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Abstract
1.	 Many studies of community assembly focus on a single ontogenetic stage (typi-

cally adults) when trying to infer assembly processes from patterns of biodiver-
sity. This focus ignores the finding that assembly mechanisms may strongly differ 
between life-stages, and the role of ontogenetic dependency: the mechanisms by 
which one life stage directly affects the composition of another life stage.

2.	 Within a 4-ha forest dynamics plot in California USA, we explored how the relative 
importance of multiple assembly processes shifts across life stages and assessed 
ontogenetic dependency of seedlings on adults in woody plant communities. 
To assess variation in assembly processes across life stages, we examined how  
β-diversity of adult and seedling communities were each influenced by space and 
13 environmental variables (soils, topography) using distance-based redundancy 
analysis and variation partitioning. We then assessed the ontogenetic depend-
ency of seedlings on adults by including adult composition as a predictor in the 
seedling community variation partitioning.

3.	 We found differences between adult and seedling composition. For the adults, 
we found 18 species including pines, oaks and manzanitas characteristic of this 
mid-elevation forest. For seedlings, we found 11 species, and that oaks made 
up 75% of all seedlings while only making up 45% of all adults. Adult β-diversity 
was primarily explained by space (44.0%) with environment only explaining 18.6% 
and 37.4% unexplained. In contrast, most of the explained variation in seedling 
β-diversity was due to ontogenetic dependency alone (13.6% explained by adult 
composition) with 1.6% explained by space and the environment jointly, and 
62.8% unexplained.

4.	 Synthesis: Here, we describe a conceptual framework for integrating ontogeny 
more explicitly into community assembly research and demonstrate how differ-
ent assembly processes structured adult and seedling β-diversity in a temperate 
dry forest. While adult β-diversity was largely driven by spatial processes, seed-
ling β-diversity was largely unexplained, with ontogenetic dependency compris-
ing most of the explained variation. These patterns suggest that future assembly 
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1  |  INTRODUC TION

Understanding what drives spatial variation in community assem-
bly processes is a key goal in ecology (Myers et al., 2013; Weiher 
et al.,  2011), with important implications for understanding the 
impact of anthropogenic climate change on biodiversity (Lavergne 
et al.,  2010; Mokany & Ferrier,  2011) and informing ecosystem 
management (Wainwright et al., 2018). Recently, there has been a 
growing recognition that a community is the result of the differential 
growth and survival of organisms throughout their lifetimes (ontog-
eny; Larson & Funk, 2016; Máliš et al., 2016), and that therefore each 
ontogenetic stage is a pathway by which assembly processes may in-
teract to influence overall community structure (Larson et al., 2021; 
Lasky et al., 2015). Despite decades of research on the role of onto-
genetic variation in influencing forest diversity (Clark & Clark, 1984; 
Connell et al., 1984; Grubb, 1977), and advances in identifying rele-
vant regeneration traits and filters (Larson & Funk, 2016), ontogeny 
has not been explicitly integrated into modern community assembly 
frameworks (e.g. Spasojevic & Suding,  2012; Weiher et al.,  2011). 
Moreover, few community assembly studies have explicitly consid-
ered that ontogenetic stages can interact; one ontogenetic stage can 
influence assembly at a different stage within ecological communi-
ties. Here, we expand upon the concept of “demographic depen-
dency” developed by Heiland et al. (2022) to develop the concept of 
“ontogenetic dependency”, which refers to all mechanisms by which 
the community at one life stage (e.g. adult trees) can affect the abun-
dance and composition of a community at another life stage (e.g. 
seedlings) during community assembly.

In general, spatial variation in community composition  
(β-diversity) arises through four interacting higher-order processes 
of community assembly: speciation (the formation of new species), 
dispersal (the movement of species through space), ecological drift 
(changes in species relative abundances that are random with re-
spect to species identity), and niche selection (changes in species 
relative abundances resulting from deterministic fitness differences 
between species; Vellend, 2010, 2016). While speciation occurs at 
time scales longer than those considered in most community assem-
bly research (Mittelbach & Schemske, 2015), the relative influences 
of dispersal, ecological drift, and niche selection can be inferred from 
patterns of β-diversity (Myers & LaManna, 2016), can differ among 
ontogenetic stages (Parrish & Bazzaz, 1985; Spasojevic et al., 2014), 
and may exhibit ontogenetic dependency. First, dispersal can play a 

strong role in determining β-diversity patterns (Leibold et al., 2004). 
Specifically, the factors that determine the timing and amount of 
offspring production in reproductive adults directly impact com-
position of juvenile communities (Davis, Synes, et al., 2019; Pearse 
et al., 2017). As only reproductively mature life stages produce off-
spring that can disperse (Wang & Smith,  2002), dispersal is a key 
driver of ontogenetic dependency (Figure 1—dashed arrow).

