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Recommender Systems are ubiquitous on the web. They are used to recommend users with movies

to watch, songs to listen to, products to buy etc. The main goal of recommender systems is to per-

sonalize a user’s experience based on their interests conveyed through historical feedback infor-

mation. Existing recommender systems are centralized in nature, that requires a server to collect

detailed item feedback information across the entire user population. This status quo presents seri-

ous privacy concerns since the central recommendation server has access to fine-grained preference

information about each individual user. This feedback information can be utilized to infer the user’s

sensitive information such as their medical condition, religious, political affiliation etc. This leads

to serious privacy concerns. Moreover, a small fraction of users who are aware of such privacy

risks tend to share less feedback which in turn reduces the quality of their recommendations.

Since privacy is being recognized as a fundamental human right, it’s imperative that person-

alization systems provide recommendations in a privacy-preserving manner. In this thesis, we

present three privacy-preserving recommender system paradigms whereby the amount the infor-

mation sent to the central recommender system is gradually reduced.

Paradigm I provides privacy preserving session-based item recommendations where the central

server simulates an incognito behavior by treating each user as anonymous. The framework relies

on item sequence information across sessions to recommend the next item for a user. Paradigm II

enables the user to decide which ratings they would like to keep private i.e., store locally on-device
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vs public i.e., share with the central recommendation server. Public ratings from all users are used

to build a global model and then fine-tuned on each user’s device based on their private ratings.

Paradigm III enables each user to store their entire feedback information on-device and employs

a federated learning mechanism to perform private learning for recommendation. Differential pri-

vacy is used to quantify the privacy budget for an individual user. Each of the three paradigms

are scalable to the industrial setting and more importantly, empower each user to determine their

individual privacy policy for their recommendations.
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CHAPTER 1

Introduction

Recommender Systems drive the user engagement of various platforms on the web. They are

employed in domains such as: movies, songs, retail products to assist the user to decide the item

to explore. In addition to being explicitly employed for personalization to a user, recommender

systems are used implicitly for various critical components of a website such as ranking, selection

and filtration of items. An example of such a system is Quora, a question-answering based forum

whereby users can ask questions and receive answers from the community. Recommender Systems

are utilized for various aspects of personalization such as: deciding which questions to display on

the homepage, the ranking of answers for a given question, friend recommendation, to name a few.

Recommender Systems are a core component of platforms on the web since they reduce churn rate

and help users discover personalized content.

Current recommender systems rely on the collaborative filtering approach which requires users

to share their information to the central recommendation server. This server collects preference

information from millions of users and utilizes correlation across users to generate personalized

recommendations. This poses a privacy concern since the server has detailed information about the

preferences of a user. It can utilize this information to accurately predict the health status of a user

and stance on sensitive topics such as religion, political affiliation etc. Moreover, the data generated

by a user belongs to the user and hence he/she must have control over it is being used. Hence, there

is a need for recommender systems to be less intrusive i.e. servers that don’t necessarily collect all

preference information from users and provide privacy-preserving recommendations.
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In this thesis, we develop three paradigms/frameworks that provide privacy preserving recom-

mendations in an incremental fashion. The initial framework, ‘Bayesian Prior Learning via Neural

Networks for Next-Item Recommendation’ aims to provide anonymous next-item recommenda-

tions. The sequence of items interacted in a session is useful information for recommending the

next item. In order to mine this sequence information in a privacy preserving manner, we disas-

sociate the sequence information from the users, i.e. de-anonymize the sequences from users and

compute the frequencies of various subsequences. The subsequence frequency information can

be used to predict the likelihood of a sequence using the Beta distribution. We demonstrate the

effectiveness of our approach with several baselines including some non-personalized versions of

existing state-of-the-art approaches. This framework simulates the scenario whereby user data is

stored on the central server but the central recommender system guarantees to remove any correla-

tion between user identifier and the items consumed in the session. This framework requires users

to trust the central recommender server to provide an "incognito" behavior.

In the first framework, we demonstrate a privacy-preserving recommendation framework that

requires users to trust the central server their entire feedback data. In our next framework, ‘Selec-

tive Privacy Preserving Collaborative Filtering’, we aim to give more control to the user to decide

which portion of their data they would like to keep as private. By keeping a portion of data private,

the users are ensured that it stays on their device and is never shared with anyone else. Our frame-

work builds a global model using the public information gathered across all users. And each user

then refines their individual model using the private ratings stored on their device. The final model

is then never shared with the server and stored locally on the user’s device. In our experiments,

we simulated various scenarios of user behavior in their privacy levels and demonstrated that our

approach performs much better than existing baselines in the evaluation metrics on two real-world

datasets. Compared to the first framework, our second framework empowers users by allowing

them to determine their individual privacy policy.

In our final framework, we would like to store the entire user data on their devices locally. For

this purpose, we employ the notion of Differential Privacy to quantify the privacy budget of each

user. Differential Privacy provides rigorous mathematical guarantees on the quantification of pri-

2



vacy loss by an algorithm. The essential idea is that just by observing the output, it’s difficult for

an external party to infer the input of the algorithm. We apply the case of local differential privacy

to the federated case of collaborative filtering. Our framework employs the federated learning ap-

proach, whereby in each round the client updates the gradients of the corresponding user and item

latent factors. We experimentally demonstrate the effectiveness of our approach on 2 real world

datasets and illustrate the trade-offs with regards to privacy vs. accuracy. The three frameworks

presented incrementally provide higher privacy controls to the user since in Framework I, users are

required to trust that the central recommendation server provides privacy guarantees by de-linking

the session information and individual user identity. In Framework II, users are able to individually

decide their privacy policy by determining which ratings they would like to store as public/private.

In Framework III, entire user data remains private by storing it locally on their device. Each user

decides their individual differential privacy budget that determines the amount of noise to added

for the gradient updates in federated learning setting.

The rest of this thesis is organized as follows:

In chapter 3, we outline the next-item recommendation problem and present our privacy-

preserving approach using Bayesian modeling.

Then in chapter 4 we present the second framework of selective privacy preserving whereby the

user has more control over which portion of their data is shared with the central recommendation

server.

In chapter 5, we present our final framework that allows users to store their entire data locally

on their device. We employ differential privacy to ensure each user can set their individual pri-

vacy budget and the learning occurs in a federated fashion whereby user only shares noise-added

gradients to the server.

Finally, we conclude and discuss future research directions originating from this work in Chap-

ter 6. This thesis aims to motivate the importance and proposes three frameworks for practical,

scalable and effective privacy-preserving recommender systems. We hope our paradigms motivate

researchers to extend our work on privacy preserving recommender systems.
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CHAPTER 2

Privacy in Recommender Systems

2.1 Status Quo

Existing recommender systems are centralized in nature. Typically, there exists a Central Rec-

ommender Server (CRS) that is responsible for providing recommendations to a large number of

users. The CRS is responsible for selecting a small subset from a large set of items, that would

be most relevant to a particular user. In order to receive accurate recommendations, users have to

share their preference information via implicit or explicit feedback to the CRS. Under the current

setup, the entire feedback information about the likes and dislikes of a user resides on the CRS.

This fine-grained user feedback can enable the CRS to accurately predict the user preferences on

sensitive topics such as their: health, religion, political affiliation, gender identity, substance abuse

etc. This results in serious privacy concerns since the user is vulnerable to the information col-

lected by the CRS. Majority of the users of recommender systems are unaware of such privacy

concerns. But for the users who are aware, such privacy concerns prevent them from providing

feedback to the CRS. This leads to a decrease in the quality of recommendations since there is

an inherent trade-off between accuracy vs privacy in recommender systems. The more feedback

a user shares with the CRS, the better his/her recommendations will result in lower privacy since

the CRS has access to more information about that user. Similarly, when a user shares less with

the CRS, their quality of recommendations drop but they have better privacy since they share less

information with the CRS.
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2.2 Importance of Privacy

Generally, privacy is described in the context of security. Although, the two concepts are inter-

related, there exists a fine line of distinction between privacy and security. Computer security deals

with protecting data from unauthorized access whereas privacy is about using user data responsi-

bly. Most of the CRS in industry have very good security policies in place but the same cannot

be said about their privacy policies. In recent times, government regulators have levied large fines

against firms that have violated privacy laws such as the California Consumer Privacy Act (CCPA)

and General Data Protection Regulation (GDPR) based in Europe. As the awareness about privacy

grows amongst the public, it is in the best interest of the CRS to provide privacy-preserving rec-

ommendations to it’s users. In this thesis, we propose scalable frameworks that enable a win-win

situation for both the CRS and the millions of users by providing privacy-preserving recommen-

dations.

2.3 Research Question

In this thesis, the central research question we aim to answer is that can we reduce the amount of

data shared to the Central Recommender Server (CRS), meanwhile generate high-quality recom-

mendations? As motivated earlier, this is a crucial question to answer since existing CRS are data

hungry and infringe upon user privacy. We propose 3 frameworks that enable the CRS to provide

privacy preserving recommendations. Our proposed frameworks are incremental in nature, i.e.

they gradually share less feedback information from users to the CRS. Moreover, our frameworks

empower the user to decide their individual privacy policy. Our research work can broadly be clas-

sified under the direction of federated learning where the challenge is to perform a learning task

when the data is stored in a distributed fashion.
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CHAPTER 3

Bayesian Prior Learning via Neural Networks for Next-

item Recommendation

Next-item prediction is a a popular problem in the recommender systems domain. As the name

suggests, the task is to recommend subsequent items that an user would be interested in given

contextual information and historical interaction data. In our paper, we model a general notion

of context via a sequence of item interactions. We model the next item prediction problem us-

ing the Bayesian framework and capture the probability of appearance of a sequence through the

posterior mean of the Beta distribution. We train two neural networks to accurately predict the

alpha beta parameter values of the Beta distribution. Our novel approach of combining black-box

style neural networks, known to be suitable for function approximation with Bayesian estimation

methods have resulted in an innovative method that outperforms various state-of-the-art baselines.

We demonstrate the effectiveness of our method in the song recommendation domain using the

Spotify playlist continuation dataset.

Existing next-item prediction approaches are personalized, i.e. they model user behavior based

on historical interactions with the item set. State-of-the-art neural-network based methods perform

very well since they model individual users/items via embeddings and capture their sequential

consumption patterns fairly accurately.

Our approach on the other hand is a novel privacy-preserving approach to the next-item pre-

diction problem. We do not model individual users per se, since we are only gather statistical
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Figure 3.1: Status Quo of Next Item Recommendation

information about n-grams.

Current recommender systems used in industry perform very well in being able to capture an

user’s interest and predict future items they would be interested in. But this occurs at the expense

of user privacy since vast amounts of information are being logged by these systems in order to

accurately model the interests of an user. These data-hungry models aim to model users via rich-

contextual information hence infringing user privacy in general.

Such invasive data collection practices discourages users from participating on the platform.

Instead, our framework encourages users to freely participate since we do not model any specific

individual user or item.

3.1 Introduction

Next-item prediction is a classic problem in the domain of Natural Language Processing (NLP)

and Recommender Systems. In the NLP domain, it is used for the purpose of language modeling

[JVS16] whereby the task is given a set of tokens, predict the most likely next token. In natural

language, words can be represented by tokens and accurately predicting the next token helps us

understand the intricacies of a particular language. In Recommender Systems, we maybe given

access to historical transactions by a set of users such as products purchased, movies watched etc.

The next item prediction problem in this domain [AT05] boils down to the task of predicting the

next item/movie a user is most likely to purchase/watch.
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As illustrated in Figure 3.1, existing next-item recommender systems track user behavior over

time, and utilize this information to provide recommendations of items they are most likely to

consume in a session. Recommender Systems that track the entire user history in general are able

to provide high-quality recommendations since they do so at scale across millions of users. The

drawback of such systems, is that the accuracy comes at the expense of user privacy, since each

individual user’s activity is being logged by the system. Moreover, users do not have control over

how their data is being utilized on the server which results in the loss of their privacy.

Various approaches have been proposed in the literature for the next-item prediction problem.

Majority of these techniques rely on an unsupervised training dataset which captures previous

interactions. For instance, in the NLP domain it can refer to a large corpus of unstructured doc-

uments, whereby sentences are represented as a sequence of tokens/words. In the recommender

systems domain it can refer to sequences of historical purchases of items that are organized in

sessions.

Majority of the existing approaches tackle the next item problem using statistical techniques

by analyzing for patterns across the provided training dataset. By sifting through large amounts of

training data, these models are able to fairly accurately predict the next item at test time given a

seed context.

The proposed approaches fall under the following two categories: black-box neural network

and hand-crafted approaches. The former set of approaches employ the use of neural networks

which are known to have high representational power and perform implicit feature engineering.

