9; CBM_3

Endoglucanase Paenibacillus 2062016312 542 00759; 02927 Glyco_hydro_9; CelD_N

1,4-beta-cellobiosidase Paenibacillus 2062032019 770 02011 Glyco_hydro_48

Cellulase/beta-1,4-mannanase No match 2061990256 518 00150; 00942 Glyco_hydro_5; CBM_3

Beta-1,4-xylanase Paenibacillus 2061982776 581 00331; 02018 Glyco_hydro_10; CBM_4_9

Alpha-L-arabinofuranosidase Paenibacillus 2061991733 496 6964 Alpha-L-AF_C

Predicted function of the proteins identified by proteomics is based on comparisons of the genes in the metagenome to the pfam, Clusters of Orthologous Groups
(COGs), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The IMG gene oid is the gene identifier for The Joint Genome Institute’s Integrated
Microbial Genomes database http://img.jgi.doe.gov/. The pfam assignment of the metagenome gene is indicated.
doi:10.1371/journal.pone.0037010.t002

Figure 3. Enzymatic saccharification of IL-pretreated switchgrass by JTherm at 706C pH 5.5. The supernatant from the thermophilic
community at fixed concentration of 0.66was augmented with various amounts of CBH and BG, and liberated glucose (¤) and cellobiose (&) from
IL-pretreated switchgrass were measured after 72 h incubation. Enzyme combinations were as follows: (A) supernatant, CBH, and BG; (B) CBH and BG
without supernatant. The reaction was in a 1 ml volume with 25 mg of IL-pretreated switchgrass.
doi:10.1371/journal.pone.0037010.g003

Ionic-Liquid Tolerant Cellulase Cocktail
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slightly darker brown. The fact that IL-pretreated switchgrass is

brown in color suggests that, in addition to the sugars, other

biomass-derived compounds are being released into the hydroly-

sates during saccharification. An absorbance scan of the hydro-

lysates was conducted to quantify this observation, and the CTec2

hydrolysate showed a greater overall absorbance between 280 and

500 nm, with peaks at 280 and 315 nm (Figure S2). The

absorbance pattern of the hydrolysates showed some similarity

to an organosolv purified lignin (Figure S2). The saccharifications

were performed at 10% (w/v) biomass loadings, which were

initially semi-solid but liquefied over the course of the 72 h

incubation. CTec2 liquefied the biomass faster than JTherm (24 h

vs. 48 h), and at the end of the reaction, the CTec2 treated

biomass formed a more compact pellet than that produced by

JTherm (28 vs 38% of the total saccharification volume). Sugar

yields from the biomass indicated that CTec2 liberated 71% of the

glucose and 100% of the xylose from the biomass, while JTherm

liberated 48% of the glucose and 25% of the xylose (see methods).

These observations indicated that of the two cocktails, CTec2

more thoroughly hydrolyzed the polysaccharides and deconstruct-

ed the biomass.

Comparison of the hydrolysates and control medium, each

diluted to a final concentration of 2% glucose, revealed that the

engineered E. coli strain could produce FAEE biodiesel from both

hydrolysates, but not with equal efficiency. The JTherm hydro-

lysate produced equal amounts of FAEE as its control while the

CTec2 hydrolysate produced 58% less FAEE than its control

(Figure 5A). The E. coli strain did not completely utilize the glucose

in either hydrolysate, while the all sugar was consumed in the

control medium (Figure 5B). After fermentation, 55% of the

glucose remained in the CTec2 hydrolysate and 37% of the

glucose remained in the JTherm hydrolysate. These results

indicate that both the hydrolysates may contain inhibitors, yet

they appear to be present at lower levels in the JTherm

hydrolyzate where fuel production is not impaired.

