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Host-microbe interactions have shaped the genetic architecture 
of inflammatory bowel disease

A full list of authors and affiliations appears at the end of the article.

Abstract

Crohn’s disease (CD) and ulcerative colitis (UC), the two common forms of inflammatory bowel 

disease (IBD), affect over 2.5 million people of European ancestry with rising prevalence in other 

populations1. Genome-wide association studies (GWAS) and subsequent meta-analyses of CD and 

UC2,3 as separate phenotypes implicated previously unsuspected mechanisms, such as autophagy4, 

in pathogenesis and showed that some IBD loci are shared with other inflammatory diseases5. 

Here we expand knowledge of relevant pathways by undertaking a meta-analysis of CD and UC 

genome-wide association scans, with validation of significant findings in more than 75,000 cases 

and controls. We identify 71 new associations, for a total of 163 IBD loci that meet genome-wide 

significance thresholds. Most loci contribute to both phenotypes, and both directional and 

balancing selection effects are evident. Many IBD loci are also implicated in other immune-

mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe 

striking overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-

expression network analysis emphasizes this relationship, with pathways shared between host 

responses to mycobacteria and those predisposing to IBD.

We conducted an imputation-based association analysis using autosomal genotype level data 

from 15 GWAS of CD and/or UC (Supplementary Table 1, Supplementary Figure 1). We 
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imputed 1.23 million SNPs from the HapMap3 reference set (Supplementary Methods), 

resulting in a high quality dataset with reduced genome-wide inflation (Supplementary 

Figures 2, 3) compared with previous meta-analyses of subsets of these data2,3. The imputed 

GWAS data identified 25,075 SNPs that had association p < 0.01 in at least one of the CD, 

UC or all IBD analyses. A meta-analysis of GWAS data with Immunochip6 validation 

genotypes from an independent, newly-genotyped set of 14,763 CD cases, 10,920 UC cases, 

and 15,977 controls was performed (Supplementary Table 1, Supplementary Figure 1). 

Principal components analysis resolved geographic stratification, as well as Jewish and non-

Jewish ancestry (Supplementary Figure 4), and significantly reduced inflation to a level 

consistent with residual polygenic risk, rather than other confounding effects (from λGC = 

2.00 to λGC = 1.23 when analyzing all IBD samples, Supplementary Methods, 

Supplementary Figure 5).

Our meta-analysis of the GWAS and Immunochip data identified 193 statistically 

independent signals of association at genome-wide significance (p < 5×10−8) in at least one 

of the three analyses (CD, UC, IBD). Since some of these signals (Supplementary Figure 6) 

probably represent associations to the same underlying functional unit, we merged these 

signals (Supplementary Methods) into 163 regions, of which 71 are reported here for the 

first time (Table 1, Supplementary Table 2). Figure 1A shows the relative contributions of 

each locus to the total variance explained in UC and CD. We have increased the total disease 

variance explained (variance being subject to fewer assumptions than heritability7) from 

8.2% to 13.6% in CD and from 4.1% to 7.5% in UC (Supplementary Methods). Consistent 

with previous studies, our IBD risk loci seem to act independently, with no significant 

evidence of deviation from an additive combination of log odds ratios.

Our combined genome-wide analysis of CD and UC enables a more comprehensive analysis 

of disease specificity than was previously possible. A model selection analysis 

(Supplementary Methods 1d) showed that 110/163 loci are associated with both disease 

phenotypes; 50 of these have an indistinguishable effect size in UC and CD, while 60 show 

evidence of heterogeneous effects (Table 1). Of the remaining loci, 30 are classified as CD-

specific and 23 as UC-specific. However, 43 of these 53 show the same direction of effect in 

the non-associated disease (Figure 1B, overall p=2.8×10−6). Risk alleles at two CD loci, 

PTPN22 and NOD2, show significant (p < 0.005) protective effects in UC, exceptions that 

may reflect biological differences between the two diseases. This degree of sharing of 

genetic risk suggests that nearly all the biological mechanisms involved in one disease play 

some role in the other.

