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Kinetics of mRNA nuclear export regulate
innate immune response gene expression

Diane Lefaudeux1,2, Supriya Sen1,3, Kevin Jiang1,2, Alexander Hoffmann 1,2,3 &
the UCLA Ribonomics Group*

The abundance and stimulus-responsiveness ofmaturemRNA is thought to be
determined by nuclear synthesis, processing, and cytoplasmic decay. How-
ever, the rate and efficiency of moving mRNA to the cytoplasm almost cer-
tainly contributes, but has rarely beenmeasured. Here, we investigatedmRNA
export rates for innate immune genes. We generated high spatio-temporal
resolution RNA-seq data from endotoxin-stimulated macrophages and para-
meterized a mathematical model to infer kinetic parameters with confidence
intervals. We find that the effective chromatin-to-cytoplasm export rate is
gene-specific, varying 100-fold: for some genes, less than 5% of synthesized
transcripts arrive in the cytoplasm as mature mRNAs, while others show high
export efficiency. Interestingly, effective export rates do not determine tem-
poral gene responsiveness, but complement the wide range of mRNA decay
rates; this ensures similar abundances of short- and long-lived mRNAs, which
form successive innate immune response expression waves.

Gene expression is key to cellular identity and function. Its regulation
is complex allowing for gene-specific control of the abundance of gene
products and the speed at which their abundances may be adapted to
changes or perturbations. Considering mRNA, the gene expression
intermediatewhose cytoplasmic presence allows for protein synthesis,
its cytoplasmic abundance is a function of numerous molecular reac-
tions that are grouped within the broader terms of nuclear mRNA
synthesis (transcription initiation, elongation), mRNA processing and
export (e.g., capping, splicing, polyadenylation, and transport), and
cytoplasmic degradation. Studies of immune response gene expres-
sion have been insightful as the dynamical nature of immune gene
expression reveals the underlying kinetics of the regulatory steps. In
response to pathogen-derived substances such as endotoxin, the
expression of hundreds of genes is rapidly induced1.While the primary
regulatory steps control nuclearmRNAsynthesis2,mRNAs showwidely
different cytoplasmic half-lives (ranging from just a few minutes to
many hours), which thereby contributes to the responsiveness of gene
expression2,3.

What remains less well characterized is to what extent mRNA
processing and export regulate gene expression. Genetic perturbation

of the splicing machinery can diminish the abundance of mature
mRNAs4 and incompletely spliced mRNAs may be degraded via the
nuclear exosome5–7. Indeed,mRNA export ismediated by RNA-binding
proteins that are recruited to exon–exon junction complexes (EJCs).
Recent studies have shown that while 3′-end cleavage and poly-
adenylation are always rapid, many genes have one intron that is
spliced post-transcriptionally, potentially introducing delays in the
appearance of cytoplasmic mature mRNA8,9. However, the resulting
effective transport rates have not been measured quantitatively and it
remains unknown to what extent these rates may be gene-specific or
whether they contribute to the regulation of gene expression.

Here, we leveraged the high inducibility of innate immune gene
expression programs to measure effective mRNA chromatin-to-
cytoplasmic transport rate (“export rate”) associated with each
immune response gene. We produced genome-wide mRNA measure-
ments in chromatin, nucleoplasmic, and cytoplasmic compartments at
high temporal resolution, and developed a mathematical modeling
workflow to infer kinetic rate constants and their associated con-
fidence intervals. We report that the mRNA export rates vary over a
100-fold range among genes, but surprisingly do not contribute much
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to the temporal responsiveness of immune response gene expression,
which is primarily controlled by cytoplasmic mRNA half-life. Instead,
export rates determine the efficiency of transport (in the face of
nucleoplasmic decay) and show a high correlation with cytoplasmic
mRNA-degradation rates. Thereby, highly responsive genes with short
half-lives are expressed highly thanks to highly efficient transport, and
later waves of immune responsive genes with long half-lives are not
disproportionately overexpressed due to lower efficiency transport.

Results
A detailed, quality dataset of endotoxin-induced mRNA synth-
esis and transport
To study the kinetics of post-transcriptional mRNA transport and
decay of immune response genes we developed an experimental
approach to follow mRNA expression within the cell. When mRNA is
being transcribed it is linked to the chromatin-bound polymerase and
may be isolated as chromatin-associated RNA (caRNA). It is then
released by 3′-end cleavage and polyadenylation into the nucleoplasm
(npRNA) and exported to the cytoplasm (cytoRNA) (Fig. 1A). We pro-
duced high spatio-temporal resolution RNA-seq data of three biolo-
gical replicates (see Supplementary Fig. S1 for reproducibility of the
replicates) by deeply sequencing RNA from three subcellular fractions
(chromatin-associated, nucleoplasmic, and cytoplasmic) prepared

from murine bone-marrow-derived macrophages (BMDMs) at twelve
timepoints within 2 h of stimulation with the endotoxin analog LipidA,
(Fig. 1B, see “Methods”). As observed for the Tnf gene, intronic reads
are still present in the caRNA samples, but less in the npRNA samples
and transcripts are fully spliced in the cytoplasmic samples (Fig. 1C). To
enable a reliable quantification of mRNA expression for downstream
analysis we selected strongly inducible genes (based on caRNA data,
Fig. 1D). For the 273 selected genes, the npRNA expression profile is
more similar to the caRNA expression profile than the cytoRNA
expression profile (Fig. 1E). Correlation analysis shows that, overall,
npRNA only slightly lags behind caRNA but that cytoRNA expression is
less well correlated and more delayed (Fig. 1F).

To avoid bias in the caRNAseq data due to partially transcribed
mRNA, genes were quantified based on the exonic portion of their last
5 kb. This required highly accurate annotation of the dominant tran-
scription end site (TES). Thus, every selected gene track coverage was
checked against GENCODE annotation database and 62 discrepant
genes were removed, leaving 211 for further analysis (see “Methods”,
Supplementary Fig. S2A–F, and Supplementary Data 1). The observed
TESs were largely consistent (within +/−100bp) with an established
database of polyA sites10 based on 3′-end sequencing data (Supple-
mentary Fig. S2G, right panel). For some genes (bottom right of Sup-
plementary Fig. S2G, right panel) the observed TESs are even more

Fig. 1 | Determining the kinetics of post-transcriptional events. A Following
mRNA from transcription to degradation. First, the mRNA is attached to the chro-
matin (caRNA), then it is released to the nucleoplasm (npRNA) upon 3′-cleavage,
finally it is transported to the cytoplasm where it is degraded. B Schematic of the
experimental setup. Bone-marrow-derived macrophages (BMDMs) are stimulated
with LPA. Cells are harvested at different time after stimulation and fractionated into
subcellular fractions, and RNA is extracted. C Example of tracks for the Tnf gene.
Many intronic reads are found in the chromatin-associated fraction, fewer in the
nucleoplasmic fraction, and the cytoplasmic fraction RNA is fully spliced. D Gene
selection workflow. Lowly expressed genes were filtered out, and inducible genes at

the chromatin level were selected. E Heatmap of gene expression of the selected
genes in (D) for each fraction. F Correlation analysis of mRNA abundance in each
fraction. Note a stronger correlation between chromatin and nucleoplasmic fraction
for nearby timepoints than between nucleoplasmic and cytoplasmic fractions or
between cytoplasmic and chromatin fractions. Also, note a time shift, that time-
points on the chromatin correlate better with later timepoints in the cytoplasmic
fraction. G Example genes: Top, Cd74 and Btg2 have similar chromatin expression
profiles but exhibit different profiles in the nucleoplasmic and cytoplasmic fraction.
Bottom, Arl5b and Ccr3 show similar cytoplasmic levels but Arl5b expression is few
fold higher than Ccr3 in both chromatin and nucleoplasmic fractions.
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consistentwith thedatabase than the informationprovided in the gene
annotation (discrepant by >500bp).