Among the latter miscellaneous hand-crafted approaches, Bayesian methods are known to be in-

tuitive and easy to understand/debug. Each approach has their own set of pros and cons. Neural

network approaches perform very well in practice but have the drawback of being considered as a

black-box, i.e. provides limited understanding of the underlying prediction mechanism. Bayesian

approaches on the other hand are based on the Bayes rule [Sto13], a fundamental concept in proba-

bility making it intuitive and easy to understand. The drawback of a pure Bayesian approach is that

it does not perform as well as the neural network approaches in the task of next-item prediction.

In this work, our main contribution is as follows:

8



• We propose a Bayesian framework with prior information learnt using neural networks for

the next-item prediction.

• We introduce the confidence of observed data using the Beta distribution and utilize a Siamese

network to estimate the Beta model parameters.

• We demonstrated the performance improvements our method against existing state-of-the-art

approaches.

The rest of the paper is organized as follows. In section 2, we describe the related work existing

in the literature. In section 3, we describe our approach in detail along with our motivation and

intuitions. In section 4, we describe the experimental setup and detailed training process. In section

5, we present our results in comparison with various state-of-the-art baselines. In section 6, we

analyze our results and provide some insights into our understanding of the problem. In section 7,

we propose further directions that can be pursued to expand this research area. In section 8, we

conclude by highlighting our novel contribution to the next-item prediction problem.

3.2 Related Work

The related work in this area consists of two main categories, namely: neighborhood based and

neural network based approaches. There exist other types of approaches which we describe later

in this section.

Neural network based approaches mostly reply on the sequence based models using the Recur-

rent Neural Network architecture. Li et al. [LZL18] propose an item embedding method based on

an aggregation of the user interactions. They then use a contextual LSTM neural network architec-

ture to train on two real-world datasets in order to predict the next-item. Wu et al. [WHS19] expand

on attention mechanism idea proposed by Vaswani et al. [VSP17] which is known to be efficient

and also work well in the natural language processing domain. They were able to demonstrate the

superiority of the attention mechanism over the LSTM approach.

In addition to above mentioned approaches, there exist unconventional yet effective methods

to recommendation under different settings. For example, Dareddy et al. [DDY19] propose the
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use of motifs in heterogeneous networks for the task of link recommendation. Similarly, Mishra et

al. [MR16] proposed a novel next-item prediction solution tailored towards job recommendation

whereby users were matched with jobs based on a variety of context features.

3.3 Our Approach

3.3.1 Intuition

Our problem can be formulated as follows: I = {a,b,c...} represents a set of items, S =

(S1,S2, ...Sn) represents a user interaction sequence with Si 2I . We observe many user sequences

and the goal is given a length k subsequence C of S, C = (Si,Si+1, ...Si+k�1)⇢ S, predict the next

item in C i.e. to accurately estimate the following probability for a specific item a:

P(Si+k = a|(Si,Si+1, ...Si+k�1)) (3.1)

An accurate estimation of the above probability requires analyzing our observed training data. The

intuition is that given a longer context information, perhaps we can more accurately compute the

above posterior probability value.

Assume we are given a context of 3 items, namely (a,b,c) and we are interested in calculating

the next-item probability values for 2 items namely: x and y. Hence we are interested in computing

the following values:

P(x|(a,b,c)) & P(y|(a,b,c))

Consider two scenarios for the frequency of n-gram values in our training dataset. Scenario 1 is

described as below:

Prefix abc bc c -
Sequence abcx abcy bcx bcy cx cy x y
Frequency 100 50 200 100 300 150 500 1000

Table 3.1: Scenario 1 Frequency Values

Based on the frequency values in Table 3.1, we observe that in general item y is more popular
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than item x since their frequencies in the train dataset are 1000 and 500 respectively. But under

various contexts {(c), (b, c) & (a, b, c)}, we see that item x appears more than item y. This indicates

that item x would be a better choice than item y for next item prediction given context (a, b, c).

Consider another Scenario 2 whereby the frequency information of sequences is as follows:

Prefix abc bc c -
Sequence abcx abcy bcx bcy cx cy x y
Frequency 2 1 5 500 50 750 500 1000

Table 3.2: Scenario 2 Frequency Values

Similar to Scenario 1, in general item y is popular than item x (same frequencies as before).

In contrast to the previous scenario, for the context (a, b, c), item x seems to be a better choice

than item y, due to the frequencies being 2 and 1 respectively. Although item x appears twice as

many times as item y under the context (a, b, c) it is not a reliable signal since the raw frequency

values are very low. This results in a low confidence of accuracy for likelihood estimation under

the context (a, b, c). Instead if we rely on a smaller context (b, c), we observe that item y is clearly

a better choice than item x since it co-occurs 500 compared to 5 times respectively. We observe

the same phenomenon under the context of single item (c). Overall, the observations under smaller

contexts can be considered to be more confident in recommending item y as the better next item

recommendation under this scenario.

Consider a scenario as shown in Figure 3.2 whereby we are tracking the items a user has

purchased in a given session. Given that the user has just purchased a bagpack, the systems rec-

ommends items that are related to the initial purchase, such as: waterbottle, diary, hiking ropes,

calculator, umbrella and trekking poles. These items would be considered good recommendations

since we are not sure whether the user is buying a bagpack for school, travel or hiking purposes.

In the next column, the user purchases a diary after the bagpack purchase, indicating that the user

is likely to be interested in purchasing items that are school-related. We can be more confident

about the items to recommend once we know that the user has purchased a bagpack followed by

diary and a calculator. In the case, we can be confident that the user is interested in purchasing

stationary supplies, hence items such as stapler, folders etc. would be good recommendations. The
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Figure 3.2: Longer context leads to better prediction accuracy

main intuition here is that the more context information we have, the better we can predict the next

item, simply because we have access to more information from the context.

Consider another scenario whereby we are analyzing the purchases made by users in a system.

Let’s say we observe that out of 10 purchase sequences of a laptop followed by a mobile, we

observe that users have purchased a watch 9 times. This implies that it’s likely that given a sequence

of laptop and mobile purchase, the user is likely to buy a watch about 90% of the transactions.

In the second scenario, given that we observe only one transaction across the entire transactions

log of the following of items: computer, bagpack and a music label. In the future, given that

the user has purchased a PC followed by a bagpack, then the next item to recommend based on

our history would be the music label with a probability of 100%. In reality, the music label is

not a good recommendation since we observe the entire transaction only once. The issue here is

that of data sparsity. Given a limited set of observations, it is inherently difficult to estimate the

likelihood probability. In order to mitigate the challenge of data sparsity, we capture our belief of

the probabilities using the posterior distribution for every item. Intuitively, instead of modeling

the point estimates based on ratios obtained from historical transactions, we ought to model the

distribution of the point estimate based on the raw frequency counts of sequences observed. In
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Figure 3.3: Higher frequency indicates higher confidence

particular we use the Beta distribution.

Beta distribution is well known to be a good prior for various distributions such as Binomial,

Normal and is widely used in practice as well [ACD11]. We chose the Beta distribution since it is

able to effectively model binary feedback. The Beta distribution consists of 2 parameters, namely:

alpha (a) & beta (b ). The parameter alpha captures the positive count whereas the beta distribution

captures the corresponding negative count. The mean of a Beta distribution summarizes the overall

binary feedback.

Given a set of a & b values, the mean of the Beta distribution is as follows:

µ(a,b ) = a
a +b

(3.2)

The mean of the Beta distribution can provide insights into the overall likelihood of observing

a given sequence.

Our goal is to incorporate the counts of various context frequencies so that the neural network

can learn the most appropriate a & b values from our training data. The mean based on alpha &

beta values will estimate our likelihood for the probabilities of various context, item pairs.

Without loss of generality, we restrict ourselves to a context size of four items/songs. Given
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Figure 3.4: Modeling the posterior distribution instead of raw point estimate
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a sequence of 4 songs a, b, c, d, we would like to be able to accurately estimate the posterior

probability of these 4 songs in order. By doing so, given a test seed playlist of 3 songs and a set of

candidates, we can rank the candidates based on the posterior mean and recommend the one with

the highest value.

We aim to learn 2 separate functions to accurately predict the alpha and beta values. The idea

to ingest frequency counts from the training datasets and learn to accurately predict the alpha and

beta values.

Given we observe a sequence of 4 songs ‘a, b, c, d’ in our dataset, we initially collect the

following counts/frequency values:

Positive Counts:

• #(d)

• #(cd)

• #(bcd)

• #(abcd)

Negative Counts:

• (⇠d)

• #(c⇠d)

• #(bc⇠d)

• #(abc⇠d)

The above values are used as input to the functions that predict the alpha & beta parameter

values. We aim to learn these functions in a contrastive learning method. For an observed sequence

of 4 items in the training data, which we denote as a positive example, we would like to use a
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negative example so that the functions can learn to maximize the posterior Beta distribution mean

between the two.

Our methodology for obtaining a negative example given an observed positive sequence of ‘a,

b, c, d’ is as follows:

• If ‘d’ is the most popular song given the prefix ‘a, b, c’ then we select ‘a, b, c, e’ to be the

negative example whereby ‘e’ is the next most popular song after ‘d’.

• If ‘d’ is not the most popular song given the prefix ‘a, b, c’ then we select ‘a, b, c, e’ to be

the negative sequence whereby ‘e’ is the most popular song given the prefix ‘a, b, c’.

The intuition is that we would like to maximize the difference between the posterior means

of the positive and negative samples which are computed using the alpha and beta functions. The

alpha and beta functions are learning to predict the accurate alpha and beta parameter values for the

positive and negative examples based on their frequency counts as mentioned in the above table.

Without loss of generality, given positive example ‘a, b, c, d’ and the corresponding negative

example ‘a, b, c, e’ which is a single training instance to the overall neural network, we initially

compute the following four values:

a+ = fa(positive_example_counts)

b+ = fb (positive_example_counts)

a� = fa(negative_example_counts)

b� = fb (negative_example_counts)

The mean of the positive example becomes:

Positive_mean =
a+

a++b+
(3.3)

Correspondingly, the mean of the negative example becomes:

Negative_mean =
a�

a�+b�
(3.4)
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Figure 3.5: Proposed Neural Network Architecture

The goal is to maximize the following value:

(Positive_mean�Negative_mean) (3.5)

We employ neural networks as the functions for the estimation of alpha and beta values as

shown in the above figure. Neural networks are known to be very effective at the task of function

approximation. We use the feed-forward fully connected neural network both our alpha and beta

functions. Each of them consist of an input layer with 8 neurons corresponding to the frequency

counts, and two intermediate layers with 1000 and 500 neurons respectively.

3.4 Experimental Setup

3.4.1 Dataset

Spotify, a popular music streaming service, released a dataset for the RecSys 2018 Challenge

[CLS18]. The dataset consists of a collection of playlists whereby, a playlist is an ordered se-

quence of songs. Playlists can be of varying lengths and a song can occur multiple times within
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Figure 3.6: Detailed Alpha/Beta Function
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Figure 3.7: Playlist Length Frequency Distribution

a single playlist. The dataset is composed of 100,000 playlists. The distribution of playlist length

demonstrates playlists tend to have less than 50 songs total. The most common playlist length is

20 songs, with its frequency being approximately 1.5% of the training dataset. There are 686,685

unique songs among these playlists. Although songs can occur multiple times, 676,244 of the

unique 686,685, a vast majority, occurred less than 100 times across the entire dataset. A more

detailed overview of song distribution can be found in Table 1.

The alpha and beta functions are neural networks with the following layout:

8 -> 1000 -> 500 -> 1

The input layer is a vector of 8 scalar values which represent the various frequency counts

described earlier for a given sequence ‘a, b, c, d’. The 1000-neuron layer after the input layer has

an exponential activation function.

The final output of the network is a scalar with an exponential activation function.
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Figure 3.8: Track frequency distribution across playlists

3.4.2 Training Process

Given a train file with a list of playlists, the first step involves collecting statistics of various gram

data. We utilize a Trie datastructure to store the frequencies of 1,2,3 4 gram song sequences

across the playlists. The Trie [BR03] datastructure enables efficient access of the counts via the

prefix notation. Trie is a tree-based datastructure whereby a node can have multiple children and

the edges represent an item. The node in a Trie captures a sequence of items and can be used

to store relevant information, in our case the frequency of a particular sequence so far. The only

bottleneck of Trie data structure is insertion time complexity. In our setting, we perform insertion

only once and the Trie offers quick retrieval of frequency count information for various sequences

of items. The benefit of using a Trie over a HashTable is that Trie takes advantage of the prefix

structure of sequences and hence requires significantly less memory compared to a HashTable

based implementation.

Once the Trie datastructure has been populated, we need to generate the training file which is
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the input to our neural network. For each playlist, we go over a sequence of songs with a sliding

window of size 4. This window of 4 songs would be considered as a positive instance since we

have observed it in our training dataset. Given our positive instance [’a’, ’b’, ’c’, ’d’], we generate

a corresponding negative instance with the same prefix, [’a’, ’b’, ’c’, ’e’]. The negative instance

is chosen based on the prefix [’a’, ’b’, ’c’]. Item ’e’ is chosen to be the most popular item given

the prefix [’a’, ’b’, ’c’]. If ’d’ itself is the most popular item then ’e’ is chosen to be second-most

popular item given the prefix after ’d’.