The large number of IBD associations, far more than reported for any other complex 

disease, increases the power of network-based analyses to prioritize genes within loci. We 

investigated the IBD loci using functional annotation and empirical gene network tools 

(Supplementary Table 2). Compared with previous analyses which identified candidate 

genes in 35% of loci2,3 our updated GRAIL8 -connectivity network identifies candidates in 

53% of loci, including increased statistical significance for 58 of the 73 candidates from 

previous analyses. The new candidates come not only from genes within newly identified 

loci, but also integrate additional genes from previously established loci (Figure 1C). Only 

29 IBD-associated SNPs are in strong linkage disequilibrium (r2 > 0.8) with a missense 
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variant in the 1000 Genomes Project data, which reinforces previous evidence that a large 

fraction of risk for complex disease is driven by non-coding variation. In contrast, 64 IBD-

associated SNPs are in linkage disequilibrium with variants known to regulate gene 

expression (Supplementary Table 2). Overall, we highlighted a total of 300 candidate genes 

in 125 loci, of which 39 contained a single gene supported by two or more methods.

Seventy percent (113/163) of the IBD loci are shared with other complex diseases or traits, 

including 66 among the 154 loci previously associated with other immune-mediated 

diseases9, which is 8.6 times the number that would be expected by chance (Figure 2A, p < 

10−16, Supplementary Figure 7). Such enrichment cannot be attributed to the immune-

mediated focus of the Immunochip, (Supplementary Methods 4a(i), Supplementary Figure 

8), since the analysis is based on our combined GWAS-Immunochip data. Comparing 

overlaps with specific diseases is confounded by the variable power in studies of different 

diseases. For instance, while type 1 diabetes (T1D) shares the largest number of loci (20/39, 

10-fold enrichment) with IBD, this is partially driven by the large number of known T1D 

associations. Indeed, seven other immune-mediated diseases show stronger enrichment of 

overlap, with the largest being ankylosing spondylitis (8/11, 13-fold) and psoriasis (14/17, 

14-fold).

IBD loci are also markedly enriched (4.9-fold, p < 10−4) in genes involved in primary 

immunodeficiencies (PIDs, Figure 2A), which are characterized by a dysfunctional immune 

system resulting in severe infections10. Genes implicated in this overlap correlate with 

reduced levels of circulating T-cells (ADA, CD40, TAP1/2, NBS1, BLM, DNMT3B), or of 

specific subsets such as Th17 (STAT3), memory (SP110), or regulatory T-cells (STAT5B). 

The subset of PIDs genes leading to Mendelian susceptibility to mycobacterial disease 

(MSMD)10–12 is enriched still further; six of the eight known autosomal genes linked to 

MSMD are located within IBD loci (IL12B, IFNGR2, STAT1, IRF8, TYK2 and STAT3, 46-

fold enrichment, p = 1.3 × 10−6), and a seventh, IFNGR1, narrowly missed genome-wide 

significance (p = 6 × 10−8). Overlap with IBD is also seen in complex mycobacterial 

disease; we find IBD associations in 7/8 loci identified by leprosy GWAS13, including 6 

cases where the same SNP is implicated. Furthermore, genetic defects in STAT314–15 and 

CARD916, also within IBD loci, lead to PIDs involving skin infections with staphylococcus 

and candidiasis, respectively. The comparative effects of IBD and infectious disease 

susceptibility risk alleles on gene function and expression is summarized in Supplementary 

Table 3, and include both opposite (e.g. NOD2 and STAT3, Supplementary Figure 9) and 

similar (e.g., IFNGR2) directional effects.

To extend our understanding of the fundamental biology of IBD pathogenesis we conducted 

searches across the IBD locus list: (i) for enrichment of specific GeneOntology (GO) terms 

and canonical pathways, (ii) for evidence of selective pressure acting on specific variants 

and pathways, and (iii) for enrichment of differentially expressed genes across immune cell 

types. We tested the 300 prioritized genes (see above) for enrichment in GO terms 

(Supplementary Methods) and identified 286 GO terms and 56 pathways demonstrating 

significant enrichment in genes contained within IBD loci (Supplementary Table 4, 

Supplementary Figure 10,11). Excluding high-level GO categories such as “immune system 

processes” (p = 3.5 × 10−26), the most significantly enriched term is regulation of cytokine 
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production (p=2.7×10−24), specifically IFNG-γ, IL-12, TNF-α, and IL-10 signalling. 

Lymphocyte activation was the next most significant (p=1.8 × 10−23), with activation of T-, 

B-, and NK-cells being the strongest contributors to this signal. Strong enrichment was also 

seen for response to molecules of bacterial origin (p=2.4 × 10−20), and for KEGG’s JAK-

STAT signalling pathway (p = 4.8 × 10−15). We note that no enriched terms or pathways 

showed specific evidence of CD- or UC-specificity.

