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Abstract 

Exploiting regulatory heterogeneity to systematically identify  
enhancers with high accuracy 

by 

Hamutal Arbel 

Doctor of Philosophy in Applied Science and Technology 

University of California, Berkeley 

Professor Peter Bickel, Chair 

Enhancer discovery through computational means has long been a goal of the 
genomics community. The tools developed for this purpose, however, tend to 
underperform when tested on completely held out test sets. Here we use the pregrastrula 
patterning network of Drosophila melanogaster to demonstrate that loss in accuracy in 
held out data results from heterogeneity of functional signatures in enhancer elements. 
We show that at least two classes of enhancer are active during early Drosophila 
embryogenesis and that by focusing on a single, relatively homogeneous class of 
elements, extremely high (>98%) prediction accuracy can be achieved in a balanced, 
held-out test set. The homogenous set is composed predominantly of enhancers driving 
multi-stage, large segmentation patterns in the early embryo, and hence we term them 
segmentation driving enhancers (SDE). Prediction is primarily driven by transcription 
factors DNA occupancy with almost no power derived from histone modifications, 
including H3K27ac, casting further doubt on the utility of histone modifications to 
demarcate enhancer elements. The transcription factors used in the prediction process 
constitute over half of the transcription factors identified in genetic screens as patterning 
the early embryo, and hence provide a remarkably expansive view of this process. 
Applying this method to a genome-wide scan, we predict 1,600 SDEs, 916 of which are 
novel, covering approximately 1.6% of the euchromatic genome. We verified these 
predictions by testing 41 novel SDEs using in situ whole embryo imaging of stably 
integrated reporter constructs. We confirmed 39 of these predictions, a 95% precision on 
a genome-wide scan with an estimated recall of 98%, indicating that our reported 
collection of SDEs may be close to comprehensive. 
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Commonly Used Terms and Abbreviations: 
 

TF : Transcription factor 
RF:  Random Forests  
Oob: out of bag, i.e. – held out test data 
TP:  True positive 
FP: False positive 
FN: False negative 
TN: True negative 

Recall: Fraction of positives captured by prediction,  
!"

!"#!$
 

PR:  Precision, fraction of true positives in predicted positives,  
!"

!"#%"
 

FDR: False Discovery Rate, or the fraction of false positive in the prediction.  1 – PR 

Accuracy:  Fraction of correct predictions,  
!"#!$

!"#%"#%$#%"
  

Type I error: Incorrect rejection of a true null hypothesis.  In this work, refers to 
incorrectly classifying a non-enhancer DNA segment as an enhancer. 
Type II error: Failure to reject a false null hypothesis. In this work, refers to incorrectly 
classifying an enhancer as an inactive DNA segment.  
Enhancers:  DNA segments which acts to upregulate the expression of a gene under 
the correct conditions, either temporal, spatial or external signaling. For the purpose of 
this work, it refers to DNA segments inducing gene expression in stage 4-6 drosophila 
embryos.    
Active enhancers: Enhancers acting to upregulate a gene in the present conditions.  
Non-enhancers: Any DNA segment not acting to upregulate gene expression. For the 
Purpose of this work, this refers to DNA segments not inducing gene expression in 
stage 4-6 drosophila embryos.    
Class I enhancers: The set of enhancers that can be correctly classified at least 75% 
of the time. AKA Segmentation driving enhancers or SDE’s 
Class II enhancers: The set of enhancers which cannot be reliably correctly classified 
at least 75% of the time  
SDE: Segmentation driving enhancers  
Prediction score: fraction of trees classifying a DNA segment as being an enhancer. 
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INTRODUCTION: 
 

Genomic regulation and enhancers 
 
The fundamental question of genetics has shifted in the last few decades from “which 

genes are present in the genome” to “which genes are expressed in the genome”, marking 
a fundamental emphasis on regulation. While the genomic composition of an organism 
defines the potential of genomic variability, it is the temporally, localized and 
environmentally attuned manner of expression which allows organisms to thrive in a verity 
of conditions, and indeed for multicellular organisms to exist. Advances in sequencing 
techniques and the success of varying sequencing projects have provided us with ample 
knowledge of the genomic makeup of multiple species, from human to platypus, with more 
added to the list seemingly daily 1. RNA sequencing (RNA-seq) allows us direct 
observations to the genomic expression of cells at different times and conditions, 
simultaneously revealing which genes are transcribed and challenging our definition of 
what a gene is by exposing how much of the genome is indeed transcribed 2. But even if 
one learns what genes are present in the genome - and even what genes are expressed 
in a variety of conditions, the complexity of the regulatory mechanism still defies complete 
elucidating, making predictions of gene activation at different conditions a yet distant goal.  

In eukaryotes, transcription is mostly governed by Polymerase II initiating the 
transcription process upon binding to the DNA proximal to the transcription start site 
(TSS), a binding aided by sequence specific transcription factors which binds the 
promotor. PolII association with the 6 general transcription factors TFIIA-H and other 
factors to form the preinitiation complex (PIC) helps in its positioning, stabilizes the 
binding, opens the DNA and even protects the exposed single-stranded DNA from 
damage by insulating it from the environment. The universal nature of this action allows 
for little in regulation control, which is instead provided by the sequence specific TF’s 
binding the promotor, and through the massive mediator complex, which helps recruit and 
position the different PIC elements. The mediator is a massive and versatile complex, 
composed of over 20 different core proteins with varying possible compositions3. Mediator 
is essential to transcription initiation and elongation; its size and versatility allows it to 
interact with many proteins at once, and It can change the local chromatin structure and 
DNA three-dimensional structure - allowing many more elements of the genome to 
participate in regulating distant genes, vastly increasing the possibility of genomic 
regulation. 

Genomic elements participating in gene regulation thus include trans-elements 
operating proximal to the gene being regulated, such as promotors, and more distance 
cis-regulatory elements or modules (CRM) operating at a distance (in the 2D), such as 
enhancers4,5, silencers 6,7 and insulators8. True to their name, these elements act to 
enhance or repress expression, and to insure correct localized regulation by isolating 
enhancers from other proximal genes. The complexity of the regulatory architecture 
varies among species, growing with that of the organism. In Drosophila, a gene may be 
regulated by several enhancers, silencers as well as by transcription factors bound to the 
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promotor, and it is the combined action of all these factors which determines whether a 
gene is transcribed. 

Enhancers are DNA sections rich in transcription factor binding sites which may 
interact with the promotor and polII directly or through cofactors, helping to form the PCI 
or mediator complex, and thus initiate, stabilize and localize transcription. Functionally, 
enhancers are genomic modules capable of driving expression when placed near a gene 
in a precise spatial and temporal manner, though enhancer location relative to the gene 
they regulate is extremely variable. Enhancer regions can be found a few hundred base 
pairs to millions of base pairs upstream or downstream to the gen being regulated, in 
either orientation; they may be placed within the intron of a gene being regulated or in the 
intron of a distant gen, or even on a different chromosome 9,10. Their proximity to the gene 
is in the three-dimensional space, not in the 2-dimensional sequence, making enhancer 
discovery a challenging proposition.  

 

 
 

 

Figure 1: Illustration of an active enhancer (in green) brought into proximity of the promotor of its 
targeted gene, past an irrelevant gene (in yellow). The proximity is held by the Cohesion complex, 
holding the DNA together. The different transcription factors on the enhancer interact with the mediator 
complex, help to assemble and stabilize it. Enhancers are also often associated with paused polII, 
transcribing non-coding (ncRNA) which is thought to aid in mediator stabilization. These are often bi-
directional, as they are not guided by a promotor docking. The enhancer regions are unpacked and do 
not contain nucleosomes, and the nucleosomes around an active enhancer are often marked by 
molecular modifications (blue) distinct from those near an inactive enhancer (red). 
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A key determinant of enhancer activity is the abundance of the varying of transcription 
factors which bind it.  This is indeed the primary patterning and symmetry braking tool 
responsible for embryonic development and differentiation. But while we know that that 
order, orientation, competition and cooperation amongst transcription factors determines 
regulation, the details of these interactions are not yet fully resolved even in simple 
systems. Chromatin structure and modeling – i.e. DNA accessibility – is another key factor 
in determining activity11. It has also been shown that chemical modifications such as 
methylation and acetylation of the histone core proteins mark and help regulate cellular 
processes such as transcriptional regulation, and a great deal of work has gone in recent 
years to identify the epigenetic enhancer signature in the nucleosome data, leading to the 
classification of three distinct enhancer states: inactive, active and poised. The inactive 
enhancer is identified by a tightly packed chromatin structure, while the poised enhancer, 
while still inactive, is identified by an open chromatin state and a particular set of histone 
modifications, such as the tri-methylation of the lysine on protein H3 of the nucleosome 
core (H3K27me3). The tri-methylation is replaced by acetylation (H3K27ac) in the active 
enhancer by a p300, a sub unit of the mediator complex and a common target of 
transcription factor 12.  

Another possible mark of enhancer activity may be the presence of polII or the 
proximity to a PolII peak, as it has been shown that PolII may pause when passing an 
enhancer 13. In passing and localizing, PolII was also found to transcribe short, 
bidirectional RNA transcripts of the enhancer regions. Whether those play a functional 
role in transcription has not yet been resolved, but it has been suggested these may 
indicate enhancers 14. It has also been suggested that as enhancers are functional units, 
there will be evolutionary pressure to ensure slower divergence in them then in other parts 
of the DNA, but though several attempts have been made to locate enhancers by utilizing 
conservation scores, results have been mixed.     

Tools that measure predictive accuracy in terms of indirect evidence of enhancer 
activity, e.g. H3K27ac positive regions or p300 enriched regions, often display excellent 
accuracy based on these limited criteria 15-18. When algorithms are benchmarked on held-
out in vivo tests of enhancer activity, however, positive predictive power on genome-wide 
scans in metazoan systems have been lower than expected. By targeting transcription 
factors in a specific biological processes a precision of 56% was achieved in a randomly 
selected sample through transient transfection 19. Higher precision has been reported 
when tests were confined to the top of the ranking list 20, but such numbers are unlikely 
to represent the precision of the prediction set as a whole. In general, precision in 
metazoan system rarely exceed 40% 15,16,21. There are several possible explanations for 
this. For instance, transient in vivo enhancer assays often employed to test predictions 
may suffer a high false-negative rate due to the loss of local chromatin context. However, 
studies indicate that local features are the principle drivers of the competency of a 
genomic element in an enhancer assay 21 22. Alternatively, the data provided to the 
prediction algorithms might be insufficient: for example, while H3K27ac can partially 
distinguish between active and poised enhancers 12, it remains unclear whether any 
chromatin mark or combination of chromatin mark uniquely identifies enhancers among 
all sequences in a genome 19,23. In mammals p300-mediated acetylation of H3K27 is 
sufficient to activate gene expression from promoters and known enhancers 24, but it is 
unclear whether p300 activity is sufficient to induce an arbitrary genomic element to act 
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as an enhancer for proximal genes. Further, enhancers that lack H3K27ac and admit 
patterns of hypermethylation are found in vertebrates and are known to be essential 
during early development 25. Hence, there may be more than a single class of genomic 
element that drives patterned expression, or, more precisely, the term “enhancer” may 
encapsulate a mechanistically diverse class of functional elements. Transcription factor 
(TF) occupancy is a better predictor of enhancer activity than canonical chromatin marks 
(including H3K27ac, H3K4me1, and H3K4me3) in mouse and humans 19. One could 
envision that groups of TFs may partition enhancers into mechanistic sub-types, and thus 
such heterogeneity could explain the difficulties encountered to date in the 
computationally identifying enhancer elements from genomic data.  

