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A framework for automated scalable 
designation of viral pathogen lineages  
from genomic data

Jakob McBroome    1,2 , Adriano de Bernardi Schneider1,2, Cornelius Roemer3,4, 
Michael T. Wolfinger    5,6,7,8, Angie S. Hinrichs    2, Aine Niamh O’Toole    9, 
Christopher Ruis    10,11,12, Yatish Turakhia13, Andrew Rambaut    9 & 
Russell Corbett-Detig    1,2 

Pathogen lineage nomenclature systems are a key component of effective 
communication and collaboration for researchers and public health workers. 
Since February 2021, the Pango dynamic lineage nomenclature for SARS-CoV-2 
has been sustained by crowdsourced lineage proposals as new isolates were 
sequenced. This approach is vulnerable to time-critical delays as well as 
regional and personal bias. Here we developed a simple heuristic approach 
for dividing phylogenetic trees into lineages, including the prioritization of 
key mutations or genes. Our implementation is efficient on extremely large 
phylogenetic trees consisting of millions of sequences and produces similar 
results to existing manually curated lineage designations when applied to 
SARS-CoV-2 and other viruses including chikungunya virus, Venezuelan 
equine encephalitis virus complex and Zika virus. This method offers a simple, 
automated and consistent approach to pathogen nomenclature that can  
assist researchers in developing and maintaining phylogeny-based 
classifications in the face of ever-increasing genomic datasets.

Pathogen lineage nomenclature, or the designation of epidemio-
logically distinct groups below the level of species, is important for  
facilitating effective research, treatment and communication about 
diseases. Despite the universal importance and long history of nomen-
clature systems for pathogens, there remains a plurality of approaches 
to apply to new emerging pathogens, including using the geographic 
location of a variant1,2, specific epidemiological characteristics such 
as serotype3 or clusters of closely related viral variants4. The COVID-19  
pandemic presented a unique challenge to these approaches.  

In SARS-CoV-2, a single mutation may be all that defines a new epide-
miologically distinct lineage5. In addition, the SARS-CoV-2 genomic 
data are orders of magnitude greater in volume than those of extant 
pathogens, and are constantly growing as new data are collected6. 
The expansion of the dataset means that the SARS-COV-2 phylogeny 
is regularly updated7, necessitating further review and updates to  
any genotype-based lineage system.

The current solution to these challenges is the popular Pango line-
age system. Pango is a genotype-based dynamic lineage nomenclature 
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increases both with an increasing number of descendents (N) and with 
being closely related, on average, to those descendents (lower S). Nodes 
with an overall high GRI will be closely related to many descendents, 
representing a group of consistently genetically distinct samples—a 
good choice for lineage labelling. For a mutation-annotated tree9, 
such as those used for SARS-CoV-2, the branch lengths (D and S) are 
in units of total mutations across the genome. However, the GRI can 
be computed on any rooted tree topology, as long as branch lengths 
are scaled by genetic distance. The GRI is high for focal nodes where 
descendent samples are genetically similar to one another and the 
focal node itself is genetically distinct from the rest of the phylogeny, 
desirable qualities for lineage designation8. The motivation behind 
this formulation is presented in Methods.

Autolin defines a lineage system based on the GRI by applying a 
simple greedy maximization algorithm. Initially, the GRI is computed 
for each node on the tree and the node with the highest value is chosen  
as a new lineage root. Additional mutually exclusive lineages are 
defined by disregarding all samples covered by an existing lineage 
label and recomputing the GRI for all remaining samples and their 
ancestors. To prevent the retroactive definition of lineage parents that 
might interfere with an existing hierarchy, we additionally disregard 
nodes that are directly ancestral to existing or newly added lineages. 
Additional hierarchical lineages are defined similarly by considering 
only samples within a specific existing ‘parent’ lineage. This process 
is repeated until a desired number of lineage labels have been defined 
or all available nodes fail to pass thresholds for designation. This itera-
tive approach is not guaranteed to find the highest overall GRI lineage 
configuration among many possible combinations of lineages, but it 
scales well to millions of samples and a rapid pace of lineage updates.

Systematic application to SARS-CoV-2 and examples
As a basic demonstration of our method, we applied the pipeline to the 
complete SARS-CoV-2 global public phylogenetic tree, as of 11 December  
2022 from http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/
UShER_SARS-CoV-2/ (ref. 7). In the absence of an extant lineage system 

for SARS-CoV-2 (ref. 8). When compared with traditional nomenclature, 
Pango lineages often initially contain fewer samples, are less genetically 
distinct and are regularly updated as new genetic data are collected. 
These small, dynamic lineages serve a critical function in organizing 
genetic data for public health tracking efforts. Currently, Pango relies 
on manual curation and designation, including the crowdsourcing of 
lineage proposals on a public forum (https://github.com/cov-lineages/
pango-designation). More than 2,500 SARS-CoV-2 variants have been 
named under the Pango system as of January 2023. The trained human 
eye is excellent at distinguishing new lineages of interest from groups 
of low-quality or contaminated isolates, but the crowdsource approach 
is resource intensive and vulnerable to delays and regional bias. A more 
objective metric to evaluate candidates for lineage designation could help 
to reduce this bias and streamline the lineage proposal and review process.

