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Non-Perturbative Effects in µ → eγ
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La Jolla, CA 92093-0319, USA

E-mail: wdekens@ucsd.edu, ejenkins@ucsd.edu, amanohar@ucsd.edu,

pstoffer@ucsd.edu

Abstract: We compute the non-perturbative contribution of semileptonic tensor operators

(q̄σµνq)(ℓ̄σµνℓ) to the purely leptonic process µ → eγ and to the electric and magnetic dipole

moments of charged leptons by matching onto chiral perturbation theory at low energies.

This matching procedure has been used extensively to study semileptonic and leptonic weak

decays of hadrons. In this paper, we apply it to observables that contain no strongly interacting

external particles. The non-perturbative contribution to µ → e processes is used to extract the

best current bound on lepton-flavor-violating semileptonic tensor operators, ΛBSM & 450TeV.

We briefly discuss how the same method applies to dark-matter interactions.
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1 Introduction

The branching ratio for the purely leptonic decay µ → eγ has the current upper bound

BR(µ → eγ) < 4.2 × 10−13 , (1.1)

determined by the MEG collaboration [1, 2]. In the Standard Model (SM) including flavor-

changing Majorana neutrino masses, the decay rate is suppressed by (mν/MW )4 ∼ 10−48,

so the result Eq. (1.1) provides strong constraints on µ → e transitions due to new physics

beyond the Standard Model (BSM). The effect of new physics at energies above the muon

mass can be described by an effective field theory, and the leading operators that contribute

to µ → eγ are the dipole operators1

L = Leγ
eµ

eLσ
µνµR Fµν + Leγ

µe
µLσ

µνeR Fµν + h.c. (1.2)

These dimension-five operators result in a decay width

Γ(µ → eγ) =
m3

µ

4π

(

∣

∣Leγ
eµ

∣

∣

2
+
∣

∣Leγ
µe

∣

∣

2
)

+O(m2
e) , (1.3)

1We use the conventions of Refs. [3, 4]. Other commonly used normalization conventions include factors

of e and/or mµ.
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so Eq. (1.1) places the limit

√

∣

∣Leγ
eµ

∣

∣

2
+
∣

∣Leγ
µe

∣

∣

2
< 3.7× 10−11 TeV−1 . (1.4)

If one assumes that new physics consists of particles with masses well above the electro-

weak scale, the Standard Model Effective Field Theory (SMEFT) provides an adequate de-

scription of BSM effects [5, 6]. At the weak scale, the SMEFT is matched to the low-energy

effective field theory (LEFT) [3, 4]. In such a scenario, the dimension-five dipole operators in

Eq. (1.2) derive from dimension-six dipole operators in the SMEFT, so their coefficients are

of the same size as those of the other dimension-six operators. In this paper, we will consider

the case where Leγ is formally of order 1/Λ2
BSM

, and of the same size as other dimension-six

operators. In many BSM models, the dipole operators are typically induced with a coefficient

Leγ ∼ emµ/Λ
2
BSM

, and so the limit Eq. (1.4) is equivalent to ΛBSM > 930TeV.

The operators in the low-energy effective theory below the weak scale have been classified

in Ref. [3]. We can calculate the decay rate µ → eγ in terms of LEFT operators renormalized

at a scale µ ∼ 2GeV at which perturbation theory is still valid. The heavy quarks can be

integrated out of the theory, so the low-energy effective theory contains three dynamical light

quark flavors, q = u, d, s.

In addition to dipole operators such as Eq. (1.2), LEFT has dimension-six q4, ℓ4, q2ℓ2,

and G3 operators, where q, ℓ, and G are quark, lepton, and gluon fields. The ℓ4 and q2ℓ2

operators contribute to lepton-flavor-violating processes such as µ → eγ. The ℓ4 operators

contribute to µ → eγ via a perturbative loop graph giving Leγ ∼ emℓ/(16π
2)Lℓ4 , where Lℓ4 is

a typical ℓ4 operator coefficient. In this paper, we compute the non-perturbative contribution

of semileptonic q2ℓ2 operators to the purely leptonic process µ → eγ, and show that these are

of order Leγ ∼ e(F 2
π/Λχ)Lq2ℓ2 , where Λχ ∼ 4πFπ is the scale of chiral symmetry breaking [7].