 

 
Drosophila Melanogaster embryogenesis  

 
The Drosophila Melanogaster fruit fly undergoes a complex set of developmental 

processes, with 3 distinct larval stages and pupation, taking about 2 weeks from egg to 
adult.   

 

 
 
 
the development of the egg is commonly referred to as the embryonic stage in 

drosophila development, and occurs in less than a day (20 – 24 hours, depending on 

Figure 2: the drosophila 
melanogaster life cycle, from 
embryo to adult fly.  The 
embryonic stage last less then 
24 hours, resulting in the first 
instar larva. multiple stages of 
maturation are accompanied 
by shedding of larval outer 
shell, and culminating in 
pupation. The process take ~3 
weeks (depending on 
temperature), and the resulting 
adult begins procreation within 
hours of hatching.  
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temperature) through 17 distinctly characterized developmental stages. At stage 1, the 
fertilized nuclei begin rapid rounds of division, from 2 nuclei at the commencement of 
stage 2, 25 minutes (at 25oC) post laying, to ~6000 cells at the close of stage 4 (80-90 
minutes). This amazingly rapid multiplication represents the fastest cell division in any 
metazoan. At stage 4 the nuclei migrate periphery of the egg and broad differentiation 
patterns begin to appear, as embryonic protein production starts, followed by formation 
of cellular walls (stage 5, 130-170 minutes, 12-14 cellular division) and appearance of 
segmentation and narrowing of the broad pattern. At stages 4-6 (80 – 180 minutes) all of 
the embryo cells are located at the periphery, and it is at these stages that pattern, and 
segmentation and differentiation commences.    A small cohort of ~30 spatially patterned 
transcription factors drive body patterning in concert with another 30 or so ubiquitously 
expressed sequence specific transcription factors 26-36. The critical stage of symmetry 
breaking in the embryo is accomplished a-priori in the fly, with a transcription factor 
gradient established by nascent cells attached to one side of the embryo depositing a 
Bicoid transcription factor gradient along the anterior-posterior (a-p) axis (Fig. 3). 
Additional transcription factors, such as Caudal and Nanog, are also maternally deposited 
creating complementary gradients along the anterior-posterior (A-P) axis. A separate set 
of maternally deposited transcription factors, such as Dorsal and Twist, pattern the dorsal-
ventral (D-V) axis.  
 
 

 

Figure 3: Cartoon representation of a transcription factor gradients along the drosophila embryo, 
along the A-P (a) or the D-V (b) axis. (c) distribution and effect of Bicoid gradient along the embryo 
at different stages: (1) mRNA is maternally injected into the embryo by the attached nascent cells, 
gradient forms by diffusion (2) Bicoid protein is produced by the embryo as the nuclei migrate to the 
periphery, and the gradient in production follows the mRNA diffusion. (3) The varying levels of bicoid 
and other proteins form broad patterns of zygotic expression in stage 4, in particular with the 
regulation of transcription factors responsible for patterning. The combined action of the maternally 
deposited TF’s and the zygotic transcribed ones works to narrow the broad  patterns into finely 
delineated regions. 
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Over a 90 minute period corresponding to developmental stages 4 and 5, these 
proteins act in concert with zygotically expressed A-P and D-V transcription factors to 
refine initially broad patterns of transcription into narrower striped patterns that define the 
basic segmental body plan of the fruit fly 37, known as the gap genes or pair-rule  genes. 
The pregrastrula fly network is thus a particularly well defined model system for studying 
the relationship between transcription factor DNA binding and spatially patterned 
enhancer activity.  

 

 
Random Forests 

 
Random Forest is a supervised machine learning tool for classification or regression 

based on an ensemble of decision trees in which a randomization in data and features is 
introduced 38. In each tree, a subset of data points is sampled with replacement, while the 
other data points serve as held out test set, commonly known as “out of bag” data points. 
At each node, a small fraction of the features is randomly selected and the data is split 
along the criteria which minimizes the variability in the resulting subdivided groups. The 
votes of all the trees in the forest are summed to give the overall estimation of the 
regression or classification of the data. More formally 39, for classification set, let:  
X	∈	[0,1]p  be i.i.d observation , with unknown binary response vector Y = {0,1} we wish to 
estimate. Given a training set Dn  = (X1,Y1)..(Xn,Yn), classification of point x by tree j in 
the forests is a function of x, Dn and a random variable Qj, i.e. mn(x,Dn,Qj) where Q is an 
i.i.d variable, deriving from the randomization of the tree. This randomization is achieved 
by sampling anÎ(1..n), a subset of data points with replacement from the data set and 
choosing mtry Î {1.. p} splitting criteria to be tried at each cell (leaf) A to be split.  

At each cell A containing N(A) points, the split criteria along any feature j Î {1..p} at 
value z creating 2 cells AL and AR. The classification criteria used by the forest is the Gini 
impurity measure: 
 
Lclass,n(j,z) =    p0,n(A) p1,n(A) – (Nn(AL)/ Nn(A) ) p0,n(AL)p1,n(AL) - (Nn(AR)/ Nn(A) )p0,n(AR) 
p1,n(AL) 
 
Where p0,n and p1,n are the empirical probabilities of data of class 0,1 respectively falling 
into cell A. The optimal cut is that which minimizes the impurity at the resulting cells, such 
that the best split criteria satisfying is that which maximizes Lclass,n: 
 

𝑗)∗, 𝑧)∗ = 	𝑎𝑟𝑔𝑚𝑎𝑥3∈4567𝐿9:;<<,)(𝑗, 𝑧)	 
For classification, it has been recommended 40 that cut be continued until each node 
contains a single data point with mtry = 𝑝.  

The random tree estimator is thus given by the majority of points which falls in region A: 



7	

𝑚) 𝑥,Q), 𝐷) = 	 1					𝑖𝑓:	 𝟏FG∈H,7GIJ

)

KIJ

> 𝟏FG∈H,7GIM

)

KIJ
0																																																𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	 

 
As each tree is a week classifier casting a vote, the Random Forest estimation of a forest 
of M trees is: 

𝑀4,) = 	
1												𝑖𝑓		

1
𝑀

𝑚) 𝑥,Q3, 𝐷) > 	
1
2

W

3IJ
0																																													𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	 

  
The algorithm of random forest can be summarized as: 
 

1) Randomly select an  data points from training set Dn 
2) Select mtry Î{1..p} features to seek optimal cut 
3) For a cell A, find feature-value pair (j,z) which minimizes the Gini impurity measure 

Ln(j,z). return the 2 cells AL and AR. 
4) Repeat until each cell A holds the desired nodesize number of data points  
5) Calculate 𝑚) 𝑥,Q), 𝐷)  and classify the out of bag data points, i.e 𝐷) ∩ 𝑎) 
6) Calculate prediction of test set 
7) Repeat M (large number of times) 
8) Aggregate results to determine the forest estimator Mm,n for the out of bag data 

points, calculate and return the forest error rate 
9) Aggregate results to determine the forest estimator Mm,n for the test set and return 

the predicted classification. 
The out-of-bag error gives class-wise error rate estimation, or an overall error 

estimation by averaging over. It also allows tuning the random forest parameters.      
Random forest has been widely used in a variety of application. One of the most 

commonly used classification methods, it has been used extensively in biological 
computation39,41, including enhancement discovery18. A benchmark comparison of 179 
classifiers in 17 families on 121 data sets recently found it the best family of classifiers 42. 
Yet the theoretical underpinnings and properties of Random Forests have proven difficult 
to elucidate. While no true understanding of its properties exists to date, several 
theoretical results have emerged. In his initial report in 2001, Breiman presented an upper 
bound of Random forests generalization error, which decreases as the forest grows. The 
classification error also depends the strength of the trees, and on their correlation: the 
higher the correlation the higher the error. A relationship between Random Forests and 
adaptive nearest neighbor has been has been shown43, and this and other frameworks 
have been perused to establish the methods general properties44. A link between the 
error of the infinite and finite forest has also been established in 2015 45. Biau, Devroye 
and Lugosi established in 2008 that averaging classifiers are consistent, and that certain 
types of Random Forest (including classic Random Forests discussed in this work) are 
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consistent46. Wager has further showed that the Random Forest prediction are 
asymptotically normal, and provided a method to consistently estimate the errors47.  

One reason for the popularity and power of Random Forests is their ability to produce 
consistent classification in with high number of features, and even when the number of 
features exceed the training set size. Biau48 explored the consistency of Random Forests 
in the simplified centered tree model proposed by Breiman49. Biau showed the model 
convergence rate depends only on the number of strong predictors S, regardless of how 
many noisy additional features are present. While this result applies to a very simplified 
version of the model, Jean-Philippe Vert also suggests an explanation to Random 
Forest’s additivity to sparsity in the context of additive regression models50 

 While the decisions path behind the forest voting is not readily transparent, Random 
Forests do provide two measures of importance40,51. Mean decrease impurity (also known 
as mean decrease Gini or Gini importance) measures the total decrease in node impurity 
stemming from splitting a node on a feature, averaged over all trees. Note that as the 
method requires repeated attempts to split the node on a feature, features for which more 
attempts can be made are more likely to be selected by chance. This makes the mean 
decrease Gini biased towards categorical data with more classes, or numerical data with 
higher values. Assuming infinite sampling, it has been shown that this importance 
measure is unaffected by the presence of irrelevant features in the set 52. Mean decrease 
accuracy measures the difference in out-of-bag error in all trees upon permutation of 
feature values. While it is not prone to the bias towards larger categorical features or 
larger scale variable mean decrees Gini is prone to, Mean decrease accuracy measure 
performance is more sensitive to correlated features. 53, as correlated features may mask 
each other’s importance upon permutation. While not as sensitive, mean decrees Gini is 
also prone to underestimate importance of correlated data 54,55 

Another measure related to mean decrease accuracy is the Random Forest local 
importance, defined as the decrease of accuracy calculated for each member of the 
training set XiÎDn separately, rather than for the whole set. This measure can be used to 
understand the importance of each feature in the classification of each class. 
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RESULTS: 
 

Data, Feature and feature selection 
 

Whole-embryo imaging data from three sources were combined in our data set. In all 
cases, DNA segments constructs to be tested were inserted into a genomic construct 
near a reporter gene whose expression determine their enhancer activity.   Kvon et al. 56 
conducted a semi-automated in situ hybridization and imaging of 7705 genomic regions 
(http://enhancers.starklab.org/) specifying their activity at developmental stages 
throughout early embryogenesis. While the high throughput nature of the work allowed 
for an unprecedented number of genomic areas to be tested, the small number of 
embryos per collection plate leads to increased misclassifications in the data. The activity 
of an additional 282 genomic segments was manually tested by the BDGP group 57 
(unpublished data) (Table 1). Altogether, 7987 genomic regions were examined and 731 
were experimentally found to be enhancers in Drosophila embryonic stages 4-658. As the 
BDGP genomic segments were tested by carful practiced imaging of dozens of embryos 
at each stage, those were taken as ground truth. By manually comparing the labeling of 
overlapping genomic regions in the BDGP database with the larger Stark lab data we 
estimate a 10% false negative rate in the latter.  