Tracking RNA expression in time and space illustrates that some
genes, such as Cd74 and Btg2, that have very similar caRNA expression,
may exhibit very different npRNA or cytoRNA expression profiles
(Fig. 1G, top panel); or that some genes with different caRNA expres-
sion profiles exhibit very similar cytoRNA expression profiles, such as
Arl5b and Ccr3 (Fig. 1G, bottom panel). This suggests that kinetic
parameters of post-transcriptional processesmay be gene-specific and
may regulate gene expression dynamics.

A mathematical model of mRNA dynamics to derive kinetic
transport and decay rates
We developed a simple mechanistic mathematical model (Fig. 2A) to
simulate the abundance of mRNAs in the different subcellular frac-
tions. Themodel uses themeasured caRNA expression profile as input
to calculate npRNA and cytoRNA abundances over time as a function
of kinetic parameters describing transport and decay. Given that RNA
sequencing allows for relative quantification across genes and

samples, the parameter values thatmaybederivedby fitting themodel
to the data are also relative. These relative parameters are denoted: k1’
for the fractional appearance rate of mRNA in the nucleoplasm (in
npFPKM/caFPKMmin−1); k2 for the mRNA disappearance rate from the
nucleoplasm (in min−1), determined by both nucleoplasmic decay and
nucleoplasm-to-cytoplasm transport; k2’ for the fractional appearance
rate of mRNA in the cytoplasm (in cytoFPKM/npFPKMmin−1), termed
“the nucleoplasm-to-cytoplasm transport rate”; and kcyto_deg for the
cytoplasmic decay rate (in min−1).

We fit the model to the expression data for each gene to estimate
these kinetic parameters using an optimization pipeline with a cost
function defined by the negative log-likelihood of reproducing the
experimental data given the model; for the error model, we used a
negative binomial distribution to account for both biological varia-
bility and sampling error for lowly expressed timepoints (schematized
in Fig. 2B and described in “Methods”). A visual comparison of model-
simulated and measured data graphed for all genes in a heatmap
(Fig. 2C) or line graphs for two sample genes (Fig. 2D) illustrate the
quality of the fits (see Supplementary Document 1 for detailed graphs

Fig. 2 | Fitting a kinetic model to the stimulus-response data. A Model linking
mRNA measurements in different subcellular fractions, with associated equa-
tions. B Schematic of the fitting workflow that takes the expression of caRNA as
input, simulates the nucleoplasmic and cytoplasmic mRNA abundances, and
iterates to identify the optimal parameter set for each gene.CHeatmap of fitting

results alongside the data. Most genes fit the data really well, as indicated in the
Fit Quality bar on the left-hand side. Source data are provided as a Source Data
file.D Example of fitting results for Egr1 andMalt1 genes for the three replicates.
The error bars represent the 95% prediction interval of the model given the data
library size.
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of individual genes). As the negative log-likelihood depends on the
expression level, we developed a “fit quality”metric that also includes
autocorrelation of the residuals (see Methods). Most genes exhibit
excellent fits (Supplementary Fig. S3A) with fit quality values <0.06
(e.g., Tnfaip2 and Il10 have fit quality scores of 0.011/0.014 and 0.050/
0.041, for the two replicate datasets, respectively, Supplementary
Fig. S3B, top row). Only 9 genes have scores ≥0.06, and 2 have scores
≥0.1 for both replicates (e.g., Cpd and Cd44 have fit quality scores of
0.096/0.084 and 0.15/0.012, respectively, Supplementary Fig. S3B,
bottom row). Poor fit quality is typically due to discrepancies with the
data from the nucleoplasmic fraction.

Model fitting reveals which kinetic rate constants are identifi-
able from the data
Using the profile likelihood method, we also computed the 95% con-
fidence interval of the estimated parameters (Supplementary Data 2).
While k2’ and kcyto_deg were identifiable for almost every gene (k2’: 207
and 202 for replicate 1 and 2, respectively; kcyto_deg: 199 for both
replicates out of the 211 fitted genes), k1’ and k2 were identifiable for
only ~130 genes (k1’: 142 and 117; k2: 144 and 116 for replicate 1 and 2,
respectively; Fig. 3A left panel, see “Methods” for confidence interval
estimation for each individual gene). However, in most cases where
these parameters were not fully identifiable the lower bound could be
found (k1’: 46/69 and 50/95; k2: 44/67 and 49/94 for replicate 1 and 2,
respectively). Moreover, the confidence interval of the identifiable
parameterswas relatively narrow, around threefold between the upper
bound and lower bound (i.e., +/− 1.8×) for k2’ and kcyto_deg, and about
tenfold (i.e., +/− 3.2×) for k1’ and k2 (Fig. 3A, right panel). To compare
genes, we first examined the distribution of parameters that were
identifiable; their values spread over a broad range, around 100-fold
for k2’ and kcyto_deg, and about 30-fold for k1’ and k2 (Fig. 3B). The
parameter distributions resulting from fitting each replicate separately
were similar (with a Kolmogorov–Smirnov distance of <0.14 between
replicates for all parameters). Examining each parameter individually
revealed that optimally fitted values (for genes that yielded identifiable
parameter values) were reproducible across replicates (Fig. 3C), with
the estimated values differing by less than +/− 2× for most genes (red
dashed lines). Even when k1’ and k2 parameters were not identifiable,
their ratio (k1’/k2), was almost always identifiable (202 and 198 for
replicates 1 and 2 respectively) and highly reproducible (Fig. 3D), and
this ratio’s spread across the tested genes wasmuch narrower than the
individual parameters (only threefold).

To obtain an external validation, we compared themodel-inferred
mRNA half-life values to estimates obtained using Actinomycin-D
treatment (Supplementary Fig. 4). The twomethods led to very similar
results (Fig. 3E) with a spearman rank correlation of 0.8 (P value
<2 × 10−16). Interestingly, model inference led to a broader range of
estimated half-lives than estimates with actinomycin-D experiments.
The actinomycin-D approach estimated half-lives of within
15–300min, whilst model-inferred half-lives ranged from 1 to over
1000min. This reflects the shortcomings of actinomycin-D experi-
ments in estimating very short and long half-lives11.

Nuclear export efficiencies and effective transport rates are
highly gene-specific
Onemeaningful composite variable, k2’/k2, represents the efficiency of
the nuclear export, i.e., how much mRNA arrives in the cytoplasm
versus how much leaves the nucleoplasm by either export or nucleo-
plasmic decay. This measure spreads over 30-fold (101.5, Fig. 4A, left
panel) meaning that if we assume no loss for the most efficiently
transported genes, then for the least efficiently transported genes only
~3% of the nucleoplasmic mRNA will actually arrive in the cytoplasm.
Similar to k2, the export efficiency was not always identifiable (Fig. 4A,
right panel), but wewere able to identify it with the present dataset for
~130 genes out of the 211 (144 and 118 for replicates 1 and 2,

respectively) fitted genes, and for most unidentifiable genes the 95%
confidence upper bound could still be defined (43/67 and 49/93 for
replicates 1 and 2, respectively). For the genes forwhich this composite
variable was identifiable the estimated value was also highly repro-
ducible (Fig. 4A, middle panel).