Here we propose a simple heuristic approach for the definition 
and expansion of genotype-based dynamic nomenclature systems. Our 
method is rooted in information theory, optimizing for the representa-
tion of sample-level haplotype information. It is efficient in applica-
tion to extremely large phylogenies and produces a comprehensive 
hierarchy of genetically distinct lineages. Importantly, it can expand a 
preexisting lineage system, making the adoption of this approach for 
the maintenance and expansion of existing dynamic nomenclature 
straightforward. We, in collaboration with the Pango designation team, 
have implemented this system as a new input for the existing Pango 
lineage designation infrastructure (https://github.com/jmcbroome/
autolin). In addition, as sequencing technology becomes more widely 
applied, both novel and extant pathogens will develop similarly dense 
and expanding genomic datasets. This approach will provide a scalable 
solution to creating and managing these dynamic lineage systems 
for any pathogen. In turn, these systems will allow for more effective 
organization and tracking of real-time pathogen evolution and out-
break events across various public health domains.

Results
The genotype representation index
A lineage system can be likened to a language, in which additional 
words, analogous to lineages, are defined for common, unique con-
cepts to reduce the average number of words per sentence. Along these 
lines, an effective system summarizes a complex phylogeny into useful, 
distinct categories to facilitate effective analysis and communication. 
The lineage hierarchy is generally defined with respect to a specific 
rooted phylogeny, in which a number of specific ancestral nodes are 
designated as lineage roots (Supplementary Fig. 1). Individual samples, 
represented by the tips of the tree, are members of every lineage that 
is rooted in its inferred ancestry. To automate the construction of this 
hierarchy, we need some objective measure of value for putative lineage 
roots. One approach is to compute some importance value for every 
node on the tree, then iteratively construct a lineage system by select-
ing high-value nodes and designating them as new lineage roots. These 
lineages can then be presented to an end user or directly incorporated 
into an expanding dynamic nomenclature.

To this end, we define the ‘genotype representation index’  
(GRI; Fig. 1).

GRI = N × D
S
N
+ D

The GRI takes values with respect to a specific node on the 
tree, hereafter referred to as the ‘focal node’. Here N is the number 
of descendent tips from the focal node, D is the total branch length  
from the focal node to the root of the tree or previously designed par-
ent lineage and S is the sum of branch lengths from the focal node to 
each descendent tip. In natural language, the GRI is the mean branch 
length position of the focal node along the ancestry paths of all its 
descendents, multiplied by the total number of descendents. The GRI 
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Fig. 1 | Computation of GRI. The computation of GRI values for two nodes on a 
small example subtree. The top panel shows the computation for node A, while 
the bottom panel shows the computation for node B. The base of this subtree is 
a total distance of 6 from the last lineage root, shown in purple. The node at the 
base of this subtree (A) has a total path length to descendents (S) of 26 and 4 total 
descendents (N), and is a total distance of 6 from the last root (D), leading to a GRI 
of 1.92. The lower child node (B) has only 3 descendents (N), but has a much lower 
path length (S) and a longer distance to the last root (D), meaning that it scores 
much higher at 2.63. In this case, we would choose to assign a lineage label to the 
lower child node (B).
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and considering all samples, the GRI-based approach assigns more 
than 170,000 lineages to this phylogeny. These lineages are divided 
into 12 levels, representing recursive levels of child lineages, with the 
first level being the root of the phylogeny. The majority of these line-
ages are small, with only 10% of designations being larger than 100 
samples. Of the approximately 2,000 Pango lineages included in this 
phylogeny, more than 1,175 are closely matched with a GRI equivalent 
lineage, including the major delta and omicron lineages. Another 586 
Pango lineages have a corresponding GRI-identified lineage with a 
Jaccard similarity of overlapping samples greater than 0.5 (Supple-
mentary Fig. 2). The remaining unmatched 217 lineages are mostly 
extremely small, with more than 95% of them including <10 samples 
in this phylogeny, and therefore would not pass the default filters for 
Autolin (Supplementary Fig. 3). Overall, the systems are concordant, 
especially with regard to major variants. A Taxonium view of this phylog-
eny labelled with all levels of annotation can be explored interactively 
at https://taxonium.org/?protoUrl=https://media.githubusercontent.
com/media/jmcbroome/lineage-manuscript/main/public-2022-12-11.
independent_automated_lineages.jsonl.gz.

To evaluate the utility of our method for maintaining and expand-
ing dynamic lineage nomenclature specifically, we applied Autolin to 
the same phylogeny as above, but built on the extant Pango lineages. 
We generated 187 new lineage designations using the default con-
figuration parameters, which consider only samples collected in the 
preceding 8 weeks (Supplementary Data 1). Of these lineages, 24 were 
actively sampled in 11 December 2022. These active designations were 
highly dispersed in size, with a mean size of 82 samples and a median 
of 45 samples. The full report for the active designations is available 
in Supplementary Table 1.

We additionally fit a simple geographically stratified exponential 
growth model to each active lineage (Methods, Fig. 2 and Supplemen-
tary Table 1) and obtained a 95% credible interval estimate of the rate of 
exponential growth. The average credible interval for the exponential 
growth interval was relatively large (0.07, 0.49), primarily because of 
the effects of limited sample sizes. Of the 24 lineages, 16 had a posi-
tive lower interval bound, which is evidence for active spread in the 
countries they are present in. The width of the interval is dependent on 
the data available; while the average estimate for our lineages is ±0.2, 
estimates for lineages with at least 50 total collected samples had a 
much narrower average value of ±0.07. All model confidence intervals 
are reported in Supplementary Table 1. All code for fitting and repro-
ducing these results is available at https://github.com/jmcbroome/
lineage-manuscript.