As this work focuses on stages 4-6 embryogenesis, all 7256 regions which were found 
not to induce expression at those stages were considered non-enhancers, though 4031 
of them were found to be enhancers at later stages. This was done both because it is 
desirable to be able to separate enhancers using all data available if at all possible, and 
since most feature data (described below) is stage-specific, so enhancer prediction is 
expected to be independent (this assumption is explicitly tested later in this work).    

 
Table 1: all features used in prediction 

Segments # Segment type Description 

7705 Vienna tiles High-throughput automated scan;  
high volume but error prone  

282 BDGP  small number of very high quality manual 
annotation 

7987 Training data set Full training set used in this analysis 
Training set composition: 

731 Enhancers induce test gene expression at stages 4-6 

7256 Non-enhancers Don’t induce test gene expression at stages 4-6 
Non-enhancer set is composed of: 

4031 Late-stage 
enhancers 

while not inducing test gene expression at stages 
4-6, do induce it at late stages of embryogenesis.  

3225 absolute non-
enhancers 

Segments not inducing test gene throughout 
embryogenesis 
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 The different DNA segments cover all the drosophila chromosomes, spanning 
euchromatic and heterochromatic region. While the size of the most genomic segments 
was ~2-2.5Kb, the sizes ranged from 0.1-4.5Kb for the entire training set. The size of the 
enhancer containing segments ranged from 0.5-4.5Kb, with the size of the contained 
enhancer unknown (Fig 4).  
 
 

Features used in the initial model included ChIP-chip data for 20 of the ~30 A-P and 
D-V transcription factors shown to be important for transcriptional patterning in Drosophila 
4-6 embryo 59-61; ChIP-seq data for the ubiquitous transcription factors ZLD and z as well 
as 45 chromatin proteins and histone modifications in cycles 8-14 62 gave us additional 
feature data, as did DNase accessibility data 11,63,64 and evolutionary conservation scores 
65-67. Also considered were the presence of bidirectional RNA transcripts, exon and intron 
coverage, distance to RNA Polymerase II ChIP-chip binding peaks, and distance to 
transcription start sites.  A summarized list of features is presented in Table 2. For a full 
list and description please refer to methods.  
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Fig. 4: Size distribution of (a) the training set or (b) the enhancers in the training set.  



11	

Table 2: all features used in prediction 

 Features included 

Histone and Histone modifications      
(cell cycle indicated by _c#) 
 

H3_c12 H3_c14a H3_c14c H3_c8 
H3K18ac_c12 H3K18ac_c14a H3K18ac_c14c 
H3K18ac_c8 H3K27ac_c12 H3K27ac_c14a 
H3K27ac_c14c H3K27ac_c8 H3K27me3_c12 
H3K27me3_c14a H3K27me3_c14c 
H3K36me3_c12 H3K36me3_c14a 
H3K36me3_c14c H3K4me1_c12 
H3K4me1_c14a H3K4me1_c14c 
H3K4me1_c8 H3K4me3_c12 H3K4me3_c14a 
H3K4me3_c14c H3K4me3_c8 H3K9ac_c12 
H3K9ac_c14a H3K9ac_c14c H3K9ac_c8 
H4K5ac_c12 H4K5ac_c14a H4K5ac_c14c 
H4K5ac_c8 H4K8ac_c12 H4K8ac_c14a 
H4K8ac_c14c H4K8ac_c8 wt_H3 
wt_H3K18ac wt_H3K4me1 

ChiP-seq input files (sequencing 
control, used here as importance 
control) 

input_c12    input_c14a      input_c14c     
input_c8 

A-P Transcription Factor data 
(duplicates indicated by number) 

bcd1 bcd2 cad1 D1 ftz3 gt2 h1 h2 hb1 hb2 
hkb1 hkb2 hkb3 kni1 kni2 kr1 kr2 prdBQ prdFQ 
run1 run2 slp1 tll1  

D-V Transcription Factor data 
(duplicates indicated by number) 

da2 dl3 mad2 med2 shn2 shn3 sna1 sna2 twi1 
twi2 

Ubiquitous Transcription Factor data z2 zld 

Transcription factor combinatorics Sum of all TF, sum of all duplicates for: bcd twi 
sna shn run kr kni hkb prd hb h 

Conservation scores Mean, Max sliding window of:200, 500 and 
1000, longest continues stretch 

Zld ChiP-seq measurements Mean, Max sliding window of:200, 500 and 
1000, longest continues stretch 

DNA accessibility dnase, dnase2 
Bi-directional RNA binding Distance, absolute distance, maximal signal 

Exon/intron data 

Coding Exons Coverage, All Exons Coverage, 
Introns Coverage, binary indicators for weather 
segments contain exons, coding exons or 
introns 

Transcriptional data Distance to PolII binding peak, distance to 
closest transcription start site 

.  
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For the purpose of analysis, a single value or small set of values was needed to 
summarize the base-wise information available. This task was complicated by the 
uncertainty in the enhancer boundaries inside the fragments – averaging on a long 
segment containing a short enhancer will dilute the signal relative to an identical enhancer 
tested with a shorter construct. Likewise, normalizing for segment length is unhelpful as 
the relevant normalization is the unknown contained enhancer. Therefore, maximal 
values were chosen as a more robust measure. While it is not optimal as it is more prone 
to outliers and experimental errors, yet in the absence of any knowledge of the underlying 
size of the enhancers and given the vast heterogeneity in the genomic segments tested 
(Fig. 4) this was found to be the least biased solution, when a signal value was needed 
to identify ChIP-chip and ChIP-seq signal strength.  

By the same token, identifying the distance to and prevalence of genic constitution 
such as number of genes, number of introns and exons, distance to PolII binding or 
determining the nearest gene and so forth are also impeded by our ignorance as to the 
true genomic boundaries of the enhancers. It is impossible to determine which of the 
several genes overlapping the tested region, if any, also overlap the embedded enhancer 
or enhancers, or which overlapping gene is closer to it, particularly as the orientation of 
the putative enhancer is also unknown. In the absence of a data driven solution to this 
problem, we chose an inclusive rather than an exclusive approach; In the absence of a 
mechanism to choose between genes overlapping the segment, all overlapping genes 
were considered. If no gene overlapped the tested genomic segment, the nearest gene 
on either side of the fragment was included in the analysis. For the purpose of counting 
introns/exons and calculating genomic distances, the entire segment was treated as a 
single enhancer with those boundaries.  

With this data, we trained and tested Random Forest classifier, a supervised machine 
learning approach based on an ensemble of decision trees 38-40 . To reduce parameter 
number and prevent overfitting, a preliminary culling of the feature sets was performed 
based on the error rates in their presence and absence (see methods).  We found 
transcription factors and histone modification data were sufficient to minimize the error 
rate in the absence of all other feature sets in both held-out training or out-of-bag (oob) 
data and in test data (Fig. 5a-b). We note that while DNase accessibility did not contribute 
to Random Forest predictive power in the presence of TF binding data, it significantly 
improved predictive power in its absence, suggesting multi-collinearity in the data. 
Conversely, conservation scores did not contribute to the predictive power in any fitted 
model, and error rate utilizing solely conservation scores was neared 50%, suggesting 
conservation is not a feature of enhancers in the drosophila embryo. As data sets beyond 
TF binding data and histone modification added little predictive power, they were 
abandoned and not included in subsequent analyses. 

To increase prediction accuracy in a data set highly enriched in non-enhancers, a 
forests-voting sampling scheme was developed, were multiple forests built with equal 
number enhancers and non-enhancers were used in the prediction (Fig.  5c) (see 
methods).   
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Heterogeneity among enhancer elements 
 

With our optimal feature set our error rate in a single forest was nearly 30%, 
performance of the Forest voting probabilities indicates a likely success rate comparable 
to others in literature, indicated by the area under the ROC curve, AUC=0.82 (Fig.6A). 
However, while the overall predictive power falls short of that required for predicting 
enhancers genome wide, some enhancers were consistently correctly classified, while 
others were consistently misclassified. Hypothesizing that the model’s poor performance 
may be due to heterogeneity in the enhancer set, enhancers were separated into two 
classes. Class I Enhancers contained the 358 enhancer segments that were correctly 
classified 75% of the time and class II Enhancers containing the 373 which were not. 
When excluding class II enhancers from test sample, the single forest error rate drops to 
~3%, and the area under the ROC curve is ~0.99 (Fig.6A). When excluding Class I 

Figure 5: average error rate of the out of bag data (a) or in the test set (b) of 1000 forests of 500 trees 
trained on the full data set (all), histone and histone modification only (Hits), transcription factors data 
set only, (TF), with conservation and DNase accessibility only (Conc & DNase), and with all the above 
except transcription factor data (-TF). It is clear most of the signal is located in transcription factor data, 
seconded by signal held in the histone modifications. There is no difference in performance between a set 
containing only histones and that containing all data sets besides TF data, emphasizing the redundancy 
of other data sets. (c) The Random Forests sampling scheme. 10% of the data serves as a held-out set, 
with 1000 balanced (equal number enhancers    and    non-enhancers) samples randomly selected from 
the remaining data used as training set of 1000 forests, with the held-out data serving as a test set. The 
scheme is thus repeated with the next 10% of the data held out, until each segment in the data set is 
predicted by 50,000 trees from 1000 different forests for which it was a completely held out test set.  



14	

enhancers, errors of a single forest are ~40%, and the roc curve indicated performance 
only marginally better than random guessing (Fig. 6A). To establish that the enhancer 
heterogeneity is data-driven and not an artifact of our choice of method, logistic 
regression and naïve bays models of the data were also constructed. In both cases the 
removal of the class II enhancer set significantly improves the model’s predictive power 
(Fig.6B). Interestingly, the effect of retaining and removing class I and class II enhancers 
appears to have almost identical effect regardless of the method, and indeed the ROC 
curves are nearly overlapping (Fig.6B). This is particularly noteworthy as the underlying 
assumption of both models - primarily, feature additivity and independence – are unlikely 
to be present in the data, yet both perform as well as Random Forests, which does not 
require such assumptions. This may indicate that the problem of enhancer discovery 
becomes relatively trivial once heterogeneity is accounted for. Precision-recall curves do 
show Random Forests is the better classifier, as will be discussed in detail later in the text 
(Fig. 27-29).  