Inhibition of FAEE production by [C2mim][OAc]
Residual [C2mim][OAc] remaining in the biomass after

pretreatment has been shown to inhibit growth in S. cerevisiae at

concentrations as low as 0.3% (w/v) in the hydrolysate [31]. The

JTherm and CTec2 hydrolysates contained only 0.05% and

0.07% (w/v) [C2mim][OAc], respectively, so it is unclear whether

such low IL concentrations would inhibit E. coli growth and fuel

production (see methods). An analysis of the inhibitory effect of

[C2mim][OAc] on FAEE production in E. coli revealed that IL

concentrations as low as 0.1% (w/v) partially inhibit FAEE

production (25% reduction) and sugar consumption (Figure 6A

and B). However, this inhibitory effect was too mild to explain the

Figure 4. Activity of the JTherm and CTec2 cellulase cocktails on ionic-liquid pretreated switchgrass at various temperatures and in
the presence of the ionic liquid [C2mim][OAc]. Samples were run at 2.5% w/v biomass loadings in 1 ml and incubated at pH 5.5 for 72 h with
shaking.
doi:10.1371/journal.pone.0037010.g004

Figure 5. Biodiesel produced by an engineered E. coli strain fed hydrolysates derived from JTherm or CTec2 hydrolysis of IL-
pretreated switchgrass. (A), and percentage of glucose remaining after fermentation (B). Glucose levels were adjusted to 2% for all hydrolysates
and controls. The JTherm and CTec2 controls contained purified glucose and xylose at the same levels as their corresponding hydrolysate. No xylose
was consumed during the fermentation (data not shown). Error bars indicate the standard deviation of triplicate experiments.
doi:10.1371/journal.pone.0037010.g005

Ionic-Liquid Tolerant Cellulase Cocktail
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concomitant reduction in FAEE production (58%) and sugar

consumption seen in the CTec2 hydrolysate, indicating the

presence of additional inhibitory compounds in the hydrolysate.

Inhibition of E. coli growth by the CTec2 hydrolysate
To gain a better understanding of the mechanisms behind the

inhibition of FAEE production, growth, sugar consumption and

respiration of the FAEE producing E. coli strain were monitored

during fermentation of the CTec2 hydrolysate, as it exhibited the

strongest inhibitory effect (Figure S4). Comparison of cell densities

and oxygen transfer rates (OTR) between the CTec2 hydrolysate

and controls shows that the E. coli strain has a pronounced lag

phase (40 h longer) in the hydrolysate (Figure 7A and B). Once

growth begins, the maximum oxygen utilization rate is slightly

higher in the hydrolysate versus the control (0.174 vs 0.118 h21;

based on the first respiration peak). However, growth in the

CTec2 culture appears to lag behind the oxygen utilization rate,

with cell density reaching an OD600 of only 3.0 after the second

respiration peak in the CTec2 culture versus 9.5 in the control,

indicating a slower growth rate. Eventually the cells in the CTec2

hydrolysate reach a maximum density similar to the control, but it

takes much longer to do so (70 vs 50 h after the beginning of

exponential growth).

Discussion

In this study, we developed a thermo- and IL-tolerant cellulase

cocktail, JTherm, that liberates sugars from biomass in the

presence of up to 20% ionic liquid. A correlation between

thermotolerance and IL tolerance has been established for purified

thermophilic glycoside hydrolases, and this correlation was used to

develop an ionic liquid-tolerant cellulase cocktail [18,20]. This

correlation was confirmed for native thermophilic endoglucanase

and xylanase enzymes produced by the bacterial consortia in this

study, as well as the recombinant BG and CBH, derived from two

different thermophilic bacteria. The combination of these enzymes

produced a cellulase cocktail able to withstand IL concentrations

that completely inactivated a commercial fungal-derived cellulase

cocktail.