Second, the relative importance of niche selection and ecological 
drift can also change with ontogeny (Figure 1; Comita et al., 2007; 
Green et al., 2014), though in more complex ways which may vary 
among ecosystems. First, the strength of the mechanisms un-
derlying niche selection can vary with life stage because traits, 
and therefore functional strategies, often shift with ontogeny 
(Garbowski et al., 2021). For example, seedlings often tolerate a nar-
rower range of environmental conditions than adults (Grubb, 1977; 
Poorter, 2007), often have high mortality rates compared to adults 
(Eriksson & Ehrlén,  2008; Green & Harms,  2018), may rely on a 
more resource-acquisitive functional strategy (Dayrell et al., 2018; 
Spasojevic et al.,  2014) and/or employ different strategies to re-
spond to drought (Cavender-Bares & Bazzaz, 2000) as compared to 
adults. As a result of such ontogenetic trait variation, the response 
of organisms to biotic and abiotic filters may be different at each life 
stage (Larson & Funk,  2016), which can result in divergent spatial 
distributions (Bell et al., 2014; Lenoir et al., 2009). Finally, the rel-
ative importance of ecological drift can vary with life stage in two 
ways. First, drift may be stronger at life stages at which cohort sizes 
are smaller leading to greater demographic stochasticity (Orrock & 
Watling,  2010). For example, low recruitment of juveniles or high 
mortality of adults can reduce population sizes leading to an increase 
in the strength of ecological drift (Fox & Kendall, 2002). Second, the 
chance of non-random mortality can be different among life stages 
(Green & Harms, 2018). For example, Green et al. (2014) found that 
mortality was nearly random for large size-classes in tropical forest 
trees, while non-random mortality was strong for small size-classes, 
suggesting that ecological drift was relatively more important at the 
adult life stage in that system.

Importantly, ontogenetic dependency between life stages can 
arise from niche selection and ecological drift. First, ontogenetic 
dependency necessarily arises because early life stages determine 
the composition of later life stages (Figure  1, rightward-facing  
arrows), generally over long timescales. High turnover (high mortal-
ity and replacement) in earlier life stages can cause the effects of 

research should consider how assembly processes and their underlying mecha-
nisms may shift with ontogeny, and that interactions between ontogenetic stages 
(ontogenetic dependency) are critical to consider when assessing variation in 
assembly processes.

K E Y W O R D S
beta-diversity, determinants of plant community diversity and structure, dryland, forest, forest 
dynamics plot, life stage, mixed-evergreen forest, montane hardwood forest, oak, pine
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niche selection to accrue to later life stages (Green & Harms, 2018). 
For example, high juvenile mortality at niche margins can cause adult 
distributions to be narrower than juvenile distributions because 
adult occurrence is dependent upon juvenile occurrence (Heiland 
et al., 2022). At smaller spatial scales, seedlings may occupy a wider 
range of microhabitats than adults within a given site (Comita 
et al., 2007; Webb & Peart, 2000) as adults are restricted to the sub-
set of sites that are suitable for individuals to survive and successfully 
transition to larger size-classes over time and over multiple cycles of 
recruitment (Beyns et al., 2021; Comita et al., 2007). Similarly, the 
outcomes of ecological drift in early life stages should also accrue to 
partially determine the composition of later life stages. Second, on-
togenetic dependency can result when later life stages influence the 
composition of earlier life stages (Figure 1, leftward-facing arrows) 
by modifying abiotic or biotic filters (i.e. niche selection). The most 
classic example in trees is seedling shade/light tolerance, where a 
combination of drift and selection determine canopy structure and 

light availability (Peterson & Reich,  2008) which in turn influence 
seedling success (Comita & Hubbell, 2009; Walters & Reich, 1996). 
For example, Song et al. (2018) found that canopy damage of adults 
from snow increased seedling community size and species richness 
by altering light availability. In such cases, the process affecting the 
adult life stage also determines seedling successes; its effects are 
not limited to a single life stage (Figure 1—solid arrows). Crucially, 
such processes would be obscured by a focus on a single ontoge-
netic stage and thus considering interactions between ontogenetic 
stages is important for understanding community assembly.

Here, we aimed to understand: (1) the relative importance 
of assembly processes that influence β-diversity of woody plant 
communities in a temperate dry forest, (2) how the relative im-
portance of such processes may shift with ontogeny, and (3) the 
degree of ontogenetic dependency in these processes. Forests 
exemplify ontogenetic shifts with large differences between 
adults and juveniles due to significant ontogenetic trait variation 

