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ABSTRACT: The synthesis of graphene nanoribbons (GNRs) that contain site-specifically substituted backbone heteroatoms is one of the 
essential goals that must be achieved in order to control the electronic properties of these next generation organic materials. We have exploit-
ed our recently reported solid-state topochemical polymerization/cyclization-aromatization strategy to convert the simple 1,4-bis(3-
pyridyl)butadiynes 3a,b into the fjord-edge nitrogen-doped graphene nanoribbon structures 1a,b (fjord-edge N2[8]GNRs). Structural as-
signments are confirmed by CP/MAS 13C NMR, Raman, and XPS spectroscopy. The fjord-edge N2[8]GNRs 1a,b are promising precursors 
for the novel backbone nitrogen-substituted N2[8]AGNRs 2a,b. Geometry and band calculations on N2[8]AGNR 2c indicate that this class of 
nanoribbons should have unusual bonding topologies and metallicities. 
 
 
■ INTRODUCTION  
 Graphene nanoribbons (GNRs) are expected to usher in the 
ultimate nanosizing of electronics1,2,3,4 and sensors5,6 for next gen-
eration devices. The electronic properties of GNRs can be exquis-
itely tuned by modification of their width, backbone, and edge 
structure.1,7,8,9,10 In the last decade, both on-surface and in-solution 
bottom-up syntheses have achieved precise structural control 
over these benchmarks.11,12,13,14,15 Early bottom-up syntheses have 
focused on GNRs with armchair16,17,18,19 or zigzag20 edges. More 
recently, intricate edge or interior configurations, such as chev-
ron,11,21,22,23 cove,24,25,26 fjord27 or holey,28,29,30 have been obtained. 

These novel topologies significantly alter the electronic or mag-
netic properties of GNRs, as do atomically precise31 substitutions 
of carbons with heteroatoms such as boron,32,33 sulfur,34,35 or ni-
trogen.29,36,37 Crucially, site-specific doping at the GNR backbone 
produces a dramatic alteration of its electronics, making such 
structures the most desirable targets for synthesis.31,38,39,40 Nitrogen 
doped GNRs are of particular interest as they produce p-doped 
materials.23,36,37,41,42,43,44 Gratifyingly, creative ways to synthesize 
GNRs bearing novel edge or backbone structures are thriving to 
this day.29,30,45  

 Herein, we describe the synthesis of the first eight-atom wide, 
fjord-edge nitrogen-doped graphene nanoribbons 1a,b (fjord-
edge N2[8]GNR; Figure 1). Fjord-edge N2[8]GNRs 1a,b were 
obtained in a facile two-step conversion starting from dipyridyl 
diynes 3a,b. Photochemically-induced topochemical polymeriza-
tion in the crystalline state afforded polydiacetylenes (PDAs) 
4a,b, which were thermally converted to GNRs 1a,b without 
significant loss of the sidechains. The Hopf cycliza-
tion/aromatization from PDAs 4a,b to GNRs 1a,b was con-
firmed by cross-polarization magic angle spinning (CP/MAS) 
solid state 13C NMR. X-ray photoelectron spectroscopy (XPS) 
revealed the pyridinic and amide bonding state of the nitrogen 
atoms. Raman spectroscopy further confirmed the structural in-
tegrity of the fjord-edge N2[8]GNRs 1a,b.  

 

 

 
Figure 1. Synthesis of fjord-edge nitrogen-doped graphene nanorib-
bons (fjord-edge N2[8]GNRs) 1a,b.  
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■ RESULTS AND DISCUSSION  
Diyne monomer synthesis: The topochemical polymerization 
of diynes requires suitable packing of the monomers in the crystal 
to trigger subsequent chain reactions.46,47,48 Here, the dipyridyl 
diyne units of 3a,b,d (Scheme 1) needed to have their diyne 1,4-
carbons within van-der-Waals contact distance (~3.5 Å). This 
would promote the facile formation of intermolecular bonds, a 
process that often occurs under ambient light.49,50 Although we 
synthesized several isomeric dipyridyl diyne systems,51 only one 
series based on 3-amino-5-alkynylpyridine gave the polymerizable 
diynes 3a,b. Accordingly, 3-amino-5-bromopyridine was coupled 
with trimethylsilylacetylene under Sonogashira conditions, fol-
lowed by acylation of product 5 with the corresponding acid chlo-
rides (Scheme 1, R = i-Pr, n-Hex, Me, respectively). Removal of 
the trimethylsilyl protecting group gave alkynyl amides 6a,b,d in 
good to excellent yields. Oxidative coupling under the Hay condi-
tions afforded diyne amides 3a,b,d in good to high yields.  
 