This positive and negative instance pair become one training example for the neural network.

Each instance is represented using the 8 count statistics described earlier. We place the counts of

the instance pair adjacent to each other these set of 16 values becomes 1 training instance.

By using a sliding window approach we are able to generate multiple training instances per

playlist and store all of them in the training file.

The hinge loss is used since our goal is simply to maximize the difference between the posterior

mean of the positive and its corresponding negative example. Hinge loss [GW99] is defined as

follows:

max(0,1� y_true⇤ y_pred) (3.6)

In our setting, the y_true value is not irrelevant and is set to a fixed scalar value for all training

examples. The benefit of using hinge loss is that it only penalizes when the predicted value is op-

posite of the ground truth and loss remains 0 otherwise. In our case, when the y_pred value which

is the difference between positive and negative instance is above 0, then it doesn’t contribute to the

loss. Meanwhile, when our network predicts a negative value, the loss becomes (1-y_true*y_pred)

which becomes a positive value. The exact loss value depends on the magnitude of the difference

in the mean did the network predict. Backpropagation [CR95] ensures that weights across the

network are modified in order to reduce the loss value inturn, maximizing the difference between

posterior means of positive and negative examples.
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3.4.3 Candidate Generation

To improve efficiency, the underlying frequency count information is stored in a Trie data structure.

The frequency counts are dependent on the training dataset and once computed does not change.

Hence, the Trie data structure allows for efficient retrieval count given a prefix which is essential

operation for most of our computation.

During testing, given a set of candidates ‘A, B, C’ we generate a set of candidates as follows:

Generate the set of items that appear followed by ‘A, B, C’, calling it S. We then sort the items

in set S in decreasing order of frequency and then select a predefined top-k items. We then rank

the items in the candidate set based on our estimated posterior mean and select the item with the

highest mean.

3.4.4 Evaluation Metrics

We evaluate our approach using the standard metrics used in next item prediction, namely:

• Overall Accuracy

This metric computes the percentage of next item predictions by the model that have been

accurate in the test set.

• Recall@20

Recall is defined as the fraction of relevant items that have been retrieved.

Recall@20 =
|retrieved@20\ relevant@20|

|relevant@20| (3.7)

Recall@20 restricts the analysis to the first 20 relevant and retrieved items, whereby the

order information is not taken into account. A higher Recall@20 value indicates greater

overlap between the ground truth and next items predicted by the model.

• Mean Reciprocal Rank
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Mean Reciprocal Rank (MRR) measures the average reciprocal rank of the ground truth next

item across users in the test set.

MRR =
1
|U |Âu

1
rank(u, i)

(3.8)

Intuitively, lower the rank value of the ground truth next item, higher the MRR value indi-

cating better performance.

3.4.5 Baselines

To better understand the results of our approach in the domain of next-item prediction, we com-

pared the results of several other popular approaches to our approach on our Spotify dataset. Not

only do these baselines include popular approaches towards next-item prediction using modern ma-

chine learning models, but our baselines also include simplistic approaches such as recommending

the most popular song. The details of each baseline used for comparison can be found below.

Our baseline is to use the most popular item observed from the training data given a prefix of

3 songs. This most popular baseline is easy to implement and surprisingly performs very well on

the test data.

3.4.5.1 Nearest Neighborhood

As explained by Kelen et al., the nearest neighborhood approach performs quite well for playlist

continuation [KBB18] and was previously utilized on the Spotify dataset. In this approach, a

playlist-track matrix is created and then utilized to create a playlist-based neighborhood model that

is then used for playlist continuation. In the original implementation of the paper, the neighborhood

model extends the playlist with 500 additional songs, but as a baseline we utilize the first song

recommended as the sixth song given the first five seeds.

3.4.5.2 Nearest Embedding

In this approach, an embedding for every song in the dataset is computed. We employ techniques

such as Word2Vec [MSC13], which look at the context information across a sliding window in
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playlists to place songs in an multi-dimensional embedding space.

In our baseline, we utilize a vector with dimension 100 for each song’s embedding. A slid-

ing window approach is utilized the generate the embeddings for every song in the dataset. For

prediction, given a prefix, this approach simply computes the nearest song to the last song in the

embedding space. The baseline presented predicts the song that maximizes the cosine similarity

of the embedding vector with the fifth song. Variations to this approach includes computing an

aggregate embedding of the prefix by taking average of the individual song embeddings.

3.4.5.3 Neural Sequence Learning

These types of approaches aim to learn directly from the sequences using recurrent neural network

architectures. Recurrent neural networks (RNN) are extremely popular in the domain of next-item

prediction, mostly due to their high performance when modeling sequential data. As described by

Zhu et al.zhu2017next, RNN operates on the principle that if item A has previously been seen in a

sequence then items that are very similar to item A will be seen later on in the sequence [ZLL17].

LSTM (Long Short-Term Memory) is an example of such recurrent neural network that aims

to take in a sequence of items and predict the next likely item. As part of our baseline, we utilize

Keras LSTM to create an RNN model for the dataset. Due to memory constrictions, the model

uses the most popular 25,000 songs as a vocabulary when building the RNN. During prediction,

the model takes the first five songs of the test playlist as a seed, and computes the probability of

every song in the vocabulary as the sixth song given the seed. The model then recommends the

song with the highest probability.

3.4.5.4 Transformer

Behaviour Sequence Transformer [CZL19] proposed by Chen et al. demonstrate the use of Trans-

formers in a production recommender system environment. They utilize the Transformer (cite the

original paper) based architecture which inherently captures the position of items across sequences

and employs the self-attention mechanism. BERT (Bidirectional Encoder Represetations from

Transformers) is an increasingly popular transformer-based model primarily used in the domain
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of natural language processing. As described by Devlin et al., BERT [DCL18], when used for

language, captures information from both the left and right side of a sentence. It then performs

very well on tasks such as question answering and text completion. For our baseline, we treat each

playlist as a sentence with each song as a "word" in the sentence.

Our baseline utilizes DistilBERT [SDC19] that provides a smaller model compared to BERT

but preserves language understanding capabilities. We provide our DistilBERT model with a vo-

cabulary of the most popular 25,000 songs, identical to the vocabulary of the Neural Sequence

Learning model proposed earlier. The DistilBERT model is evaluated using the text-completion

strategy where the first five songs are given to the model as a seed and the next song is predicted

by the model.

3.4.5.5 Markov Chains

Markov Chains (MC) are one of the most popular approaches towards next-item prediction. As

described by Rendle et al. [RFS10], MC methods make item prediction by learning a transition

graph over a sequence of items. This transition graph is then used to make further predictions

based on the current items seen. In an n-th order Markov chain, the n most recent items are used

as the seed to make the prediction for the next item. For our baseline, we used n-th order Markov

chain with n 2 {1, 2, 3, 4, 5}. During training, the transition graph is constructed by creating a

graph of sequences a1,a2, ...,an! an+1. During prediction, the model recommends the graph path

that occurred with highest frequency using the last n songs as the sequence. In our baseline, if no

sequence a1,a2...,an can be found during prediction, the model will retry using the (n� 1)-order

Markov model until n = 1. The MC approach used as a baseline is the 2-order MC. Variations to

this approach include adding weights to each item in the graph sequence.

3.4.5.6 Max Approach

The max approach is a simple intuitive, yet a very strong baseline in our next item prediction task.

Given a test instance prefix the max approach recommends the most popular item seen after the

prefix in the training dataset. There are variations to the max approach which are described in the

results section below.
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3.4.5.7 Overall Most Popular

The overall most popular approach is a very simple baseline which merely predicts the same song,

the most popular song seen in the training dataset, for every single example in the testing dataset.

The most popular song was HUMBLE by Kendrick Lamar, occurring 4,608 times in the training

dataset.

3.5 Results

Table 3.3: Results for the Spotify Dataset
Approach Accuracy MRR@20 Recall@20
Bayesian 8.1% 0.11664 0.0522

Nearest Embedding 1.8% 0.0391 0.0277
Markov Chain 6.8% 0.0937 0.0345
Context Max 7.4% 0.10274 0.045975

Overall Most Popular 0.7% 0.0027 0.0105
SSE-PT 7.4% 0.1656 0.0268

BERT4Rec 2.7% 0.0773 0.0274

Approach Accuracy MRR@20 Recall@20
Bayesian 2.8% 0.048 0.036

Nearest Embedding 2.1% 0.0429 0.0321
Markov Chain 1.9% 0.0317 0.0103
Context Max 2.1% 0.0368 0.0419

Overall Most Popular 0.46% 0.0105 0.0347
SSE-PT 1.2% 0.0358 0.0433

BERT4Rec 1.8% 0.0453 0.0175
Table 3.4: Results for the Movielens dataset

3.6 Discussion

Our approach is novel because we combine the best of both worlds, namely: Bayesian and Neural

Network approaches. The Bayesian approach we use to model the posterior mean for a particular

sequence of items represents an intuitive approach of modeling using the training data.
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The neural network is used as a tool to provide an accurate estimate of the alpha and beta values

used in the estimation of the posterior mean. The neural network approaches are very good black-

box approximation functions that can be leveraged to analyze for patterns across large amounts of

training data.

Evidently, our approach performs very well compared to multiple other baselines. Surprisingly,

the seeded max approach attained an accuracy of 7.4% which is a significant improvement from

the unseeded overall most popular approach which attained an accuracy of 0.7%. The 2-order

Markov Chain produced an accuracy of 6.8% which was the third highest accuracy. Although

both neural sequence learning and transformer-based learning had relatively low accuracy, these

approaches were both constrained by memory. Still, our approach is both time and space efficient

while attaining excellent results.

We believe we are the first to leverage the benefits of both types of machine learning approaches

and applied it to the domain of recommender systems.

3.7 Conclusion

In this chapter, we demonstrated a Bayesian approach to the next item prediction problem, popular

in the recommender system domain. We have employed the benefits of neural networks in tasks

where they are known to perform very well, which is function approximation given a large amounts

of data. The main issue we tackle is that we are breaking the link between users and the items they

consume on recommender system platform. This anonymity simulates the "incognito" behavior in

recommender systems.

We believe our work is novel and among the first to combine the benefits of both Bayesian

and statistical neural network based learning. The Bayesian approach is used to estimate the dis-

tribution instead of modeling the raw point estimate since a low frequency count does not provide

a confident estimate of the underlying next-item. Our approach alleviates the privacy concerns

of existing recommender systems since we do not track a user based on their entire history of

interactions. We only focus on the immediate context when deciding the next item to recommend.

We have shown that our approach in addition to being more intuitive, also outperforms existing
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state-of-the-art approaches in performance. In this chapter, we have demonstrated an approach

that requires users to trust the central recommender system that it will not profile the user across

various sessions as currently done by existing status quo recommender systems.
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CHAPTER 4

Selective Privacy Preserving Collaborative Filtering

Most industrial recommender systems rely on the popular collaborative filtering (CF) technique

for providing personalized recommendations to its users. However, the very nature of CF is ad-

versarial to the idea of user privacy, because users need to share their preferences with others in

order to be grouped with like-minded people and receive accurate recommendations. Prior related

work have proposed to preserve user privacy in a CF framework through different means like (i)

random data obfuscation using differential privacy techniques, (ii) relying on decentralized trusted

peer networks, or (iii) by adopting secured cryptographic strategies. While these approaches have

been successful inasmuch as they concealed user preference information to some extent from a

centralized recommender system, they have also, nevertheless, incurred significant trade-offs in

terms of privacy, scalability, and accuracy. They are also vulnerable to privacy breaches by mali-

cious actors. In light of these observations, we propose a novel selective privacy preserving (SP2)

paradigm that allows users to custom define the scope and extent of their individual privacies, by

marking their personal ratings as either public (which can be shared) or private (which are never

shared and stored only on the user device). Our SP2 framework works in two steps: (i) First,

it builds an initial recommendation model based on the sum of all public ratings that have been

shared by users and (ii) then, this public model is fine-tuned on each user’s device based on the

user private ratings, thus eventually learning a more accurate model.

Furthermore, in this work, we introduce three different algorithms for implementing an end-to-

end SP2 framework that can scale effectively as the number of items increases. Our user survey
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shows that an overwhelming fraction of users are likely to rate much more items to improve the

overall recommendations when they can control what ratings will be publicly shared with others. In

addition, our experiments on two real-world dataset demonstrate that SP2 can indeed deliver better

recommendations than other state-of-the-art methods, while preserving each individual user’s self-

defined privacy.