F I G U R E  1  A general conceptual framework that describes how community assembly processes may shift with ontogeny (life stage) and 
can exhibit ontogenetic dependency (dashed and solid arrows) across three hypothetical life stages. Membership of species in the regional 
species pool (small coloured circles where letters represent different species, and different colours represent different traits) is determined 
by speciation (and immigration). White arrows represent the subset of four species that disperse to each of the local communities, 
and each local community (larger pie circles) is composed of three species from the regional pool able to establish post-dispersal, with 
the relative abundance of each species shown by the size of the pie wedge. The dashed coloured circles around each local community 
represent environmental conditions, where species that best match the environment have colours that match the dashed circle (i.e., species 
sorting). Here, the whole community (within the solid blue line) is divided into three ontogenetic stages (e.g., seedlings, sapling, adults for 
woody plants) that are differentially influenced by niche selection (purple) and ecological drift (green) resulting in relative abundances 
that differ among local communities within and among life stages. In this hypothetical example, niche selection is stronger at the early 
life stage resulting in stronger species sorting—better matching between dominant species in each community (larger pie wedge) and the 
environmental conditions (colored dashed circle) in most communities. As ecological drift becomes more important at later life stages, some 
communities exhibit less species sorting as the dominant species no longer matches the dashed circle in two of the communities. Due to 
these ontogenetic differences in assembly processes, in most communities the composition changes from one ontogenetic stage to another. 
In this example the composition of the O, P, Q community shows ontogenetic shifts in composition at each stage where the community 
composition (wedge size) changes at each life stage; the R, S, T community shows ontogenetic shifts in composition at only one life stage; 
and the L, M, N community does not show no change in composition with ontogeny. Ontogenetic dependency is first exhibited via dispersal 
(dashed arrow) where assembly mechanisms that determine the timing and amount of offspring production in reproductive adults directly 
impact the composition of early life stage communities. Ontogenetic dependency necessarily arises from the survival and transition of 
earlier life stages to later life stages (solid right-facing arrows). Ontogenetic dependency can also arise if the late life stage alters niche 
selection and/or ecological drift (solid left-facing arrows). In both directions, processes that directly impact one life stage have cascading 
impacts on another life stages. In the present study, we only assessed two ontogenetic stages and only investigated pathways of ontogenetic 
dependency corresponding to the effects of adults on seedlings through dispersal and niche selection.
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in trees (Spasojevic et al.,  2014; Williams-Linera & Manrique-
Ascencio, 2020) and thus, forests are excellent study systems to in-
vestigate how assembly may vary with ontogeny. Using data from a 
4-ha forest dynamics plot where every stem larger than 1 cm DBH 
has been mapped, identified, tagged, and measured, in conjunc-
tion with 256 1-m2 seedling plots where every stem shorter than 
1 m tall was mapped, identified, tagged, and measured, we asked 
the following questions. (1) Does community composition differ 
between the adult and seedling communities (Figure 1 differences 
between “early life-stage community” and “late life-stage commu-
nity”) and do these differences result in differences in β-diversity 
across ontogenetic stages? (2) Is β-diversity in adult and seed-
ling communities associated with different assembly processes 
(Figure 1 differences in niche selection and drift between “early 
life-stage community” and “late life-stage community”)? To answer 
this question, we first compare observed patterns of β-diversity to 
deviations from a null model of random assembly to assess the role 
of ecological drift, and then used variation partitioning to assess 
the amount of variation in β-diversity explained by the environ-
ment (both spatially structured and unstructured; inferred to be 
the effect of niche selection), and space (inferred to be the effect 
of dispersal). (3) What is the effect of adults on seedling composi-
tion via ontogenetic dependency (Figure 1 solid black arrow from 
“late life-stage community” to “early life-stage community”)? To 
answer this question, we repeated the variation partitioning anal-
ysis of seedling β-diversity and included adult composition as an 
explanatory variable to infer ontogenetic dependency.

2  |  MATERIAL S AND METHODS

2.1  |  Study site

Our study was conducted in the Hall Canyon Research Natural 
Area within the San Bernardino National Forest (Forest Service, 
United States Department of Agriculture). The site is adjacent 
to the University of California, Riverside's James San Jacinto 
Mountains Natural Reserve (33.81115 N, −116.7707 W; mean 
annual temperature 11.7°C; mean annual precipitation 665 mm; 
~1650 m a.s.l.). The Hall Canyon Research Natural Area is found 
on the western (windward) slope of Mt. San Jacinto at the lower 
elevational distribution of Southern California montane mixed-
conifer forest which is characterized by pines, firs, and cedars; 
and the upper elevational distribution of Southern California 
montane hardwood forest which is characterized by oaks and 
montane chaparral. This forest type is sometimes termed mixed-
evergreen forest or montane hardwood-conifer forest (Barbour 
et al.,  2007; North et al.,  2016). The area has been relatively 
undisturbed for over 100 years, with the last recorded logging 
sometime in the 1800s (records are unreliable) and the last large 
fire in 1885 (Keeler-Wolf,  1989). The forest now exhibits the 
hallmarks of fire-suppression, including high stand density and 
leaf litter accumulation (Savage,  1994). Additionally, this forest 

has experienced sustained drought for the last several decades 
(Williams et al., 2020). The bedrock is entirely late Cretaceous gra-
nitics from the San Jacinto Pluton (Keeler-Wolf,  1989) and soils 
are classified as lithic Xerorthents, which are shallow, coarse, well 
drained, with a low water holding capacity, and contain a large vol-
ume of rock fragments and outcrops (Sheppard & Lassoie, 1998).

2.2  |  Forest composition

Our study was conducted in the San Jacinto Forest Dynamics Plot 
(SJFDP), a 4 ha (200 × 200 m, subdivided into 100 20 × 20 quadrats) 
stem-mapped forest dynamics plot (Figure 2), that follows the pro-
tocols of the Smithsonian Institution Center for Tropical Forest 
Science (CTFS) Forest Global Earth Observatory (ForestGEO) net-
work. The SJFDP includes strong edaphic and topographic gradients 
characteristic of the area: elevation in the SJFDP ranges from 1746 
to 1808 m (mean = 1774 m) and slope ranges from 6.43 to 38.10° 
(mean = 13.8°) at the 20 × 20 m scale. As of 2019, all free-standing 
stems of woody species greater than 1 cm diameter at breast height 
(DBH) have been tagged, identified, measured and mapped follow-
ing CTFS-ForestGEO protocols (Condit, 1998).

To quantify woody species seedling composition across the 
SJFDP, we surveyed the central 64 20 × 20 m quadrats (out of 100 
total quadrats) in 2021, leaving a 20-m buffer between seedling 
plots and the edge of the SJFDP. The purpose of the buffer was to 
ensure that adult composition is quantified for all of the 8 quadrats 
surrounding every quadrat in which seedling composition was quan-
tified so that we can more accurately assess the influence of adult 
composition on seedling composition. To estimate seedling composi-
tion within each of the central 64 quadrats, we established four 1 m2 
subplots (n = 256 subplots). Each subplot was positioned 7 m from 
the corner of each quadrat and aligned on a 45-degree angle relative 
to the x-y axes of the SJFDP grid (65°, 155°, 245°, 335°; Figure 2). 
Subplot locations were moved to the nearest suitable location if the 
initial subplot location was completely occupied by a log or rock. In 
each subplot, we identified all seedlings (defined as individuals under 
1 m tall following the CTFS-ForestGEO protocol; Condit,  1998) to 
species, mapped their locations in a 100-cell grid, measured their 
height, and added an identification tag unique to each individual. As 
we only sampled seedlings in one year and seedling recruitment can 
fluctuate interannually in similar forests (Davis et al., 2016), we ac-
knowledge that our study may not fully capture long-term seedling 
composition.

