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Abstract

Pendrin is a transmembrane chloride/anion antiporter that is strongly upregulated in the airways in 

rhinoviral infection, asthma, cystic fibrosis and chronic rhinosinusitis. Based on its role in the 

regulation of airway surface liquid depth, pendrin inhibitors have potential indications for 

treatment of inflammatory airways diseases. Here, a completely regioselective route to tetrahydro-

pyrazolopyridine pendrin inhibitors based on 1,3-diketone and substituted hydrazine condensation 

was been developed. Structure-activity relationships at the tetra hydropyridyl nitrogen were 

investigated using a focused library, establishing the privileged nature of N-phenyl ureas and 

improving inhibitor potency by greater than 2-fold.
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1. Introduction

Pendrin (PDS) is a 780 amino acid sodium-independent chloride/ anion antiporter containing 

twelve putative transmembrane spanning domains and cytoplasmic amino and carboxy-

termini.1 The PDS gene (SLC26A4) was identified by positional cloning in subjects with the 

autosomal recessive disorder Pendred syndrome, which is characterized by hearing 

impairment and thyroid goiter.2 Functional studies show that PDS mediates electroneutral 

exchange of Cl– with various anions including I–, HCO3
–, OH–, and SCN– at the apical 

membrane of epithelial cells in the inner ear, thyroid, kidney, airways, and adrenal gland.
1,3–8 PDS upregulation is observed in the airways of humans with rhinovirus infection, 

asthma, cystic fibrosis and chronic rhinosinusitis, in rodent models of inflammatory 

pulmonary disease including asthma, infection, and toxin exposure, and in airway epithelial 

cultures after exposure to inflammatory cytokines.9–19 PDS knockout reduces pathology in 

various mouse models of inflammatory lung diseases.15,20 The mechanism of PDS 
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involvement in pulmonary inflammation is thought to involve regulation of airway surface 

liquid (ASL) volume. Small molecule PDS inhibitors increase airway hydration in cytokine 

stimulated human airway epithelial cultures.21 Together, these studies support the 

therapeutic utility of PDS inhibitors for lung diseases including asthma and cystic fibrosis.
22,23

Prior screening of 36,000 synthetic, drug-like small molecules identified several chemical 

classes of PDS inhibitors containing a tetrahydro-1H-pyrazolo[4,3-c]pyridine (TPP) core, 

with the most potent compound having an IC50 of ~ 7 μM for both human and murine PDS 

(Fig 1A).21,24 Analysis of commercially available TPP pendrin inhibitor analogs revealed 

minimal opportunities for modification of the pyrazole nitrogen or ether oxygen.21 While 

substitutions at the tetrahydropyridyl nitrogen were relatively underexplored in the 

commercial library, the sulfonamide moiety – one of the most privileged functional groups 

in drug discovery25 – was prevalent in PDS and SLC26A3 inhibitors discovered by high-

throughput screening (Fig 1B).21,26 We reasoned that developing a versatile route to TPP 

compounds would be valuable because chemical synthesis affords us the opportunity to 

generate a focused library at the tetrahydropyridyl nitrogen. Herein, we report the 

development of a completely regioselective route to the TPP core and structural analogs to 

further investigate structure–activity relationships for this class of compounds.

Work began by resynthesizing the original active compound (1). However, controlling the 

position of the N-methyl group was a major challenge due to regioselectivity issues 

associated with pyrazole synthesis.27 Indeed, it is known that pyrazoles do not undergo 

selective N-alkylations and the reaction of N-substituted hydrazine with unsymmetrical 1,3-

diketones is also not regioselective. Despite these challenges, the Knorr pyrazole synthesis 

remains one of the most robust and reliable methods for accessing these nitrogen 

heterocycles.27 In order to address this regioselectivity problem, we took advantage of the 

benzylic CH2–O moiety in the lead compound (Scheme 1). This moiety allowed us to 

attempt the Knorr pyrazole synthesis using an 1,3-diketone with an electron withdrawing 

group attached (10). Theoretically, the presence of the electron withdrawing group should 

activate the α- carbonyl, allowing selective pyrazole formation to occur.

The synthesis of 1 (Scheme 2) began with a Stork enamine synthesis between N-Boc 

piperidin-4-one and ethyl 2-chloro-2-oxoacetate. Hydrolysis of 13 using a biphasic system 

of DCM and aqueous HCl gave the ester-containing 1,3-diketone 10 in 85% yield over 3 

steps at 25 g scale. Next, methylhydrazine was refluxed with 10 to deliver pyrazole 7 as the 

only regioisomer in 52% yield. Note, the reaction can also be stopped after just one day of 

reflux, but the yield of 7 decreases to 33%. Increasing the reaction time to three days did not 

give a higher yield of 7. Routine purification of pyrazole 7 was straightforward because the 

undesired regioisomer was not formed/detected throughout the course of the reaction. This 

reaction was repeated on large scale and the structure of 7 was confirmed using X-ray 

crystallography (Scheme 3). Subsequent reduction of 7 using LiBH4 gave the corresponding 

alcohol in 66% yield. Alcohol 6 was converted to bromide 14 in 84% yield using an Appel 

reaction.28 It should be noted that NBS could be substituted completely by Br2 with little 

impact on the yield of the Appel reaction. Reaction of 3-fluorophenol with 14 under basic 

conditions gave the targeted ether in 90% yield. The Boc group of 15 was more resilient than 
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expected, as deprotection using varying concentrations of HCl ranging from 1 to 6 M was 

ineffective in both methanol and dioxane. Boc deprotection was finally accomplished using 