4.1 Introduction

Collaborative filtering (CF) based recommender systems are ubiquitously used across a wide spec-

trum of online applications ranging from e-commerce (e.g. Amazon) to recreation (e.g. Spo-

tify, Netflix, Hulu, etc.) for delivering a personalized user experience [MR16]. CF techniques

are broadly classified into two types – (i) classic Nearest Neighbor based algorithms [TPN08]

and more recent matrix factorization techniques [KBV09], of which the latter has been more

widely and predominantly adopted in industrial applications [DUM17] for building large-scale

recommender models due to its superiority in terms of accuracy [KBV09] and massive scalabil-

ity [OHY15, KM16, SBS13, MBY16, Xin15, LLS16]. Regardless of the underlying technique, the

performance of a CF system is generally driven by the “homophilous diffusion” [Can02b] process,

where users must share some of their preferences in order to identify others with similar tastes

and get good recommendations from them. The performance of CF algorithms often deteriorates

without such adequate information, as often observed in the classic cold start [VYP17] problem.

This inherent need for a user to share his/her preferences sometimes leads to serious privacy

concerns. To make things more complicated, privacy is not a static concept and may greatly vary

across different users, items and places. For example, different users under changing geopolitical,

social and religious influences may have varying degree of reservation about explicitly sharing

their ratings on sensitive items that deal with subjects like politics, religion, sexual orientation,

alcoholism, substance abuse, adultery, etc. [CPW12]. Overall, these privacy concerns can prevent

a user from explicitly rating many items, which reduces the overall performance of a CF algorithm,

as compared to an ideal scenario, where everyone freely rates all the items they consume.
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Share Rating

Figure 4.1: Selective privacy preserving (SP2) framework from a user’s perspective.

4.1.1 Motivation

In this paper, we explore the idea of letting each user define his/her own privacy. In other words,

here the user decides which ratings he/she can comfortably share publicly with others, while his/her

remaining ratings are considered as private, which means that they are stored only on the user’s

device locally and are never shared with anyone including any peers or a centralized recommender

system. Thus, this scheme enables each user to selectively define his/her own privacy. Figure 4.1

shows an example of such an operational setup. By default, every rating provided by the user is

considered public and can be shared with the centralized server or peers, but the user can decide

to keep a particular rating privately and not to share it with anyone when the rating is provided.

In this paper, we attempt to build a CF framework that preserves each user’s selective privacy and

investigate the following issues in enabling such a framework:

• How can we build a selective privacy preserving (SP2) CF model that assimilates information

from two kinds of ratings – all users’ public ratings and each user’s on-device private ratings?

• How can we ensure that there is no loss of private information in our SP2 framework?

• Can the SP2 framework improve the performance of a CF algorithm? In other words, does the

SP2 framework improve the overall recommendation quality at all by taking into account each

user’s private ratings? Or should the users simply hold back from rating sensitive materials if they

have any privacy concern?
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• Can this SP2 CF model ensure scalability with respect to industrial-scale datasets?

4.1.2 Contributions

In the rest of this paper, we address the questions listed in Section 4.1.1 and make the following

contributions:

• We first present the results of a user survey (Section 4.2), which shows that roughly half of users

hesitate to rate or review products online due to privacy concerns and are much more likely to share

more product ratings if a strong privacy guarantee is provided.

• We mathematically formulate the selective privacy preservation problem and present a formal

framework to study it (Section 4.3). To the best of our knowledge, this is the first work under the

umbrella of federated machine learning [KMR16] that supports a private on-device recommenda-

tion model for CF algorithms.

• We propose three different strategies (Section 4.4) for efficiently implementing an end-to-end

SP2 framework, each of which is conducive to different situations. These underlying techniques

overall ensure that a SP2 CF model incurs only a reasonable cost in terms of storage and commu-

nication overhead, even when dealing with massive industrial datasets or large machine learning

models.

• We present analytical results on two real datasets comparing different privacy preserving and

data obfuscation techniques to show the effectiveness of our SP2 framework (Section 4.5). We also

empirically study what is a good information sharing strategy for any user in a SP2 framework and

how much are the recommendations of a user affected, when he/she refrains from rating an item,

instead of marking the latter as private.

4.2 User Survey: Privacy Concerns

In this section, we describe the results from a user survey. Through the survey, we tried to gauge

the relevance and importance of the following two issues:

Issue 1: Is privacy an important issue for online users? Do people share fewer product ratings

32



Figure 4.2: How often do you hesitate to rate an item or write a review because you do not want
to share your opinion publicly or trust the platform?

Figure 4.3: Would you rate more items if you can turn off public sharing and store your rating
privately only on your device to improve the quality of recommendations?

because of a privacy concern?

Issue 2: If a stronger privacy guarantee is provided, are users willing to provide more product

ratings so that they can get higher quality recommendations?

Our survey had 8 questions related to the issues above. The survey was given to 100 college

students. A total of 75 students responded. Among them 74% were male and 24% were female.

92% of our respondents were within the age bracket (18�30).

Figures 4.2 and 4.2 show the responses to two key questions in the survey related to Issues 1

and 2, respectively. In the first response, about 12% of the students stated that they almost always

hesitate to rate an item because of a privacy concern. Only less than 2.7% indicated that privacy

was never a concern. Overall, more than 2/3 of the respondents indicated their hesitance to rate

33



an item due to a privacy concern. Then, when users were asked if they would rate more items

if the rating is never shared with anyone else and is kept private, 56% of the users responded

affirmatively (YES). Only 22% responded negatively (No) with the remaining 23% providing a

tentative yes (Maybe).

In short, our survey clearly shows that there exists an unmet need from the users for a system

that provides a clear and strong privacy guarantee in the context of recommendation systems.

Therefore, a system like SP2 can potentially lead to higher user participation and recommendation

quality. The full list of our questions and the responses are accessible at https://goo.gl/

yK2FDd for those who are interested in the details of our survey.

4.3 SP2 Architecture

4.3.1 Data Sharing Model

Our selective privacy preserving (SP2) framework is based on a centralized approach. That is, (a

subset of) user-provided ratings are uploaded to a centralized server, where the data is analyzed

to compute items for recommendation for each user. This approach is similar to the ones used

by popular online services such as Netflix and Amazon. One key difference is that SP2 allows

users to explicitly mark (a subset of) their ratings as private, so that these ratings never leave the

user’s device. This option allows SP2 to provide users with an easy-to-understand-and-use privacy

guarantee on their ratings. Despite this privacy guarantee, SP2 can leverage the user’s private

ratings to improve the quality of recommendation; when it computes recommendations, it uses

each user’s private ratings in addition to his/her public ratings.

Hiding (a subset of) user ratings from a central server is predicated on the following assump-

tions:

Assumption 1. The central recommender system is semi-adversarial in nature. That is, whatever

data it obtains from each user, it will analyze it to the fullest extent, so that it can learn most about

the user. This is not necessarily because the server has a bad intention. A server with good in-

tentions will want to learn as much as it can about a user, so that it can provide the best possible

34

https://goo.gl/yK2FDd
https://goo.gl/yK2FDd


recommendation. Despite this good will, a user may simply have a reservation on sharing certain

data and want to keep it private.

Assumption 2. The central recommender system is not malicious in nature i.e. it will not deliber-

ately send incorrect information to a user to adversely impact his/her recommendations. It has an

incentive to provide high quality recommendations to the users.

Assumption 3. The central recommender system and the content delivery system operate in isola-

tion from each other. This is a reasonable assumption for a large number of online recommender

systems like Google Play, Yelp, Angie’s List, HomeAdvisor, Glassdoor, Foursquare, etc. SP2

framework becomes highly relevant in such cases, which deal with pure recommendation sites

like news portals or third party recommendation services like Yelp or app stores like Google Play,

where the recommendations are solely driven by the explicit ratings from the users’ community, as

the external platforms do not know how a user actually interacted with the item under consideration

(e.g. restaurant for Yelp and apps for Google Play Store).

It is also worth mentioning in this breath that many online services like Netflix or Hulu owns

the content distribution network and as such they can always determine what items have been

served to the users, even without identifying their ratings. However, as pointed out in [CPW12],

the former information is less valuable as opposed to knowing the entire set of items rated by a

user, which poses a bigger privacy concern [McC12], regardless of whether the actual rating values

are known. Thus, even for online sites where the recommender system is integrated with content

delivery, SP2 models can still prevent the recommender system from identifying privately rated

items and the corresponding user ratings.

4.3.2 Collaborative Filtering (CF) Algorithm

The collaborative filtering (CF) algorithms used by SP2 are broadly based on the popular matrix

factorization (MF) method, mainly due to its better performance, scalability and industrial appli-

cability [KBV09,KM16,SBS13,MBY16,DUM17]. However, some of our discussions can also be

extended to the traditional nearest neighbor based CF algorithms [TPN08]. We now briefly review

the MF technique.
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Table 4.1: Definitions of symbols used in (5.1) - (5.6)
Symbol Definition Symbol Definition

µ global mean of ratings W set of observed ratings
bu bias for user u pu latent vector for user u
bi bias for item i qi latent vector for item i
d Learning rate l Regularization parameter
rui actual rating of i by u ˆrui prediction of u’s rating for i
eui calculated as (rui- ˆrui)

In the classic biased MF model [KBV09], we try to learn the latent user and item factors (as-

sumed to be in the same feature space of dimension k) from an incomplete ratings matrix [TPN08].

More formally, here, the estimated rating for a user u on item i, ˆrui is given by equation (5.1). The

corresponding symbol definitions are provided in Table 4.1.

ˆrui = µ +bu +bi +qT
i pu = µ +q0Ti p0u (4.1)

We compute the user and item latent factors by minimizing the regularized squared error over all

the known ratings, as shown in (5.5).

min Â
rui2W

(rui� ˆrui)
2 +l (b2

i +b2
u+ k qi k2

2 + k pu k2
2) (4.2)

This is done either using classic Alternating Least Squares method [TT12,DUM17,MBY16] which

computes closed form solutions or via Stochastic Gradient Descent (SGD) [KBV09], which en-

joys strong convergence guarantees [GLM16, LSJ16] and many desirable properties for scalabil-

ity [OHY15, KP15]. The variable update equations for SGD are given by equation (5.6). For

simplicity, we assume from now on that the user and item factors contain the respective biases i.e.

user factor for u (p0u) implies the column vector [bu 1 pT
u ]

T and item factor for i (q0i) refers to

the column vector [1 bi qT
i ]

T .
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bu bu +d (eui�lbu)

bi bi +d (eui�lbi)

pu pu +d (euiqi�l pu)

qi qi +d (eui pu�lqi)

(4.3)

4.3.3 Problem Formulation

In a SP2 framework, each user u has a set of public ratings, denoted by Wu
public and a set of private

ratings, denoted by Wu
private. However, since Wu

private is known only to u, the set of ratings observed

here by the central recommender system is
S
u

Wu
public. We denote the latter by the notation W0public.

Now, our problem can be formulated as a multi-objective optimization problem, where we attempt

to minimize n regularized L2 loss functions together for n users, as shown below:

min ( f1, f2, ..., fn), where L2 loss ( fv) for user v is given by,

fv :
⇥

Â
rv j2Wv

private

(rv j� ˆrv j)2⇤+ 1
n Â

rui2W0public

(rui� ˆrui)2

+ l
n (b

2
i +b2

u+ k qi k2
2 + k pu k2

2)

Note, traditionally multi-objective optimization problems are solved with classic techniques

like linear scalarization (also known as the weighted sum method [GR06]). In fact, if we assign

equal weights to each user’s L2 loss function, then linear scalarization [GR06] can reduce this

problem into a single-objective mathematical optimization problem (constructed as the weighted

sum of the individual objective functions), which is similar to the one discussed in Section 4.3.2.

However, due to privacy considerations, all of the data (users’ ratings) cannot be pooled together;

this makes classic solutions to multi-objective optimizations problems inapplicable here. We next

outline a privacy-aware model to solve this problem.
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4.3.4 Architecture

Given our privacy guarantee and problem formulation, one key limitation of SP2 is that the fi-

nal recommendations cannot computed at the server. The server does not have a user’s private

ratings and is unable to incorporate these ratings in the final recommendations. Therefore, the

server computes "rough estimates" of each user’s preferences and each item’s characteristics using

the aggregated public ratings. Then each user’s device downloads these user and item estimates

from the server and perform the computation of the final recommendation by combining these es-

timates with the locally-stored user’s private ratings. More formally, the following steps outline

the working of our SP2 framework:

(1) The central recommender system first builds a public model based on all the users’ shared

public ratings. In particular, it factorizes the public ratings matrix into the user and item matrices

as is shown in Figure 4.4.

(2) Each user then downloads his/her corresponding public user factor from the central recom-

mender system. Additionally, all users’ also download common public item factor data on their

devices. This data is same for all users, and hence can be broadcasted by the central recommender

system (for authentication in case the server cannot be trusted).

(3) Once the public user factor and public item factor are available on the device, local updates

are performed on the public user factor using the private ratings, which was saved locally on the

device and was never shared.