Although it is not clear why the correlation between thermo-

tolerance and IL-tolerance exists, these data suggest that IL-

tolerance may be a general characteristic of thermophilic enzymes

and that the use of these enzymes is one potential route to

generating commercial IL-tolerant cellulase cocktails. The JTherm

cocktail provides an exemplary demonstration, but higher titers of

these enzymes will be required to scale up saccharification with

this cocktail. Commercialization would also require the identifi-

cation of the most important enzymes produced by the bacterial

community, and optimization of a recombinant expression system

to produce high titers of these enzymes. It will be useful to

compare a purely recombinant bacterial cellulase cocktail to

JTherm to determine whether a limited subset of enzymes is as

effective at deconstructing biomass as a native cocktail, as has been

done for the components of the cellulase cocktail in Trichoderma

reesei [32]. Comparison of the native mixture of glycoside

hydrolases with a purely recombinant cocktail will also indicate

whether bacterial accessory enzymes are present that may account

for the synergistic activities observed at low CBH and BG

loadings.

The JTherm cocktail functions relatively well in 20% (w/v)

[C2mim]OAc, between 50 and 70uC, but its activity was reduced

by approximately 50% at 70uC, indicating that it is unlikely to

function well at much higher IL concentrations. This observation

limits the levels of ILs that can be used for pretreatment, or

requires the addition of water to the IL-pretreated biomass prior to

saccharification with JTherm. However, studies have shown that

aqueous IL solutions close to 20% IL can be used to pretreat

biomass, indicating that this limit is not a major barrier to

combining enzymatic saccharification with pretreatment, as

outlined in the configuration in Figure 1B [15]. Even if pure ILs

are used for pretreatment, having enzymes that are active in a

20% IL solution may reduce the amount of water needed to wash

the biomass after pretreatment with ILs. In this study, significant

amounts of water and ethanol were used to remove ILs from the

biomass prior to saccharification, yet there was still about 0.5% IL

left in the biomass. Any fewer washes would likely lead to issues

with enzyme inhibition during saccharification (for commercial

fungal enzymes) or downstream inhibition of microbial fuel

production, as we showed that even 0.1% w/v IL begins to

inhibit fuel production in E. coli. The configuration in Figure 1B

would circumvent washing altogether by extracting sugars

liberated from biomass by JTherm with chemical or physical

separation techniques, which may also remove any biomass-

derived inhibitors. Now that the JTherm cocktail has been

formulated and validated, this alternate configuration may be

Figure 6. Effects of ionic liquids on biodiesel production by an engineered E. coli strain. The strain was fed either 2% glucose or a CTec2
hydrolysate of IL- pretreated switchgrass containing 0–1% (w/v) [C2mim][OAc] [(A). The percentage of glucose remaining after fermentation was
measured (B). Glucose levels were adjusted to 2% for all hydrolysates and controls. The CTec2 control contained equivalent amounts of purified
glucose and xylose as the hydrolysate. No xylose was consumed during the fermentation (data not shown). Error bars indicate the standard deviation
of triplicate experiments.
doi:10.1371/journal.pone.0037010.g006
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tested in future studies, where the economic viability of each

bioprocessing configuration can be assessed and compared.

A successful biomass-to-biofuel bioprocessing configuration

requires the efficient microbial conversion of hydrolysates of

pretreated biomass into fuel. Biomass-deconstructing enzyme

cocktails are commonly used to saccharify pretreated biomass

but they have the potential to liberate inhibitor compounds from

the biomass along with the sugars, and these compounds can have

a deleterious effect on biofuel production [33]. The JTherm and

CTec2 cocktails liberate sugars from IL-pretreated switchgrass,

but the hydrolysates appear to be contaminated with low levels of

ILs and possibly other biomass-derived inhibitors that together can

inhibit growth and reduce fuel production [14]. The fact that

JTherm did not exhibit lower FAEE production indicates that this

enzyme cocktail does not release significant amounts of these

inhibitors into the hydrolysate. In contrast, the pronounced lag

phase that occurs in the CTec2 hydrolysate indicates transient

inhibition of the E. coli strain, which is consistent with the presence

of biomass-derived inhibitors that may force the cells to undergo a

stringent response and adapt to the inhibitors before growth can

occur [33,34,35]. The lower FAEE production in the CTec2

hydrolysate compared to JTherm and control medium may

therefore be a consequence of diversion of cellular energy and

resources towards detoxification, i.e. through the use of active

efflux pumps to remove inhibitors from the cell, and away from

cell growth and fuel production [36,37]. Further detailed

characterization of the cellular response to these hydrolysates will

be needed to understand the mechanisms behind the transient

inhibition and reduced fuel production.

