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ABSTRACT Critical illness is hypothesized to associate with loss of “health-
promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis).
This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis,
and organ failure. A trial with prospective monitoring of the intensive care unit (ICU)
patient microbiome using culture-independent techniques to confirm and character-
ize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome
changes may provide first steps toward the development of diagnostic and thera-
peutic interventions using microbiome signatures. To characterize the ICU patient
microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients
across four centers in the United States and Canada. Samples were collected at two
time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10.
Sample collection and processing were performed according to Earth Microbiome
Project protocols. We applied SourceTracker to assess the source composition of ICU
patient samples by using Qiita, including samples from the American Gut Project
(AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and
house surfaces. Our results demonstrate that critical illness leads to significant and
rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP
healthy controls are key “health-promoting” organisms, and overgrowth of known
pathogens was frequent. Source compositions of ICU patient samples are largely un-
characteristic of the expected community type. Between time points and within a
patient, the source composition changed dramatically. Our initial results show great
promise for microbiome signatures as diagnostic markers and guides to therapeutic
interventions in the ICU to repopulate the normal, “health-promoting” microbiome
and thereby improve patient outcomes.

IMPORTANCE Critical illness may be associated with the loss of normal, “health
promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria
(dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections,
sepsis, and organ failure. This has significant world health implications, because sep-
sis is becoming a leading cause of death worldwide, and hospital-acquired infections
contribute to significant illness and increased costs. Thus, a trial that monitors the
ICU patient microbiome to confirm and characterize this hypothesis is urgently
needed. Our study analyzed the microbiomes of 115 critically ill subjects and dem-
onstrated rapid dysbiosis from unexpected environmental sources after ICU admis-
sion. These data may provide the first steps toward defining targeted therapies that
correct potentially “illness-promoting” dysbiosis with probiotics or with targeted,
multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU set-
ting to improve patient outcomes.
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ICU Microbiome Project in 115 patients
reveals rapid and extreme dysbiosis from
unexpected environmental sources following
ICU admission
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What constitutes a healthy microbiome is poorly understood, as “healthy” likely
depends on host genetics, environment, nutrition, age, and lifestyle (1). Although

what is “healthy” is not yet well defined, identifying large-scale dysbiosis of the
microbiome is increasingly feasible (2, 3). Critical illness leads to the admission of �5.7
million patients annually to intensive care units (ICUs) in the United States for intensive
or invasive monitoring. These admissions consume ~20% of U.S. hospital costs, with
death rates from critical illness increasing at a rate greater than that of any other
common cause of death worldwide (4). Small, culture-based studies suggest that critical
illness may be associated with loss of commensal microbes and overgrowth of poten-
tially pathogenic and inflammatory bacteria. This dysbiosis is believed to lead to high
susceptibility to hospital-acquired infections (HAIs), sepsis, and multiorgan dysfunction
syndrome (MODS) (5–7); sepsis alone is becoming a leading cause of death worldwide
(5), while HAIs in general contribute significantly to patient morbidity and increased
costs. Pilot (�15 patients) microbiome studies of ICU patients have been undertaken (8,
9), and the results of these explorations suggest the urgent need for larger prospective
studies that monitor the microbiome of critical-care patients by using culture-
independent techniques to test the long-held dysbiosis hypothesis (10).

To address this, we set out to characterize the microbiomes of 115 critically ill (ICU)
patients at two time points. The novelties of this study relative to prior investigations
are that we applied a probabilistic framework, SourceTracker (11), to assess whether the
microbial communities appear to source from expected compositions; assessed differ-
ential taxonomic abundances with ANCOM (12) relative to the American Gut Project
(AGP); and performed a co-occurrence analysis of the ICU patient samples by using
SparCC (13). The results of this study show that, regardless of the reason for admission,
the microbiome of many critical-care patients is drawn from unexpected sources (i.e.,
fecal not resembling fecal), the individuals differ substantially from a healthy popula-
tion, the disruption of the microbial community appears to be greater at a second time
point later in the ICU stay, and a set of concerning inflammatory taxons co-occur. This
study suggests that interventions focused on improving the microbiome in critical-care
patients should be undertaken.