(4) The final recommendations for the user is computed using the private user factor and the public

item factor. These two are stored on the user’s device for future recommendations.

Figure 4.4 presents the overall architecture. Again, our framework never uploads/communi-

cates any private rating, thus guaranteeing privacy preservation. This is notably different from the

general federated machine learning philosophy [KMR16,BIK17]. Also note that each device has to

download only one row from the public user-factor matrix since it needs the particular user’s pref-

erences not others, but it potentially has to download the entire public item factor matrix because

any item can be selected for final recommendation. With millions of potential items to recom-
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Figure 4.4: Architecture of a SP2 framework.
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mend, the size of the public item factor matrix can be too large to be completely downloaded to

each user’s device. In the next section, we explore possible options to significant reduce the size

of the item factors while we preserve the quality of the final recommendations.

4.4 Public Item Factor Matrix and CF Algorithm

In this section, we present three approaches on sending the public item factor matrix to each device

and the corresponding algorithms for the updating user’s latent preference vector.

4.4.1 Naive Approach

The simplest way to share the public item factor matrix is to share the entire matrix (i.e. all the

latent item vectors and their biases). After the matrix factorization is performed by the recom-

mendations provider using the public ratings from all users, we obtain the 2 latent factor matrices,

namely: user factor and item factor matrix. Each user then receives their corresponding latent

vector which captures their interest in a latent space of certain dimension. Each user’s on-device

private model is then built following the steps shown in algorithm . The update equation used in

this algorithm are similar to the ones used in the MF model in Section 4.3.2.

algorithm

. Naive method to build on-device private model

Require: d  learning rate , l  reg. parameter , epochs number of epochs, Q Aux.

public model data containing all latent item vectors (qi), item biases (bi) and global ratings

mean (µ), pu  public user latent vector for u, bu  public user bias for u, Wu
private  

private ratings by u

Ensure: p⇤u private user latent vector for u, b⇤u private user bias for u,

1: procedure (d ,l ,epochs,Q, pu,bu,Wu
private)

2: p⇤u pu,b⇤u bu

3: for e = 0;e < epochs;e++ do

4: for all rui 2Wu
private do

5: ˆrui = µ +b⇤u +bi +qT
i p⇤u
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6: eui = rui- ˆrui

7: b⇤u b⇤u +d (eui�lb⇤u)

8: bi bi +d (eui�lbi)

9: p⇤u p⇤u +d (euiqi�l p⇤u)

10: qi qi +d (eui p⇤u�lqi)

11: end for

12: end for

end

4.4.1.1 Top-N recommendation

Once the private model is built for user u, we can locally predict the rating for any item, as shown

in equation (5.1), using p⇤u,b⇤u, since qi,bi are known for all the items as part of the public item

factor matrix. These predictions can be ranked locally on the user device to provide the top-N

recommendations.

4.4.1.2 Privacy Considerations

It is important to highlight some privacy considerations behind our naive approach:

• Even though a user only needs the corresponding item factors for each of the privately rated

item to compute the on-device private model, the user cannot simply fetch only the desired item

factors from the central recommender system since that would reveal the items that the user has

rated privately. In our framework, we would like to keep not only the ratings private but also which

items have been rated privately, hidden from the central recommender system.

• Consider an alternative scenario, where a user downloads only some additional irrelevant item

factors to obfuscate the private user information. This would require downloading significantly

fewer number of item factors, as compared to downloading the entire item factor matrix. However,

this would make top-N computation infeasible locally. Now, the user needs to send back p⇤u,b⇤u to

the server, which would allow the server to guess user’s private ratings.

Similarly, sending a randomly perturbed private user factor back to the server can obfuscate
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the private information, but will degrade the quality of top-N recommendations.

• Consider another alternative strategy, where the actual private user factor is sent to the central

recommender system along with multiple (k) fake user factors, thereby obfuscating the private in-

formation and making it k-anonymous [MM09a]. However, upload speeds are considerably lower

than download speeds. In addition, the overall computation and communication costs can also

increase by orders of magnitude, as the central servers need to compute multiple top-N recommen-

dation lists for every user and then send all of them back.

It is important to note that the item factors matrix is downloaded only once during model

building. In some situation, this does not involve unreasonable communication or storage overhead

from the user end. For example, the total size (in MB) of all the item factors (I) of dimension k

is given by k⇥ |I|⇥ 8/220, where each item factor is assumed to be an array of type double.

Assuming k = 100, the download sizes for all the item factors (in raw uncompressed format) for

real datasets like MovieLens [WLX16] and Netflix [WLX16] are 4MB and 10MB respectively.

However, for large industrial datasets (like Amazon [MTS15]) with close to 1 million items, the

raw size of all item factors (of dimension 100) grows linearly to around 763MB.

4.4.2 Clustering

We propose this method to ensure scalability of the SP2 framework as the number of items become

large. One drawback with the previous mentioned naive approach is that the communication cost

grows linearly with the number of items. This is because when the number of items becomes large,

it results in the item latent factor matrix to be large as well. Eventually, it becomes infeasible for

every user to download the entire item latent factor matrix due to expensive cost of data transfer.

To mitigate this problem, we propose a clustering based approach to reduce the communication

cost for users.

The intuition behind this approach is that the public item factor matrix should consist of some

approximate item factors Q0, which is much smaller than the set of all item factors in the original

matrix Q i.e. |Q0| < |Q|. Now, each user u for a private rating rui should use the approximate

item factor q̃0i, instead of the actual item factor q0i to compute the private model. This approxima-
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tion introduces an error in eui calculation for each private rating rui and is given by p0⇤u (q0i� q̃0i)
T ,

where p0⇤u is the private user factor for u and q̃0i 2 Q0. Now, for each user u, we should minimize

these approximation errors across all his/her private ratings i.e. minimize Âi2Wu
private

p0⇤u (q0i� q̃0i)
T ,

or p0⇤u Âi2Wu
private

(q0i� q̃0i)
T . Since, the central recommender system does not know any Wu

private for

any user, the former prepares the public item factor matrix by minimizing the approximation er-

rors across all item factors i.e. minimize Âi2Q(q0i� q̃0i)
T . This minimization goal is similar to the

objective function used in clustering [KMN02]. Thus, the central recommender system performs

this approximation through clustering, particularly using K-means clustering with Euclidean dis-

tance [AV07]. The individual cluster mean is treated as the approximate item factor for all the

items in the cluster. In summary, the public item factor matrix for this method comprises of (1) K

cluster centroids obtained after applying the K-means algorithm on all the item factors, (2) cluster

membership information, which identifies which cluster an item belongs to and (3) global ratings

average.

algorithm

. Building on-device private model via clustering

Require: d learning rate , l regularization parameter , epochs number of epochs, Q0  

Aux. public model data containing all cluster centers having latent vectors (ci), biases (bc
i )

and global ratings mean (µ), C Cluster latent vectors, r Cluster membership function,

where item i is mapped to cluster r(i), pu  public user latent vector for u, bu  public

user bias for u, Wu
private private ratings by u

Ensure: p⇤u private user latent vector for u, b⇤u private user bias for u,

1: procedure (d ,l ,epochs,Q0, pu,bu,Wu
private)

2: if T = /0 then

3: return . base condition

4: p⇤u pu,b⇤u bu

5: for each cluster c do

6: Nc = Calculate no. of items in c from r

7: end for
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8: for e = 0;e < epochs;e++ do

9: for all rui in private_ratingsu do

10: ˆrui = µ +bu +bc
r(i) + cT

r(i)p⇤u

11: eui = rui- ˆrui

12: b⇤u b⇤u +d (eui�lb⇤u)

13: bc
r(i) bc

r(i) +d (eui�lbc
r(i))/Nr(i)

14: p⇤u p⇤u +d (euicr(i)�l p⇤u)

15: cr(i) cr(i) +d (eui p⇤u�lcr(i))/Nr(i)

16: end for

17: end for

end

Note, the cluster membership information for a set of I items would require 4⇥ |I| bytes, assum-

ing each cluster id is an integer which takes 4 bytes. For K clusters, this membership information

size can be further reduced drastically using K bloom filters [Blo70, MB97] where each bloom

filter represents a cluster. To demonstrate the reduction in communication costs, let consider there

are 10 million items in the system. In the naive approach, if the number of latent dimensions is 100,

then the total number of floating point numbers in the item latent factor matrix will be 1 billion

(100*10 million). In the clustering approach, users only need to download the cluster assignment

information for every item and the cluster centers. If the number of clusters is k, then the total

number of floating point numbers users need to download becomes: 10 million+ 100 ⇤ k. The

number of clusters is generally chosen to be much smaller than the number of items. In this case,

the clustering approach provides approximately 100x reduction in amount of data being transferred

from the server to the users. It is important to note that various compression techniques can be ap-

plied on top of the 2 proposed approaches to reduce the communication cost further. The gains in

reduction will be symmetric.
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4.4.2.1 Top-N recommendation

In this method recall that all the item factors are not available locally on the user device. Therefore,

we pursue a different strategy here: user u requests the public item factors for top-N0 recommended

items (N0 > N) from the central recommender system. The latter computes this using u0s public

user factor (p0u) and then sends the top N0 items and their corresponding public item factors to u. u

can re-rank these N0 items based on his/her private user factor (p⇤u) and then select the top-N. Note,

this top-N0 computation by the central servers is not a privacy threat, as it can be easily calculated

without any information about user’s private ratings. Also, recall our assumption 2 in Section

4.3.4, which ensures that incorrect top-N0 information will not be sent by the central servers.

4.4.3 Joint Optimization

Our previous approach was based on hard assignment, where each item was assigned to only one

cluster. However, soft clustering techniques like non-negative matrix factorization (NMF) [LS00]

considers each point as a weighted sum of different cluster centers. In this approach, we try to

perform soft clustering on all the item factors simultaneously as the public recommendation model

is built. In other words, the central recommender system jointly learns the public model and

the soft cluster assignments. For this, we revise the equations (5.1) and (5.5) to (4.4) and (4.5),

where C denotes the cluster center matrix of dimension k⇥ z (z being the number of clusters), and

wi is a column vector representing the different cluster weights (non-negative) for item i. This

problem can be formulated as a constrained optimization problem and algorithm shows how the

central recommender system performs this joint optimization. One key aspect in this algorithm is

that the weights are updated (step 14) using projected gradient descent (PGD) [Lin07], in order

to ensure that all cluster weights are non-negative. This facilitates in finding the top-R cluster

assignments for any item by finding the highest R corresponding weights. Finally, the public item

model data for this approach should consist of the following: (1) the cluster center matrix C, (2)

item biases bi, (3) top-R cluster weights (in descending order) for each item i, the corresponding

cluster ids and (4) the global ratings mean. Using C and top-R cluster weights for any item i, user

u can locally approximate the public item factor for any item by its weighted sum of top-R cluster
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centers i.e. Â
n2top R

wnCn (Cn represents the nth cluster center). With this approximation, u can now

use algorithm to compute the on-device private model again. Note, when R is small, we can save a

significant communication cost by sending only top-R weights as compared to the naive approach.

ˆrui = µ +bu +bi +wT
i CT pu (4.4)

min. Â
rui2W0public

(rui� ˆrui)
2 +l (b2

i +b2
u+ k wi k2

2 + k c k2
2 + k pu k2

2)

s.t.wi j � 0.

(4.5)

algorithm

. Joint optimization based matrix factorization

Require: d  learning rate , l  regularization parameter , epochs number of epochs,

W0public seto f allpublicratings

Ensure: C, pu,bu,bi,wi for all users and items

1: procedure (d ,l ,epochs,W0public)

2: µ = Mean(W0public)

3: Initialize bu, pu,bi,wi,C with values from N(0,0.01).

4: for e = 0;e < epochs;e++ do

5: for all rui in private_ratingsu do

6: ˆrui = µ +bu +bi +wT
i CT pu

7: eui = rui- ˆrui

8: bu bu +d (eui�lbu)

9: bi bi +d (eui�lbi)

10: pu pu +d (euicwi�l pu)

11: C C+d (euiwi pT
u �lc)

12: wi wi +d (euicT pu�lwi)

13: for each w 2 wi do
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14: w Max(w,0) //PGD

15: end for

16: end for

17: end for

end

4.4.3.1 Top-N recommendation

Interestingly, with the public item model data for this method, user u can locally compute the

approximation for each item factor, as mentioned above. As a consequence, u is also able to

locally compute the top-N recommendations using these approximate item factors.

4.5 Experiments

We compared the performance of our SP2 framework with various baselines, as described next,

under different settings on two real datasets, viz., MovieLens-100K [HK15] data and a subset of

Amazon Electronics [MTS15] data. We outperform existing state-of-the-art baselines in effective-

ness on both metrics, namely: Root Mean Squared Error (RMSE) and Normalized Discounted

Cumulative Gain (nDCG). Our SP2 framework performs close to the optimal approach in terms of

effectiveness which is to not allow users to rate privately and keep all ratings as public.