As infectious organisms are known to be among the strongest agents of natural selection, we 

investigated whether the IBD-associated variants are subject to selective pressures 

(Supplementary Methods, Supplementary Table 5). Directional selection would imply that 

the balance between these forces shifted in one direction over the course of human history, 

whereas balancing selection would suggest an allele frequency dependent-scenario typified 

by host-microbe co-evolution, as can be observed with parasites. Two SNPs show 

Bonferroni-significant selection: the most significant signal, in NOD2, is under balancing 

selection (p = 5.2 × 10−5), and the second most significant, in the receptor TNFRSF18, 

showed directional selection (p = 8.9 × 10−5). The next most significant variants were in the 

ligand of that receptor, TNFSF18 (directional, p = 5.2 × 10−4), and IL23R (balancing, p = 

1.5 × 10−3). As a group, the IBD variants show significant enrichment in selection (Figure 

2B) of both types (p = 5.5 × 10−6). We discovered an enrichment of balancing selection 

(Figure 2B) in genes annotated with the GO term “regulation of interleukin-17 production” 

(p = 1.4 × 10−4). The important role of IL17 in both bacterial defense and autoimmunity 

suggests a key role for balancing selection in maintaining the genetic relationship between 

inflammation and infection, and this is reinforced by a nominal enrichment of balancing 

selection in loci annotated with the broader GO term “defense response to bacterium” (p = 

0.007).

We tested for enrichment of cell-type expression specificity of genes in IBD loci in 223 

distinct sets of sorted, mouse-derived immune cells from the Immunological Genome 

Consortium17. Dendritic cells showed the strongest enrichment, followed by weaker signals 

that support the GO analysis, including CD4+ T, NK and NKT cells (Figure 2C). Notably, 

several of these cell types express genes near our IBD associations much more specifically 

when stimulated; our strongest signal, a lung-derived dendritic cell, had p stimulated < 1×10−6 

compared with p unstimulated = 0.0015, consistent with an important role for cell activation.

To further our goal of identifying likely causal genes within our susceptibility loci and to 

elucidate networks underlying IBD pathogenesis, we screened the associated genes against 

211 co-expression modules identified from weighted gene co-expression network 

analyses18, conducted with large gene expression datasets from multiple tissues19–21. The 

most significantly enriched module comprised 523 genes from omental adipose tissue 

collected from morbidly obese patients19, which was found to be 2.9-fold enriched for genes 

in the IBD-associated loci (p = 1.1 × 10−13, Supplementary Table 6, Supplementary Figure 

12). We constructed a probabilistic causal gene network using an integrative Bayesian 

network reconstruction algorithm22–24 which combines expression and genotype data to 

infer the direction of causality between genes with correlated expression. The intersection of 

this network and the genes in the IBD-enriched module defined a sub-network of genes 

enriched in bone marrow-derived macrophages (p < 10−16) and is suggestive of dynamic 
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interactions relevant to IBD pathogenesis. In particular, this sub-network featured close 

proximity amongst genes connected to host interaction with bacteria, notably NOD2, IL10, 

and CARD9.

A NOD2-focused inspection of the sub-network prioritizes multiple additional candidate 

genes within IBD-associated regions. For example, a cluster near NOD2 (Figure 2D) 

contains multiple IBD genes implicated in M.tb response, including SLC11A1, VDR and 

LGALS9. Furthermore, both SLC11A1 (also known as NRAMP1) and VDR have been 

associated with M.tb infection by candidate gene studies25–26, and LGALS9 modulates 

mycobacteriosis27. Of interest, HCK (located in our new locus on chromosome 20 at 

30.75Mb) is predicted to upregulate expression of both NOD2 and IL10, an anti-

inflammatory cytokine associated with Mendelian28 and non-Mendelian IBD29. HCK has 

been linked to alternative, anti-inflammatory activation of monocytes (M2 macrophages)30; 

while not identified in our aforementioned analyses, these data implicate HCK as the causal 

gene in this new IBD locus.

We report one of the largest genetic experiments involving a complex disease undertaken to 

date. This has increased the number of confirmed IBD susceptibility loci to 163, most of 

which are associated with both CD and UC, and is substantially more than reported for any 

other complex disease. Even this large number of loci explains only a minority of the 

variance in disease risk, which suggests that other factors such as rarer genetic variation not 

captured by GWAS or environmental exposures make substantial contributions to 

pathogenesis. Most of the evidence relating to possible causal genes points to an essential 

role for host defence against infection in IBD. In this regard the current results focus ever 

closer attention on the interaction between the host mucosal immune system and microbes 

both at the epithelial cell surface and within the gut lumen. In particular, they raise the 

question, in the context of this burden of IBD susceptibility genes, as to what triggers 

components of the commensal microbiota to switch from a symbiotic to a pathogenic 

relationship with the host. Collectively, our findings have begun to shed light on these 

questions and provide a rich source of clues to the pathogenic mechanisms underlying this 

archetypal complex disease.