2.3  |  Environmental heterogeneity

To quantify environmental variation among quadrats we measured 
8 soil variables and 6 topographic variables. In the centre of each 
20 × 20 m quadrat, we collected a sample of ~500 g of soil (0- to 
10-cm depth) excluding the top organic horizon and analyzed or-
ganic matter (OM, by loss on ignition), phosphorus (P, Weak Bray 
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and Sodium Bicarbonate), potassium (K), magnesium (Mg), calcium 
(Ca), sodium (Na) and cation exchange capacity (CEC, cations and 
CEC by ammonium acetate method) and pH (analysis was done by 
A & L Western Laboratories). For each 20 × 20 m quadrat, we ad-
ditionally calculated 6 topographic variables: mean elevation, slope, 
convexity, aspect, topographic position index, topographic rugged-
ness index, and flow direction. Mean elevation above sea level was 
quantified as the mean elevation of the four corners of each quad-
rat. The slope was quantified using the slope tool in ArcGIS 10.1. To 
quantify the remaining terrain characteristics, we used a 1-m digital 
elevation model (DEM) from the USGS 3D Elevation Program (3DEP) 
and the raster package in R (Hijmans et al., 2013). Because aspect is 
a circular variable, we used cosine(aspect) in our analyses (Legendre 
et al., 2009). South aspect was measured as cos(aspect)*sin(slope), 
where higher values correspond to south-facing slopes that are asso-
ciated with warmer and/or drier site conditions (Ackerly et al., 2020). 
Finally, we calculated the topographic position index (TPI) as the dif-
ference between the elevation of a quadrat and the mean elevation 
of the eight surrounding quadrats, topographic ruggedness index 
(TRI) as the mean absolute difference between the elevation of a 
quadrat and the elevation of the eight surrounding quadrats, and 
flow direction (flowdir) as the direction of the greatest drop in eleva-
tion for a given quadrat.

2.4  |  Statistical analyses

For all analyses, we refer to stems larger than 1 cm DBH as “adults” 
even though this size definition includes saplings that are not yet 
reproductive. Adult composition was quantified for all 100 20 × 20 m 
quadrats. To quantify seedling composition per quadrat, we summed 
all seedlings across each of the four subplots contained within a 
quadrat.

To explore the difference between seedling and adult compo-
sition (Question 1; Figure 1 differences between “early life-stage 
community” and “late life-stage community”), we first visualized 
differences in community composition among life-stages using 
a non-metric multidimensional scaling (NMDS) based on Bray–
Curtis dissimilarity among quadrats in R (R Core Team,  2019). 
Bray–Curtis dissimilarity is a semi-metric measure of dissimilarity 
used for continuous numerical data and does not group samples 
by shared zeros in the dataset. We gauged the fit of our NMDS 
analysis using stress, a measure of departure from monotonic-
ity in the relationship between the dissimilarity in the original  
n-dimensional space and distance in 2-dimensional ordination 
space. In general, stress values <0.1 correspond to a good indi-
cation of the similarities between samples, whereas stress values 
>0.2 indicate a poor relationship (Clarke,  1993). Stress values 

F I G U R E  2  Stem map of the 4 ha San Jacinto Forest dynamics plot. Each colored point represents a main stem greater than 1 cm diameter 
at breast height (secondary stems are not shown). Grey lines indicate 20 × 20 m quadrats (n = 100, with inset letters and numbers delimitating 
quadrat identities). X and Y axis values represent distance in meters from the bottom left corner. Inset quadrat shows location of four 1 m2 
seedling plots (blue squares) within each of the central 64 quadrats, 7 m from the corner (black circle) of each quadrat.
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do not affect analyses conducted on dissimilarity matrices, only 
how well the dissimilarity among sites is represented in a two-
dimensional figure (Clarke,  1993). We then used permutational 
analysis of variance (PERMANOVA: Anderson, 2001) in the vegan 
package (Oksanen et al., 2013) in R to test for differences in com-
munity composition among seedlings and adults. Permutational 
analysis of variance is very similar to an ANOVA but allows for 
the analysis of differences in species composition rather than spe-
cies numbers (Anderson, 2001). We then calculated β-diversity as 
the dissimilarity (distance to centroid) in species composition for 
each community (Anderson et al., 2006) and tested for differences 
in β-diversity between adult and seedling communities using a 
permutation-based test of multivariate homogeneity of group 
dispersions (Anderson,  2006). We also examined if observed  
β-diversity differed from stochastic assembly (ecological drift) by 
comparing our observed β-diversity for both seedlings and adults 
to the distribution of β-diversity based on 1000 iterations of a null 
model. To construct this null model, we randomized our site by 
species matrix, effectively removing any effect of niche selection, 
while maintaining richness and abundance distributions within 
each community (Mori et al., 2015). We then evaluated departures 
of observed taxonomic β-diversity from the null expectation by 
calculating a standardized effect size (SES):

where βOBS is the observed β-diversity, βNULL is the mean of the null 
distribution, and βSDnull is the standard deviation of the null β-diversity 
distribution. Lastly, we used indicator species analysis (Dufrene & 
Legendre,  1997) which assesses the strength and statistical signifi-
cance of the relationship between species occurrence/abundance and 
groups of sites to ask which species are driving significant differences 
in community composition, using the indicspecies package in R (Cáceres 
& Legendre, 2009).