4.5.1 SP2 vs. Different Baselines

• Absolute Liberal (Everything public): Here, we assume that every user liberally shares everything

publicly without any privacy concern i.e. a single MF model is built on the entire training data

itself. Theoretically, this should have the best performance, thus providing the overall upper bound.

• Absolute Conservative (Everything private): Here, we assume that every user is conservative and

does not share anything publicly due to privacy concerns. Thus separate models are built for each

user based only on their individual ratings, which in practice, is as good as using the average rating

for that user for all his/her predictions.

• Only Public: This mimics the standard CF scenario, where privacy preserving mechanisms are
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absent. Consequently, the users only rate the items, which they are comfortable with sharing; they

refrain from explicitly rating sensitive items. We build a single MF model using only the public

ratings and ignore the private ratings.

• Distributed aggregation: Shokri et al. [SPT09a] proposed three peer-to-peer based data obfusca-

tion policies, which obscured the user ratings information before uploading it to a central server:

(1) Fixed Random (FR) Selection: A fixed set of ratings are randomly selected from other peers for

obfuscation. (2) Similarity-based Random (SR) Selection: A peer randomly sends a fraction of its

ratings to the user for obfuscation depending on its similarity with the user. (3) Similarity-based

Minimum Rating (SM) Frequency Selection: This is similar to the SR policy, except that during

selection higher preference is given to those items that have been rated the least number of times.

• Fully decentralized recommendation: Berkovsky et al. [BEK07a] proposed a fully decentralized

peer-to-peer based architecture, where each user requests rating for an item by exposing a part of

his/her ratings to a few trusted peers. The peers obfuscate their profiles by generating fake ratings

and then compute their profile similarities with the user.

• Differential Privacy: McSherry et al. in [MM09a] masks the ratings matrix sufficiently by adding

random noise, drawn from a normal distribution, to generate a noisy global average rating for each

movie. These global averages are then used to generate bm fictitious ratings to further obscure the

ratings matrix.

For all MF models, the hyper-parameters were initialized with default values from the open-

source Surprise package.

4.5.2 Private Ratings Allocation

For analyzing the efficacy of our SP2 framework, it is also important to consider how users pri-

vately rate an item. We next define two ratios to characterize this:

• User privacy ratio for a user u is defined as the fraction of u0s total ratings which are marked

private by u.

• Item privacy ratio for an item i is likewise defined as how many of the total users (which assigned
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i a rating) have marked i as private.

Now, we consider two different hypotheses for modeling users’ behavior in keeping their rat-

ings private:

• Hypothesis 1 (H1). Users always decide independently which of his/her ratings are private.

Formally, for any two users x and y, who have rated an item i with ratings rxi and ryi respectively,

P(rxi is private | ryi is private) = P(rxi is private). In our experiments, we generate user privacy

ratios in the interval [0,1] for all n users from a beta distribution [LCG17] with parameters a,b .

For each user u with user privacy ratio gu, (1�gu) fraction of u’s ratings are randomly selected and

marked as public, while the remainder of u’s ratings are considered private.

• Hypothesis 2 (H2). Users do not decide independently which of his/her ratings are private. In

other words, ratings for some items are more likely to be marked as private. Formally, using the

same mathematical notations as above, P(rxi is private | ryi is private) 6= P(rxi is private). Here,

we generate item privacy ratios for all m items from a beta distribution. For each item i with

item privacy ratio gi, (1� gi) fraction of ratings assigned to i are randomly selected and marked as

public, while the remainder of i’s ratings are considered private.

The following parameters for the beta distribution (shown in Figure 4.5) is chosen to capture

different scenarios.

1. Mostly Balanced (a = 2,b = 2): Most user/item privacy ratios are likely to be close to the

theoretical mean value 0.5.

2. Mostly Extreme (a = 0.5,b = 0.5): Most users/items have either very high or very low privacy

ratios. The overall average of the privacy ratios will be close to 0.5.

3. Mostly Conservative (a = 5,b = 1): Most users/items have very high privacy ratios.

4. Mostly Liberal (a = 1,b = 5): Most users/items have very low privacy ratios.

4.5.3 Evaluation Setup

We evaluate our SP2 framework using accuracy-based as well as ranking-based metric. The defi-

nition of the metrics used for evaluation are given below.
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Figure 4.5: Probability density functions of four different beta distributions used in private ratings
allocation.

• Root Mean Squared Error (RMSE): Root Mean Squared Error is used to compute the offset

between the predicted and actual rating for a particular user.

RMSE =

s
1
N

N

Â
i=1

(rui� r̂ui)2 (4.6)

The RMSE for the overall recommender system is calculated as the average of individual user

RMSE. Lower RMSE value indicates a better recommender system performance.

• Normalized Discounted Cumulative Gain (NDCG): Given a list of N recommended items, NDCG

[LLL16] is used to measure the ranking quality of a recommender system. It is computed as

follows:

NDCG@N =
1

IDCG

N

Â
i=1

2reli�1
log(i+1)

(4.7)

where IDCG represents the maximum DCG ranking value. rel_i represents the binary relevance

of the recommended item at position i. The intuition behind a better/higher NDCG value is that

relevant items should appear in earlier positions of the recommendation list. The NDCG for a

recommender system is computed by taking the average over individual user NDCG values.
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• Data Sets: We use two rating datasets for our experiments: Movielens-100k [HK15] and Amazon

Electronics [MTS15].

4.5.4 Results

The 5-fold average RMSE and NDCG@10 scores [LLL16] along with their corresponding stan-

dard deviations are reported in Table 4.6 for the MovieLens and Amazon Electronics datasets. The

RMSE results in Table 4.6 indicate that, as expected, absolute liberal performs the best (lowest

RMSE), whereas absolute conservative performs the worst. We also observed that for varying

ratios of r (public:private ratings), our SP2 framework consistently outperforms the standard CF

framework where only public data is used. However, even in SP2, the RMSE reduces as more

public ratings are available, which is intuitively true. The three P2P based CF strategies [SPT09a]

do not perform well at all, due to the noise and obfuscation added to the ratings matrix and at

times, even produce higher RMSE as compared to the absolute conservative method. Thus, our

SP2 framework fits better models than the standard CF method or P2P based architecture.

As indicated by the results in Table 4.6, the peer-to-peer based techniques and the differential

privacy method, which attempt to ensure complete user privacy from the central recommender

system, end up performing worse than the standard only public baseline due to the data obfuscation

policies. In addition, the fully decentralized approach in [BEK07a] is not scalable due to the limited

number of trusted peers. In the same vein, the distributed aggregation approaches in [SPT09a]

suffer from poor performance as the number of peers increases due to higher obfuscation; however,

lowering the number of peers risks significant privacy breach by the central recommender system.

Table 4.6 further summarizes that our joint optimization approach (with only top-3 cluster weights)

performs as good as the naive approach. Our clustering approach for SP2 framework, performs

worse than naive and joint optimization but is largely better than the only public baseline across

both evaluation metrics. Unless otherwise mentioned in the table, P-value for all results related

to SP2 framework (computed using two-tailed test with respect to only public baseline) is less

than 0.001. As evident from the table, our results hold across both the hypotheses. However, the

performance of all the implementations improve as the privacy ratio reduces. We next summarize
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Figure 4.6: Results of SP2
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Figure 4.7: RMSE comparison
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the key results below:

• Comparison under H1: Under Hypothesis 1 (H1), where users always decide independently

which of his/her ratings are private, our proposed SP2 approach performs better than state-of-the-

art approaches which are part of our baselines. Across various beta distributions used for sampling

the privacy ratio of each user, SP2 performs better than the only public baseline in both metrics

RMSE and NDCG. In the Mostly Conservative scenario, our SP2 joint optimization approach

provides an improvement of 2.12% in RMSE performance (lower value) and 1.56% improvement

in NDCG over the Only Public baseline. Our results are statistically significant with a p-value less

than 0.001.

• Comparison under H2: Under Hypothesis 2 (H2), ratings for some items are more likely to be

marked as private, our proposed SP2 approach performs better than state-of-the-art approaches.

Across various beta distributions used for sampling the privacy ratio of each user, SP2 performs

better than the only public baseline in both metrics RMSE and NDCG. In the Mostly Conserva-

tive scenario, our SP2 joint optimization approach provides an improvement of 2.13% in RMSE

performance (lower value) and 2.08% improvement in NDCG over the Only Public baseline. Our

results are statistically significant with a p-value less than 0.001.

• Scalability: We perform an experiment to study the scalability of our SP2 framework. As the

number of items in the recommender system increases, our SP2 framework can scale accordingly

by increasing the number of clusters, a parameter for the clustering and joint optimization based

approaches. Firstly, we study the relationship between the number of clusters and data size of the

raw auxiliary public model. As seen in Figure 4.9, the data size for the naive approach remains

independent of the number of clusters, since users download the entire item latent factor matrix.

Whereas for the clustering and joint optimization approaches, as expected the data size increases as

the number of clusters increase but the data size is orders of magnitude less than the naive approach.

We also study the relationship between the number of clusters and 5-fold average RMSE across

the 3 proposed approaches for SP2. As shown in Figure 4.10, the naive approach performs the best

followed by the joint optimization approach and finally the clustering approach. As the number

of clusters increases the RMSE for the clustering and joint optimization initially decreases up to
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an optimal number of clusters and then starts to rise linearly with the number of clusters. In other

words, the naive method has the best performance but requires the largest auxiliary model data.

On the other hand the joint optimization technique require an order of magnitude less data than the

naive one but can reach the same performance for an optimal number of clusters.

• Ablation Study with Privacy Ratio: In our SP2 framework, we compare the 3 proposed ap-

proaches for auxiliary public model data which needs to be downloaded by every user device. We

perform an ablation study whereby we choose a fixed privacy ratio for every user and compare

the 3 approaches in terms of the two specified metrics, namely RMSE and NDCG. As shown in

Figure 4.7, we observe two trends. First, as the user privacy ratio increases the overall RMSE goes

up as expected due to the decrease in public ratings shared by users. Second, among the three

approaches Joint Optimization and Naive approaches which perform similarly have the best per-

formance (lower RMSE), followed by the Clustering approach and the Only Public baseline which

performs the worst. We observe a similar trend in terms of performance for NDCG as shown in

Figure 4.8. We performed a similar ablation study considering a fixed item privacy ratio (H2) and

we obtain similar results. Due to space constraints, we have decided to omit their plots.

4.6 Related Work

Privacy preserving recommender systems has been well explored in the literature. Peer-to-peer

(P2P) techniques [BEK07a] are largely meant to protect users from untrusted servers. However,

they also require users to share their private information with peers, which is a privacy breach in

itself. In addition, P2P architectures lack scalability due to limited number of trusted peers and

are vulnerable to malicious interferences by rogue actors. Differential privacy methods [MM09a]

provide theoretical privacy guarantees for all users, but can also adversely impact the performance

of the recommender systems due to data obfuscation.

The related literature also comprises of cryptology [ZWH08] based techniques that approach

the problem little differently. For example, Zhan et al. [ZWH08] used “homomorphic encryption”

to integrate multiple sources of encrypted user ratings in a privacy preserving manner. However,

the extreme computation time and scalability issues associated with homomorphic encryption pose
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a serious practicality question [NLV11], even for moderate size datasets.

Lastly, recent federated machine learning approaches [KMR16] have proposed privacy-preserving

techniques to build machine learning models using secure aggregation protocol [BIK17]. How-

ever, in case of CF algorithms, this would require a user to share an update (in encrypted form)

performed on an item factor locally. In our case, this means that the server would be able to iden-

tify from the encrypted updates, which items the user had rated privately, even though the exact

ratings remain unknown. This itself constitutes a serious privacy breach [CPW12,Adv87,McC12].

Hence, in our SP2 framework, no private user information is ever uploaded or communicated.

4.7 Conclusion

In this chapter, we propose a novel selective privacy preserving (SP2) paradigm for CF based

recommender systems that allows users to keep a portion of their ratings private, meanwhile de-

livering better recommendations, as compared to other privacy preserving techniques. We have

demonstrated the efficacy of our approach under different configurations by comparing it against

other baselines on two real datasets. Finally, our framework empowers users to define their own

privacy policy by determining which ratings should be private and which ones should be public.

An overwhelming majority of users strongly support this policy, as have been showcased through

the user survey.
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CHAPTER 5

Federated Local Differential Privacy for Recommender

Systems

Current industrial recommender systems pose privacy risks for users since they rely on detailed

historical interaction information. These interactions can accurately capture the preferences and

can paint a detailed picture of the user. To alleviate these privacy concerns, we propose a federated

learning based approach that can mathematically quantify the privacy gain using local differential

privacy. Our framework allows each individual user to determine their own privacy level via the e

parameter of differential privacy. We demonstrate the trade-offs between privacy and accuracy by

simulating various e values from the Beta distribution on two real-world datasets.