 

 
This seperation by the model of our enhancer class into 2 subclasses can be 

understood through examining the Principal Component Analysis (PCA) of the data 
(Fig.7a), where it is clear Class II enhancers collocate with non-enhancers while class I 
enhancers are separated from both along both PCA primary axes. Examination of feature 
space statistics of the 3 groups shows Class II enhancers are indistinguishable from non-
enhancers along our entire feature space – including TF binding, histone marking, 
conservation and DNase accessibility - while class I enhancers segregated from both on 
multiple features (Fig.7b, Fig.8-9). A distinct difference in the distribution of Class I 
enhancers is particularly notable for TF binding (Fig. 8a) though a few histone marks (Fig. 
8b)  - particularly H3K4me1 -  also demonstrate a difference between Class I enhancers 
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Figure 6: (a) Random Forest ROC curve for the data set (blue) shows mediocre performance, with area 
under the curve (AUC) of 0.83. Predicting class I enhancers, recall rises sharply, while prediction of 
class II enhancers is close to random guess. (b) ROC curves for Random Forests, logistic regression 
and Naïve Bayes classifier are nearly overlapping, with AUC =0.99 in all three methods when predicting 
the class I homogenous enhancer set. 
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and the other DNA segments. The separation in transcription factor binding profiles may 
indicate a possible reason and mechanism for the separation of the 2 classes – it may be 
Class II enhancers are regulated by TF’s for whom data is not currently present. However, 
differences in distribution are also present for many other features (Fig. 9), suggesting a 
more profound difference between the sets.  The large difference in DNase accessibility 
(Fig 9b) may indicate Class II enhancers are active in a small number of cells, with the 
enhancer tightly packed in the rest. In that case, Class II enhancers operate just as type 
I enhancers but the signal is too weak and cannot be detected in whole-embryo 
sequencing tests as those employed here. This supposition is further confirmed by the 
difference in expression patterns induced by the two classes, which will be described in 
detail later in the text. It is It is clear that there is no separation in any of the conservation 
scores between enhancers and non-enhancers (Fig 9a), explaining why this measure 
was found uninformative. Notably, in no feature do class II enhancers separated from 
non-enhancers. The separation of Class I and Class II enhancers in feature space 
demonstrates Random Forests can be readily used to separate heterogeneous enhancer 
sets. 

 

 
  

a b 

Figure 7: The separation into enhancer classes can be explained by the co-localization of class II 
enhancers and non-enhancers in the PCA projection in (a). The separation is mainly driven by the 
transcription factors as exemplified by the normalized ChiP strength across features of 200 randomly 
selected class I and class II enhancers (b) 
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Figure 8: box plots showing the distribution data by summarizing quantiles: 0.25-0.75 quantiles 
represented as a box, the notch indicates the median, whiskers extend an additional 1.5 
interquartile range in each direction, and outlies shown as points. Shown here are the distribution 
of (a) selected Transcription factor or (b) selected histone modifications, for non-enhancers 
(yellow), class I enhancers (gray) and class II enhancers (yellow). 
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Figure 9: box plots showing the distribution data by summarizing quantiles: 0.25-0.75 quantiles 
represented as a box, the notch indicates the median, whiskers extend an additional 1.5 interquartile 
range in each direction, and outlies shown as points. Shown here are the distribution of (a) various 
conservation and ZLD binding scores: average (CMeans, zldMeans), highest values along sliding 
windows (CW1000/200/500, zld1000/200/500) or longest contiguous starch (zldContig) (b) DNase 
accessibility, distance to bidirectional RNA, distance to PolII 2 or distance to transcription start site. 
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Allowing for enhancer heterogeneity by excluding Class II enhancers from the sampled 
training set gives us unprecedented prediction accuracy.  On a balanced held out test set, 
where half genomic segments were enhancers and half were determined to be not 
functional, more than 98% of Class I enhancers are discovered with better than 95% 
precision. This level of accuracy far surpasses any previous report in any metazoan 
system, and is unique to the Class I enhancer prediction. Using the same methods on the 
full heterogeneous set does not allow for accuracy and prediction above 85%, and with 
Class II enhancers predictive accuracy is close to that of random guess. This high 
predictive power in the model is mostly attributable to a small number of transcription 
factors (Kr, Med, Twi, Dl, D), as will discussed later in this work. It is possible Class II 
enhancers are difficult to predict as they are controlled by TF’s not included in this work, 
and that additional transcription factors will allow for this accuracy to be extended to Class 
II enhancers as well. 

In a true scan of the complete genome, we expect the accuracy to be lower. As one 
moves away from a balanced set, the frequency of false positives rate increases as a 
small fraction mislabeled non-enhancers can overwhelm the much smaller true positive 
set. To demonstrate the point, Random Forests were trained on a balanced set and tested 
on increasingly imbalanced test set, at various degrees of stringency (Fig.10A). It is 
interesting to note the sharp rise in false discovery rate in both model accuracy and non-
enhancer fold increase. This can also be seen in the marginal (Fig.10B-C): unless the 
sample is very close to balanced, the rise in false discovery rate in the test set is extremely 
sharp. Conversely, in genomic scans where the non-enhancers are likely to be at least a 
hundred-fold more prevalent, a precision considerably better then 95% is needed to retain 
predictive power with better then 75% false discovery rate. 
If all segments not in the balanced test set are considered in the test set, the test set 
contains 20 times more non-enhancers than enhancers. Under those conditions 90% of 
the enhancers were discovered with 60% precision. The prediction accuracy is likely 
considerably higher than this analysis implies, however, due to false negatives in the 
data published by Kvon el al. Reassessment of their gene expression image data for the 
top 100 genomic regions that our method predicted to be enhancers but which were 
reported as non-enhancers by Kvon et al. revealed that only 15 were true non-
enhancers, 47 were clearly enhancers, and the remainder could not be conclusively 
classified due to inadequate or insufficient data (Fig. 11C).  
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Figure	10:	False	positive	
rate	is	a	function	of	
method	accuracy	and	
imbalance	in	the	test	data	
(A)		3-dimensional	surface	
plot,	showing	a	sharp	
increase	in	the	test’s	false	
positive	rate	in	both	axes.	
In	genomic	settings,	where	
the	imbalance	cannot	be	
controlled,	a	very	high	
degree	of	accuracy	is	
required.	(B-C)	Marginal	of	
the	3D	image	above,	
demonstrating	the	sharp	
rise	in	test	inaccuracy	with	
regards	to	both	false	
positive	rate	in	the	training	
set	or	dilution	of	enhancer	
class	in	the	test	set.			
	

 

Figure 11: Examples of expression patterns in (A) Class I enhancers (B) Class II  enhancers (C) 
Embryos misclassified as non-enhancers in stages 4-6 in Kvon et al. 
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Segmentation driving enhancers (SDE) 
 

We next sought to understand if the separation of the enhancers in our feature space 
is related to their biology. To understand possible differences in function, we first 
examined possible differences in the expression of the reporter gene mRNA induced by 
the class I and Class II enhancers. A detailed reexamination of images for 76 randomly 
selected class I and 66 randomly selected class II enhancers was performed. We found 
Class II enhancers tend to be expressed in only a small percent of cells. 82% of class II 
enhancers had a tight expression pattern (expressed in <= 15% of cells) vs. 45% of class 
I. While separation is not complete, it is unlikely that these differences in expression are 
due to chance (P-value < 10-5). The separation between the two classes in prediction 
scores are very sharp, demonstrating two distinct underlying distributions (Fig.12a).  In 
addition, there is a difference in the time scale of activation.  We find that class I 
enhancers are more likely to remain active throughout embryogenesis, while class II 
enhancers tend to work intermittently or for shorter periods (Fig.12 b, c)   

Additionally, we looked at expression patterns of class I and class II enhancers, as 
annotated by Kvon et al. 56. Analysis of the annotation terms show a significant (P value 
< 10-4) enrichment for the expression in A-P stripes, posterior or gap gene like patterns 
(table 3). As this implies class I terms may be A-P patterning while class II are D-V 
patterning, we wished to test the assumption by collecting all terms relating to one of 
these primary patterns either at stage 4-6 or a progenitor to a patterned organ later in 
development. However, we found no difference in axis patterning as a whole between the 
classes, as the distribution between them was remarkably even (Table 3). GO-term 
analysis of the genes proximal to class I enhancers also showed a highly significant 
enrichment of terms related to segmentation (Fig.13), while those of class II enhancers 
showed much lower enrichment for any GO terms and no significant enrichment for any 
particular pathway (Fig.13). We therefore hypothesize that class I enhancers are likely to 
drive patterns of expression needed for establishing the segmented body plan 
(segmentation driving enhancers (SDE)), and term class I and class II enhancers SDE 
and non-SDE enhancers respectively. We note that while the differences are significant, 
there is not a clear separation in function as a minority of non-SDE enhancers direct 
patterns of expression resembling those of SDEs (Fig.11A,3B). 
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Figure 12: (a) Histogram of the prediction score (fraction of trees classifying a DNA segment as 
enhancer) for Class I and Class II enhancers. The separation between the 2 classes distribution 
indicates fundamental differences in classification between the two classes. (b)  Proportion of 
enhancers at each class vs. the number of annotated stages at which they were found to be active (c) 
Proportion of enhancers at each of the annotated stages. As for the purposes of this work “Enhancer” 
is defined as a DNA segment inducing gene expression at stages 4-6, all enhancers of both classes are 
active at that stage. Class I enhancers are more likely to remain active in later stages.  

Prediction Score 
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Table 3: Annotated expression terms in stages 4-6 

Annotated expression  Class I  Class II all P-value 

posterior 32 4 36 6.80E-06 

gap 30 5 35 4.98E-05 

AP_stripes 46 14 60 6.28E-05 

ventral_ectoderm_AISN 33 7 40 7.72E-05 

head_mesoderm_AISN 16 36 52 0.008418044 

posterior_endoderm_AISN 25 47 72 0.013328329 

dorsal_ectoderm_AISN_broad 17 6 23 0.037056219 

trunk_mesoderm_AISN_broad 12 25 37 0.048519738 

anterior 21 10 31 0.072486085 

trunk_mesoderm_AISN_subset 7 16 23 0.095292838 

yolk 10 3 13 0.096092329 

anterior_endoderm_AISN 51 70 121 0.101763505 

middle 11 4 15 0.12133525 

segment_polarity 3 0 3 0.248213079 

AP_stripe 14 8 22 0.286422023 

amnioserosa_AISN_subset 2 6 8 0.288844366 

dorsal_ectoderm_AISN_subset 21 29 50 0.322198806 

pair_rule 11 6 17 0.331975467 

procephalic_ectoderm_AISN 90 77 167 0.353102706 

mesectoderm_anlage 4 1 5 0.37109337 

apically_cleared 2 0 2 0.479500122 

AP_semistripes_ventral 4 7 11 0.546493595 

ubiquitous 22 27 49 0.567709166 

hindgut_AISN 18 14 32 0.595883091 

amnioserosa_AISN 19 15 34 0.606905427 
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table 3: Annotated expression terms in stages 4-6 (continued) 
Annotated expression  Class I  Class II all P-value 

AP_semistripes_dorsal 6 4 10 0.751829634 

brain_anlage_AISN 1 0 1 1 

mesectoderm_AISN 1 0 1 1 

mesoderm_AISN 15 15 30 1 

AP_semistripe_dorsal 3 3 6 1 

All patterned expression 280 342 622 0.014450022 

A-P terms 301 240 541 0.009891439 

D-V terms 244 244 488 1 

 
 

 
 