Another composite variable is k1’k2’/k2 which describes how fast a
gene’s caRNA transcript reaches the cytoplasmic fraction. We denote
this composite measure “effective transport rate”, and it is composed
of the fractional cytoplasmic appearance rate k1’multiplied the nuclear
export efficiency k2’/k2. This composite variable spreads across an even
wider range of values: 100-fold between the fastest genes and the
slowest (Fig. 4B, left panel). This effective transport rate is highly
reproducible (Fig. 4B, middle panel) and almost always identifiable
(203 and 198 for replicate 1 and 2, respectively, out of the 211 fitted
genes; Fig. 4B, right panel).

These composite measures, “export efficiency” and “effective
transport rate”, correlate strongly (Fig. 4C, Pearson’s correlation of
~0.82; 0.83 and 0.81 for replicates 1 and 2, respectively) for the genes
for which they are identifiable. The genes for which the export effi-
ciency was not identifiable tend to have a lower effective transport
rate. Given that the effective transport rate is identifiable for almost all
genes and is strongly correlated with export efficiency, we focused on
this composite parameter in subsequent analyses.

Interestingly, cytokines and chemokines have relatively high
effective transport rates (Fig. 4D), as do some inflammatory tran-
scription factors (Junb, Egr1/2, Fos, Fosb), while for others it is lower
(Fosl2, Irf1, Rel, Relb). Negative feedback genes span a broad range in
effective transport rates, with negative regulators of MAPK having
higher values than negative regulators of NFκB. Genes involved in cell
growth and cell adhesion tend to locate at the lower to medium range
of the effective transport distribution.

Examining two genes on opposite ends of the effective transport
rate range (Egr1 and Malt1), we observe that even though they both
reach similar levels on the chromatin, Egr1, whichhas a higher effective
transport rate, is present at higher levels in the cytoplasmic fraction
than Malt1 (Fig. 4E). This is the case even though Malt1 has a longer
cytoplasmic half-life than Egr1 (~135min forMalt1 and ~15min for Egr1).

Transport parameters correlate with gene structure and
sequence motifs rather than epigenetic signatures
To determine if the effective transport rate is an intrinsic gene char-
acteristic or if it is context-dependent, we examined gene structure
characteristics. We found that the effective transport rate is sig-
nificantly anti-correlated with gene length (Fig. 5A) and the number of
introns (Fig. 5B). Short genes with few introns have higher effective
transport rates (potentially mediated by TPR) than longer ones with
more introns, whose transport may depend on exon–exon junction
complexes. Interestingly, even though cytokines and chemokines have
similar gene lengths and intron numbers, cytokines tend to have
higher effective transport rates than chemokines.

To examine if the need to splice in the nucleoplasm (rather than
on the chromatin) might slow the effective transport rate, we calcu-
lated thepercentageof spliced junction reads over the total of junction
reads (spliced or unspliced) for each intron in the nucleoplasmic
fraction using SIRI12 and assumed that each intron is independently
spliced. Interestingly, this measure of post-transcriptional splicing in
the nucleoplasm, correlates with the effective transport rate even
more strongly (Fig. 5C), though not necessarily due to a single bottle-
neck intron (Supplementary Fig. S5A). These data suggest that when
splicing is not completed co-transcriptionally, it slows the effective
mRNA transport rate to the cytoplasm.

To examine if RNA-binding proteins (RBPs)may also play a role in
regulating the effective transport rate, we tested for enrichment of
number ofmotifs for knownRBP in the 5′-UTR and 3′-UTR of the genes
and tested against the estimated effective transport rate
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(Supplementary Fig. S5B). Some of these RBP motifs were correlated
with a higher effective transport rate, e.g., HNRNPK and QKI13–16.
Conversely, there are some RBP motifs on the 3′-UTR that correlate
with a lower effective transport rate, e.g., HNRNPLL17–19 and YBX120–23.
Theseproteinswere shown tobe involved inmRNA splicing, transport,
and decay.

Next, we examined if the effective transport rate may be affected
by the chromatin context of the gene. We measured four histone
marks using ChIP-seq in cells prior to stimulation: H3K27ac is asso-
ciated with active enhancers, H3K4me3 with promoters, H3K36me3
and H3K79me2 with actively transcribed gene bodies24,25. The average

peak ChIP-seq signal of all peaks assigned to the closest gene TSS was
quantified (see “Methods”), but none of the marks showed a strong
correlation with the effective transport rate (Fig. 5D). In addition,
machine-learning models were trained to assess if the ChIP-seq signal
would add information to the other metrics in predicting the effective
transport rate values (see “Methods”). While predicting the effective
transport rate using the combination of gene length, intron number,
and intron retention significantly improved the prediction over to
using just one of these variables, adding ChIP-seq signals in a variety of
different windows ormeasures to thosedid not increase the predictive
power of the models (Fig. 5E).

Fig. 3 | Parameter inference, identifiability, and reproducibility. A Number of
genes for which parameters were identifiable, partially identifiable, or non-
identifiable (left panel). Distribution of 95% confidence interval range for identifi-
able parameters. Also see the Supplementary Data file. Source data are provided as
a Source Data file. B Distribution of the parameter values for the different repli-
cates. The distributions are similar for the different replicates and the bulk of the
distributions span a 30 to 100-fold difference between the genes depending on the
parameter. C Reproducibility of each parameter. The color of the point corre-
sponds to the fit quality metric for the worst replicate, the line corresponds to 95%
confidence interval, with the color corresponding to the fit quality of that replicate.
Parameters k1’ and k2 that were identifiable for both replicates are also quite

reproducible, while k2’ and kcyto_deg are very reproducible and well-defined. The
dashed red line indicates the 2-fold reproducibility window. D Reproducibility of
composite parameter k1’/k2. Even though k1’ and k2 are well not defined for some
genes, their ratiomay be highly reproducible andwell-defined. The dashed red line
indicates the twofold reproducibility window. E Comparison of model-inferred
half-life with half-life values determined with the actinomycin-D method. The
dashed lines link replicates of themodel-inferred half-life. The green line indicates a
1:1 relationship and the dashed red line a 2-fold range. We notice a high correlation
between the two half-life estimates (Spearman rank correlation of 0.8) but that the
model seems to capture a larger range in half-lives than the actinomycin-Dmethod.
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Transport parameters are unaffected by tolerance-inducingpre-
stimulation
To further examinewhether effective transport rates are unaffected by
the genes’ chromatin, we produced equivalent experimental datasets
in macrophages that had been pre-stimulated with Lipid A and thus
rendered into a so-called tolerized state in which the epigenome is
substantially altered and gene expression is less responsive to stimu-
lation with the second dose of Lipid A. Similar to the naive condition,
replicate data demonstrated high reproducibility (Supplementary
Fig. S6A, C), but somegenes showed sucha low level of expression that
they had to be removed from subsequent analyses (Supplementary

Fig. S6B), leaving 186 genes to be fitted. Tolerized macrophages
showed slightly increased basal levels for most genes (Fig. 6A, top),
but, as expected, they exhibited a strong reduction of induction as
observed in the chromatin fraction (Fig. 6A, bottom), and also in
subsequent fractions (Fig. 6B).