In summary, we generated an IL-tolerant cellulase cocktail to

enable the development of efficient and potentially inexpensive IL-

pretreatment bioprocessing configurations that may reduce

barriers to commercialization (i.e. simultaneous IL-pretreatment

and saccharification), and examined the feasibility of using IL-

pretreated lignocellulosic biomass to produce biofuels. A thermo-

philic and IL-tolerant cellulase cocktail, called JTherm, was

constructed by combining native and recombinant enzymes

derived from thermophilic bacteria. This cellulase cocktail stands

alone in its ability to function so efficiently in the presence of

[C2mim][OAc], one of the most potent ionic liquids used for

biomass pretreatment. Several other studies have investigated IL-

tolerant cellulase cocktails, but those studies either use ILs that

pretreat biomass less effectively than [C2mim][OAc] or excessive

amounts of celllulase enzymes, both of which are unlikely to lead

to commercially viable technologies [8,38,39]. In addition, to

explore the possibility of whether microbial inhibitors could be

generated during enzymatic hydrolysis of IL-pretreated biomass,

hydrolysates were generated by JTherm and CTec2 and fed to an

E. coli strain engineered to produce FAEE biodiesel. To our

knowledge, this is the first report of the production of an advanced

biofuel from IL-pretreated biomass using a metabolically engi-

neered organism. Like S. cerevisiae, E.coli is inhibited by ILs, and by

unidentified, possibly biomass-derived, inhibitors [31]. This study

both confirms the feasibility of using IL-pretreatment to produce

biofuels and shows that thermotolerant enzymes can be used to

develop IL-tolerant enzymes cocktails that can potentially lead to

the development of inexpensive IL-based biomass-to-biofuels

technologies.

Materials and Methods

Cultivation of the thermophilic community and
supernatant preparation

The thermophilic bacterial community was grown on micro-

crystalline cellulose in M9TE minimal medium as described

previously [18,24]. Briefly, a thermophilic bacterial community

cultivated on switchgrass at 60uC was used to inoculate a 50 ml

culture containing 1% (w/v) microcrystalline cellulose in M9

minimal medium supplemented with trace elements. The culture

was then incubated for 2 weeks at 60uC with shaking at 200 rpm.

This community was maintained by serial passage (1:25 dilution)

under the same conditions. The complement of proteins in the

supernatant was prepared by removing all insoluble material

(biomass and microcrystalline cellulose, which were saved for

DNA isolation) from the culture by centrifugation at 21,0006g for

5 minutes, followed by filtration of the supernatant through a

0.2 mm filter. The supernatant was then aliquoted into 1 mL

volumes, lyophilized, and stored at 280uC.

DNA isolation and SSU rRNA pyrosequencing
The solid fraction from 8 mL of the McCel culture containing

the thermophilic bacterial community was collected in 2 mL lysing

matrix E tubes (MP Bio # 116914050) and frozen at 280uC.

DNA isolation and SSU pyrosequencing were performed as

previously described [18].