These contributions are significant, and the limit Eq. (1.1) on the µ → eγ branching ratio

puts interesting limits on semileptonic tensor operators.

The constraints of lepton-flavor-violating processes such as µ → eγ and µ → 3e on the

Wilson coefficients of both SMEFT and LEFT have attracted a lot of attention in connec-

tion with perturbative effects [8–11], while the non-perturbative effects due to lepton-flavor-

violating quark operators have been studied mainly in reactions involving hadrons as external

states [12–19]. In our analysis, we consider non-perturbative contributions to µ → eγ, a decay

that has no strongly interacting external particles.

Within the LEFT, the perturbative renormalization-group equations can be used to com-

pute the running and mixing of operators from the weak scale down to the hadronic scale

around ∼ 2GeV. Below this scale, non-perturbative QCD effects are present and must be

included. At low energies, the interactions of the lightest hadrons are described by chiral

perturbation theory (χPT) [20–22]. In order to express the low-energy constants of χPT in

terms of the LEFT parameters, a non-perturbative matching has to be performed, either using

lattice QCD or phenomenological input. In this paper, we study the matching of semileptonic

q2ℓ2 operators onto χPT operators that contribute to processes with no hadrons.
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(LL)(LL)

OV,LL
eu (ēLpγ

µeLr)(ūLwγµuLt)

OV,LL
ed (ēLpγ

µeLr)(d̄LwγµdLt)

(RR)(RR)

OV,RR
eu (ēRpγ

µeRr)(ūRwγµuRt)

OV,RR
ed (ēRpγ

µeRr)(d̄RwγµdRt)

(LL)(RR)

OV,LR
eu (ēLpγ

µeLr)(ūRwγµuRt)

OV,LR
ed (ēLpγ

µeLr)(d̄RwγµdRt)

OV,LR
ue (ūLpγ

µuLr)(ēRwγµeRt)

OV,LR
de (d̄Lpγ

µdLr)(ēRwγµeRt)

(LR)(LR) + h.c.

OS,RR
eu (ēLpeRr)(ūLwuRt)

OS,RR
ed (ēLpeRr)(d̄LwdRt)

OT,RR
eu (ēLpσ

µνeRr)(ūLwσµνuRt)

OT,RR
ed (ēLpσ

µνeRr)(d̄LwσµνdRt)

(LR)(RL) + h.c.

OS,RL
eu (ēLpeRr)(ūRwuLt)

OS,RL
ed (ēLpeRr)(d̄RwdLt)

Table 1. Semileptonic LEFT operators involving a charged-lepton bilinear and a quark bilinear.

2 Matching the LEFT to chiral perturbation theory

If we consider the leptonic sector of the LEFT, at leading order in the electromagnetic cou-

pling, the quark dipole operators, the q4, and G3 operators only affect the hadronic vacuum

polarization function. The most interesting non-perturbative effect on the lepton sector is

given by semileptonic q2ℓ2 operators. We consider the subset of LEFT operators involving a

charged-lepton bilinear and a quark bilinear [3], shown in Table 1.

Quark operators in the LEFT Lagrangian can be matched onto operators in the chiral

Lagrangian, as long as the momentum transfer is well below Λχ. Such a matching has been

extensively used in hadronic weak decays (e.g. see Ref. [23]). The results for scalar and

vector quark bilinears can be obtained from the usual χPT Lagrangian including external

sources [21, 22]. The extension to tensor sources has been derived in Ref. [24].