Likely due to the lower fold gene induction, the fits were not as
goodas for naivemacrophages (see Fig. 6C andSupplementaryFig. 7A,
B) with more genes having a fit quality metric of ≥0.06 for both
replicates (37 vs. 9 for tolerized vs naive macrophages). However, the
number of genes for which parameters were identifiable was similar to
the naive condition (Supplementary Fig. S7B top panel), though the

Fig. 4 | Export rates vary widely across immune response genes. A Left panel
shows the histogram of nucleoplasmic export efficiencies (k2’/k2) for immune
response genes. The distributions are similar for the different replicates and span a
30-fold difference between genes. Middle panel shows the reproducibility of these
export efficiency estimates. Right panel shows the number of genes for which this
quantity is identifiable. B Left panel shows the histogram of effective transport
rates (k1’k2’/k2) for immune response genes. The distributions are similar for the
different replicates and span a 100-fold difference between genes. Middle panel
shows the reproducibility of these effective transport rate estimates. Right panel

shows the number of genes for which this quantity is identifiable. C Correlation of
the nucleoplasmic export efficiency and the effective transport rate for the genes
for which both parameters are identifiable. D The distributions of effective trans-
port rates of genes involved in various biological processes. E Example expression
for two genes having effective transport rates (k1’k2’/k2) on the extremes of the
distribution.Malt1 has a low effective transport rate and Egr1 has a high rate. From
the line graph (top), we noticed that even though Egr1 is less expressed thanMalt1
in the chromatin fraction, its expression ends up being higher in the cytoplasmic
fraction.
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associated 95% confidence interval was wider for k2’ and kcyto_deg
(Supplementary Fig. S7B middle panel). The estimated parameters for
genes with good fits showed good reproducibility in replicates (Sup-
plementary Fig. S7B, bottompanel) andwere remarkably similar to the
estimated parameters from the naive condition (Fig. 6D); k2’ and
kcyto_deg being mostly within a ±2-fold range. Further, the composite
parameters of transport efficiency and effective transport rate for the
well fitted genes were close to indistinguishable between naive and
tolerized macrophages, with only poorly fitted genes showing some
differences (Fig. 6E). This suggests thatwhile the context of chromatin
and trans-acting factors regulate transcriptional initiation of immune

responses genes, effective transport rates are primarily regulated by
context-independent gene structure and sequence features.

Transport parameters do not regulate the responsiveness but
the abundance of mRNA induction
Two hypotheses address how the mRNA responsiveness of immune
response genes is regulated: Intuitively, the effective transport rate,
which includes any delays in mRNA processing and splicing, would
control responsiveness. The alternative hypothesis posits that cyto-
plasmic mRNA decay rate determines responsiveness, based on the-
oretical considerations and actual experimental observations3,26 in

Fig. 5 | Potential determinants of the effectivemRNA transport rate. A Effective
transport rates (k1’k2’/k2) show a significant negative correlation with gene length
(Pearson’s correlation of −0.47 and −0.42with associated P value of 3e-12 and 9e-10
for replicate 1 and 2, respectively). B Effective transport rates show a significant
negative correlationwith the number of introns (Pearson’s correlation of −0.54 and
−0.53 with associated P value of 3e-16 and 8e-16 for replicate 1 and 2 respectively).
C Effective transport rates show a significant positive correlation with splicing
probability, averaged over all introns (Pearson’s correlation of 0.63 and 0.55 with
associated P value <2.2e-16 and of 1e-13 for replicate 1 and 2, respectively). This
correlation coefficient is higher than when only the most retained intron is con-
sidered (Supplementary Fig. S5A). D Sum of ChIP-seq signals of indicated histone

mark associated with the gene do not show a correlation with the effective trans-
port rate (alternatively, windows different sizes along the gene, described in
Methods, were tried but yielded no better correlation). EMachine-learningmodels
reveal little predictive power in histone modification ChIP-seq signals. Top, plot of
R2 values that indicates the predictive power of machine-learning models that
consider indicated features. Error bars indicate themean +/− standard deviation of
R2 value of the cross-validation sets. A two-sided t test was used with */**/*** indi-
cating a P value of <0.05, <0.01, <0.001. Bottom, heatmap of the features’ impor-
tance, defined by the gain in accuracy brought by each feature normalized by the
total gain. Numbers in the heatmap correspond to the number of ChIP-seq bins
selected by the model.
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studies that, however, did not consider nuclear-to-cytoplasmic trans-
port.We simulated the gene expression induction of nine hypothetical
genes combining a high,medium, or low transport rates,with a short, a
medium, and long mRNA half-life (Fig. 7A). The results demonstrated
that the mRNA half-life was a primary determinant of responsiveness,
which can be quantified as time to half-maximal expression. Examining
the control of responsiveness further, we identify regimes in which
transport rates may be important. However, plotting the actual
transport and degradation rates of immune response genes onto this
map, we found that almost all genes fall into the regime where the
responsiveness is controlled almost entirely by cytoplasmic mRNA
half-life (Fig. 7B). Quantifying the mRNA responsiveness of immune
response genes, we observed that it is strongly correlated with their
estimated mRNA half-life, but also showed a nonlinear relationship
with the effective transport rate (Fig. 7C). Comparing mRNA-
degradation rates and effective transport rates we then found an

unexpected correlation (Fig. 7D), with short-lived mRNAs having a
higher effective transport rate. We rationalized that the need for rapid
responsiveness requires a high cytoplasmic decay rate, which in turn
would decrease the magnitude of gene expression; by increasing the
effective transport rate, short-livedmRNAswould thenbeexpressed at
high cytoplasmic levels (Fig. 7E). Despite the correlation the magni-
tude of the mRNA-degradation rate tends to be lower than the nuclear
export rate, ensuring that it is generally rate limiting. These observa-
tions suggest that the effective transport rate is not primarily a
determinant of the responsiveness but of the magnitude of gene
expression in innate immune responses.

Discussion
Here, we report that the effective nucleo-cytoplasmic transport rate of
immune response genes varies over a 100-fold range. Our measure-
ments were based on triplicate deeply sequenced RNA-seq data from

Fig. 6 | Prior LPS exposure diminishes transcriptional initiation but has little
effect on export rates. A Comparison of observed basal expression (top) andmax
fold change (bottom) at the chromatin level. Tolerization increases basal expres-
sion and decreases induced expression for most genes. B Heatmap of fold change
in the naive condition and tolerized condition. We observe in all fractions that the
induction is dimmed in the tolerized condition. C Distribution of fit quality for
tolerized and naive macrophages. The fit quality for the tolerized macrophage is
not as good as for thenaive (heavier right tail). Source data are provided as a Source

Data file. D Comparison of post-transcriptional parameters in naive and tolerized
cells. We observe that k1’ and k2 are not well-defined, as in naive macrophages.
However, k2’ and kcyto_deg are well-defined and very similar between to those in
naive condition. E Comparison of the composite parameters, effective transport
rate (k1’k2’/k2), and export efficiency (k2’/k2), between naive and tolerized condi-
tions. These parameters have similar values formost genes, even if less well-defined
in the tolerized condition.
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chromatin-associated, nucleoplasmic and cytoplasmic compartments,
to which a kineticmodel ofmRNA transport and decaywas fit, yielding
confidence intervals for the inferred kinetic parameters. Our method
leveraged the relative quantitation afforded by RNA-seq without the

use of spike-in RNAs, whose addition often introduces variability.
Further, estimates for the effective chromatin-to-cytoplasm transport
rate had tight confidence intervals, even for genes for which
chromatin-release and nucleoplasmic outflux rates (by transport or

Fig. 7 | Understanding the link between responsiveness, transport, and mRNA
half-life. A Simulations of gene induction with different parameter values for
mRNA decay (with indicated half-lives, HL) and effective nuclear transport rates
ranging from 0.03 to 0.3 cytoFPKM/caFPKMmin−1 as observed for the fitted genes.
Responsiveness is measured as time to half induction. B Heatmap of responsive-
ness for various k2’ and kcyto_deg parameter values. There are three main regimes, in
the top left corner, the responsiveness is determined solely by half-life, in the
bottom right corner the responsiveness is solely defined by k2, and the diagonal
may depend on both. The parameter valued for the immune response genes are
overlaid on top. Most genes fall in the region where responsiveness is solely
determinedby the cytoplasmic decay rate.CScatterplots to show the correlation of

gene responsiveness to a step functionwith half-life (left panel) and transport (right
panel). A strong relationship between half-life and responsiveness is observed.
There is a weaker, nonlinear relationship with the transport rate. D Scatterplot to
show the correlation between the chromatin-to-cytoplasm transport rate and the
cytoplasmic decay rates. E Heatmap of relative cytoplasmic mRNA abundance as a
function the effective transport and cytoplasmic degradation rate. F Scatterplots
between the peak cytoplasmic expression level of each gene with either the
effective transport rate or the half-life of its mRNA. This confirms that neither
quantity is correlated with the expression level, supporting the model that the two
balance each other to render the level of expression controlled by other mechan-
isms, such as transcriptional initiation.
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decay) were less well definable when mRNA abundances in chromatin
and nucleoplasmic fractions were more similar. Thus, the effective
transport rates we report could serve for further downstream analysis.