METHODS SUMMARY

We conducted a meta-analysis of GWAS datasets after imputation to the HapMap3 

reference set, and aimed to replicate in the Immunochip data any SNPs with p < 0.01. We 

compared likelihoods of different disease models to assess whether each locus was 

associated with CD, UC or both. We used databases of eQTL SNPs and coding SNPs in 

linkage disequilibrium with our hit SNPs, as well as the network tools GRAIL and 

DAPPLE, and a co-expression network analysis to prioritize candidate genes in our loci. 

Gene Ontology, ImmGen mouse immune cell expression resource, the TreeMix selection 

software, and a Bayesian causal network analysis were used to functionally annotate these 

genes.
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Figure 1. The IBD genome
A) Variance explained by the 163 IBD loci. Each bar, ordered by genomic position, 

represents an independent locus. The width of the bar is proportional to the variance 

explained by that locus in CD and UC. Bars are connected together if they are identified as 

being associated with both CD and UC. Loci are labeled if they explain more than 1% of the 

total variance explained by all loci for that phenotype. B) The 193 independent signals, 

plotted by total IBD odds ratio and phenotype specificity (measured by the odds ratio of CD 

relative to UC), and colored by their IBD phenotype classification from Table 1. Note that 

many loci (e.g. IL23R) show very different effects in CD and UC despite being strongly 

associated to both. C) GRAIL network for all genes with GRAIL p < 0.05. Genes included 

in our previous GRAIL networks in CD and UC are shown in light blue, newly connected 

genes in previously identified loci in dark blue, and genes from newly associated loci in 

gold. The gold genes reinforce the previous network (light blue) and expand it to include 

dark blue genes.
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Figure 2. Dissecting the biology of IBD
A) Number of overlapping IBD loci with other immune-mediated diseases (IMD), leprosy, 

and Mendelian primary immunodeficiencies (PID). Within PID, we highlight Mendelian 

susceptibility to mycobacterial disease (MSMD). B) Signals of selection at IBD SNPs, from 

strongest balancing on the left to strongest directional on the right. The grey curve shows the 

95% confidence interval for randomly chosen frequency-matched SNPs, illustrating our 

overall enrichment (p = 5.5 × 10-6), while the dashed line represents the Bonferroni 

significance threshold. SNPs highlighted in red are annotated as involved in regulation of 

IL17 production, a key IBD functional term related to bacterial defense, and are enriched for 

balancing selection. C) Evidence of enrichment in IBD loci of differentially expressed genes 

from various immune tissues. Each bar represents the empirical p-value in a single tissue, 

and the colours represent different cell type groupings. The dashed line is Bonferroni-

corrected significance for the number of tissues tested. D) NOD2-focused cluster of the IBD 

causal subnetwork. Pink genes are in IBD associated loci, blue are not. Arrows indicate 

inferred causal direction of regulation of expression.
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Table 1

Crohn’s disease-specific, ulcerative colitis-specific and IBD general loci

Chr Position (hg19 (Mb)) SNP Key Genes (+N additional in locus)

Crohn’s Disease

1 78.62 rs17391694 (5)

1 114.3 rs6679677§ PTPN22||,(8)

1 120.45 rs3897478 ADAM30,(5)

1 172.85 rs9286879 FASLG,TNFSF18,(0)

2 27.63 rs1728918 UCN,(23)

2 62.55 rs10865331 (3)

2 231.09 rs6716753 SP140,(5)

2 234.15 rs12994997 ATG16L1||, (8)

4 48.36 rs6837335 (6)

4 102.86 rs13126505 (1)

5 55.43 rs10065637 IL6ST,IL31RA,(1)

5 72.54 rs7702331 (4)

5 173.34 rs17695092 CPEB4,(2)

6 21.42 rs12663356 (3)

6 31.27 rs9264942 (22)

6 127.45 rs9491697 (3)

6 128.24 rs13204742 (2)

6 159.49 rs212388 TAGAP,(5)

7 26.88‡ rs10486483 (2)