We quickly remind the reader of the construction of the chiral Lagrangian with external

sources. The massless QCD Lagrangian is supplemented by quark bilinears according to

L = LM=0
QCD + Lext = LM=0

QCD + q̄Lγ
µlµqL + q̄Rγ

µrµqR + q̄LSqR + q̄RS
†qL

+ q̄Lσ
µνtµνqR + q̄Rσ

µνt†µνqL , (2.1)

where q = (u, d, s)T is the three-component column vector of the light quarks and the external

sources rµ, lµ, S, and tµν are 3 × 3 matrices in flavor space.2 By promoting the sources to

spurion fields transforming under chiral rotations, one obtains a QCD Lagrangian which is

formally invariant under chiral symmetry, and one then constructs the most general chiral

2Compared with the notation in Ref. [24], we use tµν → t†µν since the LEFT basis uses q̄Lσ
µνqR operators.

The usual χPT scalar source is χ = −2B0S
†.
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Lagrangian based on this chiral symmetry involving the spurion source fields and the matrix

U(x) = exp
(

i
π(x)

F0

)

, π(x) = λaπa(x) , Tr(λaλb) = 2 δab , (2.2)

transforming as U → RUL† under chiral SU(3) × SU(3) rotations. In the above equations,

the matrix π(x) is defined in terms of the eight Goldstone boson fields πa(x), a = 1, · · · , 8, the

Gell-Mann matrices λa, and the pion decay constant in the chiral limit, F0. Green functions

of quark bilinears are computed with the chiral Lagrangian via functional derivatives with

respect to the sources. Finally, the spurion sources are fixed to the physical values including

the contribution of the semileptonic LEFT operators.

Since the semileptonic LEFT contributions to the sources include a factor 1/v2 with

v ∼ 246GeV, we are only interested in terms linear in the LEFT sources: quadratic terms

are of the same size as dimension-eight contributions in the LEFT and can be neglected.

This applies to weak SM contributions to the LEFT coefficients and even more so to BSM

contributions suppressed by 1/Λ2
BSM

. Therefore, we explicitly split the LEFT contribution to

the spurions

S 7→ S + S̃ , rµ 7→ rµ + r̃µ , lµ 7→ lµ + l̃µ , tµν 7→ tµν + t̃µν , (2.3)

and only consider linear terms in the LEFT contribution, which are given e.g. by

S̃uu = LS,RL
eu

pruu

∗
(ēRreLp) + LS,RR

eu
pruu

(ēLpeRr) . (2.4)

The usual spurions are fixed in the end to their physical values (in our sign convention the

QED covariant derivative is given by Dµ = ∂µ + ieQAµ):

S 7→ −M †
q , rµ 7→ −eQAµ , lµ 7→ −eQAµ , tµν 7→ 0 , (2.5)

where Mq = diag(mu,md,ms) is the light-quark mass matrix. Note that terms proportional

to GF induced by the SM weak interaction are included in l̃µ.

At order p4 in the chiral counting,3 the matching is easily computed from the chiral

Lagrangian by shifting sources as in Eq. (2.3), and amounts to the following replacement rules

for the LEFT quark bilinears.

Scalar:

q̄LS̃qR → −2B0

[

1

4
F 2
0

〈

S̃U
〉

+ L4

〈

DµU
†DµU

〉〈

S̃U
〉

+ L5

〈

S̃UDµU
†DµU

〉

+ 2L6

〈

U †χ+ χ†U
〉〈

S̃U
〉

− 2L7

〈

U †χ− χ†U
〉〈

S̃U
〉

+ 2L8

〈

S̃Uχ†U
〉

+H2

〈

S̃χ
〉

]

+O(p6) . (2.6)

3We will treat the LEFT sources formally as the same order in chiral counting as the usual chiral sources,