This procedure can serve to organize and prioritize lineage des-
ignations, despite suffering from high uncertainty. Figure 2 shows a 
small example selection of lineages and model fits in further detail. 
The naming schema generally matches the Pango naming schema 
(Supplementary Information) with the addition of an ‘auto’ prefix 
to indicate the origin. ‘Auto.CH.1.1.3’, while exclusive to England, 
exhibits a very rapid expansion in latter weeks that drives a very high, 
if wide, estimate of growth. Both ‘auto.BQ.1.8.3’ and ‘auto.BA.5.2.9.1’ 
are more international, but less consistent; the latter appears to 
grow consistently in the United States, but fluctuates to a much 
greater degree in England. Finally, ‘auto.BE.1.2.2’ is an example of a 
low-priority designation, with no strong evidence of positive growth. 
Altogether, our models can capture a diverse set of lineage trajecto-
ries and rapidly and effectively identify lineages undergoing expo-
nential expansion.
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Fig. 2 | Exponential growth modelling. a–d, The four plots describe some of the 
lineage annotations produced by our method based on the public SARS-CoV-2 
data. The solid black line is the median estimated growth trajectory, while the 
dashed lines represent the trajectories that would result from the lower and 
upper bounds of the 95% credible interval of the growth rate. The x-axis shows 
the weeks since first detection in each country. a, Growth trend of a lineage 

throughout the United Kingdom with a notably higher presence in Wales.  
b, Simple, high but low-certainty growth estimate of a lineage exclusive to 
England. c, Steady growth of an international lineage present in both the United 
Kingdom and the United States. d, A lineage which appears to have stagnated in 
growth and should be deprioritized for lineage labelling.
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In addition, statistics such as lineage size, associated mutations 
and geographic localization can be computed and reported to the 
user. Our update includes links to external data exploration sources 
such as CoV-Spectrum10 and Taxonium11,12, as well as the programmatic 
generation of all files requisite for the incorporation of the new des-
ignations. All code for this procedure can be found at https://github.
com/jmcbroome/autolin.

Application to other pathogens
The GRI approach can be used to generate lineage proposals for any 
pathogen, with or without an existing base nomenclature. We compared 
our approach with a recent Zika virus (ZIKV) nomenclature proposal13, 
applying Autolin directly to their likelihood phylogeny (Methods). We 
find high-level concordance between the automated system and the 
formal nomenclature (adjusted Rand index (ARI) 0.47, P < 0.001; Fig. 
3). The formal Zika nomenclature proposal is the result of the applica-
tion of Bayesian clustering directly on aligned sample haplotypes13, 
so while this system is genotype based, it does not directly depend on 
the phylogeny. This may explain some of the inconsistencies between 
these systems, particularly as regards basal groups like ZA. However, 
we do see high-level concordance between these groups, particularly 
in the widespread ZB.2 variants.

We analysed two additional pathogens, chikungunya virus  
(CHIKV) and Venezuelan equine encephalitis virus complex (VEE). 
These phylogenies are provided as Nextstrain Auspice JSON14, so we 
used an alternative implementation of Autolin found at https://github.
com/jmcbroome/automated-lineage-json designed to work with 

arbitrary Auspice JSON-formatted phylogenies. It is provided as both 
a command line interface tool and as an online Streamlit app, accessible 
at https://jmcbroome-automated-lineage-json-streamlit-app-3adskh.
streamlit.app/. Specifically, we used the currently available nextstrain 
builds (CHIKV Nextstrain build 5.1 (https://nextstrain.org/groups/ 
ViennaRNA/CHIKVnext) and VEE Nextstrain build 2.1 (https://next-
strain.org/groups/ViennaRNA/VEEnext) to generate our novel lineages.

The rationale for choosing VEE and CHIKV as examples stems 
from their respective lineage systems. The VEE lineage system relies 
solely on serology, disregarding phylogenetic relationships and 
displaying paraphyletic groups. Conversely, the CHIKV lineage sys-
tem is geographically driven and, although most often presenting 
monophyletic groups, relies on arbitrary thresholds to define line-
ages based on location. Overall, the CHIKV geographic nomencla-
ture aligns with the automated lineage designations at its base level 
(ARI = 0.69, P = 0.018), with further breaking down of the tree in certain 
regions such as the Indian Ocean lineage (Fig. 4). The serology-based  
nomenclature of VEE, by comparison, is paraphyletic and does not  
represent phylogenetic lineages or clades15,16. We elected to present 
two levels of annotation, reflecting the distinction between VEE gen-
erally and the Venezuelan equine encephalitis virus (VEEV) and its 
subtypes. VEEV itself is successfully identified from VEE by our lineage 
approach at the first level of annotation (ARI = 0.9, P = 0.0003). How-
ever, our method was unable to reliably recapitulate VEEV serotypes 
at the second level of annotation (ARI = 0.28, P = 0.25; Fig. 5), largely 
because of the paraphyletic nature of the serotype-based nomencla-
ture of VEEV.
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Fig. 3 | ZIKV lineages. Comparison of a published proposed lineage system for ZIKV (left tree) based on phylogenetic analyses, clustering techniques, within- and 
between-group pairwise genetic distances and evolutionary analyses to define genetic groups13 with automated lineage designation (right tree) visualized on  
FigTree v.1.4.4.
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Altogether, these examples show how this method can generate 
de novo lineage classification of pathogens, independent of context 
and consistent with human intuition. While these specific datasets 
may not demand a highly scalable approach to designation, they show-
case the potential advantages of our methodology in mitigating user 
interference in lineage classification by updating biased nomenclature 
systems. This, in turn, enhances the possibility of epidemiological 
discoveries that might otherwise be overlooked. This and similar imple-
mentations of the GRI method will be able to support dynamic lineage 
systems for any future pathogen.

Discussion
We have presented a new index-based method, capable of both expand-
ing existing dynamic lineage systems and generating novel lineage 
designations for understudied or emerging pathogens. Originally 
designed for the demands of the SARS-CoV-2 pandemic, this approach 
can be easily applied to any rooted tree with branch lengths scaled by 
genetic distance.