Figure	13:	Enrichment	of	the	GO-terms	proximal	to	enhancers	as	compared	to	Go-terms	proximal	
to	the	entire	DNA	segment	training	set.	Negative	log	of	the	P-value	is	shown	for	the	20	most	enriched			GO-
terms	 foe	 class	 I	 and	 class	 I	 enhancers.	 As	 class	 I	 enhancers	 are	 highly	 enriched	 in	 terms	 related	 to	
segmentation	we	rename	these	segmentation	driving	enhancers	or	SDE.			
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Feature importance is dominated by transcription factors 
 

The random forest importance measures “mean decrease accuracy” and “mean 
decrease Gini” 38 varied widely from sample to sample but in all cases a small set of the 
transcription factors were found near the top of the importance ranking list. This can be 
seen by the spread of the bootstrap confidence interval of the two importance variables 
calculated in 50,000 trees (Fig.15). The sum of transcription factor binding along with a 
small number of transcription factors (Kr, Med, Twi, Dl, D) were most important by both 
measures, and were also the most often used by the model (Fig.14). Other transcription 
factors such as Bcd and Ftz 37, were found to be uninformative despite their importance 
in embryo segmentation. This can be at least partially explained by low coverage in the 
ChIP-chip data. Here, we define coverage as the fraction of DNA segments in the data 
set which have a non-zero binding value anywhere along its length. Low coverage may 
indicate a TF has few binding sites and low non-specific binding to DNA; It may also 
indicate low quality in the test. Both explanations may influence a TF importance to the 
prediction, one due to smaller number of nodes affected by feature and the other by 
dilution of the signal, and both are artifacts which hide the true importance of a feature. 
Ideally, coverage and feature importance are independent, however we find there is a 
clear correlation (r = 0.7) between coverage and importance measure mean decrease 
accuracy. The correlation vanishes (r = -0.1) when very low coverage data such as Bcd 
and Ftz are excluded. (Fig.16 a). Similar correlation is found for mean decrease Gini 
importance ad coverage. 

The only histone mark to have an importance above random noise was H3k4 mono-
methylation (H3K4me1), a histone mark previously reported as an enhancer indicator 68. 
All 40-other histone and histone modifications, including the H3K27 acetylation 
(H3K27ac) that has been widely regarded as a key indicator of enhancer regions 12,69 
were found uninformative by the model in the presence of the transcription factor data, 
and had importance measure comparable to the RNA-seq input data, which are 
sequencing bias-control files and are not expected to contain any enhancer-relevant data. 
Features with importance measures comparable to the various input files may be 
assumed to be not important.      
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Figure 15: Mean decrease Gini and mean decrees accuracy measure averaged over 50,000 forest, 
trained on SDE and non-enhancers.   
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The Random Forest power to distinguish non-SDE enhancers is limited, but not non-
existent, as demonstrated by the ROC curves in (Fig.6).  The error rate for a single forest 
is ~35%, vs. 3% when seeking SDE enhancers, but while this error rate is high it does 
indicate some capacity of Random Forests to correctly classify these enhancers. 
Interestingly, it appears an entirely different set of features are used by the random forest 
to classify non-SDE enhancers (Fig.17).  While several transcription factors are of high 
importance in SDE classification, with a great deal of redundancy and variation in 
importance ranking amongst them, Twist (Twi) is considerably and consistently the most 
prominent feature in classifying non-SDE enhancers, with most of the variation issuing 
from the redundancy of the two biological replicas and their summation. Given its high 
prominence, it is interesting to note that the overall error rate of a single forest is 
unaffected by the exclusion of Twist, indicating additional redundancies. Twist is a 
prominent dorsal-ventral transcription factor essential for the embryonic D-V 
differentiation, which originally led us to hypothesize class I and class II enhancers may 
be A-P vs. D-V pattern forming, however this was later disproved by comparison of the 
expression patterns (Table 2). Furthermore, Twist and other dorsal-ventral transcription 
factors such as Dorsal are highly ranked in in SDE classification importance feature list 
as well (Fig.15). Twist is also one of the most prevalent transcription factors in the 
drosophila embryo, with numerous binding sites, as can demonstrated by its high 
coverage (Fig.16), raising the possibility it may be a serving as a surrogate for DNase 
accessibility, which was trimmed from the feature set at an early stage. However, the 
ubiquitously expressed Zelda has the greatest coverage in our training set (Fig.16), and 
is yet of only modest importance. Furthermore, when all features are reintroduced, twist 
continues to top the importance rank lists, with DNase accessibility biological replicates 
appearing in places 32 and 56 of the mean decrease Gini and mean decrease accuracy, 
respectively (Fig.18).  

The ascendancy of transcription factors as predictors is also reduced in the non-SDE 
set, with histone modification becoming more prominent (Fig.17), though surprisingly 
H3K27ac still retain a relatively low rank in importance space, with other histone markers 
not normally associated with enhancer discovery, such as such as H3K18ac having 
higher importance ranking. With the reintroduction of the full feature set, many other 
features (Fig.18) are now found to be more important, including distance to polymerase 
peaks (polII, BedPolII), distance to bidirectional mRNA transcripts (biDistance), distance 
to transcription start site (TS) and others. There is a much greater heterogeneity in the 
features used, while the reduction in importance value along the ranked features is more 
gradual, so that even features at the bottom of the rank list are occasionally used by the 
forest. Despite that, there is no improvement in predictive power with the reintroduction 
of the previously removed feature sets, and the error rate remains at ~35%. 

Feature importance when attempting to classify all enhancers as a heterogeneous set 
resembles that of non-SDE classification, with twist consistently the most used feature, 
and several histone modifications in the top 25 ranked (Fig.19). In contrast, when using 
random forest to separate SDE and non-SDE enhancers the parameter list as well as the 
error rates are the same as those used to separate SDE from non-enhancers (Fig.20). 
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Figure 17: Mean decrease Gini and mean decrees accuracy measure averaged over 50,000 forest, 
trained on non-SDE Vs. non-enhancers.   
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Figure 18: Mean decrease Gini and mean decrees accuracy measure averaged over 50,000 forest, 
trained on non-SDE Vs. non-enhancers using all 124 features. 
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Figure 19: Mean decrease Gini and mean decrees accuracy measure averaged over 50,000 forest, 
trained on all enhancers (SDE and non-SDE), Vs.  non-enhancers using all 124 features. 
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Figure 20: Mean decrease Gini and mean decrees accuracy measure averaged over 50,000 forest, 
trained on SDE Vs. non-SDE.  
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Attempts to determine which features were used by the Naïve Bayes classifier and 
logistic regression were unsuccessful, as the measures failed to converge, and were 
greatly affected by the order in which the parameters were presented to the model. As 
both these methods are considerably slower than Random Forest, only a few thousand 
runs could be made in each within a reasonable time frame, and the results were 
inconsistent.  In an attempt to get a more stable estimation, 500 stepwise logistic 
regression were performed, and the number of times each feature appeared was 
calculated. However, almost without exception all features were used between 200-300 
times (table 4). It should be noted that the features used most often are some of the 
transcription factors topping the Random forest importance list: Zld, TFsum, Prd and Twi. 
The exception in the list is harry (h), which was only used 5 times in the final step-wise 
regression. While harry is not an exceptionally critical transcription factor, its relevant 
scarcity has probably more to do with its location in the data matrix as the last feature 
introduced, coupled with the high correlative value between the transcription factors. In 
stepwise regressions were the feature order was randomly permuted, h was not found to 
have significantly less importance than other features.  
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Table 4: Number of times features were present in final model of 500 stepwise 
logistic regressions 
features #Used features #Used features #Used 
H3_c12 217 H3K4me3_c14a 280 D1 301 
H3_c14a 235 H3K4me3_c14c 246 da2 291 
H3_c14c 293 H3K4me3_c8 209 dl3 252 
H3_c8 249 H3K9ac_c12 246 ftz3 260 
H3K18ac_c12 237 H3K9ac_c14a 262 gt2 272 
H3K18ac_c14a 288 H3K9ac_c14c 248 mad2 232 
H3K18ac_c14c 264 H3K9ac_c8 210 med2 325 
H3K18ac_c8 264 H4K5ac_c12 285 slp1 298 
H3K27ac_c12 227 H4K5ac_c14a 256 tll1 270 
H3K27ac_c14a 239 H4K5ac_c14c 265 z2 259 
H3K27ac_c14c 239 H4K5ac_c8 224 zld 386 
H3K27ac_c8 265 H4K8ac_c12 239 TFsum 386 
H3K27me3_c12 224 H4K8ac_c14a 260 bcd 331 
H3K27me3_c14a 225 H4K8ac_c14c 301 twi 386 
H3K27me3_c14c 255 H4K8ac_c8 244 sna 279 
H3K36me3_c12 251 input_c12 240 shn 258 
H3K36me3_c14a 251 input_c14a 238 run 265 
H3K36me3_c14c 245 input_c14c 229 kr 281 
H3K4me1_c12 269 input_c8 230 kni 241 
H3K4me1_c14a 276 wt_H3 248 hkb 325 
H3K4me1_c14c 248 wt_H3K18ac 214 prd 364 
H3K4me1_c8 252 wt_H3K4me1 251 hb 306 
H3K4me3_c12 227 cad1 254 h 5 

 

Local feature-importance measures and clustering 

Random Forests local importance provides a detailed determination of the importance 
of each feature in classifying each segment, allowing a more direct understanding on the 
Random Forests decision making process. Random Forest local importance measures 
were calculated for forests attempting to classify SDE and non-enhancers, non-SDE and 
non-enhancers, and SDE and non-SDE enhancers (Fig.21-22). It is clear the same small 
set of features are used to distinguish SDE and non-enhancers (Fig.21A) as are used to 
distinguish SDE from non-SDE enhancers (Fig.21B), while the attempted separation of 
non-SDE and non-enhancers (Fig.21C) shows no variable which can consistently used 
in separation while many more parameters are used. The increase in used featues and 
the blurring of decision-criteria is also seen when non-SDE are presented to random 
forest as enhancers (Fig.22A) rather then non-enhancers (Fig.22B). This is result is in 
acordance with the results of the feature importance presented in the last section.  
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Figure 21: Local importance measurements of randomly selected segments indicting how important 
each feature was in the segment classification, when forest was trained on (a) SDE vs. non-enhancers 
(b) SDE vs. non-SDE enhancers or (c) Non-SDE vs. non-enhancers. 
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Spectral clustering is a technique that relies on the eigenvector of the similarity or 