S̃ ∼ p2, r̃µ ∼ p, l̃µ ∼ p, t̃µν ∼ p2, so that the equations can easily be compared with the χPT literature.
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Vector:

q̄Rγ
µr̃µqR →

i

2
F 2
0

〈

r̃µDµUU †
〉

+ 4iL1

〈

DνU
†DνU

〉〈

r̃µDµUU †
〉

+ 4iL2

〈

DµU †DνU
〉〈

r̃µDνUU †
〉

+ 2iL3

〈

(

U †r̃µD
µU −DµU †r̃µU

)

DνU
†DνU

〉

+ 2iL4

〈

r̃µDµUU †
〉〈

U †χ+ χ†U
〉

+ iL5

〈

(

U †r̃µD
µU −DµU †r̃µU

)

(U †χ+ χ†U)
〉

+ L9

[

−
〈

r̃µF
µν
R DνUU †

〉

−
〈

r̃µUDνU
†Fµν

R

〉

+
〈

r̃µDνUFµν
L U †

〉

+
〈

r̃µUFµν
L DνU

†
〉

]

− iL9

〈

r̃µDν(DµUDνU
† −DνUDµU

†
〉

+ 2L10

〈

r̃µDν(UFµν
L U †)

〉

+ 4H1

〈

r̃µDνF
µν
R

〉

+ ǫ terms +O(p6) , (2.7)

where we have omitted O(p4) terms involving ǫαβλσ from the odd-intrinsic-parity (anomalous)

sector [25–28].

Tensor:

q̄Lσ
µν t̃µνqR → Λ1

〈

t̃µν(UFµν
L + Fµν

R U)
〉

+ iΛ2

〈

t̃µνDµUU †DνU
〉

+O(p6) . (2.8)

Here Fµν
R = ∂µrν − ∂νrµ − i [rµ, rν ] and similarly for Fµν

L with rµ → lµ, B0 and Li are the

usual non-perturbative low-energy constants (LECs) that enter the chiral Lagrangian to order

p2 and p4, and Λ1,2 are analogous parameters for tensor sources studied in Ref. [24]. The

matching of q̄RS
†qL and q̄Rt

†
µνqL is given by the Hermitian conjugates of Eqs. (2.6), (2.8),

and the one of q̄Ll
µγµqL by rµ → lµ, U ↔ U †, χ ↔ χ† in Eq. (2.7). When computing matrix

elements to order p4, one has to include the contribution from one-loop diagrams with p2

vertices and tree graphs with p4 vertices, as usual in χPT.

The operators on the l.h.s. of Eqs. (2.6), (2.7), and (2.8) are renormalized at a scale µ

at which perturbation theory is still valid. While the combination χ = −2B0S
† and the

LECs Li are independent of the perturbative scale µ [21], the LECs B0 and Λi are scale

dependent [21, 24]. They connect the perturbative scale µ with low-energy hadron dynamics.

We can now match q2ℓ2 operators in LEFT onto the chiral Lagrangian. Quarks and

leptons do not interact if electromagnetic effects are turned off, so we can directly get the

matching to lowest order in α from Eqs. (2.6)–(2.8). For example, the LEFT operators

OT,RR
eu

prwt
= (ēLpσ

µνeRr)(ūLwσµνuRt), OT,RR
ed

prwt

= (ēLpσ
µνeRr)(d̄LwσµνdRt) (2.9)

are matched onto

OT,RR
eq

prwt
→ Λ1(ēLpσ

µνeRr)(UFµν
L + Fµν

R U)tw

+ iΛ2(ēLpσ
µνeRr)(DµUU †DνU)tw +O(p6) (2.10)

in χPT, where Λ1,2 are the same as in Eq. (2.8) up to corrections of order α. Since we are

matching onto χPT, Eq. (2.10) can be used for lepton flavors p, r = e, µ, and quark flavors

w, t = u, d, s. Similarly, using Eq. (2.6), the matching of the scalar operators

OS,RR
eu

prwt
= (ēLpeRr)(ūLwuRt), OS,RR

ed
prwt

= (ēLpeRr)(d̄LwdRt), (2.11)
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is given by

OS,RR
eq

prwt
→ −2B0(ēLpeRr)

[

1

4
F 2
0Utw + L4

〈

DµU
†DµU

〉

Utw + L5(UDµU
†DµU)tw

+ 2L6

〈

U †χ+ χ†U
〉

Utw − 2L7

〈

U †χ− χ†U
〉

Utw + 2L8(Uχ†U)tw

+H2χtw

]

+O(p6) . (2.12)

The matching of OS,RL
eu , OS,RL

ed is given by a similar expression with the hadronic part in

Eq. (2.12) replaced by its hermitian conjugate.