7 28.17 rs864745 CREB5,JAZF1,(1)

8 90.87 rs7015630 RIPK2,(4)

8 129.56 rs6651252 0

13 44.45 rs3764147 LACC1,(3)

15 38.89 rs16967103 RASGRP1,SPRED1,(2)

16 50.66** rs2066847§ NOD2||, (6)

17 25.84 rs2945412 LGALS9,NOS2,(3)

19 1.12 rs2024092 GPX4,HMHA1,(20)

19 46.85‡ rs4802307 (9)

19 49.2 rs516246 FUT2, (25)

21 34.77 rs2284553 IFNGR2,IFNAR1, (10)

Ulcerative Colitis

1 2.5 rs10797432 TNFRSF14, (10)

1 20.15** rs6426833 (9)

1 200.09 rs2816958 (3)

2 198.65 rs1016883 RFTN2,PLCL1,(7)
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Chr Position (hg19 (Mb)) SNP Key Genes (+N additional in locus)

2 199.70* rs17229285 0

3 53.05 rs9847710 PRKCD,ITIH4,(8)

4 103.51 rs3774959 NFKB1,MANBA,(2)

5 0.59 rs11739663 SLC9A3,(8)

5 134.44 rs254560 (6)

6 32.595 rs6927022 (15)

7 2.78 rs798502 CARD11, GNA12, (5)

7 27.22‡ rs4722672 (14)

7 107.45* rs4380874 DLD,(9)

7 128.57 rs4728142 IRF5||, (13)

11 96.02 rs483905 JRKL,MAML2,(2)

11 114.38 rs561722 FAM55A,FAM55D,(5)

15 41.55 rs28374715 (11)

16 30.47 rs11150589 ITGAL,(20)

16 68.58 rs1728785 ZFP90,(6)

17 70.64 rs7210086 (3)

19 47.12‡ rs1126510 CALM3,(14)

20 33.8 rs6088765 (11)

20 43.06 rs6017342 ADA,HNF4A,(9)

Inflammatory Bowel Disease

1 1.24 rs12103 TNFRSF18,TNFRSF4,(30)

1 8.02 rs35675666 TNFRSF9,(6)

1 22.7 rs12568930† (3)

1 67.68** rs11209026† IL23R||, (5)

1 70.99 rs2651244† (3)

1 151.79 rs4845604† RORC,(14)

1 155.67 rs670523† (31)

1 160.85 rs4656958† CD48, (15)

1 161.47 rs1801274† FCGR2A/B, FCGR3A, (13)

1 197.6 rs2488389 C1orf53,(2)

1 200.87 rs7554511 KIF21B,(6)

1 206.93 rs3024505† IL10, (10)

2 25.12 rs6545800† ADCY3,(6)

2 28.61 rs925255† FOSL2,BRE,(1)

2 43.81 rs10495903† (5)

2 61.2 rs7608910 REL, (9)

2 65.67 rs6740462 SPRED2,(1)

2 102.86* rs917997† IL18RAP, IL1R1, (7)
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Chr Position (hg19 (Mb)) SNP Key Genes (+N additional in locus)

2 163.1 rs2111485 IFIH1,(5)

2 191.92 rs1517352 STAT1,STAT4,(2)

2 219.14 rs2382817 (15)

2 241.57* rs3749171† GPR35,(12)

3 18.76 rs4256159† 0

3 48.96** rs3197999 MST1, PFKB4, (63)

4 74.85 rs2472649† (11)

4 123.22 rs7657746 IL2,IL21,(2)

5 10.69 rs2930047 DAP,(2)

5 40.38** rs11742570† PTGER4,(1)

5 96.24 rs1363907 ERAP2, ERAP1, (3)

5 130.01 rs4836519† (1)

5 131.19* rs2188962† IBD5 locus, (18)

5 141.51 rs6863411† SPRY4,NDFIP1,(5)

5 150.27 rs11741861† IRGM||, (10)

5 158.8** rs6871626† IL12B,(3)

5 176.79 rs12654812 DOK3,(17)

6 14.71 rs17119 0

6 20.77* rs9358372† (2)

6 90.96 rs1847472 (1)

6 106.43 rs6568421† (2)

6 111.82 rs3851228 TRAF3IP2, (4)

6 138 rs6920220† TNFAIP3,(1)

6 143.9 rs12199775 PHACTR2,(5)

6 167.37 rs1819333† CCR6,RPS6KA2,(4)