Our regression approach indicated that the effective transport
rate may be accounted for to some degree by intrinsic features of the
gene such as length and exon/intron structure. In contrast, chromatin
context does not seem to be a determinant of effective transport as a
range of histone ChIP-seq data showed little predictive power despite
testing numerous features, and the altered epigenetic state triggered
by prior endotoxin exposure did not alter the kinetic parameters
values. While intron retention that results from experimentally per-
turbing the splicing machinery has been shown to diminish cyto-
plasmic mRNA4, our work suggests that it is also contributes to the
differences in effective transport seen among immune response genes
in wild-type cells. As RBPs mediating export are recruited to
exon–exon junction complexes (EJCs), genes that are spliced co-
transcriptionally may be favored. But not all introns need to necessa-
rily be co-transcriptionally spliced, as the availability of some EJCsmay
be sufficient. We do observe that some introns are retained in the
nucleoplasm, and that the correlation of transport with splicing is not
perfect. Thus, futureworkmay determine whether specific exon–exon
junctions are important for recruiting export factors, or whether all
exon–exon junctions could in principle make that contribution, or
whether TPR pathwaymay apply, allowing fast transport without EJCs.

An unexpected finding of our analysis was that effective transport
rates are highly correlated with cytoplasmic mRNA-degradation rates
among immune response genes. This correlationmaynot be incidental
but mechanistically linked: our motif analysis identified a host of RNA-
binding proteins that prior literature had implicated in both mechan-
isms: for example, HNRNPK is involved in splicing27,28 and shuttles
between the nucleus and cytoplasm in a manner consistent with an
involvement in mRNA export29,30 but other work demonstrated its
involvement in regulating the mRNA stability of the thymidine phos-
phorylase gene31; further, QKI was shown to be involved in splicing32

and nuclear export of MBP33 but other work had implicated it in reg-
ulating the mRNA stability of the AIP gene34.

Why would cytoplasmic mRNA decay be mechanistically linked
with effective nuclear mRNA export? Prior work has established that
the cytoplasmic mRNA half-life controls the responsiveness of
immune response gene expression3,26. However, if genes that must
be highly responsive to immune signals have evolved a high cyto-
plasmic mRNA-degradation rate, their expression level would also
be dramatically lowered. Mechanistically linking the effective
transport rate to cytoplasmic mRNA-degradation allows rapidly
induced immune response genes to also be expressed at a high
level. Indeed, our modeling analysis shows that the hundred-fold
range of effective transport rates may ensure similar levels of
expression for both rapidly inducible or long half-life mRNAs. Thus,
contrary to expectation, effective transport rates do not directly
regulate the stimulus-responsiveness of immune gene expression
but regulate the magnitude of gene expression in immune response
programs.

Methods
Macrophage cell culture and stimulation
Bone-marrow cells were isolated from wild-type C57 BL/6 mice
(females, 3 months, approved and maintained by the University of
California, Los Angeles Division of Laboratory Animal Medicine
accredited by Association for Assessment and Accreditation of
Laboratory Animal Care International, AAALAC) and plated with 30%
L929-conditioned IMDM 10% serum (Gibco ES) supplemented with
Penicillin/Streptomycin, 2-Mercaptoethanol, and L-Glutamine. At day
7, “naive cells” were kept in media for an extra 24h, while “tolerized
cells” were generated by pre-stimulation for 12 h with 100 ng/ml Lipid
A, followed by three washes with warm PBS and 12 h rest with

differentiation medium. At day 8, naive and tolerized cells were sti-
mulated with 100ng/ml Lipid A (Invivogen cat. no. tlrl-mpls) with no
change of medium. Three biological replicates were prepared several
weeks apart.

RNA preparation and sequencing
After stimulation, BMDMs were harvested at desired timepoints.
Subcellular fractions were prepared as described8. Cytoplasmic and
nucleoplasmic RNA were isolated using DIRECT-zol micro prep kit
(Zymo Research). For chromatin-associated RNA, chloroform
extraction was done first and then, the aqueous phase was used to
isolate RNA using the DIRECT-zol micro prep kit. In all cases, DNase I
digestion was carried out to remove DNA. The nuclear fraction of
one replicate was mishandled and thus not available for analysis,
however the chromatin and cytoplamic fractions were still used
when possible. Strand-specific libraries were generated from
250 ng–1 μg of RNA using KAPA Stranded RNA-seq with RiboErase
Library Preparation kit (KAPA Biosystems, Wilmington, MA)
according to the manufacturer’s instructions. Resulting cDNA
libraries were paired-end sequenced multiple times for appropriate
depth with a length of 101 bp on an Illumina HiSeq 2000 or Illumina
HiSeq4000 (Illumina, San Diego, CA). Replicates run on either
platform revealed little technical variability.

RNA-seq data analysis
Adapter sequences were removed and lower quality 3′-end trimmed if
needed using cutadapt v1.1235. Reads were aligned to the mm10 gen-
ome build with STAR 2.5.2b36 using Gencode vM14 as reference
annotation37. Pairs with unmapped reads were filtered out using sam-
tools 1.3.138. Pairs falling onto chrM, chrY and known rRNA regions
were also filtered out based on UCSC table browser39. Bam files for
each sample were merged to a single bam file using samtools38. All
RNA-seq data (fastqs and bams files) was deposited on ENCODE DCC
(https://www.encodeproject.org/awards/U01HG007912/). For gene
selection, chromatin-level expression was calculated using feature-
Counts 1.5.140 on the gene whole body for uniquely mapped fragments
based on Gencode vM14 annotations37. Genes for which all samples
had less than 32 fragments were removed from further analysis. Highly
expressed genes (3 data points with FPKM ≥ 1) were kept for further
analysis. Then significantly induced genes were selected using R
(3.5.1)41 with edgeR package 3.22.542. Induction had to be at least ten-
fold relative to basal and within the first 40min after LPA stimulation,
with FDR corrected P value <=0.01. Non-protein coding genes and
predicted genes were filtered out leaving a total of 288 genes for the
naive condition. For the tolerized conditions the same list of geneswas
used if they also had ≥32 fragments in at least one sample and three
samples with FPKM ≥1 on the chromatin, leaving 249 out of the 288 for
further analysis. Furthermore, sample tracks of chromatin-associated
RNAwere examinedusing IGV43, tofilter out falsepositives due to read-
through from a close gene (14 genes for naive and 6 for LPA stimula-
tion, see examples Supplementary Fig. 2). In addition, one gene was
removed because the chromatin tracks/junction reads seemed to
combine annotated transcripts from a different gene. Thus, we con-
sidered 273 genes for the naive condition and 242 for the tolerized
condition.