At order α, the q2ℓ2 operators can no longer be treated as the product of quark and lepton

bilinears: e.g. the matching of the tensor operator Eq. (2.9) includes operators such as those

in Eq. (2.12) where the leptonic part is a Lorentz scalar, since both operators transform as

(3,3) under chiral SU(3)× SU(3).

We want to study the effect of q2ℓ2 operators on µ → eγ. The matrix element 〈γ(p, ǫ)|S|0〉

of a scalar operator to a physical photon vanishes due to Lorentz and gauge invariance. The

matrix element 〈γ(p, ǫ)|V µ|0〉 of a vector operator to a physical photon has the form

〈γ(p, ǫ)|V µ|0〉 = A(p2)
[

pµ(p · ǫ)− p2ǫµ
]

(2.13)

by gauge invariance, and so vanishes for an on-shell photon. Eq. (2.13) has the structure of a

penguin amplitude, and does contribute if the virtual photon is attached to external fermion

lines, as in µ → 3e. The lowest-order version of this argument is a consequence of Eq. (2.6)

with U = 1 having no Fµν term, and Eq. (2.7) with U = 1 being proportional to ∂νFµν . The

absence of a one-photon matrix element for scalar and vector operators holds to all orders in

the chiral expansion, but to lowest order in α, since photon exchange between the quark and

lepton bilinears can change the Lorentz structure of the bilinears.

Ignoring QED corrections, which can mix Lorentz structure, the only LEFT operators

that contribute to µ → eγ are tensor operators, which can have a non-zero hadronic matrix

element to an on-shell photon:

(ēLpσ
µνeRr)(q̄LσµνqR) → −2QqeΛ1 (ēLpσ

µνeRr)F
µν +O(p6) , q = u, d, s (2.14)

where Fµν is the photon field-strength tensor. To study the impact of Eq. (2.14), we need the

value of the non-perturbative parameter Λ1. Naive dimensional analysis (NDA) [7, 29] gives

the estimate

Λ1 ∼ cT
F 2
π

Λχ
= cT

Λχ

16π2
(2.15)

with cT of order one. Here Fπ = 92.3(1)MeV is the physical pion decay constant [30], and

F0 = Fπ to lowest order in the chiral expansion. Eq. (2.15) is the size one would expect from

the graph in Fig. 1 where the loop integral is estimated using the scale Λχ. The model estimate

of Ref. [31] gives cT ≈ −3.2. If we use the lattice input from Ref. [32] for the pion tensor

– 6 –



Figure 1. The matrix element 〈γ|q̄σµνq|0〉.

charge and relate Λ1 and Λ2 by vector-meson saturation [33], we obtain cT ≈ −1.0(2), where

the error is due to uncertainties in the vector couplings FV and GV and does not include

model uncertainties. Similar estimates can be obtained from [34, 35]. From Eq. (2.14) we

obtain the low-energy matching condition

δLeγ
eµ

= e cT
F 2
π

Λχ

[

2

3
LT,RR

ed
eµdd

+
2

3
LT,RR

ed
eµss

−
4

3
LT,RR

eu
eµuu

]

(2.16)

for the additional non-perturbative contribution to the dipole operator, where the LEFT

coefficients LT,RR
eq are evaluated at a low scale µ ∼ 2GeV, and cT (µ) is computed from tensor

operators renormalized at the same scale. Note that in (2.16), the µ dependence due to αs

corrections cancels in the product of the LEC cT and the tensor operator coefficients.