Figure 7. Growth of an E. coli strain engineered to produce biodiesel on CTec2 hydrolysate (A) and control sample containing 2% glucose
and 1% xylose (B). Oxygen transfer rate (OTR), and cell density (OD600) were monitored during the fermentation to determine the impacts of the
hydrolysate on growth and respiration.
doi:10.1371/journal.pone.0037010.g007
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Proteomics
Aliquots of the thermophilic community supernatant proteins

were split into two fractions and either pelleted or separated by

size on denaturing SDS PAGE gels. The Coomassie-stained bands

from the gels were excised and digested with trypsin by using

established procedures [40] and the protein pellet was digested

with trypsin using the following procedure [41]. Peptide sequences

were identified by liquid chromatography-mass spectrometry

methods described previously [42]. Peptides were identified by

using the MASCOT search algorithm searched against sequences

from a metagenome of the parent switchgrass-adapted culture

(metagenome manuscript in preparation)16. Briefly, metagenome

shotgun sequence data was sequenced, assembled and annotated

at the DOE Joint Genome Institute (sequences are available at the

JGI IMG/M Genomes site using the Taxon Object ID

2061766001). Contiguous sequences containing phylogenetic

markers were used to identify phylogenetic bins, and the

remaining contigs were mapped to these bins using ClaMS

(http://clams.jgi-psf.org/). The bins were used to predict the

source organism of the peptides identified by mass spectrometry.

Proteins were considered to have a positive identification if they

had at least two matching peptides.

Zymography
Zymograms were generated as previously described [18]. A

volume of 10 mL of the supernatant was run in each zymogram

and the enzyme reaction was conducted in 50 mM sodium acetate

buffer pH 5.0 at 70uC for 30 to 120 minutes. Zymograms were

stained with 0.1% Congo red dye and negative images were taken

to highlight the clearing zones.

Ionic liquid pretreatment of switchgrass
Switchgrass was pretreated with the ionic liquid 1-ethyl-3-

methylimidazolium acetate ([C2mim][OAc]) at a 10:1 w/w ratio

at 120uC for 3 h. The biomass was recovered by adding an equal

volume of deionized water, and then washed three times with an

equal volume of water, once with an equal volume of ethanol, and

once more with an equal volume of water. The biomass was then

dried by lyophilization and used directly in saccharification

experiments. The IL-pretreated switchgrass was composed of

41% glucan and 13% xylan, determined as previously described

[43]. The amount of [C2mim][OAc] remaining in the switchgrass

was estimated using the measured IL concentrations in the

hydrolyzate after saccharification (see methods below); the IL

concentration in the hydrolyzate was determined to be 0.05%, and

at 10% w/v loadings of IL-pretreated biomass in the saccharifi-

cation that would equal approximately 0.5% IL left in the biomass

after pretreatment.

JTherm cellulase cocktail formulation
The lyophilized supernatant was reconstituted in M9TE at

pH 5.5. The recombinant cellobiohydrolase (CBH) was a trun-

cated construct of CelB (CBM3-GH5) from C. saccharolyticus and

the b-glucosidase (BG) from T. petrophia (UniProt ID: A5IL97)

were expressed in E. coli with a C-terminal His(66)-tag in the

pDEST42 expression vector (Invitrogen; Carlsbad, CA), and

purified as described previously by using IMAC and anion

exchange chromatography [30]. The purified recombinant

enzymes were buffer exchanged in M9TE at pH 5.5 using a

DG10 desalting column (Bio-Rad, Hercules, CA). The perfor-

mance of enzymatic saccharification of IL-pretreated switchgrass

by JTherm was tested by mixing various amounts of CBH and BG

(12.5 mg to 100 mg of each) to 0.66 concentration of the

supernatant in 1 ml reaction volume (0.6 mL of reconstituted

supernatant) containing 25 mg of IL-pretreated switchgrass. The

enzymatic saccharification was done at 70uC for 72 hr with

constant shaking. The pH of the M9TE reaction buffer was set at

5.5, because it drops to near 5.0 during the saccharification. The

hydrolyzate was separated by centrifugation at 14,0006 g for

10 min followed by syringe filtration. The amount of cellobiose

and glucose released in the hydrolyzate was measured by Agilent

1100 series HPLC equipped with an Aminex HPX-87H ion

exchange column (Biorad), using 4 mM H2SO4 as solvent, a flow

rate of 0.6 ml min21 and a column temperature of 50uC. Sugars

were detected with Agilent 1200 series DAD and RID detectors.