7 50.245* rs1456896 ZPBP,IKZF1,(4)

7 98.75 rs9297145 SMURF1,(6)

7 100.34 rs1734907† EPO,(21)

7 116.89 rs38904† (6)

8 126.53 rs921720† TRIB1,(1)

8 130.62 rs1991866 (2)

9 4.98 rs10758669 JAK2,(4)

9 93.92 rs4743820† NFIL3,(2)

9 117.60** rs4246905 TNFSF15, (4)

9 139.32* rs10781499† CARD9, (22)

10 6.08 rs12722515† IL2RA,IL15RA,(6)

10 30.72 rs1042058† MAP3K8,(3)

Inflammatory Bowel Disease
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Chr Position (hg19 (Mb)) SNP Key Genes (+N additional in locus)

10 35.3 rs11010067† CREM,(3)

10 59.99 rs2790216 CISD1,IPMK,(2)

10 64.51** rs10761659† (3)

10 75.67 rs2227564† (13)

10 81.03 rs1250546† (5)

10 82.25 rs6586030† TSPAN14,C10orf58,(4)

10 94.43 rs7911264 (4)

10 101.28 rs4409764 NKX2-3,(6)

11 1.87 rs907611 TNNI2,LSP1,(17)

11 58.33 rs10896794 CNTF,LPXN,(8)

11 60.77 rs11230563 CD6, (14)

11 61.56 rs4246215† (15)

11 64.12 rs559928 CCDC88B,(23)

11 65.65 rs2231884† RELA, (25)

11 76.29 rs2155219† (5)

11 87.12 rs6592362 (1)

11 118.74 rs630923† CXCR5,(17)

12 12.65 rs11612508† LOH12CR1,(8)

12 40.77* rs11564258† MUC19,(1)

12 48.2 rs11168249† VDR,(8)

12 68.49 rs7134599† IFNG, (3)

13 27.52 rs17085007† (2)

13 40.86** rs941823† (3)

13 99.95 rs9557195 GPR183,GPR18,(6)

14 69.27 rs194749† ZFP36L1,(4)

14 75.7 rs4899554† FOS,MLH3,(6)

14 88.47 rs8005161 GPR65,GALC,(1)

15 67.43 rs17293632† SMAD3,(2)

15 91.17 rs7495132 CRTC3,(3)

16 11.54* rs529866† SOCS1,LITAF, (11)

16 23.86 rs7404095 PRKCB,(5)

16 28.6 rs26528† IL27, (14)

16 86 rs10521318† IRF8,(4)

17 32.59 rs3091316† CCL13,CCL2, (5)

17 37.91 rs12946510 ORMDL3, (16)

17 40.53 rs12942547† STAT3, (15)

17 57.96 rs1292053† TUBD1,RPS6KB1,(9)
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Chr Position (hg19 (Mb)) SNP Key Genes (+N additional in locus)

18 12.8 rs1893217† (6)

18 46.39 rs7240004† SMAD7,(2)

18 67.53 rs727088 CD226,(2)

19 10.49* rs11879191 TYK2, (27)

19 33.73 rs17694108 CEBPG,(8)

19 55.38 rs11672983 (19)

20 30.75 rs6142618† HCK,(10)

20 31.37 rs4911259 DNMT3B,(8)

20 44.74 rs1569723† CD40, (13)

20 48.95 rs913678 CEBPB,(5)

20 57.82 rs259964 ZNF831,CTSZ,(5)

20 62.34 rs6062504 TNFRSF6B, (26)

21 16.81 rs2823286† 0

21 40.46 rs2836878† (3)

21 45.62 rs7282490 ICOSLG,(9)

22 21.92 rs2266959 (13)

22 30.43 rs2412970 LIF, OSM, (9)

22 39.69* rs2413583† (19)

The position given is the middle of the locus window.

*
= additional genome-wide significant associated SNP in the region.

**
= two or more additional genome-wide significant SNPs in the region.

‡
 = These regions have overlapping but distinct UC and CD signals.

†
 = heterogeneity of odds ratios.

§
 = CD risk allele is significantly protective in UC.

||
= gene for which functional studies of associated alleles have been reported. Newly discovered loci. Bolded rs numbers indicate SNPs with p-

values less than 10−13. Listed are genes implicated by one or more candidate genes approaches. Bolded genes have been implicated by two or 
more candidate gene approaches. For each locus, the top two candidate genes are listed. A complete listing of gene prioritization is provided in 
Supplementary Table 2.
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