3 Constraints on electromagnetic dipole interactions

3.1 Lepton-flavor-violating processes

For notational simplicity, we define

LT
eµ =

2

3
LT,RR

ed
eµdd

+
2

3
LT,RR

ed
eµss

−
4

3
LT,RR

eu
eµuu

, LT
µe =

2

3
LT,RR

ed
µedd

+
2

3
LT,RR

ed
µess

−
4

3
LT,RR

eu
µeuu

, (3.1)

which contribute to µ → eγ using Eq. (2.16). Eq. (1.4) gives the bound

|cT |
(

∣

∣LT
eµ

∣

∣

2
+
∣

∣LT
µe

∣

∣

2
)1/2

. 1.65 × 10−5 TeV−2 , (3.2)

using Eq. (2.16) as the only contribution to the dipole operator, which translates to ΛBSM >

|cT |
1/2 250TeV ≈ 450TeV, using |cT | = 3.2.

In Table 2, we collect the constraints on the dipole and tensor operator coefficients at

the hadronic scale µ = 2GeV. Apart from the above constraints from µ → eγ, the same

tensor operators contribute to µ → e conversion in nuclei. Due to their Lorentz structure

these operators induce spin-dependent µ → e amplitudes, and do not directly contribute to

the A2-enhanced spin-independent rate. However, these interactions do indirectly induce a

spin-independent amplitude through their contribution to the dipole operators in Eq. (2.16).4

4It should be noted that the spin-dependent contributions in principle contribute at a similar level as

the spin-independent ones induced through the dipole operators. Furthermore, there are additional non-

perturbative contributions as discussed in footnote 5. Here we simply take the contributions arising from the

dipole operators as an estimate.
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As a result, we can compare the limits on the tensor operators from µ → eγ and µ → e

conversion, the resulting bounds from the latter are shown in the last two rows of Table 2.

Here we used the expressions of Refs. [11, 36], which are collected in App. A, together with

the current and projected experimental constraints [37–40]

Br(Au) ≤ 7× 10−13, Br(Al) . 10−16 (projected) , (3.3)

and employed the same hadronic and nuclear input as Ref. [11]. The constraints in Table 2

are derived by turning on a single operator at a time at the scale µ = 2GeV. In this scenario,

the current constraints from µ → eγ are stronger than the constraints from µ → e conversion,

while the projected bounds are comparable. Note, however, that in a realistic BSM scenario,

there is no reason to believe that only a single operator is present at the hadronic scale and

in general the constraints have to be applied to the linear combination Leγ + δLeγ .

In a second step, we consider the constraints on the operator coefficients at the scale

µ = MW by taking into account the renormalization-group equations (RGEs) discussed in

App. B. Detailed analyses of these RGEs have been presented in Refs. [10, 11, 13, 19, 41–43].

We evaluate the bounds from µ → eγ and µ → e conversion by turning on single operators at

a time at the scale µ = MW . These constraints almost directly translate to limits on operators

in the SMEFT, using the tree-level matching [4],

LS,RR
eu = −C

(1)
lequ , LT,RR

eu = −C
(3)
lequ . (3.4)

In the case of the tensor operators, the running and mixing from µ = MW down to µ =

2GeV leads to a combination of two effects at the hadronic scale: on the one hand, the

tensor operators contribute to the effective dipole operators through non-perturbative effects as

discussed in Sect. 2, leading to a contribution proportional to cT . On the other hand, the RGE

mixing induces perturbative contributions to the coefficients of the dipole operators which are

independent of cT . Therefore, the bounds on µ → eγ constrain the linear combinations

of terms proportional of cT and independent of cT as shown in the upper half of Table 3.

Assuming cT = O(1), the non-perturbative contribution dominates for the couplings to up

and down quarks, while it is expected to be of the same order of magnitude as the perturbative

term for the strange-quark couplings.