Actinomycin-D mRNA half-life measurement
Transcription was inhibited by adding 10 µg/ml of Actinomycin D
(ActD; A9415, Sigma-Aldrich), at 0, 1, and 3 h of LPA stimulation.
Cells were harvested at 0, 30, 60, 90, 120, 240, and 360min after
ActD addition (Supplementary Fig. S4A). Cells were harvested in
TRIzol and RNA was isolated using Directzol kit (Zymo) after
DNAase treatment. During RNA library preparation, 2 µl of 1:100
diluted RNA spike-in (Ambion ERCC Spike-In Mix Part no 4456740)
was added for external normalization. Sequencing was done with a
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length of 50 bp on Illumina HiSeq4000 sequencer. RNA sequencing
processing included trimming of remaining using cutadapt v1.1235,
alignment of the reads with STAR36 to mm10 genome with Gencode
vM6 annotations37 supplemented by ERCC spike-in sequences.
Unmapped reads were filtered out using samtools38. Gene-wise
counts were generated with featureCounts40 using uniquely map-
ped reads. All sequencing fastq files were deposited to Sequence
Read Archive44 under BioProject IDs PRJNA641336.

We created an R package, called ActDanalyser (https://github.
com/dlefaudeux-ucla/ActDAnalyser), which allows users to easily cal-
culate half-life from Actinomycin-D RNA sequencing data. Within the
package, functions were implemented to render every step as easy as
possible. First, genes with low counts (≤32) in all samples were
removed from the analysis. Then the median ratio of each sample’s
spike-ins to its geometric mean across samples was used as normal-
ization factor and applied to corresponding sample gene set. The
library size after normalization decreased with time after actD addi-
tion, as expected given thatmRNAs were decaying. This helped to flag
some experiments that clearly did not follow that pattern andwere not
included in downstream analysis, for example, the sample corre-
sponding to 120min after actD addition of the 1 h post Lipid A sti-
mulation experiment (Supplementary Fig. S4B).

To derivemRNA half-life, the following issues were considered: (i)
after actD addition, polymerase arrest is not instantaneous. (ii) Late
timepoints are less reliable, when short-lived mRNAs are at low levels.
Therefore, the regression was implemented to start at any timepoint
within the first hour, and the last timepoint was picked such that the
regression gives thehighest adjustedR² (Supplementary Fig. S4C). The
steps are summarized as follows:

• Identify potential start points as: t ≤ 1 h after actD addition and
for which the normalized counts (in log2) are not lower than the
max of the 1st hour – 0.25× the max decay per hour.

• For each ActD timecourse: (i) identify possible end timepoints,
(ii) run linear regressionbetween the log2 normalized counts and
time allowing removal of one point as long as at least three
timepoints remain. Allow the intercept to be different for each
replicate.

• Select the negative slope regression that has the highest
adjusted R².

• Calculate slope confidence interval (CI) using the confint func-
tion from the R stats package41

• Convert slope to mRNA half-life

A web interface, called ActDBrowser (https://www.
signalingsystems.ucla.edu/ActDBrowser), was implemented using the
R shiny package allowing users to search half-life for specific mRNA(s)
in specific cell type and conditions as a resource to the community.

ChIP-sequencing
ChIP-seq protocol was conducted according to publishedmethods45

with 5 µg of antibody against H3K4me3 (05-745R, Millipore),
H3K36me3 (ab9050, Abcam), H3K27ac (39133, Active-Motif), and
H3K79me2 (ab3594, Abcam). ChIP-seq libraries were generated
using Kapa Hyper Prep Kit (KAPA Biosystems, Wilmington, MA), and
were single-end sequenced on an Illumina HiSeq 2000 (Illumina, San
Diego, CA) with a length of 50 bp. FASTQ reads were aligned using
the ENCODE-defined analysis pipeline for ChIP-seq read
mapping46,47. Histone ChIP peaks were called using the ENCODE-
defined analysis pipeline for histone ChIP-seq and annotated to the
closest gene with HOMER suite v4.1148. Biological replicate histone
signals were normalized to peak sequence depth using the ENCODE
pipeline. Histone mark signals were averaged between replicates.
All ChIP-seq data (fastqs files) was deposited on ENCODE DCC
(https://www.encodeproject.org/awards/U01HG007912/) and pub-
licly available.

Regression and machine-learning modeling with ChIP-seq
signals
Total, upstream, and downstream histone mark levels were calculated
by summing across the mentioned ranges. Alternatively, histone mark
levels were partitioned into windows with fixed width based on the
average width of each mark. Histone windows were symmetrically
centered around the TSS. H3K27ac had four windows with a width of
7500bp. H3K36me3 had eight windows with a width of 6250bp.
H3K4me3 had four windows with a width of 2500bp. H3K79me2 had
sixwindowswith awidth of 8333bp. For eachwindow, the averagewas
calculated for all ChIP signals located within its bounds. Boundary
ranges for windows were manually defined to incorporate a threshold
of at least 50% of genome-wide peaks for each histone mark, also
taking into account the function of eachmark. Thus, for classification,
each histone mark had several features associated: fixed width win-
dows, total, upstream, and downstream signal. Extreme Gradient
Boosting (XGBtree) models were trained to predict derived mRNA
transport parameters using various model with input feature combi-
nations of histone peak features, gene length, number of introns,
splicing probability as defined previously with fivefold cross-validation
repeated three times and 80/20 data split49. Hyperparameters of each
model were tuned to improve model R2 in the following order—num-
ber of rounds, learning rate, maximum depth, child weight, column
and row sampling, and gamma. R2 metrics were calculated for the
resamples of each model and used to compare predictive perfor-
mance. Plots were generated using the R package ggplot250

complexHeatmap51. All p-values were determined using the
Mann–Whitney U test. Feature importance represent the gain of each
feature (calculatedwith the varimp function from the caret R package)
over the total gain of all features (i.e., to sum up to 1). This analysis was
done in R.

Estimating splicing probability
Measurement of nuclear intron percentage used SIRI12 on the nucleo-
plasmic RNA-seq data. It measures the number of spliced reads across
the junction (EE) and the number of reads spanning the exons-intron
junction on both sides of the introns (EI and IE). The percentage of
intron (PI) for each individual intron was calculated as:

PI =
EI + IE

2

EE + EI + IE
2

ð1Þ

For each gene having a single main isoform, the splicing prob-
ability (SP) was calculated assuming that each intron was indepen-
dently spliced:

SP =
Y

intron

ð1� PIintronÞ ð2Þ

The splicing probability was calculated using the average PIs of
the last two timepoints (90 and 120min) as it correlates well with the
basal steady-state PIs but having more reads on the junctions allowing
for more accurate quantification. Moreover, the splicing probability
was calculated only if the gene had more than ten junction reads
(spliced or unspliced) for all its introns.

RNA-binding protein (RBP) motif analysis
RBP sequence motif analysis used AME tool (Analysis of Motif
Enrichment) from the MEME suite52. The 5′-UTR and 3′-UTR sequences
of each gene main isoform were used and any number of RBP motifs
from human and mouse motif databases53 were searched for. Enrich-
ment was tested by spearman correlation (--method spearman) on the
total number of hits (--scoring totalhist) using a threshold of 0.25 times
themaximum log odd ratio of themotif to be considered a hit (--hit-to-

Article https://doi.org/10.1038/s41467-022-34635-5

Nature Communications |         (2022) 13:7197 11

https://github.com/dlefaudeux-ucla/ActDAnalyser
https://github.com/dlefaudeux-ucla/ActDAnalyser
https://www.signalingsystems.ucla.edu/ActDBrowser
https://www.signalingsystems.ucla.edu/ActDBrowser
https://www.encodeproject.org/awards/U01HG007912/


fraction 0.25) in the respective UTR sequence versus the effective
transport rate derived from the modeling.