To explore the relative importance of different assembly pro-
cesses (niche selection and dispersal) within the adult community 
and within the seedling community, (Question 2), we compared 
the extent to which observed β-diversity was explained by envi-
ronmental variables (described above) and spatial variables using 
distance-based redundancy analysis (dbRDA; Legendre et al., 2009; 
Peres-Neto et al., 2006). Spatial variables included spatial eigenvec-
tors obtained from Moran's Eigenvalue Mapping (MEM) which rep-
resent a spectral decomposition of the spatial relationships among 
the study quadrats which are represented by sine waves roughly or-
dered from broad-scale (low values) to fine-scale (high values) within 
our study design (Dray et al., 2006). Following Blanchet et al. (2008), 
we used dbRDA to partition variation in β-diversity for adults and 
seedlings into individual fractions explained by pure (spatially un-
structured) environmental variables (E), spatially structured environ-
mental variables (E + S), and spatial variables (S). We then performed 
forward model selection using the ‘Forward.sel’ function in the  

R packfor package (Dray et al., 2007). Environmental and spatial vari-
ables retained after forward model selection were used to partition 
variation in taxonomic β-diversity into the individual fractions listed 
above.

Finally, to evaluate the role of ontogenetic dependency in driv-
ing seedling composition (Question 3), we reran the dbRDA to par-
tition variation in β-diversity for seedlings into the same E, E + S, 
and S fractions described above, while adding fractions explained 
by adult composition (A), adult composition that is spatially struc-
tured (A + S), adult composition that is structured by spatially un-
structured environment variables (A + E), and adult composition 
that is structured by spatially structured environmental variables 
(A + S + E). Adult composition for all of the 100 quadrats was used 
to analyze the effect of adult composition on seedling composition 
to more fully capture the adult community on all sides of each seed-
ling plot. We then performed forward model selection using the 
‘Forward.sel’ function in the R packfor package (Dray et al., 2007). 
Environmental and spatial variables and the adult species retained 
after forward model selection were used to partition variation in 
taxonomic β-diversity into the individual fractions listed above. We 
did not examine the influence of the seedling stage on the adult 
stage as this process occurs over long timescales encompassing 
many cycles of recruitment and transition of seedlings to later life 
stages, and our one-time survey dataset is not appropriate to an-
swer this question.

3  |  RESULTS

3.1  |  Forest composition

Across the 4 ha SJFD we measured 4,684 main stems (stem number 
ranges from 11 to 95 per quadrat with a mean of 44) and a total 
of 18 species (Figure 2). Species richness varied from 3 to 11 spe-
cies (mean = 6.72) per quadrat. Within the 256 seedling subplots, we 
found a total of 576 seedlings of 11 species. Overall, we found that 
the composition of the adult and seedling communities significantly 
differed (F1,162 = 34.85, p = 0.001; Figure  3a, Stress = 0.19), while 
β-diversity only modestly differed (adults = 0.44, seedlings = 0.40; 
F1,162 = 5.14, p = 0.022). For both the adults and seedlings, β-diversity 
was significantly lower than the null expectation (adult SES = −12.4; 
seedling SES = −25.9) suggesting that β-diversity is lower than would 
be expected based on an assembly model of ecological drift. Our 
indicator species analysis found that the difference in composition 
between adult and seedling communities was primarily driven by dif-
ferences in the abundance of Pinus lambertiana, Pinus coulteri, Pinus 
ponderosa, Pinus jeffreyi, Quercus wislizeni, and Arctostaphylos pring-
lei, which were abundant in the adult community but were relatively 
absent in the seedling community (Figure 3b). Finally, Quercus kellog-
gii, Quercus chrysolepis, and Calocedrus decurrens were the dominant 
species in the seedling class, while there were few seedlings of Pinus 
and Arctostaphylos species.

�OBS − �NULL

�SDnull
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3.2  |  Shifts in assembly with ontogeny

For the adult community, we found that that environment alone 
explained 0% of the variation in β-diversity, spatially structured 
environmental variables explained 18.6%, and spatial processes ex-
plained 44.0%, while 37.4% remained unexplained (Adults Figure 4, 
Table 1). For the seedling community, we found that environment 
alone explained 0% of the variation in β-diversity, spatially struc-
tured environmental variables explained 5.7%, and spatial processes 

explained 21.9% while 72.4% remained unexplained (Seedlings1 
Figure 4, Table 1).

3.3  |  Ontogenetic dependency

After including adult composition as a predictor in our analysis 
of seedling composition, we found that the environmental frac-
tion remained unchanged at 0%, while the spatially structured 

F I G U R E  3  Mismatch between seedling and adult composition in the SJFDP. (a) ordination plot (nonmetric multi-dimensional scaling) of 
differences in community composition between adult quadrats (grey points) and seedling plots (white points). (b) Relative abundance of 
species separated by life stage (adults on the left, seedling on the right). Species codes: ABICON: Abies concolor; ARCGLA: Arctostaphylos 
glandulosa; ARCPRI: Arctostaphylos pringlei ssp. drupacea; ARCPUN: Arctostaphylos pungens; CALDEC: Calocedrus decurrens; CEAPAL: 
Ceanothus palmeri; FRACAL: Frangula californica ssp. cuspidata; LONSUB: Lonicera subspicata var. denudata; PINCOU: Pinus coulteri; PINJEF: 
Pinus jeffreyi; PINLAM: Pinus lambertiana; PINLON: Pinus ponderosa; QUECHR: Quercus chrysolepis; QUEKEL: Quercus kelloggii; QUEWIS: 
Quercus wislizeni var. frutescens; QUEXMO: Quercus Xmorehus (Q. kelloggii x wislizeni); RHOOCC: Rhododendron occidentale.