 
Scheme 1. Synthesis of 1,4-bis(3-pyridyl)butadiynes 3a,b,d. 
 

Crude diyne 3a afforded single crystals after slow evaporation 
from methanol (Figures S28a,b).51 X-ray diffraction at the 
Brookhaven Synchroton X-ray source (Figure S29) afforded a 1.0 
Å resolution crystal structure (Figure 2 and Table S1).51  

The crystal packing geometry for molecules of diyne 3a vali-
dates the desired short C1–C4’ distance of 3.45 Å (Figure 2a). 
The hydrogen bonds between the carbonyl oxygens and amide 
hydrogens have an optimal distance of 2.00 Å, guiding the assem-
bly of diyne units in 3a along the unit cell vector a. The relative 
strength of these intermolecular interactions is reflected in the 
crystal morphology and powder diffraction (Figures S28 and 
S30). To accommodate the H-bonding motif, the polymer 
growth axis exhibits a horizontal offset between each molecule, 
organizing the diynes into an optimal arrangement for topochem-
ical polymerization (Figure 2b). Powder diffraction of 3b dis-
played a similar packing arrangement to 3a (Figure S31).  
 Both dipyridyl diynes 3a,b easily polymerized to dipyridyl 
PDAs 4a,b when subjected to UV light, as well as under ambient 
light, while diyne 3c was unreactive. The polymerizations were 
carried out by irradiation of finely pulverized dispersions of the 
crystals in hexanes using a medium pressure Hanovia lamp (Pyrex 
filter), typically for 12 h, producing deep purple/black material. 
Dissolution of unreacted monomer from the polymerized crystals 
gave the pristine polydiacetylenes 4a,b (18 and 4%, respectively) 
as fibrous powders after filtration. The one-step, low polymeriza-
tion yield for 3b appears to be inherent to this derivative, since 
repeated attempts to increase yields by using nanocrystalline 
material could not raise the conversion yield for this step. 

 
 
Figure 2. a) Crystal packing structure for diyne 3a displaying the 
short C1-C4’ distance directed by the C=O···H–N hydrogen-
bonded network. b) View of 3a down the H-bonding axis. 
 