Mathematical model formulation
To describe mRNA transport through the different cellular compart-
ments, a two-step model was written as a system of two ordinary dif-
ferential equations:

dRNAnp

dt
= kca!np � RNAca � knp!cyto + knp °

� �
� RNAnp

ð3Þ

dRNAcyto

dt
= knp!cyto � RNAnp � kcyto deg � RNAcyto

ð4Þ

This model describes the exact number of RNA transcripts in
different cellular compartments. As RNA-seq measurements are only
relative, normalization factors α, β, γ were included:

x =α � RNAca

y=β � RNAnp

z = γ � RNAcyto

dy
dt

=
β
α
kca!np|fflfflfflfflffl{zfflfflfflfflffl}

k0
1

�x � ðknp!cyto + knpdeg Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k2

�y ð5Þ

dz
dt

=
γ
β
knp!cyto|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

k0
2

�y� kcyto deg � z ð6Þ

The value of each normalization factor is the same for all genes,
allowing comparisons between genes.

Summary of mathematical model parameters

Parameter Description Unit

k1’ Transport rate constant fromchromatin to the
nucleoplasmic fraction

(npFPKM/
caFPKM)/min

k2 Rateofdisappearance fromthenucleoplasmic
fraction (either by export or degradation)

min−1

k2’ Transport rate constant from nucleoplasmic
to cytoplasmic fraction

(cytoFPKM/
npFPKM)/min

kcyto_deg Cytoplasmic degradation rate min−1

k1’/k2 Chromatin-release efficiency npFPKM/
caFPKM

k2’/k2 Transport efficiency (from nucleoplasm to
cytoplasm)

cytoFPKM/
npFPKM

k1’k2’/k2 Effective transport rate (rate constant from
chromatin to a cytoplasmic fraction)

(cytoFPKM/
caFPKM)/min

Gene annotation for quantifying mRNA abundances
Reliable quantification of mRNA abundances is critical for modeling,
and this relies on accurate gene annotations. Themodel considers full-
length transcripts, so to estimate chromatin-associated transcripts we
considered the exonic regions within the last 5 kb of each gene. To
ensurewe have accurate annotation of the transcription end site (TES),
genome browser tracks were manually checked and annotated. Gen-
code annotation and themanual reannotation of the TSS and TESwere
compared against external databases, using CAGE peaks54 and 3′-end

sequencing data10 (Supplemental Fig. S2G). The manual annotation
wasoften closer to the TSS andTES from these external databases than
the Gencode annotation37. One gene with very low cytoplasmic mRNA
levels was removed because it did not allow for reliable identification
of the expressed isoform; another gene was removed, for having
overlapping transcriptswith another gene. Genes forwhich expression
tracks/splice junctions seemed to come from unannotated transcripts
were also removed (35 for naive, 33 for Tolerized). Additionally, genes
for which the TES location was uncertain were also removed (4 for
naive, 3 for Tolerized). Moreover, genes havingmore than one isoform
corresponding to ≥10% and ≥1 FPKM of the total expression in more
than ¼ of the samples (custom script in Python 3.7) were considered
having multiple isoforms expressed. This curation was based on
examining tracks as well as using estimated isoforms expression from
cufflinks55. When genes were deemed to have multiple isoforms
expressed, the last 5 kb was reduced to correspond to the exonic
portion that is shared by all expressed isoforms species. If the exonic
portion of the last 5 kb region represented less than 500bp (21 for
naive, 19 for Tolerized) genes were removed from further analysis to
avoid that the small length undermines the reliability of expression
estimation. Overall, 77 genes were removed in naive condition (15
genes based on chromatin RNA filtering and 62 based on cytoplasmic
RNA filtering) leaving 211 genes for modeling. In Tolerized conditions,
102 genes were removed (46 based on chromatin RNA filtering and 56
based on cytoplasmic RNA filtering) leaving 186 genes. Details of the
manual curation can be found in Supplementary Data 1 and examples
in Supplementary Fig. S2. To fit the model, relative gene expression
was estimated using FPKM as it is proportional to the number of
transcripts.

Error model for RNA-seq analysis
In order to fit the model to each replicate sample individually, we
developed anerrormodel. Themain sources of error aremeasurement
error, timepoint sampling error, and biological variability between
individual samples. We first considered timepoint sampling error and
biological variability between samples. Timepoint sampling error
affects highly dynamic gene expression trajectories and therefore is a
function of the derivative at that timepoint56. Let g be the gene
expression and lg be the gene expression in log scale, then
lgobservedðtimepointÞ= lg t +Δtð Þ+ εb = lg tð Þ+Δt � lg 0 tð Þ+ εb, where εb
represents the biological variability andΔt the temporal variability.We
assume that εb ∼N 0,σ2

b

� �
and Δt ∼Nð0,σ2

t Þ and Δt � lg 0 ∼
N 0,slope2 � σ2

t

� �
, where slope = lg0. Hence lgobservedðtimepointÞ

∼N lg tð Þ,slope2 � σ2
t + σ

2
b

� �
and thus gobserved timepointð Þ= g tð Þ � εtotal ,

with εtotal ∼ logN 0,σ2
total = σ

2
b + slope

2 � σ2
t

� �
.

Moreover, mRNA abundance measurements are subject to sam-
pling error, especially when the number of reads for a given gene is
small. Sampling error is usually represented by a binomial distribution
but given that any given gene will be represented by only a small
proportion of the total number of reads (which is large), this can be
approximated by a Poisson distribution.

When n is large and the proportion p small: Binomial n,pð Þ
’ Poisson λ=n � pð Þ, thus countsobserved timepointð Þ∼ Poisson λ=N � pð Þ,
where N is the total number of reads and p is the proportion of reads
that should belong to the given gene and is proportional to the true
mRNA abundance, which is assumed to follow a log-normal distribu-
tion. We approximated the log-normal distribution to a Gamma dis-
tribution with equivalent mean and variance. Therefore:

g timepointð Þ∼ logN lg tð Þ,σ2
total

� �
’ Γ k =

1
exp σ2

total

� �� 1
,θ= exp σ2

total

� �� 1
� � � exp lg tð Þ+ σ2

total

2

 ! !

ð7Þ
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This leads to the expression that the observed counts follow a
negative binomial:

countsobserved ∼NB r =
1

exp σ2
total

� �� 1
,p= 1� 1

1 +μ � exp σ2
total

� �� 1
� � � σ2

total
2

� �
0
B@

1
CA
ð8Þ

where μ is the true expected number of counts.
Such a negative binomial distribution is commonly used for

representing counts distributions in RNA-seq analyses, for example, in
software packages edgeR, DESeq, cuffdiff from cufflinks.

Cost function for model fitting
The cost function was defined using the likelihood of the model
reproducing the log2(FPKM) data, with the counts following the
negative binomial distribution described above (FKPM are counts
normalized for library size and gene length). The total cost sums the
negative log-likelihood of each timepoint t of each compartment (cpt):

Cost = � log L θ,αð ÞDð Þ � PðαÞÞ
=
X
t

X
cpt

�log P log2 FPKMcpt tð Þ
� �� ����θ,α� �� �

� logðPðαÞÞ ð9Þ

Here, θ represents the model parameters k1’, k2, k2’, kcyto_deg and α
represents additional parameters, such as for smoothing (spar),
time variability (σt) and sample variability (σb) shown below. These
were also included in the error model, however, their effects are
assumed to be relatively small for a single replicate, thus these
parameters were regularized in the cost function by giving them a
certain prior that has a higher probability of low values, see below. In
one replicate the unstimulated timepoint for the chromatin data was
missing; this was added as a parameter (ca0) and also regularized as
follows:

Prior distribution used for cost function parameters

Prior distribution

spar N μ=0:45,σ2 = 0:0025
� �

σt N1=2ðμ=0,σ2 = 25Þ
σb N1=2ðμ=0,σ2 =0:01Þ
ca0 N μ= ca t1

� �� Δca,σ2 = 0:25
� �

with Δca=meanr∈rep(car(t2) − car(t1))

whereN1=2 represents the half-normal distribution.