Nonetheless, our approach does exhibit a few potential issues, 
shared with many lineage nomenclatures. First, it is defined with respect 
to a specific phylogeny. This can be problematic when attempting to 

maintain lineages over time, as new data are collected and the phylogeny 
is updated. Phylogenetic inference is naturally uncertain, and optimiza-
tion of an existing phylogeny may alter lineage relationships or invali-
date identified lineages. In rare cases, lineages may need to be retracted 
or redefined, as is the case for current Pango lineages. While these 
lineages are generally stable (Supplementary Information), duplicated 
samples, due to redundancy between data sources, can lead to inflated 
lineage counts or spurious lineage definitions. Appropriate filters, such 
as removing low-quality or duplicate samples from the input tree, will be 
necessary to ensure the stability and viability of these lineage systems.

In addition, rates in the variation of sequencing and contribution 
to public repositories of data may lead to geographical bias in the result-
ing designations, where poorly surveilled regions of the world are not 
tracked in appropriate detail. We provide methods for users to weight 
samples individually or as a group, including a built-in procedure to 
normalize the total sample weight across regions with disparate sam-
pling. Expert review and resources will still be required to address the 
numerous and subtle biases that may affect the composition of data 
underlying these lineage systems.

Another concern is that our default approach assumes that all 
mutations are of equal epidemiological importance. In reality, sites 
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Fig. 4 | CHIKV lineages. Comparison of the geography lineage designation (left 
tree) with the automated lineage designation (right tree) of CHIKV, based on 
a tree previously generated by the Augur pipeline23 and visualized on FigTree 
v.1.4.4. The CHIKV geographic nomenclature includes AUL (Asian Urban 

Lineage), AUL-Am (Asian Urban Americas), EAL (East African Lineage), IOL (Indian 
Ocean Lineage), MAL (Middle African Lineage), SAL (South American Lineage), 
ECSA (East Central and South African Lineage) and WA (West African Lineage).
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associated with critical receptor binding structures or antigens are 
probably more important, although with substantial variation between 
pathogens. Our implementation of Autolin therefore includes an 
option to apply a weight multiplier to specific mutations or amino 
acid substitutions, allowing the user to leverage previous knowledge to 
produce more epidemiologically relevant lineage labels. For example, 
we have integrated information from deep mutational scan data17 for 
SARS-CoV-2 as an optional parameter in our pipeline, allowing users to 
upweight lineage labels that may reflect more immune-evasive variants. 
This and similar efforts to quantify the epidemiological importance of 
genetic changes will remain critical in defining and updating dynamic 
pathogen lineage systems.

Finally, recombination18 and reassortment in segmented 
genomes19 can cause some pathogen genomes to have different ances-
tries across their genotype, preventing their full and correct repre-
sentation within a single phylogeny. These events may appear as long 
branches on a phylogeny20 or prevent the correct reconstruction of the 
ancestry for a specific variant. Computational methods to identify and 
address these events21 may be integrated with Autolin in the future.

SARS-CoV-2 is likely to become an endemic pathogen, similar to the 
influenza virus22. Accordingly, there is likely to be a long-term pattern 
of replacement of existing variants, demanding ongoing designation of 
new lineages for effective monitoring of pathogen diversity8. Investing 
into infrastructure to reduce manual curation will lead to long-term 
consistency and effectiveness of designation.

Overall, this approach for lineage designation is generic, flexible 
and applicable to future datasets with unclear nomenclature or expan-
sive phylogenies. In addition, this approach can be applied outside of 
pathogens, allowing for fine-grained evolutionary tracking of diverse 
genetic datasets for medical or agricultural research and development. 
With global genomic sequencing on the rise, generalized toolkits for 

the creation and maintenance of dynamic lineage systems will be criti-
cal for future public health and research challenges.

Methods
Mathematical underpinnings
A lineage system can be formulated as a sender and receiver informa-
tion scenario. The sender possesses the full phylogenetic tree and a 
lineage system L, while the receiver possesses only the lineage system 
L and the associated mutation paths that define each lineage. S may 
or may not be a member of any lineage within system L. If it is, the 
receiver already has all ancestry information associated with that 
specific lineage L for the sample S. In this scenario, we can compute 
how much additional information is required to specify the full ances-
try of sample S.

A single site’s state can be represented by a finite number of bits; 
2 bits to represent the state and 15 bits to represent the location, for 
SARS-CoV-2. Therefore, the full ancestry path of a given node N, which 
could be a sample or an internal branch, can be represented by a finite 
number of bits I, proportional to the number of mutations separating 
it from the root M.

I (N) =
M
∑
1
2 + 15

Therefore, the additional information required to specify  
the ancestry of sample S, given a flat lineage system with a label at 
branch B, is

A (S,B) = {I (S) − I (B) if S ∈ D(B)otherwise

where D(B) is the set of samples descended from a labelled branch B.

Current lineages

VEEV

Automated lineages

IAB_VEEV
IC_VEEV
ID_VEEV
IE_VEEN
IF_MDPV
IIIA_MUCV
IIIB_TONV
IIIC_MUCV
IIID_MUCV
II_EVEV
IV_PIXV
PIRAV
VI_RNV
V_CABV

A
A.0
A.1
A.2
A.3
A.4
B
B.0
B.1
B.2
Not assigned

VEEV

30.0 30.0

Fig. 5 | VEE lineages. Comparison of the serology subtype designation (left 
tree) with the automated lineage designation (right tree) of VEE, based on a 
tree previously generated by the Augur pipeline23 and visualized on FigTree 
v.1.4.4. According to the current nomenclature, VEE encompasses Everglades 

virus (EVEV), Mucambo virus (MUCV), Tonate virus (TONV), Pixuna virus (PIXV), 
Cabassou virus (CABV), Rio Negro virus (RNV), Mosso das Pedras virus (MDPV), 
Pirahy virus (PIRAV) and VEEV. The VEEV clade is labelled in the tree.