5.1 Introduction

Recommender Systems are ubiquitous on the internet. They are used across platforms to personal-

ize items such as movies, songs, books, products to buy etc. Recommender Systems have become

a vital component that drive user engagement and provide personalized content. For example, on

the question answering site Quora [YA16], almost all features relies on recommendation systems

ranging from: the ranking of answers to a question, which users to follow, which questions to show

to a user on the homepage, among many others.

Recommender Systems aim to learn user interests based on historical interactions and other

metadata. They essentially assist the user in decision-making since it’s not scalable for a user
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to experience every item in the marketplace. For example, in a movie recommender system, it’s

impossible for a user to watch all movies on the platform since there are millions of movies in the

catalog. Hence it’s essential that the movies recommended to him/her are of interest to the user.

Existing recommendation algorithms are intrusive in nature. They typically collect vast amounts

of sensitive information about user behavior patterns such as movies watched, items purchased etc.

Such information collected by the recommendation provider poses huge privacy risks. Moreover,

users will be hesitant to provide feedback information to the recommender system out of privacy

concerns and this in turn will affect the quality of their recommendations. Also, existing regula-

tions such as the General Data Protection Regulation (GDPR) [VB17] in Europe and California

Consumer Privacy Act (CCPA) [Tor18] mandate strong privacy protections for users on various

web platforms. Regulations are useful and required but we believe innovative technological ad-

vancements are required to advance the status quo.

Current recommender systems deployed on the web are very effective in personalization but

they do so at the expense of user privacy. Due to the centralized nature of recommender systems,

they become a vulnerable target for unintended consequences such as data breaches, manipulation

etc. Numerous studies [GKB14] [TWW20] [LR04] [OHS05] [FGL20] have shown the risks in-

volved in targeted attacks against recommender systems that have centralized storage of user data.

Hence, what’s currently required is a framework that empowers users to decide their own privacy

policy independent of the recommender system provider.

More specifically, we believe:

1. All data generated by the user must be stored locally and never shared with anyone.

2. User’s should be able to decide their own privacy levels using local differential privacy.

3. Users ought to be able to quantify the loss of privacy from the recommendations generated

by the server.
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5.2 Background

5.2.1 Collaborative Filtering

Collaborative Filtering is a very popular technique used in personalization engines across the web.

It is based on the principle of homophily, i.e. similar users tend to like similar items. We model

user feedback in the form of ratings which represent a real value on the likert scale. Generally, a

higher rating value implies greater interestpreference for an item. We represent the rating given by

user u on a item i via rui. Without loss of generality, ratings can also model implicit feedback that

represents whether a user has interacted with an item or not. Implicit feedback is easier to collect

since it does not require much cognitive effort on the user’s behalf but has less information gain

compared to explicit ratings.

The traditional view of recommender systems is that of a sparse matrix, whereby a rows repre-

sents an individual user and a column represents an item. The entry in the matrix corresponds to

the rating provided by the (user, item) combination. Matrix factorization [BGM15] has proven to

be an effective and scalable technique in collaborative filtering. The goal of matrix factorization

is to convert the sparse rating matrix into dense matrices, that embed users and items into points

in a latent space. Each user, item can represented using a dense vector, namely: pu & qi respec-

tively. Every useritem also has a bias for it‘s rating value which can be modeling using bu & bi

and µ captures the global mean of ratings. The predicted rating for user u on item i, is estimated

as follows:

ˆrui = µ +bu +bi +qT
i pu (5.1)

The overall loss function over all ratings in the training dataset is as follows:

min Â
rui2W

(rui� ˆrui)
2 +l (b2

i +b2
u+ k qi k2

2 + k pu k2
2) (5.2)

with l being the regularization parameter. The partial derivatives with respect to each of our
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parameters are as follows:

bu bu +d (eui�lbu)

bi bi +d (eui�lbi)

pu pu +d (euiqi�l pu)

qi qi +d (eui pu�lqi)

(5.3)

where eui represents the difference between predicted and actual rating.

5.2.2 Federated Learning

In traditional machine learning, the data resides solely on a central server that performs all the

necessary computation. Federated learning [LST20] enables distributed machine learning by let-

ting users keep all the data local on their devices. In the federated learning setting, each client is

responsible for gradient computation using their local data and the central server’s primary role is

that of aggregation. This decentralized framework of learning has gained a lot of popularity due

to it’s applicability to the real world. In the real world, user devices are heterogeneous in nature

and the asynchronous nature enables users to join/leave the system anytime. Most importantly,

federated learning enables users to keep data private by storing it locally on their device and not

sharing it with anyone, including the central server.

Flanagan et al. [FOG20] implement the matrix factorization in the federated learning setting.

Their work takes into account additional sources of information in the recommendation domain

such as user and movie features. They claim that by jointly factorizing the matrices into a joint

low-dimensional representation, they are able to achieve better quality recommendations.

The current challenges of federated learning are mainly two-fold: communication and client-

side computation cost. During each round, each client is required to provide gradient updates to

the server which incurs a communication cost. Since the user devices are heterogeneous in nature,

the communication medium could be wired connections such as ethernet, cable etc. to wireless

mediums such as WiFi, 5G etc. The other major cost incurred by clients is that of computation

complexity. Since user devices are mostly light-weight, the computation load has to lower since
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there are constraints such as energy consumption.

5.2.3 Local Differential Privacy

Differential privacy [DR14] [ACG16] [MPR09] is considered to be a gold-standard in the realm

of privacy-preserving methods. Differential privacy provides theoretical guarantees and quantifies

the information loss in the form of a privacy budget.

Definition: A randomized algorithm M with domain N |X | is (e,d )-differentially private if

for all S ✓ Range(M ) and for all x,y 2N |X | such that ||x� y||1  1:

Pr[M (x) 2S ] exp(e)Pr[M (y) 2S ]+d (5.4)

where the probability space is over the coin flips of mechanism M . Also, if d = 0, we say that

M is e-differentially private.

The conventional differential privacy setting consists of a central server where all the data

resides and the goal is to protect user privacy from external clients. On the other hand, local

differential privacy deals with the setting whereby privacy is being offered to users from the central

server itself. The goal being that user data can reside locally on their devices and central server

simply acts as an aggregator.

The main parameter controlling the privacy in differential privacy is e , known as the privacy

budget. Lower epsilon values implies better privacy, lower utility and vice-versa holds true.

5.3 Motivation

Existing recommender systems rely on extensive information based on user input and interactions

on their platforms. We argue that such information not only captures the macro level population

trends but can also paint a detailed picture on an individual user level. Such data collection prac-

tices can seem benign but over time it can used to accurately predict sensitive information including

protected classes such as: gender, race, religion, political preference etc.
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5.4 Threat Model

Most recommender systems consist of a centralized server where all the ratings information across

various users is stored. Such existing approaches are not privacy friendly since the assumption is

that the centralized server is trustworthy which is often not the case.

Our federated approach ensures that all ratings information stays on the respective user’s device

and the central server only serves as an aggregator and generates the recommendations. The central

premise of our approach is that the raw rating information never leaves the user device.

We plan to use local differential privacy wherein which allows satisfies all our requirements.

5.4.1 Role of Central Server

The central server plays an important role in our framework. Complete decentralized recommender

systems are not scalable with the number of users & items. Decentralized recommender systems

have been shown [SFR06] to suffer from a variety of issues such as: bias or sabotage from mali-

cious users, poor quality of recommendations etc.

The central server in our setting has a vested interest to provide high quality recommendations

to users meanwhile preserving individual user privacy. The central server is assumed to have

sufficient computational resources that can scale to millions of users and items. Moreover, the

server is assumed to be "curious", i.e. it tries to learn as much information as possible about a user

in order to provide better recommendations.

5.5 Practical Implications of Differential Privacy

The intuition behind the definition of differential privacy is that just by viewing the output of an

algorithm it should be hard for an attacker to know if a particular user’s information was included

in the computation or not. Consider a medical database D and an algorithm Â that is able to run

analytical queries on D. Suppose, that the result of Â on D is Result I. Now, if we add in the medical

information for a user Joe to the medical database D and pass it through our algorithm Â, say we

get the result Result II. The goal of Differential Privacy that an attacker should be easily able to
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Figure 5.1: Motivation of Differential Privacy

Figure 5.2: Stochasticity of a differentially private algorithm

distinguish between the 2 inputs to Â simply by looking at the two outputs: Result I and Result

II. By definition, differential privacy makes no assumptions about the external knowledge that is

accessible to an attacker.

The stochastic nature of the DP algorithm Â, ensures that the output is not the same for the

same input. Stochasticity plays an important role in making an algorithm differentially private.

Given 2 datasets D1 and D2 that differ in at most 1 element, we would like the outputs to be

similar to each other in order to make Â a strong differentially private algorithm.

The stochastic nature of the algorithm ensures that for the same input D1 the output results in
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the set indicated by the blue arrow as shown in Figure 5.2. Similarly, the input D2 can result in an

output set pointed by the purple border in the image of the algorithm Â. In order for an algorithm

to have strong differential private guarantees, the overlap of the two output sets has to be high i.e.

given a subset S of image(Â), the ratio of the probability that they output belongs to S is bounded

by ee . e is the parameter that quantifies the privacy in a differentially private algorithm. Lower

e value indicates a higher overlap of the two output sets, resulting in higher privacy because it

becomes harder for the attacker to distinguish between the inputs. On the other hand, a higher e

value indicates a lower overlap between the two output sets resulting in lower privacy.

• Quantification of privacy loss:

Differential Privacy provides rigorous theoretical bounds on the privacy lost/gained in during

a transformation. Prior to Differential Privacy, techniques such as anonymization have been

shown to fail [Ohm09] in safeguarding user privacy due to linkage attacks. For example,

Sweeney et al. [Swe02] have shown that k-anonymity [ED08] is not effective in protect-

ing personal information. Sweeney et al. have been able to "deanonymize" the personal

record of the Massachusetts Governor by cross-referencing anonymous public health and

voter records. Such attacks are known as linkage attacks and are based on connections to

external sources of information. Linkage attacks are proven to be successful in the recom-

mender systems domain with the Netflix challenge [NS06] and the genomic data [SAW13].

• Composition: Differentially private mechanisms have a nice property that their compositions

are closed, i.e. the resulting mechanism is also differentially private.

5.6 TensorFlow Privacy

Tensorflow Privacy is an open-source Python library that includes the implementations of opti-

mizer used for training machine learning models in a differentially private manner. The library is

equipped with various analysis tools required for computing the privacy guarantees provided by

the differentially private optimizers.
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As mentioned on the TensorFlow Privacy Github page, the main difference between traditional

optimizers for the Stochastic Gradient Descent and the Differentially Private versions are:

• l2_norm_clip: The cumulative gradient across all network parameters from each microbatch

will be clipped so that its L2 norm is at most this value.

item noise_multiplier: This governs the amount of noise added during training. Generally,

more noise results in better privacy and lower utility.

The common parameters across the 2 optimizers are:

• learning_rate: This value determines the impact of each update. In practice, exponential

decay of learning rate is used for the procedure to converge.

• num_microbatches: This parameter determines the number of examples consumed in each

gradient update step. Generally, increasing the number of microbatches will improve the

utility but slow down the training time since there are more number of update iterations to

be performed per batch.

The library also provides tools to perform privacy budgeting i.e. computes the e value for

various settings. Mironov et al. [MTZ19] provide a closed-form bound for the epsilon value when

Gaussian noise is added to gradients in machine learning applications.

5.6.1 Individual-level user privacy

The existing one-size-fits-all approach to privacy in recommender systems does not work. Our

framework aims to tackle this issue by providing control to the users over their individual privacy

policy. Using local differential privacy, we are able to provide more fine-grained control to the user

whereby he/she can decide their individual privacy policy.

5.6.2 Appropriate e value

The advantage of Differential Privacy is that it is able to mathematically quantify the privacy loss/-

gain. As mentioned on the TensorFlow Privacy Github page, differential privacy can be expressed

using the following 2 values:

66



• Epsilon

This value provides a ceiling on how much the probability of particular output can increase

by including (or removing) a single training example. The range of e is [0,•). A lower

epsilon value implies higher privacy guarantee and vice-versa.

• Delta

Delta bounds the probability of an arbitrary change in model behavior. It is usually set to a

very small number so as to avoid compromising utility. Rule of thumb is to set it to be less

than the inverse of the training data size.

5.7 Proofs

5.7.1 Proof I: Sequential Composition of Users across Datasets

Claim: The final e result of composition across multiple differentially private algorithms, results

in their additive value of epsilon value per individual user.