afinity matrix projection of the data, usually followed by k-nearest neighbors or k-means 
clustering 70. It is an efficiant way of dimension reduction, and the number of clusters in 
the data can often be infered by the eigenvalues.  Applying kknn spectral clustering 71 to 
our data fails to separate enhancers, and the eigenvalues of the affinity matrix indicates 
a single cluster (Fig.23A). Applying spectral clustering to the local importance matrix 
yields a good separation of the data (Fig.23B), with a sharp jump after the second 
eigenvalue (Fig.24) not indicating further fine structure in the data. The same results were 
obtained by using Kern spectral clustering (Fig.25A). K-means clustering of the data 
directly with k = 2 clustered all genomic segments together, with only 17 in the second 
cluster. The same trend continues as the number of clusters (K) increases. Applying K-
clustering to the local importance does show good separation of the data, showing 
dimension reduction is not necessary for correct classification of the data (Fig.25B)  
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Figure 22: Local importance measurements of randomly selected segments indicting how important 
each feature was in the segment classification, with non-SDW enhancers included in the analysis with 
a label (a) non-enhancers (b) Enhancers. The difference in the Random forest use of features is marked. 
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Figure 23: Number of DNA segments of each type present in each, cluster size indicated by size of the 
dot, type by color and hight. (a): KKNN spectral clustering of the training data with 2,3,4 and 5 clusters. 
All fail to correctly separate enhancers of any kind from non-enhancers. (b) KKNN spectral clustering of 
local importance requiring 2,3, and 4 cluster correctly separate SDE enhancers from non-enhancers. 
Additional clusters splits SDE enhancers rather than separate non-SDE enhancers. 
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Figure 24: The ordered eigenvalues of the affinity matrix (7 nearest neighbors of Euclidian 
distance based similarity matrix) of the Random Forests local importance matrix. A jump of 3 
orders of magnitude occurs between the second and third eigenvalue, indicating a 2-cluster 
structure.    
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Figure 25: Number of DNA segments of each type present in each, cluster size indicated by size of the 
dot, type by color and height (a) Kern-lab spectral clustering of local importance 2,3, and 4 correctly 
separate SDE enhancers from non-enhancers, as does K-means clustering of local importance (b) K-
means clustering applied to the local importance matrix directly, successfully clustering the enhancers. 
without further dimensionality reduction. 
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To explore further the concept of substructures, two further clustering attempts were 
made. Hierarchical Clustering such as Agnes agglomerative clustering 72 can 
occasionally perform well in locating cluster structures or reveling underlying clusters, 
however in our data AGNES failed to distinguish either enhancers both in the data set 
and in local importance (Fig.26). A more direct method to discover underlying structures 
is through hypothesis testing for automated community detection in networks 73. This 
method was deliberately developed to uncover hidden communities and sub-clusters in 
the data, and as it attempts to discover hidden structures, a prior knowledge of the number 
of clusters in the data is not required. The underlying assumption of the model is that the 
network in question can be treated as a stochastic block-model, which is not always true, 
and the bipartitioning hypothesis is measured against an idealized case, which can lead 
to over-partitioning.  

In our case, this tendency for over-partitioning was particularly evident, as the algorithm 
partitioned the training data and the local importance matrix into 32 and 28 clusters, 
respectively (Table 5). While the large numbers of clusters undermine the utility of this 
method to partition the data set, it is interesting to note that this method alone was more 
successful in separating SDE enhancers from the data set rather than the transformed 
local importance measures. While there is no enrichment of enhancers in any of the 
clusters resulting from local importance, ~90% of all SDE enhancers are found in a single 
cluster of the untransformed feature data. Though this technique still has high false-
positive rate, as only 1/3 of the cluster members are enhancers, it is particularly 
noteworthy that this method - which clearly over partitioned the rest of the data - 
nevertheless agglomerated the SDE enhancers into a single cluster. This may be taken 
as a strong indication no secondary structures are present in the data. It should also be 
noted that no cluster, in either of the data sets, contained a significant enrichment of non-
SDE enhancers, strengthening our proposition these are indistinguishable from non-
enhancer in our feature-space. 
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Figure 26: (a) AGNES hierarchical clustering of the data (a) or of the local importance (b) failed to 
separate enhancers and non-enhancers when attempting 2,3 and 4 clusters. 
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Table 5:  Clusters created through automated hypothesis testing 
All Data Local importance data 
SDE Non-SDE Non-enhancer SDE Non-SDE Non-enhancer 
0 14 376 2 2 51 
0 1 109 2 2 36 
0 7 366 4 6 96 
0 14 429 5 10 129 
0 11 128 3 2 45 
0 5 173 2 0 26 
0 14 226 0 1 20 
0 15 421 0 1 20 
0 6 201 2 1 30 
0 31 467 0 3 35 
0 22 450 1 0 20 
0 3 54 1 1 44 
0 3 42 3 3 32 
316 49 708 1 1 28 
9 18 85 3 3 34 
1 7 20 3 3 29 
16 41 336 2 1 24 
12 18 150 1 3 20 
4 21 206 12 5 23 
0 1 73 7 1 18 
0 0 45 2 3 16 
0 20 408 4 4 23 
0 3 135 7 4 22 
0 3 222 24 11 49 
0 8 286 14 1 20 
0 7 376 8 0 14 
0 20 386    
0 9 339    
0 1 20    
0 1 19    
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Enhancer activity in later stages impacts prediction accuracy  
 

Of the 7256 genomic segments experimentally determined to be non-enhancers in 
stages 4-6, 4031 induce gene expression in later stages, while only 3225 were not found 
to act as enhancers at any stage. It should be noted though, that little to no data is present 
on enhancer activity at other points in the post-embryonic drosophila life, so it is 
impossible to say conclusively these are true non-enhancers. Thus far we considered the 
entire cohort of non-stage-5 enhancers as non-enhancers. This was done for several 
reasons; First, it is desirable to be able to separate enhancers in a specific stage from all 
other segments, without need for further partitioning of the data, if possible. Also, the 
feature data used in the analysis (transcription factors and histone modification ChIP-chip 
and ChIP-seq data) are stage specific. It was therefore presumed that late stage 
enhancers would be indistinguishable in our data set from non-enhancers, and indeed 
the high-accuracy of our results seemed to supports that theory. Another reason is that 
in the absence of data on later developmental stages, true non-enhancer data is an 
unknown and privileges embryonic stages. Yet it is plausible to hypotheses enhancer 
activity in later stages influence on prediction accuracy will be inversely proportional to 
the time difference between the stages. Thus, we sought to test the scope by which late-
stage enhancement affects prediction accuracy and test our assumption of 
independence.  

Random forest analysis was conducted again, utilizing the same balanced schema 
described in methods and depicted in (Fig. 5c), on the same DNA segments training set 
described at the start of this work, but with later-stage enhancers excluded from the test-
set. This was repeated with the full data set, SDE enhancers only, or non-SDE enhancers. 
While ROC curves show improvement in predictive power (as demonstrated by the area 
under the ROC curves) when later-stage enhancers are excluded from the analysis, this 
improvement is consistently small, whether we consider the entire enhancer set or focus 
on SDE or non-SDE enhancers (Fig.27a-c). In contrast, the precision-recall curves show 
a marked improvement in all three cases (Fig.27d-f), particularly in the case of SDE 
enhancers, where the area under the curve rises from 0.75 to 0.95, an exceptionally high 
value not previously reported in this kind of studies. As precision measures the probability 
a genomic region to be an enhancer given we predict it to be an enhancer regardless of 
priors and sample-imbalance, it is arguably the more relevant measure in this case where 
we seek to minimalize the type-I errors (false positives) of a relatively rare occurrence 
(i.e. – enhancers). While some studies reported roc curves with areas above 0.9, albeit 
when examining small samples from the top-ranks of the enhancer prediction, the PR 
curve represents unprecedented precision far exceeding previous reports. 

An additional motivation for this analysis has been the hope that it will aid in predicting 
non-SDE enhancers, but while a significant improvement in precision is present in 
analyzing the all enhancers and non-SDE enhancers (Fig.27d-f) the areas under the 
ROC and PR curve values are still indicative of performance not much better than random 
guessing, and clearly insufficient to allow us to make predictions. It also appears that the 
effect of inclusion of later-stage enhancers in the test set is independent of their presence 
in the training set (compare Fig. 27a-f to Fig.27g-l).  
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Test set includes:    All enhancers     SDE        Non-SDE 
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Figure 27: Random forests ROC and PR curves with all non-enhancers (all, blue) and with only those 
which remain non-enhancers in later stages (no-late, yellow) present in the test set. Respective areas are 
indicated above the figures.  First column shows all enhancers, second SDE enhancers and third non-
SDE enhancers. g-I shows the same experiments, where late-stage enhancers are excluded from both 
training and test sets, with little to no effect.  
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Test set includes:     All enhancers   SDE       Non-SDE 
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Figure 28:  Same as figure 27, except training set is limited to non-SDE enhancers and no late stage 
enhancers in control group (a-f), or to SDE enhancers and no late stage enhancers in control group (g-
l). Note the change of scale on last figure in each set. Training on non-SDE enhancers drastically reduces 
SDE prediction precision with no gain in non-SDE prediction, while training on SDE enhancers only has 
little to no effect. 
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Test set includes:  All enhancers   SDE       Non-SDE 
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Figure 29: Logistic regression (a-f) and naïve Bayes (g-l) ROC and PR curves with all non-enhancers 
(all, blue) and with only those which remain non-enhancers in later stages (no-late, yellow) present in the 
test set. Respective areas are indicated above the figures.  First column shows all enhancers, second SDE 
enhancers and third non-SDE enhancers. Note the change of scale on last figure of each set.  
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To understand the relationship between data inclusion in the test and training data, the 
experiments were repeated with all combinations of All-enhancer/SDE only/Non-SDE-
only and all-stages/No-late-enhancers present in the training and testing set. For 
example, (Fig. 28 a-f) presents ROC and Precision-Recall curves for random forests 
analyses in which non-SDE enhancers only were included in the training set as 
enhancers, and only those non-enhancers which do not drive later stage expression in 
the embryo are included as non-enhancers. They show training sets which include either 
all enhancers (a, d), only SDE enhancers (b, e) or only non-SDE enhancers (c, f), and 
either included (blue) or excluded (gold) later-stage enhancers. While the ROC curves 
remain relatively high despite the exclusion of SDE enhancers from the training set, a 
study of the PR curves quickly reveals that their absence removed most of the signal from 
the analysis, with the highest area under the PR curve ~0.55. It is interesting to note that 
even though SDE enhancers were excluded from the analysis, prediction of SDE was still 
more accurate (Fig. 28 b, d vs. c, f). This is probably due to the arbitrary cutoff by which 
SDE and non-SDE enhancers were separated, and suggest that most of the remaining 
signal in the non-SDE pool belongs to wrongly classified SDE enhancers. The exclusion 
of non-SDE enhancers from the training set had no effect on either ROC or PR curves 
(Fig.28 g-l), including prediction of non-SDE enhancers, furthering that supposition. 

In all cases, removal of late-stage enhancers from the testing set improved precision, 
while its inclusion or exclusion from the training set had no impact (data not shown). It 
is likely that the signal in the SDE and true non-enhancers is strong enough to overcome 
the ambiguous signal by those non-SDE or later-stage enhancers to correctly classify 
them. The fact that the inclusion of non-SDE enhancers or late-stage enhancers is 
important, as there is no way to know a-priori which type of enhancer each data point will 
prove to be, or whether a non-enhancer remains a non-enhancer in later (non-embryonic) 
stages. It indicates that including all known enhancers is sufficient to the task of predicting 
SDE enhancers without the need of prior separation, and that while information of 
enhancer activity is useful for evaluating the result, it is not needed for accurate 
predictions.  