http://www.nature.com/naturemicrobiology


Nature Microbiology | Volume 9 | February 2024 | 550–560 556

Analysis https://doi.org/10.1038/s41564-023-01587-5

We further refined this concept to represent instead the average 
proportion of information about sample S conveyed by a lineage B. 
This normalization procedure ensures that all samples are treated 
equally and that the lineage itself is an effective representation of 
the member samples. By normalizing to total distance, a cluster of 
samples near the reference will be treated the same as a similar group 
of samples positioned further from the root, given that the groups are 
similarly distinct from their last respective lineage labels. We therefore 
compute the following:

P (S,B) = { I (S) − (B)
I(S) if S ∈ D (B) , 1 otherwise

We extend this to compute the total amount of information for 
a system of multiple lineage branches B. These may be hierarchically 
arranged, where a single sample is descended from multiple, nested 
lineage labels B; in this case, the minimum value is taken.

Y = {B1,… ,Bn}

O (Y) = ∑
S∈T

min({P (S,B) ∶ B ∈ Y})

When adding a new branch B to this system, we can compute the 
difference in overall information represented by this addition. Adding 
a lineage B will always either reduce O(Y) or leave it the same, as any 
altered values summed to O(Y) are replaced by a smaller value.

Y′ = {B1,… ,Bn+1}

O(Y′) ≤ O(Y )

The difference between O(Y′) and O(Y) can be computed as the 
sum of differences in P(S,B) for all samples where Bn+1 is the terminal 
lineage of that sample, that is, where P(S,Bn+1) is the minimum value 
of P(S,B) for all B. For all other values, P(S,B) is identical and therefore 
can be disregarded.

O (Y) −O (Y′) = ∑
S∈T

(({P (S,B) ∶ B ∈ Y}) − P(S,Bn+1)

Our goal is to choose the value of Bn+1 that maximizes the overall  
difference. The first term is constant with respect to Bn+1, so the  
difference between choices of Bn+1 is defined by the remaining term.

C = ∑
S∈T

min({P (S,B) ∶ B ∈ Y})

O (Y) −O (Y′) = C − ∑
S∈T

P(S,Bn+1)

Samples S where Bn+1 is not the terminal (most recent and closest 
on the ancestral line) lineage will be valued the same regardless of 
the choice of terminal lineage. By splitting the sets accordingly, we 
can further divide the term into constant and variable components 
with respect to Bn+1. All samples on phylogeny T are either a terminal 
descendent Dt of Bn+1 or not, forming mutually exclusive sets that com-
bine to equal all samples on phylogeny T. This allows us to divide the 
sum into two components.

(S ∉ Dt (Bn+1)) = S ∈ T

(S ∉ Dt (Bn+1))⋂(S ∈ Dt (Bn+1)) = ∅

∑
S∈T

P (S,Bn+1) = ∑
S∉Dt(Bn+1)

P (S,Bn+1) + ∑
S∈Dt(Bn+1)

P (S,Bn+1)

P(S,Bn+1) is valued as 1 when S is not descended from branch B; 
therefore, the sum of P(S,Bn+1) over the set of S not descended from 
Bn+1 is equal to its size, and we can substitute this value in our equation.

S ∉ Dt (Bn+1)

∑
S∉Dt(Bn+1)

1 = ‖S ∉ Dt(Bn+1)‖

∑
S∈T

P(S,Bn+1) = ‖S ∉ Dt(Bn+1)‖ + ∑
S∈Dt(Bn+1)

P(S,Bn+1)

O (Y) −O (Y′) = C − ‖S ∉ Dt (Bn+1) ‖ − ∑
S∈Dt(Bn+1)

P (S,Bn+1)

where Dt is the set of samples for which B is the terminal lineage.  
As all samples in Dt(B) are necessarily members of D(B), this is equiva-
lent to the following:

O (Y) −O (Y′) = C − ‖S ∉ Dt (Bn+1) ‖ − ∑
S∈Dt(Bn+1)

I (S) − I(Bn+1)
I(S)

We can simplify the magnitude term by exchanging it for terms 
that are constant and dependent on the set Dt(Bn+1) and combining the 
relevant components with the existing constant and sum.

‖S ∈ T‖ − ‖S ∈ Dt (Bn+1) ‖ = ‖S ∉ Dt(Bn+1)‖

O (Y) −O (Y′) = C − ‖S ∈ T‖ + ‖S ∈ Dt (Bn+1) ‖ − ∑
S∈Dt(Bn+1)

I (S) − I(Bn+1)
I(S)

C′ = C − ‖S ∈ T‖

O (Y) −O (Y′) = C′ + ‖S ∈ Dt (Bn+1) ‖ − ∑
S∈Dt(Bn+1)

I (S) − I(Bn+1)
I(S)

Both the magnitude term and the sum are dependent on the  
number of samples descended from Bn+1, so we can replace the mag-
nitude term by subtracting one from the second term on each step 
through the sum.

∑
S∉Dt(Bn+1)

1 = ‖S ∉ Dt(Bn+1)‖

∑
S∈Dt(Bn+1)

1 − ∑
S∈Dt(Bn+1)

I (S) − I(Bn+1)
I(S) = ∑

S∈Dt(Bn+1)
1 − I (S) − I(Bn+1)

I(S)

O (Y) −O (Y′) = C′ + ∑
S∈Dt(Bn+1)

1 − I (S) − I(Bn+1)
I(S)

We can then further simplify the second term.