Conversion of PDAs 4a,b to GNRs 1a,b: Once PDAs 4a,b be-
came available, their conversion to GNRs 1a,b could be studied 
by incremental heating under argon. Pyridyl GNRs 1a,b form in a 
one-step concomitant Hopf cyclization and aromatization trans-
formation to yield a fjord-edge GNR without significant loss of 
sidechains. This transformation was easily followed by CP/MAS 
13C solid state NMR, focusing on four distinct carbon signals 
corresponding to the four functional groups of interest: amide 
carbonyls (160–170 ppm), aromatic carbons (120–150 ppm), 
alkynyl carbons (~100 ppm), and amide sidechains (10–40 ppm, 
Figure 3b,c). As PDAs 4a,b are heated under increasingly higher 
temperatures (1h each), the distinct 13C NMR signals track an 
initial Hopf cyclization, as evidenced by the disappearance of the 
alkyne peak at temperatures between 300 and 350 °C, indicating 
that this cyclization occurs more readily than for our phenyl ana-
logs.50 This conversion is followed by aromatization to fjord-edge 
N2[8]GNRs 1a and 1b between 350 and 400 °C, as revealed by 
the changes in aromatic signals between 110–155 ppm, which 
adopt an envelope having an underlying intensity ratio of 1:2:1 in 
both 1a and 1b, respectively. This ratio of intensities maps rea-
sonably well with the calculated 13C chemical shifts expected from 
a representative fjord-edge N2[8]GNR segment (Table 1). De-
convolution of the experimental spectrum into seven individual 
13C signals of equal intensity and width affords the fitted values in 
Table 1. Furthermore, the convergence of both 4a and 4b to iden-
tical aromatic peak shapes indicates that they both likely undergo 
identical processes to form the same fjord-edge N2[8]GNR core. 
Subsequent heating of 4a and 4b to temperatures as high as 400 
°C shows no change in the 13C CP/MAS spectra, suggesting that 
the fjord-edge N2[8]GNR has fully formed at 330 °C and 360 °C 
starting from 4a and 4b, respectively. These milder temperatures 
prevent sidechain fragmentation, unlike in our previous work on 
[8]GNR, which required temperatures as high as 500 °C for full 
conversion.50 Heating dipyridyl PDAs 4a,b at temperatures high-
er than 400 °C (not shown) does not change the peak shape in 
the aromatic region, but shows gradual loss of the sidechains. 
Thus, it seems that full cyclization of fjord-edge N2[8]GNRs 1a,b 
to a N2[8]AGNRs 2a,b does not occur under these conditions. 
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Figure 3. CP/MAS solid-state 13C NMR and Raman spectra for 
the products obtained by heating PDAs 4a,b. Each heating ex-
periment was carried out for 1 h using a fresh sample of PDA. a) 
PDAs 4a,b and GNRs 1a,b are color-coded by chemical shift 
region to reflect spectral changes in b) and c). b) PDA 4a con-
version to fjord-edge N2[8]GNR 1a, and c) PDA 4b conversion 
to fjord-edge N2[8]GNR 1b. The very broad weak signal for the 
sample heated at 360 °C in b) is due to an air-stable π-radical 
intermediate formed during heating.52 Baseline-corrected Raman 
spectra for the conversion of d) PDA 4a to fjord-edge 
N2[8]GNR 1a, and e) PDA 4b to fjord-edge N2[8]GNR 1b. 
 
 The retention of sidechains during the aromatization process 
up to 400 °C positively affects the processability of these GNRs. 
As expected, the presence of the sidechains on fjord-edge 
N2[8]GNRs 1a,b increases their solubility: sonication in N-
methyl-2-pyrrolidone (NMP) followed by filtration through a 0.2 
μm Teflon membrane gives yellowish solutions (UV-vis, Figure 
S27).51  

Table 1. Curve-Fitted Experimental CP/MAS 13C NMR Spec-
trum of fjord-edge N2[8]GNR 1a Compared to Calculated 13C 
NMR Chemical Shifts for a Model Structure.51 (a) Deconvo-
lution Analysisa and (b) Structure of Calculated Model.  

 
 

a  The experimental CP/MAS 13C NMR spectrum is plotted as a solid black 
line, the sum of the curve fits is the dashed line.  b Average of the DFT calculat-
ed chemical shifts (GIAO/B3LYP//6-31G(d)) for each of the seven distinct, 
non-symmetrically related carbons defined in (a) and (b), see also Figure S39.  
 
Raman spectroscopy: The precursor PDAs 4a,b both exhibit 
strong alkene peaks at 1494 and 1491 cm–1, respectively, as well as 
alkyne peaks at 2117 and 2120 cm–1, respectively, which are typi-
cal of an eneyne backbone (Figure 3d,e, bottom trace). Upon 
heating, these signals disappear, while the signature D and G 
peaks of GNRs 1a,b appear (Figure 3d,e, top traces). The Raman 
spectra for fjord-edge N2[8]GNRs 1a,b show D peaks at 1360 
and 1362 cm–1, and G peaks at 1607 and 1608 cm–1, respectively. 
Relative to a large sheet of graphene, the G peaks of these GNRs 
are upshifted by ~30 cm–1 from graphene (1580 cm–1), due to the 
confined, strongly aggregated nature of GNRs 1a,b (see Fig. 
S32).51 Prior reports on GNRs show similar shifts in the D peak as 
well.53 Furthermore, the broad feature of the observed D peaks 
can be attributed to the fjord edge structure and the high levels of 
site-specific heteroatom substitutions, as discussed below. 
 Broadening of the D peak is generally caused by defects within 
the graphene lattice.54,55,56 Bond vacancies, atom vacancies, and 
heteroatoms distort the lattice away from perfect sp2 graphitic 
carbon, which are reflected in the D peak. Fjord-edge GNRs with 
site-specific nitrogen substitutions have two inherent structural 
features that broaden the D peak beyond previously reported 
GNR examples. Specifically, fjord-edges represent bond vacancies 
along the edges of pristine graphene, which mimic the effect of 
holey graphene.57 Broad D and G peaks with higher ID/IG ratios 