To compare the veracity of this argument and in the hopes of finding a method to 
accurately predict all or some of the non-SDE enhancers, logistic regression and naïve 
Bayes analyses were conducted again, with and without later-stage enhancers in the test 
set (Fig.29). As with the Random Forests analysis, the exclusion of later-stage enhancers 
marginally enhanced recall, and significantly enhanced precision, but did not significantly 
enhance our ability to detect non-SDE enhancers. It should also be noted that while the 
ROC curves of all three methods indicate equally high performance, PR curves indicate 
random forests is the best performing method, while naïve Bayes performs quite poorly 
in comparison. The analyses were repeated again with all combinations of all-
enhancers/SDE-enhancers/non-SDE enhancers, and all non-enhancers/no-late 
enhancers included in the training set, and evaluated with the inclusion or exclusion of 
those groups (data not shown). The results for both naïve Bayes and logistic regression 
were similar to those reported for Random Forests: exclusion of later-stage enhancers 
from the non-enhancer set makes a small difference in recall and large difference in 
precision, but does not grant sufficient power to predict non-SDE enhancers.  
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Genome-wide scan to identify all segmentation-driving 
enhancers in the early embryo 

 
Given the high accuracy of the model on our training and held-out data set, a genome 

wide search for SDE enhancers was feasible. Random Forest was used to predict 
enhancer score on a computationally segmented genome (see methods). More than 
0.82% of all segments had less than 0.01 score of being enhancer, and more then 93% 
had less than 0.1 predicted score (Fig. 30a). While it is hard to see at first glance, as the 
histogram is dominated by the 0-0.01 score bar, the histogram is in fact bimodal (Fig. 
30b, inset), with a secondary peak around p = 0.95.  It should be noted that a similar 
bimodality is also present in the score distribution of the training data, indicating this is a 
feature of the genome – or at least, of applying random forest analysis to the genome 
(Fig. 30c). The bimodality is not present if the split criteria between SDE and non-SDE 
enhancers is set at a significantly lower threshold, which serves as a validation to the 
segregation criteria between the two classes (Fig. 30d). 
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Figure 30: Predicted score 
distribution of the whole 
genome is bimodal. (a) 
Histogram of the prediction 
score for every 1000bp 
sliding window along the 
drosophila genome is 
dominated by >80% of the 
genome having a score < 
0.01 (b) a closer 
examination of the second 
half of the histogram 
reveals the distribution is 
bimodal (inset) (c) This 
bimodality was also 
observed in the predicted 
score histogram of the 
training data (d) when 
repeating the process with a 
less-stringent separation of 
between SDE and non-SDE 
(treating 80 more enhancers 
as SDE enhancers), 
bimodality is not observed, 
or is at least much more 
ambiguous.  
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 In order to call enhancers, a threshold of p> 0.75 was established, covering ~1.6% of 
the genome and rediscovering de novo 98% of the training set. The threshold of 0.75 is 
a natural one for this sample, as it was also the threshold used to designate SDE 
enhancers. The resulting overlapping segments were combined into continues segments 
giving rise to 1374 predicted enhancers of varying lengths (Fig. 31a). While most 
enhancers were relatively short, with a peak at ~1700bp, some enhancers were several 
Kb long (one longer then 12Kb), which likely indicates an enhancer cluster rather than a 
single enhancer. Enhancers longer then 1.5Kb were further separated based on their 
transcription factor biding profile where possible (see methods). While this was not 
always possible, either due to a true single very long enhancer or peaks too close to 
separate, we were able to separate over 200 peaks, with none of the remaining longer 
then 4KB. 

Random Forest predictions were conducted again with the resulting predicted 
enhancers as test case in order to evaluate the confidence in prediction of the new 
boundaries. For the most part, the score histogram shifted right as the flanking regions 
containing only partial signals were no longer clouding the predicted score landscape 
(Fig. 31b-c). In a few cases, the new boundary enhancers yielded predictions with scores 
below our threshold of 0.75 (Fig. 31c), likely due to the stochastic process of Random 
Forests. We chose to keep theses enhancers in the prediction pool, with the new scores 
assigned.  
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Figure 31: (a) length 
distribution of 
predicted enhancers 
prior to peak splitting. 
While most are shorter 
then 2Kb, some are 
extremely long (>4Kb), 
indicating likely an 
enhancer cluster. 
(b) Histogram of the 
predicted score of the 
new boundaries 
enhancers, taken as the 
maximal score of the 
composing segments 
prior to unification. 
(c) Histogram of 
predicted score of being 
an enhancer based on a 
new Random forest 
prediction with the new 
boundaries.  
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All together, we predict 1,640 SDE enhancers along the genome, 1174 of which do not 

contain overlap with training data. 364 overlap known CRM’s identified in the Redfly 
database 74-76, while 916 are novel. Examples for how the model performed in the 
comprehensively investigated enhancers clusters Eve and Ftz can be viewed in (Fig 32-
33).  
 

 

 
 

Figure 32: A UCSC genome brewers of the enhancer cluster regulating the Eve gene expression, 
containing (from top to bottom): (a) Genomic location and scale (b) Predicted enhancers (c) Row data 
from which peaks were called and subsequently separate (d) location of training-set enhancers (red 
indicating they were found to induce expression in stage 4-6 embryos) (e) Figures of the embryos in the 
training set, upon which their enhancer ability was determined. (f) Transcription factor binding profile of 
the region, being the sum of all known individual transcription factors bindings, some examples of which 
are presented in (g). The model correctly predicts the location of all seven known enhancers, and correctly 
separates 6 of them into distinct enhancer regions.  



51	

 
 

 

To validate our precision, an in-vivo expression-driving test were conducted.  6, 17 and 
18 genomic regions were selected with predicted scores corresponding to expected false 
discovery rates of 4%, 25% and 50% respectively.  Test regions were cloned into the 
pBPGUW expression vector then injected into flies using the attP integration system 77. 
All but two of the enhancers, including all but 1 of those predicted to be in the 50% FDR 
region were found to be enhancers (Fig. 34a-f). We thus needed to adjust our FDR 
estimation, and assuming a Poisson distribution we placed a confidence bound of 0.15-

Figure 33: A UCSC genome brewers of the enhancer cluster regulating the Eve gene expression, 
containing (from top to bottom): (a) Genomic location and scale (b) Predicted enhancers (c) Row data 
from which peaks were called and subsequently separate (d) location of training-set enhancers. Red 
indicates genomic segments found to be stage 4-6 enhancers enhancer, while blue indicates those which 
were not (e) Figures of the embryos in the training set, upon which their enhancer ability was 
determined. (f) Transcription factor binding profile of the region, being the sum of all known individual 
transcription factors binding, examples of which are presented in (g).  
The model correctly predicts both the presence and absence of enhancer activity in regions overlapping 
the training set. In one case (fifth tested enhancer from left) the tested enhancer overlapped a predicted 
enhancer, and yet was determined to be a non-enhancer. Examination of the embryo below revels this 
is in fact a weak enhancer, an example of experimental false negative.  
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32.77% FDR on our predicted 25% FDR, and 0.14-30.95% FDR for the region we 
predicted to have 50% FDR, with most likely values (MLE)  

 

 

 
of 5.88% and 5.56% respectively. Thus, the predicted FDR to the 1121predicted 

enhancers above the tested threshold is 5.73% and better then 31.9%. By fitting a 
polynomial model through the data and extrapolating for the missing value, we estimate 
an overall FDR of 6.28%, and no more than 33.27% (Fig. 35). This large range may be 
further reduced with further experimentations done, particularly on the lower ranked 
enhancers.  
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Figure 34: (a-e) As validation, predicted enhancers were inserted into drosophila genome, and 
were found to drive expression. (f-g) two enhancers are predicted proximal the to the comm2 
gene. Each of their patterns is a different portion fractions of the comm2 gene expression 
pattern (h). (i) The genomic region of the two predicted enhancers is shown, along with the 
raw prediction track showing the predicted score of enhancer activity with 100bp resolution, 
and the sum of transcription factor binding at the same resolution. 
 



53	

An interesting example and validation for the use of transcription factors to separate 
proximal enhancers (methods) can be seen in two predicted segments proximal to 
Commissureless (comm2) (Fig. 34i), an important protein in axons guidance across 
embryo’s midline78,79. The two predicted enhancers combined expression pattern (Fig. 
33f-g) matches the comm2 more complicated expression pattern (33h).  
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Figure 35: To calculate an overall FDR for the entire cohort of predicted enhancers, the MLE of the three 
tested regions was calculated (assuming an underlying Poisson process). In addition, all DNA segments 
with scores <0.01 were assumed to be non-enhancers. These 4 data points were used to fit a polynomial 
function, which gives a predicted FDR for each predicted score, allowing us to find the most likely FDR 
of cohort. This was repeated using the two CI values for each region, to give the confidence interval for 
the FDR (not shown). 
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DISCUSSION: 
 
The identification of enhancer elements from genomics data has remained a 

challenging problem – in part due to the relative scarcity of enhancers in genome 
sequences. As we illustrated in (Fig. 10), even an extremely incisive enhancer prediction 
algorithm fitted on balanced training data (training sets with nearly equal numbers of 
positive and negative elements) is likely to generate high false discovery rates when 
applied to a genome-wide scan. Hence, to accurately discover enhancer elements using 
in silico techniques, extremely high fidelity models are needed.  

Though high precision predictions were reported previously, validation method and 
measure varied greatly in literature. Many papers compare their success to the colocation 
of known epigenetic marks such as p3000 and H3K27ac, but it is yet to be established 
that these are exclusive to enhancers or that all enhancers possess them. Indeed, we 
report here a H3K27ac-free enhancer class. Others report results tested at the top of the 
rank list, which forms a biased estimation of the overall prediction accuracy. We suggest 
reporting of precision measured by testing throughout the prediction rank list is required 
to establish a uniform unbiased measure of success.  

By far the most important factor in the prediction of SDE-enhancers is transcription 
factor binding profile, to the extent that utilizing transcription factors alone yields results 
similar to utilizing the full array features, and in combination with histone modification no 
other feature was required. Yet most other data sets are not irrelevant, merely redundant, 
as the error rate of all features without transcription factors is not much lower than that 
with it. DNase accessibility especially plays a much greater role in prediction when 
transcription factors are excluded, while conservation scores appear to have little to no 
ability to aid in correct classification (see Fig. 5). This redundancy of data indicates many 
different approaches may prove rewarding to the problem of enhancer discovery. 

We found that the prediction of enhancer elements en masse was made difficult by 
heterogeneity among enhancer elements: for about half of validated enhancer elements, 
strong TF binding signal for multiple factors is indicative of enhancer activity in our system; 
for the other half of elements, enhancer activity and TF binding signal are only weakly 
associated. That is, a prediction engine that works well on one class tends to fail on the 
other. We posit that this challenge, heterogeneity in element classes, is a widespread and 
foundational challenge in genomics. For example, the emerging literature on “chromatin 
priming elements” 80 demonstrates the existence of “enhancer-like” functional elements 
that, while they share chromatin structure and similar patterns of transcription factor 
occupancies with enhancers, do not themselves drive patterned expression – rather they 
establish chromatin context that subsequently gives rise to enhancer activity for proximal 
elements. It may be that the class of elements we presently denote “enhancers” is in fact 
diverse, admitting elements that exert regulatory effects through a variety of underlying 
molecular mechanisms. Indeed, it remains unclear what fraction of enhancers require 
eRNAs for their activity 80, or whether priming elements are transcribed like enhancers.    