TFA in DCM, followed by a basic work up to give amine 16. Reaction of 16 with 4- 

chlorophenyl isocyanate gave the lead compound 1 in 77% yield over the last two steps. The 

synthesized 1 had a similar potency compared to commercial 1 (Figure 2).

As previously described, a functional cell-based assay of PDS- mediated Cl–/I– exchange 

was used to measure the PDS inhibition activity of TPP analogs.21,24 In brief, Fischer rat 

thyroid cells stably expressing murine PDS and a halide-sensitive fluorescent protein 

(EYFP- H148Q/I152L/F46L) were used. PDS activity was determined from the kinetics of 

fluorescence decrease in response to addition of an I– containing solution to cells, with 

inhibitors reducing the rate of Cl–/I– exchange and hence the rate of reduction in 

fluorescence.

A small set of ether analogs were synthesized to address the effect of fluorine substitution 

(Table 1). These minor modifications improved PDS inhibition activity compared to 

compound 1. Analogs 17 and 18 inhibited PDS with IC50 of 4.6 and 3.3 μM, while 3,5-

difluoro-substituted 19 resulted in an IC50 of 3.1 μM. Ester analog 20 and carboxylic acid 

analog 21 both had minimal PDS inhibition activity.

Moving forward, the effect of substitution at the tetrahydropyridine nitrogen was 

investigated (see Fig 1A). Although previous high- throughput screening revealed that 

sulfonamides were common structural features among hit compounds, minimal inhibition 

activity was observed when sulfonamides were introduced into the TPP scaffold even when 

the 4-chlorophenyl moiety was preserved (Table 2).

Similarly, attempts to incorporate sulfur into the molecule via thioureas were not successful 

at increasing PDS inhibition activity. This series of analogs gave insights into the privileged 

nature of the N-phenyl urea, as both alkyl and acylated ureas performed poorly.

In summary, we developed a completely regioselective route to tetrahydropyrazolopyridines 

and synthesized a focused library of analogs with substitution at the tetrahydropyridyl 

nitrogen. This chemistry allowed us to further investigate the structure–activity relationship 

of this class of PDS inhibitors. Introduction of an additional fluorine atom significantly 

improved the IC50 from ~7 μM to ~3 μM. Although the sulfur atom was well-represented in 

other classes of SLC26 inhibitors, sulfur analogs such as thioureas, sulfonamides, and 

sulfuric diamide were not useful for PDS inhibition activity. Indeed, throughout the course 

of these studies. N-phenyl ureas were found to be highly privileged.

Supplementary Material
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Fig 1. 
Previously identified inhibitors of SLC26A4 and SLC264A3.
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Fig 2. 
Concentration-dependence for inhibition of pendrin anion exchange by synthesized and 

commercial 1, and by 19.
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Scheme 1. 
Retrosynthetic analysis.
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Scheme 2. 
Regioselective synthesis of the lead compound.

Zhu et al. Page 9

Bioorg Med Chem Lett. Author manuscript; available in PMC 2020 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 3. 
Regioselective synthesis of the lead compound. Reagents and conditions: (a) pyrrolidine, 

toluene, Dean-Stark, reflux; (b) ethyl chlorooxoacetate, Et 3N, DCM, rt; (c) DCM, 1 M HCl, 

rt, 85% over 3 steps; (d) methylhydrazine, EtOH,s reflux, 52%; (e) LiBH4, Et2O, reflux, 

66%; (f) PPh3, NBS, DCM, rt, 84%;(g) 3-fluorophenol, Cs2CO3, DMF, 90 °C, 90%; (h) 

TFA, DCM, rt; (i) 4-chlorophenyl isocyanate, DCM (anh), rt, 77% over 2 steps.
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Table 1

Synthesized TPP with varying substitution at benzylic position and activity against PDS.

Comp. R1 PDS IC50

1 6.6 μM

17 4.6 μM

19 3.1 μM

18 3.3 μM

20 >10 μM

21 >10 μM
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Table 2

TPP with different substitution patterns at tetrahydropyridyl nitrogen and activity against PDS.

Comp. R1 PDS IC50

22 3.3 μM

23 >10 μM

24 >10 μM

25 >10 μM

26 >10 μM

27 >10 μM

28 >10 μM
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Comp. R1 PDS IC50

29 >10 μM

30 >10 μM

31 >10 μM

32 >10 μM
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