In the case of µ → e conversion, the RGEs have more important consequences: the tensor

operator coefficients also mix into the coefficients of semileptonic scalar operators LS,RR
ed,eu [3, 11].

As discussed in Ref. [43], these mixing effects from µ = MW down to µ = 2GeV turn out

to be large and give a significant contribution to the spin-independent amplitude.5 As in the

case of µ → eγ, the bounds on µ → e conversion constrain a combination of the couplings at

5 In principle there are additional contributions to the spin-independent amplitude that also appear at

O(e2/(4π)2). Firstly, a spin-independent (N̄N)(µ̄e) interaction can be induced in the chiral Lagrangian by

the combination of the tensor operator with two electromagnetic currents. In addition, there are chiral loops

involving photon exchange around the leading-order spin-dependent (N̄N)(µ̄e) interaction that is generated

by LT,RR
ed,eu . As these contributions involve unknown LECs we neglect them here and use the RGE-induced

contribution as an estimate of the full amplitude.
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µ = 2GeV Leγ
eµ

cTL
T,RR
eu

eµuu
cTL

T,RR
ed

eµdd

cTL
T,RR
ed

eµss

(c) Br(µ → eγ) ≤ 4.2× 10−13 3.7× 10−11 1.2× 10−5 2.5× 10−5 2.5× 10−5

(e) Br(µ → eγ) . 4× 10−14 1.1× 10−11 3.8× 10−6 7.6× 10−6 7.6× 10−6

(c) Br(Au) ≤ 7× 10−13 7.6× 10−10 2.6× 10−4 5.1× 10−4 5.1× 10−4

(e) Br(Al) . 1× 10−16 1.1× 10−11 3.7× 10−6 7.4× 10−6 7.4× 10−6

Table 2. Current (c) and expected (e) limits from µ → eγ and µ → e conversion experiments on the

coefficients of the dipole and tensor operators at the scale µ = 2GeV. The limits are given in units

of TeV−2 for the tensor operators, while those for Leγ
eµ

are in units of TeV−1. They constrain the

absolute values of the given coefficients and also apply for Leγ
µe

and cTL
T,RR
eq

µeqq
.

µ = MW that are independent of cT and a non-perturbative contribution proportional to cT .

Due to the large mixing into scalar operators, the non-perturbative pieces are negligible for

the couplings to the up and down quarks, while they contribute at the O(10%) level for the

strange-quark couplings, as shown in the lower half of Table 3.

Note that the current constraints from µ → e conversion are of the same order of magni-

tude as the limits from µ → eγ, if we use the model estimate cT ≈ −3. In this case, the µ → e

conversion limits are somewhat stronger for the couplings involving the up and down quarks,

while the strange-quark couplings are more stringently constrained by the µ → eγ limit. It

should be mentioned that these comparisons are currently rather uncertain due to the fact

that only NDA and model estimates exist for cT . In addition, the two observables depend

on different linear combinations of the tensor interactions. In particular, the combination of

couplings that enters µ → eγ only depends on the quark charges, while the spin-independent

µ → e conversion rate also involves the matrix elements 〈N |q̄q|N〉. This implies that the

two observables are complementary probes, as one would generally expect BSM physics to

generate multiple operators in the LEFT.

3.2 Constraints on flavor-diagonal dipole moments

Analogously to the µ → eγ operators in Eq. (2.16), flavor-diagonal dipole operators can be

induced by LT,RR
eu
lluu

, LT,RR
ed
lldd

, and LT,RR
ed
llss

. These dipole couplings subsequently contribute to the

anomalous magnetic moments of the leptons, ∆al through their real parts, while the imaginary