JTherm cellulase cocktail thermostability and tolerance
to ionic liquids

Enzymatic saccharification of IL-pretreated switchgrass by the

JTherm cocktail (0.66supernatant, and 0.5 mg/g biomass of each

purified recombinant CBH and BG) was tested at 50, 70, and

80uC, and in 10 or 20% (w/v) of the ionic liquid [C2mim]OAc.

The CTec2 cellulase cocktail kindly provided by Novozymes

(Davis, CA) was used as a control and was loaded at 12 mg

enzyme product/g biomass. A dose curve for CTec2 was

generated to determine optimal enzyme loading using the same

setup described below at 50uC (Figure S3). Each reaction

contained 1 mL of M9TE at pH 5.5 (the pH was adjusted with

HCl) with 0, 10, or 20% (w/v) ionic liquid, enzyme, and 25 mg

IL-pretreated switchgrass. The pH of the medium was initially set

at 5.5 due to the observation that the pH drops during

saccharification to around 5.0, which is the optimal pH for

CTec2. The JTherm cocktail functions well between pH 5.0 and

7.0, so its initial pH was also set to 5.5 to simplify the experimental

design. The enzymes and the other components of the reaction

were preheated separately at 50, 70, or 80uC for 10 minutes

before mixing and the reaction was shaken for 72 hr at the

appropriate temperature. Levels of sugars produced in the

hydrolysate were measured using HPLC as described above.

Saccharification of IL-pretreated switchgrass
IL-pretreated switchgrass hydrolysates were generated to

determine whether they would support growth of an E. coli strain

engineered to produce fatty acid ethyl-ester (FAEE) biodiesel [5].

The hydrolysates were generated in a 10 mL scale with 1 g of IL-

pretreated switchgrass in M9TE medium pH 5.5. Since the

biomass loadings were increased to 10% w/v, the BG and CHB

enzyme loadings were increased to 1 mg/g biomass for JTherm

and 15 mg EP/g biomass for CTec2. The JTherm reaction was

performed at 70uC and the CTec2 at 50uC. The JTherm

generated a hydrolysate with 2.1% glucose and 0.36% xylose,

while the CTec2 cocktail generated a hydrolysate with 3% glucose

and 1.6% xylose. The hydrolysates were then centrifuged at

6,000 g for 10 minutes (the volume the biomass pellet occupied

was measured to determine the extent of biomass degradation), the

supernatant was passed through a 0.2 mm filter, and the pH was

adjusted to 7.0 with KOH (generating KCl salt). Next, 50 mL of

1.5 M MOPS pH 7.4 and 30 mL of 50 mg/mL NH4Cl were

added per 1 mL of supernatant, and the entire solution was filter

sterilized. The CTec2 hydrolysate was diluted to 2% glucose 1%

xylose in the same medium. Control M9TE medium was made

containing all chemicals above, 2% glucose, and either zero, 0.4,

or 1% xylose. Sugar levels before and after fermentation were

measure by HPLC as described above.
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FAEE biofuel production from hydrolysates using an E.
coli biocatalyst

The FAEE producing E. coli strain [5] was adapted to the 2%

glucose control M9TE containing 50 mg/mL chloramphenicol,

100 mg/mL carbenicillin, 5 mg/mL tetracycline, and 1 mg/mL

thiamine overnight at 37uC with shaking at 200 rpm. Cells were

grown to an OD600 of between 0.5 and 0.8, pelleted by

centrifugation at 6,000 g at 25uC, and resuspended to an OD600

of 1.0 in the aforementioned hydrolyzates and control medium,

with additional 25 mM IPTG, 150 mg/mL chloramphenicol,

200 mg/mL carbenicillin, 15 mg/mL tetracycline, and 0.1 ng/

mL thiamine. To test the effects of IL on fermentation,

[C2mim]OAc was added to CTec2 hydrolyzate or 2% glucose

control medium samples at 0.1, 0.5, and 1% (w/v). Cultures were

grown in 2 mL aliquots in triplicate at 37uC with shaking.