F I G U R E  4  Differences in β-diversity among adults and seedlings. (a) Differences in observed β-diversity between adult and seedling 
communities measured as the distance to centroid of dissimilarity in species composition for each ontogenetic stage. (b) Differences in 
the Standardized Effect Size (SES) of β-diversity between adult and seedling communities based on 1000 iterations of a null model which 
effectively removed any effect of niche selection, while maintaining richness and abundance distributions within each community. Values 
below zero indicate that β-diversity is lower than expected based on an assembly model of ecological drift. (c) Percent variation of observed 
β-diversity explained by environmental and spatial variables used in the distance-based redundancy analyses. Seedling1 represents 
analysis with only spatial and environmental variables. Seedling2 represents analysis with spatial, environmental, and adult composition 
variables where the adult fraction represents ontogenetic dependency. The partitions show the adjusted R2 values for all combinations of 
environmental variables, spatial variables, and adult composition, based on distance-based redundancy analysis. Specific variables for all 
fractions are listed in Table 1.
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environmental variables decreased from 5.7% to 1.6%, and spa-
tial processes decreased from 21.9% to 1.5% (Seedlings2 Figure 4, 
Table 1). The pure adult fraction explained 13.6% of the variation, 
spatially structured adult composition explained 0% of the variation 
in seedling β-diversity, and adult-structured environment explained 
16.8%. Lastly, 4.1% of the variation was explained by the joint influ-
ence of adults, space and the environment, while 62.4% of the varia-
tion remained unexplained (Seedlings2 Figure 4, Table 1).

4  |  DISCUSSION

There is a growing recognition of the importance of ontogeny in 
community assembly (Larson & Funk, 2016; Lasky et al., 2015; Máliš 

et al., 2016) and in forest systems the spatial relationship between 
adult and juvenile trees has long been studied (Clark & Clark, 1984; 
Grubb, 1977; Nicotra et al., 1999). However, ontogeny has not been 
well integrated into community assembly frameworks (Spasojevic 
et al.,  2018; Spasojevic & Suding,  2012; Weiher et al.,  2011) and 
few assembly studies have explicitly considered the role of ontoge-
netic dependency. We found patterns suggesting that the relative 
importance of assembly processes shift from the seedling to adult 
life stage in forest tree communities—where the processes explain-
ing adult β-diversity (spatial processes) did not explain seedling 
β-diversity. We also found evidence for ontogenetic dependency 
where the adult community (Figure 4: A, A + E, A + S, and A + E + S 
fractions) explained most of the explained variation in seedling com-
position across space. Overall, our results are consistent with the hy-
pothesis that dispersal and niche selection shift with ontogeny and 
highlight the importance of considering ontogenetic dependency, 
where the community at one life stage can affect another. Taken 
together, our results suggest that approaches to predict vegetation 
dynamics under global change should more explicitly consider the 
role of ontogeny.

4.1  |  Forest composition

We found a significant difference between the adult and seedling 
species composition (Question 1; Figure  3a) with Pinus species 
underrepresented and Quercus seedlings overrepresented in the 
seedling class compared to proportions in the adult community 
(Figure  3b). There are several possible drivers of this mismatch 
ranging from short timescale interannual variations in the seedling 
pool to long-term patterns of recruitment. First, our study only 
measured species composition over a brief time window while 
seedling recruitment can be episodic in association with pre-
cipitation in western North American forests (Davis et al., 2016; 
Littlefield et al.,  2020). It is possible that 2021, a drought year, 
simply favored oak recruitment over pine recruitment, resulting 
in the patterns we observed. Additionally, both the pine species 
(Fryer, 2018; Gucker, 2007) and oak species (Tollefson, 2008) are 
known to exhibit masting cycles. However, the demographics we 
observed are consistent with other studies in similar mixed-conifer 
forests (Dolanc et al., 2014; Fettig et al., 2019; Minnich et al., 1995) 
and a 1994 age-class study conducted at the same site, which 
also found a strikingly low abundance of Pinus ponderosa, Pinus 
jeffreyi, and Pinus coulteri seedlings and an over-representation 
of Quercus chrysolepis and Quercus kelloggii seedlings relative to 
adults (Savage, 1994), suggesting the patterns we observed may 
be reflective of long-term trends. It is important to note that dif-
ferences in survival rates between species (i.e. high pine seedling 
survival and low oak seedling survival) could prevent changes in 
canopy species composition, and thus the seedling-adult mismatch 
we observed is not necessarily indicative of a long-term shift in 
forest composition. For example, Quercus kelloggii is known to ex-
hibit very high seedling density relative to adult densities, as well 

TA B L E  1  Model selection results. Significance of environmental 
and spatial variables used in the distance-based redundancy 
analyses of β-diversity. Seedling1 represents analysis with only 
spatial and environmental fractions. Seedling2 represents analysis 
with spatial, environmental, and adult composition fractions. 
An “X” indicates explanatory variables that were retained after 
forward model selection for observed β-diversity at each site. 
Number of PCNM eigenfunctions represents the number of 
significant eigenfunctions retained in each analysis. Species codes 
(see Figure 3 legend for definitions) represent the significant adult 
species that were retained in the seedling analysis.