O (Y) −O (Y′) = C′ + ∑
S∈Dt(Bn+1)

(1 − I(Bn+1)
I(S) )

O (Y) −O (Y′) = C′ + ∑
S∈Dt(Bn+1)

I(Bn+1)
I(S)

In practice, we often track the information about the branch I(B) 
and the distances to the descendent samples S from that branch B as 
explicit quantities.

F (S,B) = I (S) − I(B)

O (Y) −O (Y′) = C′ + ∑
S∈Dt(Bn+1)

I(Bn+1)
F (S,Bn+1) + I(Bn + 1)
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This equation is the basis of the Autolin heuristic, which is a com-
putationally practical representation of lineage information content.

GRI and the Autolin algorithm
We want to avoid computing the set of samples Dt for each node B  
on the tree explicitly, as this requires either repetitive traversal or  
storing large arrays of values. We also choose to consider only branches 
Bn+1 where Dt(Bn+1) equals D(Bn+1)—that is, branches with no existing  
lineages specific to some of its descendents—to prevent the retroac-
tive definition of parent lineages and ensure the algorithm proceeds  
with straightforward, hierarchical levels of annotation at each step.  
The only dependent term on this set of samples S is F(S,Bn+1). We there-
fore replace this term by dynamically computing the mean F(S,Bn+1) 
for all samples S and multiplying the entire equation by the number 
of descendents, meaning we have to compute this overall equation 
only once. While this is not exactly equivalent to the sum, except under 
special conditions, it is strongly correlated with it and can reduce the 
effect of outlier samples on the overall computation. We also disregard 
the constant term when comparing values of D(Bn+1) for this algorithm.

O (Y) −O (Y′) ∝ |D(Bn+1)| ⋅
⎛
⎜
⎜
⎝

I(Bn+1)

(
∑S∈D(Bn+1)

F(S,Bn+1)

||D(Bn+1)||
) + I(Bn+1)

⎞
⎟
⎟
⎠

This allows us to track only three values for each node—the sum of 
distances F(S,B), the number of descendents |D(B)| and the information 
of the branch I(B), and perform only a single computation. The sum of 
F(S,B) and the number of descendents |D(B)| can both be dynamically 
computed by a single reverse postorder traversal of the tree and stored 
as single float values.

Sum (B) = {branch length of B if children (B)

= ∅∑C∈children(B) sum (C)otherwise

Count (B) = {1 if children (B) = ∅ ∑
C∈children(B)

count (C)otherwise

I(B) can be dynamically computed by a single forward traversal, 
as the branch length I(B) is equal to the branch length of B plus the 
information of its parent. We perform one pass to compute the sum and 
count values, and we track I(B) on the forward pass where candidate 
nodes are evaluated. With these values for each node, we can compute 
the following:

GRI (B) = count(B) ⋅ I(B)
sum(B)
count(B)

+ I(B)

Notationally, we use single letters to refer to the values of these 
functions for a branch B.

S = sum(B)

N = count (B)

D = I(B)

GRI = N ⋅ D
S
N
+ D

This final equation is the GRI heuristic we use to select our lineages. 
It does not require identifying the explicit set of descendent samples 
D(B), which for large phylogenies either requires storing large vectors 
in memory or repeated tree traversal, instead using single values for 
the sum and count. It also has useful properties; it can never have a 

higher value than N, limiting the effect of extremely long branches, and 
approaches 0 as S becomes large, where the lineage proposal would be 
a poor representative of its descendents.

N ⋅ D
S
N
+ D

= N

N ⋅ D
S
N
+ D

= 0

In the simplest case, the construction of a lineage system will 
involve the stepwise addition of lineage labels. Finding the overall 
system that maximizes the relative gain for multiple simultaneous 
lineage definitions is excessively complex and unscalable for systems 
of more than a handful of lineages, owing to the extremely high num-
ber of possible combinations of lineage labels to evaluate. However, a 
system of arbitrary size can be constructed efficiently through a simple 
greedy stepwise algorithm, where the best choice for each step is taken 
without regard for the impact on potential future choices. Therefore, 
our implementation computes this metric for every node on the tree, 
assigns a new lineage at the highest value node and then repeats this 
process until no candidates pass minimum thresholds set by the user. 
‘Serial’ or non-overlapping lineages, where

D (L1) ∩ D (L2) = ∅

can be assigned by repeating the minimization procedure while 
disregarding all samples that are a member of existing lineages. This can 
be repeated until some minimum percentage of samples are contained 
within some set D(L).

‘Hierarchical’ or nested lineages, where

D(L2) ⊆ D(L1)

can be assigned by treating L1 as the root of the tree, with ancestry 
information conveyed with respect to it. There are no other types of 
lineage relationship, as a rooted phylogenetic tree is a directed acyclic 
graph and lineages are always defined as a monophyletic clade. It is not 
possible for two clades to partially overlap when they are defined by 
internal nodes on a fixed phylogenetic tree.

Restricting generated lineages
There is one obvious failure case with this model; if the number of 
lineage labels B is not limited or penalized, every node in the tree can 
be given individual labels, reproducing the original phylogeny and all 
accompanying information exactly in the lineage system. However, 
this degenerate case is not desirable, as the goal of lineage systems is 
generally to compress phylogenetic information to a more manageable 
set of groups while keeping key elements. Two simple restrictions are 
a minimum lineage size and a minimum distinction from the parental 
lineage or root.

To require a minimum number of samples to be represented 
by a putative lineage label, we define a minimum m and we subtract  
the weighted mean information represented by a theoretical set of  
m samples with the same path length distribution from the true infor-
mation distribution for the node. If the net information represented 
is negative, then we reject this node as a candidate for a new lineage 
definition. We define the following inequality:

(N −m) ⋅ D
S
N
+ D

> 0

Essentially, we require that N > m, where m is a user-selected 
parameter, to define a new lineage. Setting this to some positive value 
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will produce only proposed lineages that convey some information 
about at least that many leaves.