For growth curves and OTR measurements, CTec2 hydroly-

sates were prepared in duplicates of 35 mL volume in a similar

manner with the following exceptions: Korz medium lacking

citrate was used instead of M9TE, 2 M MOPS pH 6.9 was added

to a final concentration of 200 mM, and NH4SO4 was substituted

for NH4Cl to a final concentration of 8 g/L. Control media

contained 2% glucose 1% xylose with or without added CTec2

enzyme product at the same loadings used for saccharification,

and 2% glucose. The hydrolysates were inoculated with E. coli as

described above, except at an OD600 of 0.05, and grown in a

Respiration Activity Monitoring System (RAMOS) [44] system

within a Kuhner labterm LT-X shaker. Cultures were grown at

37uC and shaken at 250 rpm with a shaking diameter of 50 mm.

Maximum measurement time was set at 25 min and rinsing time

set at 10 min with 10 ml/min air flow. Samples for sugar and

OD600 measurements were taken at several time points. Maximum

respiration rate was calculated as ln(OTRb/OTRa)/(tb2ta), where

ta and tb are the times at the beginning and end of exponential

growth, respectively and OTRa and OTRb are the oxygen transfer

rates at ta and tb, respectively.

[C2mim][OAc] concentration measurements in the
hydrolysates

The concentration of [C2mim][OAc] in the hydrolysates was

determined using an HPLC and LC/MSD Quad SL system

(Agilent Technologies Inc., Santa Clara, CA) as described

previously [31]. The concentration in % (w/v) units was

0.0760.02 in the CTec2 hydrolysate, 0.0560.01 in the JTherm

hydrolysate, and 0.0760.03 in the CTec2-Korz medium hydro-

lysate used for growth curves (see above).

Supporting Information

Figure S1 Zymography of the Endoglucanase (A) and
endoxylanase (B) enzymes produced by the thermophilic
community. Gels were embedded with carboxymethyl cellulose

or soluble birchwood xylan and enzyme reactions were run at

pH 5.0 and 70uC for 30 minutes to 2 h. Substrate clearing zones

created by enzymatic digestion are black. Molecular weight

markers are in kilodaltons.

(DOC)

Figure S2 UV/Vis absorbance scans of the Hydroly-
sates. JTherm (from Figure 6) and CTec2 (from Figure 8) IL-

pretreated switchgrass hydrolysates were diluted 20 fold and the

water soluble fraction of organosolv lignin (Sigma #371033) was

at 5 mg/ml. The hydrolysates and lignin have an absorbance peak

at around 280 nm, and the hydrolysates have a second absorbance

peak at around 315 nm. The CTec2 hydrolysate has a greater

overall absorbance than JTherm, indicating higher concentrations

of biomass-derived compounds are present in the CTec2

hydrolysate.

(DOC)

Figure S3 Dose curve of the CTec2 cellulase cocktail on
ionic-liquid pretreated switchgrass in M9 salts pH 5.0 at
506C. The CTec2 dose is reported mg of enzyme product added

per gram of total solids based on triplicate samples.

(DOC)

Figure S4 Growth of an E. coli strain engineered to
produce biodiesel on CTec2 hydrolysate (A) and control
samples containing 2% glucose and 1% xylose (B), 2%
glucose and 1% xylose with the CTec2 enzyme product
(C), and 2% glucose (D). Oxygen transfer rate (OTR), cell

density (OD600), and sugar concentration were monitored during

the fermentation to determine the impacts of the hydrolysate on

growth and respiration.

(DOC)
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