indicate large numbers of defects, which characteristically de-
scribe holey graphene, and such broadened D peaks can be seen 
in the all-carbon fjord edge [8]GNR.27 
 Further broadening of the D peaks is caused by nitrogen do-
pant distortion of the lattice. Reports for both nitrogen doped 
graphene and top-down synthesized doped GNRs have shown 
this broadening with various levels of dopant atoms.58,59 The bot-
tom-up approach of our synthesis incorporates high levels of ni-
trogen doping, at 12.5%, which most likely further accounts for 
the broad D peak relative to other examples with under 5% atom 
doping.60  
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XPS spectra: To confirm the formation of a fjord-edge topology 
in compounds 1a,b, we examined the nitrogen bonding environ-
ment present in our GNRs using XPS spectroscopy (Figure 4). 
GNRs 1a,b should contain solely pyridinic and amide nitrogens if 
the fjord edge is exclusively formed. Examining the XPS spectra 
for 1a,b, they show signatures corresponding to the pyridinic12,13 
(398.7 eV) and amide61 (399.7 eV) bonding, and no other species 
(Figure 4). Notably, we do not see the presence of internal gra-
phitic62,63,64,65 or pyridinium species,66,67 which would indicate 
further cyclizations have occurred beyond a fjord edge structure 
(see discussion below and Figure 6). Additionally, the retention 
of the sidechain substituents indicates that the alternate path of 
cyclization to an edge-like topology (7’a,b), via intermediates 
7a,b (Figures 5 and 6), does not occur, in agreement with the 
calculations (see below), which show this pathway to be highly 
unfavorable. The increased width of the amide peak relative to the 
pyridinic peak is consistent with conformational disorder in the 
side-chains only. Together, these results all indicate that the struc-
ture most consistent with the data is that in the fjord-edge 
N2[8]GNRs 1a,b.  
 

 
Figure 4. N 1s XPS spectra for fjord-edge N2[8]GNR 1a and 1b, 
with pyridinic and amide nitrogens centered at 398.7 and 399.7 
eV, respectively. 
 
Cyclization pathways and reaction barriers: There are two 
possible Hopf cyclization pathways for PDAs 4a,b (Figure 5), 
which could afford fjord-edge GNRs with two different topolo-
gies. The internal-like topology (1a,b) would have the nitrogen 
atoms arranged opposite to a C–H bond on the following “diaza-
chrysene” unit, while the edge-like topology (7a,b) would have 
them at the edges of the nanoribbon. Unlike our previous work 
on [8]AGNR,50 which forms the same structure regardless of the 
initial cyclization pathway at the 4 or 6-positions of the PDAs’ 
phenyl rings, cyclization at either the 4 or 6-position of the pyridyl 
rings in PDAs 4a,b could give two different fjord-edge GNRs, or a 
statistical mixture alternating both pathways along the nanoribbon 

 
Figure 5. Possible Hopf cyclization pathways for PDAs 4a,b 
occurring at either the 4 or 6-positions of the pyridyl rings, lead-
ing to nitrogen at “internal” or “edge-like” locations. 