Model simulation
Each replicate was used separately for fitting the model parameters,
allowing a comparison of the optimal parameter set. For each repli-
cate, the chromatin-associated expression is interpolated using the.s-
pline function in R (with each point weighted based on its log2(FPKM)
probability, accounting for sampling error), then the model is simu-
lated using a defined set of parameters. The numerical simulations
were done using the deSolve R package57 as well as the compiler
package41 for faster execution of the ode model and cost function
calculation.

Parameter estimation
Local optimization method (BFGS as implemented in the R optim
function) using 1000 different random initialization sets was used
to find the best parameter set, as it has been shown to be as efficient
as other global methods58. The initial parameters were sampled
from distributions. This pipeline was done separately for each
replicate.

Distributions used to sample the 1000 initial parameter sets

Parameters Distributions

θ log10(k1’) Uða= � 5,b= 5Þ
log10(k1’/k2) Uða= � 5,b= 5Þ
log10(k2/k2’) Uða= � 5,b= 5Þ
log10(k2’/kcyto_deg) Uða= � 5,b= 5Þ

α spar Nðμ=0:45,σ2 =0:0025Þ
σt N1=2ðμ=0:45,σ2 =0:0025Þ
σb N1=2ðμ=0,σ2 =0:01Þ
ca0 Nðμ= caðt1Þ � Δca,σ2 =0:25ÞwithΔca =meanr2repðcar ðt2Þ � car ðt1ÞÞ

Fit quality assessment
To assess the fit quality of parameterized models, we considered
that likelihood, used for fitting, is not a sufficient measure.
For example, if the fits of two different genes had the same
likelihood but for one the simulations were consistently below
the data, it would be perceived as worse than the fit for the other
gene that is sometimes below and sometimes above the data,
especially if the data for the second gene are more jaggedy.
Similarly, if one compartment is not well fitted even if the others
are, the perceived fit quality would be strongly affected by the
data from the poorly fitting compartment. Hence, we developed
the following metric which was used to report the perceived fit
quality:

max
cpt

∣autocorr errorcpt
� �

∣ �
mean ∣errorcpt ∣

� �
rangecpt

0
@

1
A ð10Þ

A good fit should have independent residuals, i.e., no auto-
correlation and a relatively small remaining error.

To assess the impact of every parameter a profile likelihood
approach was used59. For each parameter, its profile can be estimated
by:

PLθi ðxÞ= max
θ∣θi = x

logðLðθ∣DÞÞ ð11Þ

The profile likelihood can also be used to estimate confidence
interval of the parameters59:

CIθi ,α = θi = x∣� PLθi
ðxÞ≤ min

θ
ð� logðLðθ∣DÞÞÞ+ 1

2
ΔðαÞ

� 	
ð12Þ

Here, α represents the chosen confidence level. For a sufficient
amount of data:

Δ αð Þ= icdf χ21 ,α
� �

Δ 0:95ð Þ=3:841459

We used the R package dMod60 as well as the numDeriv package
to calculate for eachparameter from θ and combinations suchask1’/k2,
k2’/k2, and k1’k2’/k2 the profile likelihood up to the confidence interval
limits (or 1000-fold lower to 1000-fold higher, whichever condition
wasmet first). To be able to apply the profile likelihoodmeasure to the
compound parameters and estimate their confidence interval, the
model was modified to represent those quantities. Specifically, for k1’/
k2, k2’/k2 the model was reparametrized as follows, where four
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parameters of the model are now k2, k1’/k2, k2’/k2, and kcyto_deg:

dy
dt

= k2 �
k0
1

k2
� x � k2 � y ð13Þ

dz
dt

= k2 �
k0
2

k2
� y� kcyto deg � z ð14Þ

With this new parameterization the profile likelihood was
employed only for k1’/k2, k2’/k2 as the confidence interval was already
assessed by the original parametrization for k2 and kcyto_deg

For k1’k2’/k2, the model was re-parameterized using the four
parameters k2, k1’k2’/k2, k2’/k2, and kcyto_deg:

dy
dt

=
1
k0
2

k2

� k
0
1 � k0

2

k2
� x � k2 � y ð15Þ

dz
dt

= k2 �
k0
2

k2


 �
� y� kcyto deg � z ð16Þ

Similarly, the profile likelihood was employed only for k1’k2’/k2 as
the confidence interval was already assessed for the other parameters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
author upon reasonable request. All next-gen-sequencing data from
fractionatedmacrophage RNA and fromhistonemodification ChIP are
available at ENCODE DCC (https://github.com/ENCODE-DCC, https://
www.encodeproject.org/awards/U01HG007912/). ChIP-seq data are
available at GEO under Accession numbers: GSE188145, GSE187745,
GSE188104, GSE187323, GSE187692, GSE187626. RNA-seq data are
available at GEO under Accession numbers: GSE177858, GSE177905,
GSE177815, GSE177670, GSE177332, GSE177152, GSE177914, GSE178056,
GSE176758, GSE177841, GSE177594, GSE177984, GSE176876,
GSE177913, GSE176845, GSE176735, GSE177709, GSE177135, GSE177714,
GSE176868, GSE177217, GSE176817, GSE177668, GSE177430,
GSE177427, GSE177433, GSE176948, GSE176738, GSE177094,
GSE177816,GSE177327, GSE177077, GSE177578, GSE177791, GSE176835,
GSE177470, GSE177946, GSE176632, GSE177317, GSE176950,
GSE177118, GSE176654, GSE177544,GSE177960,GSE177123, GSE177416,
GSE177013, GSE176980, GSE177809, GSE177369, GSE177564,
GSE177011, GSE176830, GSE176694, GSE176772, GSE177076,
GSE176743, GSE176636, GSE177476, GSE177589, GSE176833,
GSE177417, GSE177998, GSE177734, GSE177208, GSE177448,
GSE178064, GSE178037, GSE177563, GSE178016, GSE177278,
GSE177919, GSE176988, GSE176688, GSE177915, GSE176956,
GSE177319, GSE177965. Actinomycin-D next-gen-sequencing data to
determine mRNA half-lives are available at https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA641336, https://www.ncbi.nlm.nih.gov/Traces/
study/?acc=PRJNA641336 with the following accession IDs:
SRX8602466, SRX8602467, SRX8602468, SRX8607671, SRX8607672,
SRX8607673, SRX8608046, SRX8608047, SRX8608048,
SRX8607661, SRX8607662, SRX8610539, SRX8607663, SRX8607665,
SRX8607666, SRX8607667, SRX8607668, SRX8607669,
SRX8607670, SRX8610540, SRX8610541, SRX8602465, SRX8610048,
SRX8610049, SRX8610050, SRX8610518, SRX8610519, SRX8610520,
SRX8610521, SRX8610522, SRX8610523, SRX8610524, SRX8610525,
SRX8610526, SRX8610527, SRX8610532, SRX8610533, SRX8610534,
SRX8610535, SRX8610536, SRX8610537, SRX8610538. Source data are
provided with this paper.

Code availability
Code for the analysis of Actinomycin-RNA-seq data can be accessed at
https://github.com/signalingsystemslab/ActDAnalyser. Code for the
model-aided analysis of the RNA-seq data from chromatin, nucleo-
plasm, and cytoplasm can be accessed at https://github.com/
signalingsystemslab/mRNA-nuclear-export.
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