Observed β-diversity

Explanatory variable Adults Seedlings1 Seedlings2

Environment: soil

Organic Matter

Phosphorus

pH

Magnesium X X X

Potassium X

Calcium

Environment: topography

South aspect X

Elevation X

Slope

Convexity

Topographic Position 
Index

Topographic 
Roughness Index

Flow direction

Space

Number of MEM 
eigenvectors

17 8 8

Adult composition

Species code CALDEC, 
CEAPAL, 
QUECHR, 
QUEWIS
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as high seedling mortality (Fites-Kaufman et al.,  2007), suggest-
ing that high seedling abundance is not necessarily indicative of 
increasing canopy dominance in this species.

If the mismatch reflects long-term community dynamics, it could 
result from environmental effects on seed production (i.e. a lack of 
pinecone production), germination, and survival across demographic 
stages. Critically, fire suppression in this forest may be driving much 
of the variation in these demographic processes as fire plays a cen-
tral role in this dry forest system (Minnich, 2007). Some of the spe-
cies in the SJFDP (e.g. Pinus coulteri and Arctostaphylos spp.) require 
fire for germination (Keeley & Syphard, 2018) while others such as 
Pinus ponderosa benefit from surface fire, which promotes both ger-
mination and seedling persistence (Fryer, 2018). Thus, the lack of fire 
in this system could be promoting oak seedling recruitment which 
can occur under low-light conditions (Tollefson,  2008), and inhib-
iting pine recruitment which requires the open canopy conditions 
produced by periodic fire (Fryer, 2018). The abundance of Abies con-
color and Calocedrus decurrens (both shade-tolerant species) further 
suggests that fire suppression is a key driver of composition, and is 
consistent with the demographics of similar fire-suppressed forests 
(Dolanc et al., 2014; Minnich et al., 1995).

In addition to fire suppression, increased summer water defi-
cit due to climatic warming could be causing differential seedling 
survival between species (Moran et al.,  2019) and thus, the over-
representation of oaks in the seedling class could reflect increasing 
oak dominance in the SJFDP. The dominance of oaks over pines is 
expected with climate change (McIntyre et al., 2015) as pine and oak 
species may have different tolerances to drought (Fettig et al., 2019). 
For example, Quercus chrysolepis is found in more arid habitats 
(Pavlik,  1991) than the pine species (Minnich & Everett,  2001) in 
the SJFDP. While further research is needed to disentangle the 
role of fire suppression versus climatic warming in driving the ob-
served patterns, our results suggest a high potential for change in 
this forest. With extremely low numbers of seedlings in the Pinus 
and Arctostaphylos species, demographic stochasticity could lead to 
profound shifts in composition.

4.2  |  Ontogenetic shifts in assembly processes

Differences in β-diversity patterns between seedlings and adults 
suggest that the compositional differences are due to assembly 
mechanisms shifting with ontogeny in this forest (Question 2). We 
found that contemporary adult composition is largely driven by 
space, but that elevation, aspect, magnesium, and potassium (Table 1) 
may be important abiotic mechanisms underlying niche selection for 
adults. In contrast, seedling composition is largely unexplained, with 
a modest amount of variation explained by space, and magnesium 
being the only predictive abiotic factor (Table 1). It is possible that 
the spatial component driving adult and seedling composition is 
the result of unquantified environmental factors such as microsites 
formed by hydrologic processes (McLaughlin et al., 2017) or topog-
raphy (Dobrowski,  2011; Serra-Diaz et al.,  2016). Additionally, for 

seedlings, the spatial component may reflect recruitment in canopy 
gaps resulting from treefall as older trees perish from drought—
similar patterns have been found after disturbance in tropical forests 
(Franklin & Rey, 2016).

More of the β-diversity was unexplained for seedlings than for 
adults, which could result from unmeasured environmental vari-
ables that are not spatially structured at the scale of our 20 × 20 m 
quadrats (e.g. light levels, which are likely associated with fine-
scale tree canopy structure) or ecological drift (Vellend et al., 2014) 
which may be more important for seedlings than for adults (Cui & 
Zheng, 2016; but see Green et al., 2014). However, our null mod-
elling found that seedlings had lower β-diversity than expected 
from the null expectation of random assembly than the adults (adult 
SES = −12.4; seedling SES = −25.9) suggesting slower than expected 
distance-decay for seedlings (Siefert et al., 2013). This indicates that 
seedling composition is more homogenous across space, exhibiting 
slower species turnover with increasing geographic distance than 
adults. Importantly, higher magnitude and negative SES is indicative 
of deterministically lower turnover than expected by chance (less 
non-random spatial aggregation of seedlings) suggesting that dis-
persal may drive spatial variation in seedling communities through 
processes such as mass effects (Leibold et al., 2004). Lastly, the in-
creased explanatory power of the E and E + S fractions for adults 
suggests that niche selection may be more important for adults than 
for seedlings for the topoedaphic variables we measured, a result 
consistent with other studies (Comita et al., 2007; Yang et al., 2016; 
Sellan et al., 2019; but see Asefa et al., 2020; Qiao et al., 2015).