Similarly, we can set a minimum distinguishing distance  
from the subtree root or parent lineage. Often lineage designation 
systems require some number of distinguishing mutations for a new 
sublineage. We therefore define the following inequality:

N ⋅ (D − p)
S
N
+ D

> 0

When p < D, this value is negative and we reject this candidate 
node. Setting this to 2, for example, will produce only lineages that 
convey at least two unique mutations distinct from the parent lineage 
or tree root. Combining both of these filters, we reject nodes where 
either or both of these inequalities are not passed. Together, this allows 
automatic proposals to fulfil standard conditions required by lineage 
nomenclature review groups.

Additional parameters
Our pipeline implementation includes a substantial set of configur-
able parameters. These include minimum lineage size and minimum 
distinction, as outlined above. We also can simply threshold on the 
GRI itself, ignoring marginal designations that contain relatively little 
additional information.

Notably, we can additionally incorporate arbitrary sample-level 
weighting. This allows our lineage system to prioritize effective rep-
resentation of high-interest samples. R(S), below, is a function repre-
senting the ‘importance’ of sample S. This might be high for a sample S 
from an under-sequenced region, or lower for a sample S from a heavily 
sequenced time or place.

W = ∑
S∈D(B)

R(S)

W ⋅ D
S
N
+ D

Samples from regions that contribute a small percentage of all 
samples will have substantially higher weights than ones from regions 
that contribute a large percentage of sequences, although all samples 
will have a weight greater than 1 under this schema. This is just one 
potential weighting schema for handling geographic sequencing bias, 
and the user can define any schema and set weights on a per-sample 
basis.

Similar concepts can apply to computing path lengths—we may 
consider only part of the haplotype, or assign additional weight to 
specific mutations of interest that we want our lineage system to pri-
oritize representing. We provide options for the user to select genes 
of interest for representation, as well as the ability to ignore mutations 
that do not change the amino acid content of proteins and represent 
coding haplotypes only.

We also provide arbitrary weighting schema for mutations of 
interest, similar to samples. As an example, we provide a parameter 
that heavily weights mutations that are predicted to increase vaccine 
escape17. This parameter multiplies the escape weight value estimated 
by the Bloom lab calculator by the user’s parameter and adding 1. In this 
schema, mutations that are not predicted to contribute to immune 
escape have a weight of 1, while mutations that do contribute have 
a weight greater than 1 that is proportional to the strength of escape 
conferred. The resulting lineage system is more likely to include desig-
nations that have a change in immune escape. This is just one possible 
schema, and the user can define weights on a per-mutation basis in 
our implementation.

All parameters and configuration information used in the  
production of these results can be found in Supplementary Data 1.

Sorting and prioritizing novel lineages with simple Bayesian 
growth modelling
In some cases, curators may prefer to designate a smaller number 
of lineages that are of higher apparent epidemiological impact, to 
improve the average impact and simplicity of the lineage system. In 
this case, our approach can be applied to identify many individual line-
age candidates, which can then be filtered and prioritized according 
to lineage-level statistics. While many simple filters we support, such 
as the number of countries a lineage has been detected in, are simply 
applied to the tabular report, we do also provide a more informed 
sorting schema based on lineage growth.

To sort putative lineages for manual inspection after the initial 
designation procedure, we fit a geographically stratified exponential 
growth model to each proposed lineage using Markov Chain Monte 
Carlo. Bayesian methods of this type are appropriate for inference 
with small, noisy datasets, as the uncertainty in the model is directly 
quantified. Our simplified Bayesian growth model is a geographi-
cally stratified estimate of a fundamental rate of exponential growth 
over a weekly time series. We model the true percentage P of cases 
in country C that are of lineage L as increasing in an approximately 
exponential fashion. This is appropriate for newly emerging line-
ages that consist of a small percentage of total cases in any country 
where they are found but are successfully spreading. Each data point 
consists of the total number of samples from lineage L found in a 
specific country during a specific week. We assume that the inherent 
exponential growth coefficient for L is shared across all countries in 
which it is found and combine all data points across countries and 
times for each lineage. The first week that any sample from lineage 
L was found in country C is treated as the initial timepoint (t = 0) for 
data from that country.

We do not directly observe the true percentage of cases P that  
are of lineage L. Instead, some number N of all cases are sequenced, 
and we observe some number X of these samples to be lineage L. 
As the number of cases is much larger than the number of samples,  
we can model this process as a binomial sampling procedure with  
N trials and a probability of success being the true percentage P.

Our Bayesian model combines both this sampling procedure 
and the exponential growth model to yield a posterior distribution 
of growth values that can explain the behaviour of lineage L. Often 
these distributions are wide, owing to sparse sampling and noise over 
few data points. In addition, some lineages may not fit an exponential 
growth model at all, owing to being outcompeted by newly introduced 
lineages or simple epidemiological noise, leading to highly variable 
estimates of growth. Accordingly, we compute the 0.025 and 0.975 
quantiles (95% CI) for this distribution for each lineage L and sort the 
output by the lower quantile. Lineages with a large positive value for the 
lower quantile will reliably resemble a high exponential growth model 
and are more likely to be of epidemiological concern.