It may also be that the non-SDE or “class II” enhancers we study here are simply 
regulated by cohorts of TFs we have yet to survey, or that activity in a smaller fraction of 
the embryo tends to make these elements less amenable to interrogation through whole-
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animal ChIP-seq. However, the differences between the two enhancer classes are 
statistical, not categorical – while there is a significant enrichment in segmentation GO-
terms in SDE compared to non-SDE enhancers, some non-SDE enhancers also display 
segmentation-driving expression patterns, and many (20%) are active in as much or more 
of the embryo than the median for SDEs. 

The separation of SDE from non-SDE enhancers in all parameter space allows us to 
utilize Random Forest directly to separate the classes. Studying the feature importance 
of this analysis shows the same features are utilized in this as are used in the separation 
of SDE’s and non-enhancers. The same can also be seen in observing the local 
importance heat maps, where it is clear the same features can be used to separate SDE 
and non SDE enhancers. Local importance also shows us how the presence of non-
SDE’s in the training set changes the way features are utilized by the Random Forests to 
predict enhancers; the importance of the top transcription factors drops and more features 
are used though with less consistency (Fig. 21).  This is a surprising result as ROC and 
PR curves seem to be unchanged by the presence or absence of non-SDE’s in the 
training set (Fig. 26-27). It may be that while the Forest use the critical features less in 
the presence of SDE enhancers, it is still enough to correctly classify SDE enhancers in 
the test set if the signal is strong enough.  

It is noteworthy in that respect that while little separation of non-SDE enhancers from 
non-enhancers was possible with our method and data, that separation relied heavily on 
single transcription factor – Twist, a crucial Dorsal-Ventral patterning 37, which is also 
found to be consistently most important in SDE classification. As it fails to correctly 
classify non-SDE enhancers most of the time, it may be Twist is part of a transcription 
network with other members not included in this work, leading to its limited power. 
Alternatively, it may be that Twist is weakly correlated with other factors related to non-
SDE activity though not directly involved on their regulation, and so it has some limited 
predictive ability on that cohort. Yet another possibility is that the weak discriminatory 
power Random Forest classifier has on the classification of non-SDE enhancers stems 
from SDE enhancers included in the non-SDE cohort by the arbitrary threshold imposed 
to separate the classes. As error rate in the classification does not drop when Twist is 
removed from the analysis, this last seems the most probable conclusion, but It will be 
necessary to conduct further study to determine definitively which of these hypotheses is 
correct.  

When comparing the performance of Random Forests to logistic regression and naïve 
Bayes, it was surprising how closely ROC curves resembled – indeed, overlaid – each 
other, given the far more stringent underlining assumptions in both these second models 
(Fig. 6b). However, as the ultimate goal of this analysis is to allow researchers to 
accurately predict enhancers, it is the precision and not recall which is the more relevant 
measure. When studying the PR curves of the different methods (Fig, 26-28) it is clear 
naïve Bayes is the worst performing of the three, unsurprising as it is manifestly untrue 
that the features used in the prediction are independent. While logistic regression 
performs better, Random Forests is clearly the best performing method of the three. 

In contrast, clustering methods consistently fail to separate the data, indicating this 
problem is not tractable by unsupervised learning methods. The best performing method 
was Clustering through automated hypothesis testing, which successfully classified most 



56	

SDE enhancers together, yet less then 1/3 of this cluster members were SDE enhancers 
(this despite over segmentation of the method on the whole). Classifications conducted 
on the feature importance space were consistently successful, and spectral clustering 
performed on it suggests 2 classes are present in the data (Fig. 23). Together these may 
be taken as a strong indication as to the homogeneity of the SDE enhancer set.  

Precision can be further increased when non-enhancer data is limited to those regions 
which do not induce expression in the embryo, not merely in the early blastoderm. This 
indicates that the separation in time between active and inactive enhancers is not 
complete with regards to transcription factor binding and histone modification, and that 
poised enhancers may be confused with active enhancers in feature space. This is not 
surprising, as their varying regulatory functions such as inhibitors which rely on the 
removal or addition of a single factor to initiate transcription. In such cases, all the 
enhancer signals mast be already present beforehand for this regulatory scheme to work. 
When late stage enhancers are removed from the test set rather than considered non-
enhancers, both ROC and PR curve for predicting SDE enhancers has an AUC > 0.99, 
(Fig. 27b) indicating almost perfect classification. It is therefore reasonable to 
hypothesize that some of our false negative predictions may turn out to be expressed in 
later stages. Further experiments are needed to validate this supposition.  

While the presence of late stage enhancers or non-SDE enhancers in the test set 
greatly effects our precision, their presence in the training set has no effect on either recall 
or precision (Fig. 27-29). This result seems to suggests that all known data may be given 
to a Random Forest classifier without the preliminary separation into classes as was done 
here. And yet, when it is sufficient to slightly relax the separation criterion between SDE 
and non-SDE enhancer to alter the whole-genome prediction so that the distribution is no 
longer bimodal, and indeed Random Forests clarifications previously reported were 
unable to achieve such accuracy 18. It may be that the difference lies simply in the 
difference between cross validation used to construct the PR and ROC curves and true 
held out test set, such as is represented in the whole genome analysis. More probably, it 
lies with the high number of enhancers belonging to the same class (SDE) present in out 
training set. This inclusion was not intentional, but the lucky result of extensive study into 
segmentation which provided us with a trove a single process specific data.  

Our validation assays revealed that cross validation has led to significant 
overestimation of the false discovery rate for SDEs. We attribute this to an abundance of 
false negatives in our training set – perhaps 10% of negatives are erroneously labeled, 
which, if true, would double the number of positives, and explain the significant gap in our 
anticipated versus validated false discovery rates. Another possible explanation to the 
discrepancy is selection bias in our training set, as genomic regions to be tested were 
selected as likely candidates for enhancer activity and not at random. Thus, it is possible 
that the genomic data as a whole gives clearer separation of features. Overall, we recover 
98% of the training set SDEs with an estimated false discovery rate of less than 7%, 
indicating that our genome-wide predicted catalog of these elements may be close to 
comprehensive. Further experiments, particularly concentrated at high false discovery 
rates, are needed to better assess the boundary between functional and non-functional 
elements. At this time, it appears that at least 1600 elements, composing more than 1.5% 
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of the Drosophila genome, are involved in establishing early body patterning in the 
blastoderm.  
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MATERIALS AND MATHODS: 
 

Data acquisition and processing:  
 

25% FDR Transcription factor ChIP-chip data was taken from the drosophila TF 
network project (bdntp, http://bdtnp.lbl.gov/Fly-Net/), containing data for 22 transcription 
factors: bcd, cad, D, da, dl, ftz, gt, h, hb, hkb, kni, kr, mad, med, prd, run, shn, slp, sna, 
tll, twi, z, some with biological duplicates to give 34 tracks.  1% FDR ChiP-chip data for 
polII binding was also taken from BDTNP 59-61.   Histone, histone modification and zld 
chip-seq data were retrieved from UCSC genome browser track provided by Li el al.62. 
Histone modifications data collected in Zld mutant strain were not used, all other tracks 
were included in the analysis. DNase accessibility data and 12-fly conservation 
phastCons scores were obtained from UCSC genome browser81-83, as was FlyBase 
gene data for exon, coding exons and intron location data84. Bidirectional RNA transcript 
data was obtained from lab unpublished data. Transcription start site was taken from 
FlyBase’s mRNA data.   

Though 80% of the DNA segments in the training set were between 2-2.5Kb long, 
segment sizes varied from 100bp to 4.5KB in the set, and the percent of enhancer 
region contained by each segment is unknown, making averages a biased estimator. 
Thus, the maximum of ChiP data was calculated over every segment in the training set 
and the segmented genome using bedtools and UCSC genome browser utilities for TF 
data, histones, conservation score and DNase accessibility. In addition, the sum of TF 
biological replicas and the sum of all TF tracks was also calculated and included as 
features in the model. In addition to the maximum score, for Zld higher-resolution ChiP-
seq data and for the conservation phastCons conservation scores we also calculated 
the average over the segment, maximal score over a sliding window of 200,500 and 
1000bp, and the longest continues stretch of scores above the 0.85 quantile. For the 
gene data, bedtools coverage was used to calculate percent of segment covered by 
exons, coding exons or introns and 3 binary tracks indicate the presence or absence of 
intron and exons. Bedtools closest to calculate distance to the closest tss and to polII 
binding peak.   

  
Modeling:  

 
Random Forests were modeled in R 85 using RandomForest40 . Initial feature set 

culling was done through error rates average of 1000 forests of 500 trees when 
excluding/adding one feature at a time. Our training data is highly unbalanced, with only 
10% of segments being enhancers. To improve Random Forest performance balanced 
samples were used as training set. To improve stability of the prediction, and counteract 
the sampling process employed by balancing the training set, we relied on forest voting. 
1000 Forest of 50 trees each were trained on a randomly selected sets of 300 enhancer 
and 300 non-enhancers with 10% of the data held out of the samples and used as test 
set.  The fraction of trees in all forests voting for each segment serving as the predicted 
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score of being an enhancer. this was repeated until such score was computed for each 
segment in the set.  The same sampling and testing scheme was employed for logistic 
regression, and naïve Bayes 86.  

Importance measures varied from sample to sample and averages required 10,000 
Forest of 50 trees to converge. To increase stability of the importance measure, the 
average of 50,000 Random Forests mean decrease in accuracy and mean decrease in 
Gini index were used to find the importance Random forests confidence intervals. For 
local importance calculations, we used a single forest of 50,000 trees produced using all 
enhancers and a balanced non-enhancers subsample.  

 
Analyses: 

 
ROC curve areas were calculated with R package PRROC 87. PCA was done using 

prcomp 85. Go term analysis used bedtools 88 to find FlyBase genes located inside 
training enhancer regions, or to identify the closest genes if none are overlapping. David 
bioinformatics resource 89,90 was used to find and quantify Go term and Go-term 
enrichment, with the full set of ~8000 genomic regions as the genomic background. To 
find Affinity matrix of the data we converted Euclidian distance into a similarity matrix, 
and calculated 7 nearest neighbors for each segment. Spectral clustering and 
eigenvalue extraction was done using kknn 71 with default settings. We used a masked 
strategy to assess expression size and pattern on an unannotated randomly ordered set 
of both enhancer classes. 

 
Genome wide prediction:   

 
A sliding window of 1000bp with 100bp distance was used to create segments of the 

entire drosophila genome, and 1000 trained on SDE and non-enhancers only with our 
usual sampling scheme was used to predict enhancers genome wide, with the %trees 
taken as score. For each 100bp segment the average of the overlapping segments was 
calculated, and those above the 0.75 threshold were kept. adjacent segments were 
merged. Segments longer then 1.5Kb were separated based on peaks in the sum of 
transcription factors data when possible: The normalized sum of transcription factor 
binding was calculated for each 100bp window, second derivative used to detect peaks, 
and peaks closer then 200bp merged. If more than one peak remained, the minima 
between adjacent peaks was used to separate the longer predicted enhancers. Once 
boundaries were established, the genomic prediction scheme was repeated to establish 
score of the entire enhancer.   
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