Finally, it is important to acknowledge the limitations of our ap-
proach, which inferred community assembly processes from patterns 
of β-diversity. First, it is possible that lower-level mechanisms rather 
than higher-level processes shift in importance from the seedling 
to adult life stage, and that we simply did not measure the specific 
environmental variables that are important for seedlings. For exam-
ple, variation in light availability is a known driver of seedlings in this 
system generally (Moghaddas et al., 2008), but we lacked plot scale 
measurements. Second, environmental filters may have changed 
temporally, such that seedlings of the present are responding to a 
different set of filters than contemporary adult trees experienced in 
the past as seedlings, resulting in divergent distributions compared 
to mature trees (Lenoir et al., 2009; Serra-Diaz et al., 2016). Many 
adult trees in the SJFDP recruited decades ago (Savage, 1994) when 
environmental conditions and anthropogenic influences were dis-
tinct from those of the present. Thus it is possible that sites formerly 
suitable for seedling establishment are now unsuitable (Comita 
et al.,  2007), possibly due to climatic changes (Petrie et al.,  2017) 
or forest densification due to fire suppression (Minnich et al., 1995). 
Specifically, the low explanatory power of environmental variables 
for seedlings (weak influence of niche selection) we observed could 
be the result of certain species expanding their distributions into 
sites in which they were formerly competitively inferior (i.e. range 
shifts; Serra-Diaz et al., 2016). This case represents a temporal shift 
in the environment causing a shift in composition, not a fixed differ-
ence in niche selection among ontogenetic stages.
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4.3  |  Ontogenetic dependency

Finally, we found evidence for ontogenetic dependency in this 
temperate dry forest (Question 3). Adult composition was predic-
tive of variation in seedling composition and explained more of 
the variation in β-diversity than space or the environment alone. 
While dispersal, niche selection, and drift all have the potential to 
cause ontogenetic dependency, the specific mechanisms underly-
ing the pattern we observed cannot be discerned fully from our 
observational approach. Seedlings only grow where propagules 
can disperse from mature adults, ensuring some degree of ontoge-
netically dependent dispersal in any community. However, the 
A + S (adult and space) fraction explained 0% of seedling compo-
sition suggesting that dispersal may be playing a role at a scale 
larger than the spatial scale of our plot, or at a timeframe not 
captured by our sampling (e.g. masting). The largest fraction was 
the environmentally-structured adult composition fraction (E + A), 
which explained 16.8% of seedling composition. Importantly, this 
fraction suggests that adults may be modifying the environment 
in a way that directly impacts seedlings—a case of ontogenetic de-
pendency arising from altered niche selection. Only 4.1% of the 
variation in the seedling community was explained by the joint 
influence of adults, space, and the environment (the adults cre-
ating spatial variation in the environment), suggesting that the 
environmental impact of adults has little spatial structure at the 
scale being considered. Finally, the pure adult fraction explained 
13.6% of the variation in seedling composition, suggesting that 
the adult community has an impact on seedlings that is not as-
sociated with the environmental variables we measured or the 
spatial structure of adults at the scale in consideration. For ex-
ample, this pattern could result from adult modification of the en-
vironment through alterations in microclimate (Davis, Dobrowski, 
et al.,  2019), the light environment (Caldeira et al.,  2014), litter 
environment (Callaway, 2007), or through biotic interactions such 
as mycorrhizae associated with adult trees facilitating conspe-
cific seedlings (Bingham & Simard, 2012), all of which we did not 
measure or plant–soil feedbacks (van der Putten et al., 2013) as-
sociated with soil variables we did not measure. Taken together, 
these results suggest some level of ontogenetic dependence of 
the seedling community on the adult community that is not pri-
marily linked to seed dispersal, but rather through altered abiotic 
conditions. Further research—experiments that quantify seedling 
performance under varying degrees of conspecific and heterospe-
cific adult cover—could determine specific mechanisms underly-
ing the pure adult fraction which cannot be determined from our 
observational approach.

5  |  CONCLUSIONS

We found patterns suggesting that higher-level community assem-
bly processes (drift, dispersal and selection inferred from patterns 
of β-diversity) shift in relative importance from the seedling to 

adult stage in a temperate dry forest. Specifically, niche selection 
may be more important in shaping adult rather than seedling com-
position in this forest, while ontogenetic dependency unrelated to 
seed dispersal explains more of the variation in seedling composi-
tion than any of the environmental or spatial factors measured in 
our 4-ha plot. Overall, our results suggest that research focused 
on understanding biodiversity responses to environmental change 
would benefit from an explicit consideration of ontogenetic shifts 
in assembly mechanisms and ontogenetic dependency. First, rec-
ognizing that the contributions of assembly processes and the 
underlying filters themselves can differ with life stage (Larson & 
Funk, 2016) is critical to identifying key mechanisms preventing life 
stage transitions that filter out species and therefore cause vegeta-
tion shifts (Davis et al., 2018). Second, the common assumption that 
divergent regional distributions between life stages are the result 
of temporal range shifts may need to be reconsidered, as seedlings 
may be more widely distributed because they occupy sites that are 
unsuitable for transition into larger size classes (saplings or adults; 
Heiland et al., 2022; Máliš et al., 2016). Third, ontogenetic depend-
ency describes the multiple effects of adult communities on seed-
ling communities: not just by controlling seed input (dispersal) but 
also through altering the probability of ecological drift and shaping 
selective pressures (niche selection). While most studied in forests, 
the ontogenetic dependency concept can describe interactions 
between life stages in all communities and is not limited to forest 
systems. Critically, we posit that integrating ontogeny and ontoge-
netic dependency into the community assembly framework will help 
elucidate the processes that drive regeneration, which is central to 
predicting community dynamics.
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