This model is extremely simple compared with standard epi-
demiological models owing to the constraints of available data and 
necessary speed. A more complex model would require metadata 
unavailable for most genome sequences, such as patient symptoms 
and other protected health information. Instead, this model only con-
siders the change in the proportion of sequences from different areas 
belonging to a given lineage over time. Results from this approach will 
accordingly suffer from variance from differences in national health 
policy and sequencing strategy with respect to patient symptoms. It 
additionally may be biased by the presence and distribution of com-
peting variants across different localities, as well as local vaccination 
levels and overall population susceptibility. Because of these limita-
tions, this model does not directly inform the initial designation of 
lineages, but instead serves as an optional out-of-the-box solution 
for users to highlight putative lineages that may be of immediate and 
critical public health importance without substantially adding to the 
overall compute time for the pipeline.
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All code for our modelling and reporting process can be found  
at https://github.com/jmcbroome/lineage-manuscript and  
https://github.com/jmcbroome/autolin.

Applying Autolin to other pathogens
To validate that this method can be applied to pathogens other than 
SARS-CoV-2, we selected two Nextstrain instances for CHIKV and VEE, 
which are currently classified based on their geography and serology, 
respectively. We applied our generalized implementation (https://
github.com/jmcbroome/automated-lineage-json) under default set-
tings for the Auspice JSON files of each virus (CHIKV Nextstrain build 
5.1 available at https://doi.org/10.5281/zenodo.7514289 and VEE Next-
strain build 2.1 available at https://nextstrain.org/groups/ViennaRNA/
VEEnext (https://doi.org/10.5281/zenodo.7524848)) to obtain lineage 
assignments. These Nextstrain JSON files were generated by the Augur23 
pipeline (Nextstrain-Augur v19.1.0, Treetime v0.9.4, IQ-TREE v2.2.0). 
We then downloaded the Nexus file with annotations from the new  
JSON file from Nextstrain and visualized and compared the annota-
tions using FigTree v.1.4.4. Tree figure comparisons were made by  
extracting them in pdf format as shown in FigTree, mirrored and aligned 
on a photo-editing software. Taxon labels were coloured according  
to the lineage assignment and were replaced with bars representing 
the colour of the lineage for best visualization.

There was no available Auspice build for the ZIKV nomenclature13. 
We therefore had to construct a mutation-annotated tree (MAT) to 
make a file compatible with Autolin. We obtained the phylogeny 
directly from the authors and sample names and lineage assignments 
from their Supplementary Table 3. We downloaded sample sequences 
using the Entrez API and aligned them to the same Zika reference 
(KJ776791) used in a previous study13 with Minimap224 to produce a 
variant call format (VCF) file. We then combined this VCF file and their 
likelihood phylogeny into a MAT with likelihood branch lengths using 
UShER9. We applied Autolin to this MAT with a minimum lineage size 
of 3 and a minimum distinction (distance in total branch length from 
the last annotated lineage) of 0. Finally, we extracted the new lineage 
annotations for each sample using matUtils7. Strictly, the mutations 
inferred did not affect this process, as the GRI is dependent on the 
branch lengths, but constructing the MAT was necessary to make 
the data compatible with the Autolin implementation of the GRI. All 
code to reproduce this process can be found at https://github.com/
jmcbroome/lineage-manuscript. Figure 5 was produced as described 
above with FigTree.

We compared the automated lineage assignments with the previ-
ous nomenclature using the ARI. We used the ARI instead of identify-
ing best-match lineages via the Jaccard as we did for the comparison 
directly to Pango because of the relative flatness of the relevant sys-
tems; ARI is well suited to comparing two discrete sets of labels, dis-
regarding hierarchy. While Autolin may be much finer grained at the 
terminal level compared with a given nomenclature, we consider it 
to be a success if the existing nomenclature is largely captured by 
some higher level of Autolin labels, indicating that Autolin has identi-
fied these relevant groups along with potentially relevant subgroups. 
Therefore, we compared the set of terminal lineages for the preexisting 
systems for each pathogen individually with each level of annotation 
produced by Autolin, disregarding metaclusters of related annota-
tions on that level, and noted the highest value. A similar process for 
Pango would require dividing Pango into several hierarchical levels, 
along with the automated system, and performing a large number of 
pairwise comparisons, which in turn reduces our power to detect sta-
tistically significant commonalities. For these other pathogens, with 
shallower lineage systems, this process is more tractable. To establish 
a null distribution, we randomly selected nodes in the amount of the 
number of categories found for each annotation to create a distribution 
of random ARIs to evaluate the robustness of the method. By selecting 
random nodes within the tree and taking their descendents to construct 

our null comparisons, we account for natural correlation from the tree 
structure, while the ARI itself accounts for variations in group sizes. We 
then compute the percentile of the true ARI of our lineage proposals 
against the existing nomenclature from the permuted null distribu-
tion, yielding the reported P values. All code for this can be found at  
https://github.com/jmcbroome/lineage-manuscript.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All SARS-CoV-2 phylogenies are available from http://hgdownload.soe.
ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/. Processed and 
raw CHIKV, VEE and Zika phylogenies are available at https://github.
com/jmcbroome/lineage-manuscript/. Interactive Nextstrain views of 
the phylogeny for CHIKV can be found at https://nextstrain.org/groups/
ViennaRNA/CHIKVnext and for VEE at https://nextstrain.org/groups/
ViennaRNA/VEEnext. Interactive views for the SARS-CoV-2 and Zika 
phylogeny may be obtained by downloading the protocol buffer (pb) 
files from https://github.com/jmcbroome/lineage-manuscript/ and 
uploading them to https://taxonium.org/. The list of Zika accessions  
referenced in this paper are available in the supplement of ref. 13 (https://
academic.oup.com/ve/article/8/1/veac029/6555351#351081937) with 
additional information at https://github.com/seabrasg/zika_diversity.

Code availability
All software for lineage designation and analysis is available on GitHub, 
at https://github.com/jmcbroome/autolin (ref. 25), https://github.
com/jmcbroome/lineage-manuscript (ref. 26) and https://github.com/
jmcbroome/automated-lineage-json (ref. 27).
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