 
length if the difference between reaction barriers is less than 1 
kcal·mol–1. However, cyclization at the 4-position should be 
strongly disfavored owing to the severe steric clash introduced 
between the amide groups and adjacent pyridyl units during Hopf 
cyclization (Figure 5, right side). On the other hand, further aro-
matization to an edge doped armchair GNR should occur easily, 
resulting in total loss of the sidechains, which is not confirmed by 
our experimental data. Instead, cyclization at the 6-position pro-
duces the lesser strained, internally doped fjord-edge N2[8]GNRs 
1a,b with their amide sidechains pointing away from the adjacent 
“diazachrysene” units. The calculations reported below, as well as 
the XPS data in Figure 4, both strongly support that cyclization 
has occurred at the 6-pyridyl positions to yield fjord-edge 
N2[8]GNRs 1a,b.  
 We base our theoretical considerations on previous results by 
Prall et al.68 and our own work,50 which support a Hopf cyclization 
pathway for this class of systems. The Hopf cyclization proceeds 
through an initial 6π-electrocyclization, followed by two consecu-
tive [1,2]-H shifts, with the first H-shift as the rate-determining 
step. The enediyne model system 8 (Figure 6) can undergo cy-
clization at either the 6-position (para to the amide group) or the 
4-position (ortho to the amide group), the latter of which is likely 
unfavorable due to the large steric bulk of the amide group, com-
pared to only H in 1a,b. Using density functional theory (DFT), 
we computed the geometries of the transition states for the initial 
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6π electrocyclizations (9 and 9’), the strained allene intermedi-
ates 10 and 10’, and the transition states for the 1,2-shifts (11 and 
11’). Structures were optimized in the gas-phase using B3LYP/6-
31G(d), and single-point energy calculations were performed 
using M06-2X/6-311+G(d,p) with B3LYP frequencies to obtain 
free energy values. The potential energy surfaces for the two cy-
clization pathways are shown in Figure 6.  
 The energetic trends for this bispyridyl system are similar to 
the all-carbon system previously studied by us.50 As expected, the 
barriers for ortho cyclization are higher than those for para cy-
clization. The activation free energies for the more favorable tran-
sition states 9 and 11 are 48.1 and 54.7 kcal·mol–1, respectively, 
while the analogous transition states 9’ and 11’ have higher barri-
ers of 51.3 and 60.0 kcal·mol–1, respectively. Like the all-carbon 
PDAs previously studied, the 1,2-shift following electrocycliza-
tion is the rate-determining step in both pathways, and the prefer-
ence for the para pathway is substantial (5.3 kcal·mol–1). This 
energy difference virtually ensures that the analogous series of 
cyclizations within PDAs 4a,b should occur exclusively at the 6-
positions (para) of the pyridyl rings.  

 The geometries of the transition structures 9 and 9’ are similar 
to each other and to their all-carbon variants. In 9 and 9’, the π-
system of the alkynes is planar, while the flanking aryl groups are 
out-of-plane by approximately 30°. The slightly higher barrier of 
9’ is likely due to the close proximity of the amide oxygen and 
methyl group on the forming C–C bond. More differeces can be 
seen between the rate-determining states 11 and 11’. In 11, the 
quinoline intermediate is planar, and the C6–H1 bond stretches 
to 1.22 Å from its normal C–H bond length of 1.09 Å. However, 
in the less-favorable transition state 11’, the bulky amide group 
forces the quinoline out of plane, largely due to unfavorable steric 