All ICU patient microbiome samples were assayed for community source propor-
tions by using SourceTracker (11). Source samples were obtained from Qiita (https://
qiita.ucsd.edu/) (14) and included samples from self-reportedly healthy individuals (15),
healthy children (median age of 1.3 years) (16), dust from built-environment surfaces
(17), and skin from decomposing human bodies and the soil surrounding the bodies
(18). Source proportions for patients, where samples at both time points were viable,
are shown in Fig. 1A and B for fecal and oral communities, respectively. Notably, at
admission (first row in Fig. 1A and B), many of the samples appear to be of unexpected
composition (e.g., an adult fecal sample resembling decomposing corpses). At dis-
charge, a similar observation can be made, and the source proportions within an
individual generally changed dramatically during this interval.

For fecal samples, the phylogenetic diversity (19) at discharge is significantly lower
than at admission (nonparametric two-sample t test with 9,999 permutations, P �

0.045, Bonferroni corrected). Unweighted UniFrac (20) distance distributions of within-
time-point distances significantly differ (Fig. 1D) by Kruskal-Wallis test for both fecal
(k � 126.79, P � 1.24e�28, Bonferroni corrected) and oral communities (k � 323.2, P �

1.75e�71, Bonferroni corrected); however, a difference was not observed with skin,
possibly because of the low-biomass nature of the samples and susceptibility to
transient organisms (i.e., possible environmental normalization). Unexpectedly, fecal
and oral samples obtained at admission are more similar to each other than to samples
obtained at discharge, implying that the length of stay in an ICU is associated with
community disruption.
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Principal-coordinate analysis of UniFrac distances of the ICU patient samples and
oral samples in isolation relative to the healthy subset of the AGP samples (Fig. 2A and
B) (15) shows strong separation. It is unlikely that this is a study effect, as the ICU patient
samples were processed and run in parallel with AGP samples. These differences are
further characterized by phylum-level taxonomy, where fecal samples from ICU patients
tend to have a lower relative abundance of Firmicutes and Bacteroidetes and an
increased relative abundance of Proteobacteria (Fig. 2C; see Fig. S5, oral and skin, in the
supplemental material). We also observed large depletions of organisms previously
thought to confer anti-inflammatory benefits, such as Faecalibacterium (21). Conversely,
many of the taxa that increased contain well-recognized pathogens such as Enterobac-
ter and Staphylococcus (see Tables S1 to S3 in the supplemental material). As previously
observed in 14 ICU patients by Zaborin et al. (8), this disruption of the microbial
community appears to generally associate with individual operational taxonomic units
(OTUs) dominating a community, as observed at all of the body sites assayed (Fig. 2D).
Interestingly, we observed inflammatory taxons appearing to co-occur when using
SparCC (13) (co-occurrence analysis method as suggested in reference 22), including
various members of the Enterobacteriaceae family, such as Salmonella, Enterobacter,
Citrobacter, Erwinia, Serratia, and Pantoea. This observation was true at both time points
and for both oral and fecal communities (see Fig. S6 in the supplemental material),
suggesting a model of HAIs analogous to an unruly person looting vulnerable shops
after a natural disaster, as unruly individuals tend to bring their unruly friends.

In summary, this study tested the hypothesis that critical illness is associated with a
loss of health-promoting commensal microbes and the occurrence of dysbiosis, which
has previously been shown to be associated with high susceptibility to HAI, sepsis, and