Consider the following scenario: Company A and Company B have implemented our frame-

work of federated local differential privacy based recommendation. Say, both the companies have

a subset of users in common and that Company A has decided to acquire Company B. They have

decided to integrate the user and item vectors across the two companies. According to Kairouz et

al. [KOV15], the composition theorem applies to the determine the final e value for a user. If a

user U, had a privacy budget of e1 in Company A and a privacy budget of e2 in Company B, then

the new combined privacy budget for user U would be e1 + e2. This implies, that new combined

company would have access to more information about user U, but it is bounded by the epsilon

value of e1 + e2.
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Figure 5.3: Our Proposed Framework

Figure 5.4: Individual Privacy Controls
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5.8 Framework

5.8.1 Individual Privacy Controls

Our framework provides the option for individual users to decide their independent privacy level.

As illustrated in the Figure 5.4, each user can decide their privacy level by selecting the appropriate

e value. A lower epsilon value indicates higher privacy level and vice-versa, a higher epsilon value

indicates lower privacy constraints. Based on the example in Figure 5.4, Bob has the lowest e = 1.5

value indicating a conservative behavior by selecting a high privacy threshold, which is why the

the Central Recommender Server (CRS) will not be able to accurately infer the items consumed by

Bob. On the other hand, Alice has the highest e = 7.7 value among the 4 users, indicating a lower

privacy threshold.

There is an inherent tradeoff between epsilon and the accuracy of the recommendations. The

lower e value indicates a higher privacy threshold,

5.8.2 Stochastic Gradient Descent

We are interested in minimizing the following loss function:

min Â
rui2W

(rui� ˆrui)
2 +l (b2

i +b2
u+ k qi k2

2 + k pu k2
2) (5.5)

5.8.3 Client Side Computation

On the client side, each individual user performs the below updates using their local ratings infor-

mation:

bu bu +d (eui�lbu)

bi bi +d (eui�lbi)

pu pu +d (euiqi�l pu)

qi qi +d (eui pu�lqi)

(5.6)
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Each user/client is responsible for computation over their private rating information. So the

steps involved are:

• Determine the noise multiplier

Our framework enables users to determine their own epsilon value, rough measure of dif-

ferential privacy. The e value is determined based factors such as: number of examples

in training data, batch size, noise multiplier, number of epochs and the delta value used in

training.

– Number of examples in training data: For a particular user, the number of training

examples corresponds to the number of ratings they have provided. This value changes

over time but for the purposes of training, we can assume this quantity to be fixed.

– Batch Size: Batch size controls the number of training samples processed prior to

updating the model parameters. This value can be selected by our framework as a

standard depending on the number of training examples by a user.

– Noise Multiplier: Noise multiplier determines the amount of noise to be added when

performing gradient computation. TensorFlow provides a mechanism to compute the e

value given all other parameter values. We have devised a binary search based method

to compute the noise multiplier for a required setting.

– Number of epochs: The number of epochs affects the final e value and our case we can

set it to be a fixed value across the users.

• Perform update rules The item latent vectors are retrieved from the server since they are

shared across users. The user latent vector is initialized to a random vector. The update

rules are performed using the equations above using the differentially private optimizer. It is

important to note that this optimizer is user-specific since it determines the final e value.

• Return the user and item embeddings to the server Once the user and item latent vectors are

updated, they are both returned to the server.
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The item latent vectors are shared across all users and synchronously updated so as to ensure

they converge.

The user latent vectors can be shared to the server since they are guaranteed to be deferen-

tially private. Moreover, after the training process, user latent vectors are required to perform

ranking over items and generate recommendations.

5.8.4 Server side Computation

Although the client-side performs the crucial gradient computation for the user and item latent

vectors, the server plays a crucial role in coordination across users. The assumptions we make are

the following:

• Large number of items: We assume that the set of items is large, making it out of reach for a

single user/device to store all the required information.

• Resource intensive central server: We assume that the central server has sufficient computa-

tional resources to perform the heavy-lifting computation.

• User device can perform light-weight computation: Since we are taking a federated learning

approach, the user device can perform the required differentially private stochastic gradient

computation locally and also store the ratings provided by the user locally on device.

We believe the above assumptions are very reasonable and mimic the real-world to a large

extent.

5.8.4.1 Recommendation List Generation

An important step once the training process has been completed is to generate the recommenda-

tions. The server which has access to the user and item latent vectors can rank the items based on

the predicted rating value and serve them to the respective user.
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Figure 5.5: Epsilon vs RMSE on Movielens

5.9 Results

We run experiments on two popular datasets, namely: Movielens and Amazon video ratings.

In Figure 5.5, we show the tradeoff between the e value and the Test Root Mean Square Error

(RMSE), which measures the average root value of the squared difference between the actual

rating and predicted rating provided by the user. Lower RMSE indicates better recommendation

accuracy.

Based on the result plot, we observe that the RMSE value grows as expected when we increase

the noise multiplier. It’s interesting to note that the RMSE value grows exponentially as we increase

the noise multiplier or lower e value, which indicates higher privacy threshold. This graph also

enables an user to determine his/her appropriate e value. The user can determine the drop in

accuracy they are willing to accept based on the corresponding e value.

We also plot the Test RMSE during various epochs of training for different noise values as

shown in Figure 5.6. As we can expect, the test RMSE converges across all the noise values, but
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Figure 5.6: Test RMSE over epochs in Movielens

the test RMSE and noise value are proportional to each other.

5.10 Related Work

5.10.1 Privacy Preserving Recommendation

Privacy preserving recommender systems has garnered interest in the research community. Broadly,

the two main parties involved are: the central recommender system server and its users. Broadly,

various approaches can be categorized based on the whether privacy is being protected from the

central server or other users in the system.

5.10.1.1 Privacy from central server

Minto et al. [MHH21] propose a similar framework to our approach where they employ local

differential privacy in a federated setting to protect user rating information from the central server.

While we appreciate their spirit and direction, their approach is not feasible in the practical setting.

Firstly, their parameter k which controls the number of e-LDP gradient updates by each user has

to large in order to provide decent quality recommendations. Moreover, with a large value of k,
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Figure 5.7: Epsilon vs RMSE on Amazon Video

Figure 5.8: Test RMSE over epochs in Amazon
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the overall privacy guarantee becomes (k*e) differentially private, which can substantially large

if k is larget than 100. The authors also introduce a proxy network that lies in between the user

devices and the central server. They mention that the goal of the proxy network is to "reduce

the fingerprinting surface by anonymizing and shuffling the reports before forwarding them to the

recommender". In practice, the central server would most likely have to implement this proxy

server resulting in a conflict of interest. This will render the proxy network useless since there is

no guarantee that the central server will not correlate the gradient updates to individual users.

Another drawback of Minto et al.’s framework is that they do not provide individual users with

control over their privacy. Whereas in our approach, we allow each user to decide his/her own e

value for differential privacy. This empowers users to determine their own privacy policy.

In the real world setting, there are millions of items in the recommender system domain. There-

fore, on-device recommendation would not feasible since the user would have to download all the

item latent vectors and then perform a ranking over them in order to obtain a top-n recommen-

dation. This is not feasible due to the communication and computation constraints on the user

devices. Hence, in our framework, even though the user latent vectors reside on the server, they

are guaranteed to be ek differentially private for user k. The server can then perform the computa-

tionally intensive dot product to obtain the top-n item recommendations for the user.

5.10.1.2 Privacy from other users

Privacy preserving recommender systems that aims to protect users from other users can be broadly

classified into two groups: distributed and cryptographic approaches.

Berkovsky et al [BEK07b] propose a distributed collaborative filtering based approach whereby

there is no centralized storage of user feedback data. The authors propose a peer-to-peer aggrega-

tion strategy with data obfuscation involved. Similarly, Shokri et al. [SPT09b] alter the distributed

collaborative filtering approach by performing user aggregation instead of perturbation. Such dis-

tributed techniques are subject to attacks from malicious users and not scalable for the real-world

setting.

Cryptographic protocols such as homomorphic encryption, allows the server to perform com-
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putation on ciphered data without revealing the underlying content. Erkin et al. [EBV11] propose

such a collaborative filtering technique using homomorphic encryption and secure multiparty com-

putation techniques. The main drawback of such techniques is that they are not efficient and do

not scale to millions of users and items.

5.10.2 Differential Privacy

5.10.2.1 Central Differential Privacy

McSherry et al. [MM09b] proposed the initial approach to applying differential privacy to the

recommender systems domain. They consider the centralized approach whereby the server which

has access to all the ratings computes the latent factors in a differentially private manner, so as to

protect privacy from external agents that might interact with the central server. Their paper was the

first to demonstrate the trade-off between accuracy and various privacy guarantees. Their approach

also relies on the perturbation of the user information prior to sending it to the central server. The

amount of perturbation or noise added determines the privacy protection offered to a user.

Another direction undertaken by several researchers [AS11] [Can02a] [NIW13] include the

use of cryptography techniques such as homomorphic encrption and Yao’s garbled circuits. These

approaches are mostly theoretical and not practically feasible since they are not able to scale in

terms of their computational complexity.

5.10.2.2 Local Differential Privacy

Local Differential Privacy has gained popularity in recent years due to benefits such as: eliminating

need for central data repository and theoretical privacy guarantees. Moreover, the local differential

privacy concept lends itself very well to federated learning whereby the data remains locally on

the user’s device and training is performed through aggregated gradient updates.

The tech industry has been quick to adapt local differential privacy for their product offerings.

For example, Google proposed the use of RAPPOR [EPK14], a mechanism for collecting end-

user statistics such as most popular site etc. using randomized response techniques. RAPPOR

employs the use of Bloom filters to provide a configurable framework that can provide strong
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e-differential privacy guarantees.

In 2016, Apple Inc. published a whitepaper and accompanying patent describing the use of

local differential privacy for tasks such as detecting the most popular emoji across users. They

employ the Hadamard Count Mean-based sketch technique which injects noise and performs sam-

pling to preserve user privacy.

Microsoft has proposed [DKY17] a local differential privacy based solution that aims to collect

statistics over long period of time. They focus on the tasks of mean & histogram estimation and

claim that it has been deployed to millions of devices to collect telemetry data.
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CHAPTER 6

Conclusion and Future Directions

Recommender systems are ubiquitous across the web. They are used to drive engagement across

various domains such as movies, music, products etc. Current recommender systems require all

user feedback information to stored on the central recommendation server. The central information

server collects information about the items interacted across users in the system. This information

trove can be used to accurately determine the preferences of an individual user on sensitive topics

such as health, politics etc. This leads to serious privacy concerns. In this thesis, we propose

three paradigms that enable privacy-preserving recommender systems. We incrementally show

how users can share less data with the central recommender system and yet receive high quality

recommendations.

In the chapter Bayesian prior learning for next item recommendation, we demonstrate how

the central recommender system can anonymize the sequences of items consumed by a user and

only rely on the frequency of n-grams in the training dataset to perform recommendations in an

"in-cognito" fashion. Such a recommender system simply uses the context information to predict

the next of items a user is likely to interact with. The assumption made is that users trust the

central recommender server with de-linking the sequential information with unique user identi-

fier information. In our second framework, Selective Privacy Collaborative Filtering, we relax this

assumption by allowing users to decide which data they would like to share with the central recom-

mender system. In essence, we are allowing each user to determine their individual privacy policy.

Our framework initially builds a public model based on the ratings information shared publicly
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by all users. The next step involves each user fine-tuning their individual latent vector based on

their private ratings on-device. This final fine-tuned model is then stored locally and never shared.

In our experiments, we simulate various user behaviours in determining the ratio of items stored

as public/private. In our third framework, we provide the option of storing the entire data locally

and utilize the notion of Differential Privacy provide theoretical privacy guarantees to the user. We

employ a federated learning approach whereby we allow each user to decide a privacy budget and

the gradient updates are guaranteed to align this budget through gradient clipping and addition of

noise. We demonstrate the tradeoffs between noise and utility in terms of RMSE on two real world

recommender systems datasets.

For future work in privacy preserving recommender systems, it can be categorized into three

areas, namely: efficiency (computational and communication), robustness and group privacy.

6.1 Computational and Communication Efficiency

Since the edge devices used by users might be constrained by energy requirements, it becomes

imperative to be efficient in terms of the computational and communication cost. Batch processing

techniques can be employed to reduce the number of requests made to the central recommender

system in an asynchronous fashion.

6.2 Robustness

Federated learning for recommender systems needs to be robust to malicious actors since it be-

comes difficult for the server to distinguish between gradients with noise vs gradients targeted

for a specific purpose. Hence, robustness ensures that the utility of the framework remains high

meanwhile protecting user privacy.

6.3 Group Privacy

The third future research direction would be in the area of group privacy. Currently, privacy is

being analyzed in terms of an individual but more work is required to understand group dynamics

if recommendations are provided collectively to a set of users.
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This thesis aims to motivate the importance of privacy preserving recommender systems and

proposes three paradigms that empower an individual to determine their personalized privacy pol-

icy. We are confident that future research will build upon our ideas in this important and exciting

area of privacy preserving recommendations.
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