interactions between the amide oxygen and the shifting hydrogen 
and adjacent methyl group, which accounts for the intrinsic pref-
erence for the 6-position (para) cyclization.  
 Calculations for the unsubstituted variant (no amide groups) 
were also computed to probe the intrinsic preference for the 6-
position (Figure S35).51 The barriers of the rate-determining 1,2-
shift for the unsubstituted system are 53.7 and 55.7 kcal·mol–1 for 
the 6 and 4-positions, respectively, with only a preference of 2.0 
kcal·mol–1 for the 6-position. Thus, the increased preference for 
the 6-position in the substituted system 8 can be wholly attribut-
ed to the unfavorable steric interactions between substituents in 
the rate-determining transition state structure 11’. 
 We note that the barrier of the rate-determining step in pyridyl 
system 8 is ~3 kcal·mol–1 lower than that of the all-carbon system, 
which does not directly correlate with the ~100 °C lower conver-
sion temperature of this N-based system. We acknowledge that 
while these gas-phase calculations are useful in understanding the 
intrinsic regioselectivity of this system, they do not account for 
other interactions that should arise within the full-length PDA 
systems 4a,b in the solid state. In particular, the pyridine nitro-
gens could be the source of additional inter- and intramolecular 
H-bonding interactions compared to the all-carbon system. This 
is in part ascertained by the subtle changes in shapes for the me-
thyl signals of PDA 4a in its CP/MAS solid-state 13C NMR spec-
tra between 25, 300, and 330 °C. At room temperature, the iso-
propyl methyl groups appear as a double hump, indicating that 
they are in a different environment. These double humps eventu-
ally coalesce to a single signal in the sample prepared at 330 °C, 
after the Hopf cyclizations have occurred. This is likely the result 
of changes in inter- and/or intramolecular H-bonding interac-
tions within the PDA solid-state morphology.  

 
 
Figure 6. Free energy surface of pathways to desired product (left) and undesired product (right) relative to starting structure 8 (in kcal· 
mol-1). 
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Electronic properties of fully cyclized N2[8]AGNR: In order to 
better understand the electronic properties of the fully cyclized 
(graphitic) N2[8]AGNR system, we calculated the electronic 
Density of States (DOS) for the parent systems 1c and 2c 
(Figures 1 and 7) by means of periodic DFT.51 The DOS of 1c 
and 2c, obtained from the HSE06 functional on the basis of PBE 
geometries,69,70 are depicted in Figure 7. As we can see, fjord-edge 
GNR 1c is expected to be a semiconductor, with a bandgap of 
2.04 eV (Figure 7a). On the other hand, fully cyclized 
N2[8]AGNR 2c clearly displays metallic behavior, as indicated by 
the continuous DOS landscape at the Fermi level depicted in 
Figure 7b. Notice that the HSE06 results are in agreement with 
the results at the PBE level of theory (Figure S37).51 Namely, 
both predict 2c to be metallic and 1c to be a semiconductor, alt-
hough the band gap predicted by PBE is smaller than by HSE06 
(1.43 eV vs 2.04 eV, respectively), as expected from the DFT 
delocalization error.71 Furthermore, bond-equalization of many of 
the carbon-carbon bonds within the structure of fully fused 
N2[8]AGNR 2c, unlike those in fjord edge structure 1c (Figure 
S38),51 indicates that N2[8]AGNR 2c has quinoid character, 
which incites its metallic nature. This fact is in agreement with the 
charge density at the Fermi level, which exhibits a delocalized π-
character (Figure 7b, inset). 
 

 
 

Figure 7. DOS plots calculated at the HSE06 level for a) fjord-
edge GNR 1c, and b) fully cyclized N2[8]AGNR 2c. The inset 
shows a 3D representation of the partial charge density at the 
Fermi level in the [–0.2, 0.2] eV range. 
 

These calculations indicate that experimental isolation of the 
fully cyclized, metallic N2[8]AGNRs 2a,b could be challenging, 
and despite our best efforts so far, this step is awaiting further 
work. Formation and characterization of these novel, exciting 
graphene nanoribbons is currently under investigation. 
 

■ CONCLUSION  
In summary, we have demonstrated the synthesis of a novel fjord-
edge N2[8]GNR system with site-specific nitrogen substitution. 
The stepwise conversion from dipyridyl diynes 3a,b to the nitro-

gen doped, fjord edge N2[8]GNRs 1a,b via topochemical 
polymerization of PDAs 4a,b, followed by Hopf cyclizations to 
the GNRs proceeded at relatively moderate temperatures of 330-
360 °C. The formation of the fjord-edge structure in the GNRs 
1a,b was confirmed via CP/MAS 13C NMR, XPS, and Raman 
spectroscopy. The success of our bottom-up method demon-
strates the versatility of the crystalline state topochemical 
polymerization method to incorporate heteroatom substitution 
and structural diversity into GNR structures.  
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