FIG 1 ICU stays result in drastic community changes. (A, B) SourceTracker proportions for ICU patients with samples obtained both at admission and at
discharge in fecal (A) and oral (B) communities. The first row shows samples obtained at admission sorted by expected community type. The second shows
samples obtained at discharge in patient order with the first row. Sources included samples from the healthy AGP subject subset, skin samples from
decomposing bodies, soil samples from around decomposing bodies, fecal samples from healthy children in the Global Gut study, and dust samples from
a house forensics study. A lack of color indicates an unknown source. For complete SourceTracker distribution plots, see Fig. S1 to 3 in the supplemental
material. (C) Rarefaction curves using phylogenetic diversity of the ICU patient and healthy AGP subject samples. Error bars show standard errors. (D)
Unweighted UniFrac distance distributions of within-time-point distances for fecal (P � 1.24e�28; Bonferroni corrected), oral (P � 1.75e�71; Bonferroni
corrected), and skin (no significant difference) sites. The letters A and D on the x axis denote admission and discharge, respectively; whiskers are at 1.5
times the interquartile range. For a comparable weighted UniFrac analysis, see Fig. S4 in the supplemental material.
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MODS (5, 6). Our analysis of microbiome data from 115 subjects indicates that the
composition of the microbiome in many ICU patients is derived from unexpected
sources and differs significantly from that of a healthy population and that the
magnitude of this dysbiosis appears to increase between time points. Limitations of this
study are described in the supplemental material; notably, the ubiquitous use of
antibiotics precludes differentiating the effect of antibiotic pressure from the effect of
critical illness. As �70% of ICU patients worldwide receive antibiotics (23), antibiotic
pressure should be considered both a treatment and a fundamental pathophysiologic
“insult” with likely negative effects on beneficial organisms. Irrespective of the cause,
the evidence suggests that critical-care patients may benefit from therapeutics focused
on improvement of the microbiome.

Previous research has shown that restoration of commensal “healthy microbes”
following illness via interventions such as probiotics may exert their beneficial effects
via multiple pathways, including suppression of dysbiosis or pathogenic microbes by
inducing host cell antimicrobial peptides, release of antimicrobial factors, modulation
of immune cell proliferation, stimulation of mucus and IgA production, inhibition of
inflammatory epithelial cell nuclear factor kappa B activation, induction of mucin
secretion, and other potentially vital gut epithelial barrier protective effects (24–26).
As the gut is hypothesized to play a central role in the progression of critical illness,
sepsis, and MODS (27), restoration of a healthy gut microbiome may be important

FIG 2 ICU patients differ markedly from healthy AGP subjects. (A, B) Principal-coordinate (PC) plots of unweighted UniFrac distances of both ICU patient
and healthy AGP subject samples: A, fecal, skin, and oral samples with the ICU patient samples enlarged to aid in differentiation; B, oral samples in
isolation. (C) Stacked taxonomy bar charts for fecal split by time point, showing a random subsample of healthy AGP subject samples. (D) Rank-abundance
curves for all three body sites split by time point, showing random subsamples from the healthy AGP subject subset.
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for improving outcomes in critically ill patients. In support of this, a recent single
case report of successful treatment of refractory severe sepsis and diarrhea with
fecal transplantation has been published (28). Consistent with our findings, this
ICU patient also demonstrated depleted Firmicutes and increased Proteobacteria,
which was ameliorated by fecal transplantation, followed by rapid recovery of the
patient (28).

In brief, methods for this study included fecal, oral, and skin sample collection by
trained hospital personal from 115 mixed ICU patients �18 years of age who were
mechanically ventilated within 48 h of ICU admission and were expected to remain in
the ICU �72 h at five different ICUs. Patients were not excluded on the basis of health
status. Samples were collected within 72 h of admission to the ICU and at discharge or
on ICU day 10, where possible. Samples were then processed and sequenced by using
Earth Microbiome Project (29) DNA protocols targeting the V4 region of the 16S rRNA
gene (30) on the Illumina MiSeq platform. Sequence data were processed in QIIME 1.9.1
(31) by using Greengenes 13_8 (32). SourceTracker (11) was applied by using data sets
sourced from Qiita (14). ANCOM (12) was applied to assess differential taxa between the
ICU patient and AGP samples. For further details about the methods used, see Text S1 in
the supplemental material.

Accession numbers. The ICU patient sequence data and deidentified patient meta-
data are available in the Qiita database (https://qiita.ucsd.edu/) (accession no. 2136) and
in the European Bioinformatics Institute, European Nucleotide Archive (accession no.
ERP012810).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSphere.00199-16.
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