parts induce electric dipole moments (EDMs), dl,

∆al = −4
ml

e
ReLeγ

ll
, dl = −2 ImLeγ

ll
,
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µ = MW Leγ
eµ

(cT − 0.07)LT,RR
eu

eµuu
(cT − 0.15)LT,RR

ed
eµdd

(cT − 3.1)LT,RR
ed

eµss

(c) Br(µ → eγ) ≤ 4.2× 10−13 3.8× 10−11 1.4× 10−5 2.8× 10−5 2.8× 10−5

(e) Br(µ → eγ) . 4× 10−14 1.2× 10−11 4.4× 10−6 8.8× 10−6 8.8× 10−6

Leγ
eµ

(1 + 5× 10−3cT )L
T,RR
eu

eµuu
(1 + 5× 10−3cT )L

T,RR
ed

eµdd

(1 + 0.1cT )L
T,RR
ed

eµss

(c) Br(Au) ≤ 7× 10−13 7.9× 10−10 1.6× 10−6 3.0× 10−6 7.0× 10−5

(e) Br(Al) . 1× 10−16 1.1× 10−11 2.0× 10−8 4.0× 10−8 8.9× 10−7

Table 3. Current (c) and expected (e) limits from µ → eγ and µ → e conversion experiments on the

coefficients of the dipole and tensor operators at the scale µ = MW . The first and fourth rows indicate

the combinations of Wilson coefficients and the LEC cT that are constrained by each observable. The

limits are given in units of TeV−2 for the tensor operators, while those for Leγ
eµ

are in units of TeV−1.

The linear combinations (1 + 5× 10−3cT ) etc. differ by about 10% between Au and Al.

where ∆al = al−aSMl . With the most recent measurement of the fine-structure constant [44] a

tension of 2.4σ between SM prediction [45] and measurement [46] of the anomalous magnetic

moment of the electron is observed:

∆ae = −0.88(36) × 10−12 . (3.5)

In the case of the muon, there is a long-standing discrepancy of 3–4σ between the experi-

mental value [47] and the SM prediction, which consists of QED [45], electroweak [48], and

hadronic [49–55] contributions:6

∆aµ = 2.64(0.63)(0.46) × 10−9 . (3.6)

Assuming Gaussian distributions, we translate these values to bounds

|∆ae| ≤ 1.34 × 10−12 , CL = 90% ,

|∆aµ| ≤ 3.64 × 10−9 , CL = 90% , (3.7)

which imply limits on the tensor operators due to the induced dipole interactions. Assuming

LT,RR
i = 1/Λ2

BSM
and considering only the contribution of a single operator at µ = MW , we

obtain ΛBSM & 5–7TeV for the tensor couplings to the electron, while for those to the muon

we find ΛBSM & 1–2TeV. However, these constraints are not competitive with current LHC

limits, which, in the case of LT,RR
eu

eeuu
, find ΛBSM & 12TeV [70, 71].

6A broad effort is being made to corroborate and reduce the hadronic uncertainties in the vacuum-

polarization [56–61] and light-by-light-scattering contributions [62–69] using lattice QCD and dispersion rela-

tions.
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The CP-odd parts of the dipole moments can be constrained by EDM measurements,

which, in the case of the muon [72] and tau [73] do not lead to significant limits. The electron

EDM is more relevant and is currently most stringently constrained by the recently improved

measurements on the paramagnetic ThO molecule [74? ]. This system receives contributions

from the electron EDM as well as from scalar interactions between electrons and nucleons [75–

77]

ωThO =

[

(120.6 ± 4.9)

(

de
10−27e cm

)

+ (181.6 ± 7.3) × 107
(

Z

A
C

(p)
S +

A− Z

A
C

(n)
S

)]

mrad/s ,

C
(N)
S =− v2Im



f
(u)
S,N

mN

mu

(

LS,RR
eu

eeuu
+ LS,RL

eu
eeuu

)

+
∑

q=d,s

f
(q)
S,N

mN

mq

(

LS,RR
ed
eeqq

+ LS,RL
ed
eeqq

)



 ,

where f
(q)
S,N are the scalar couplings of the nucleons for which we use the results of Refs. [78,

79]. The tensor operators thus contribute to ωThO non-perturbatively via de, while RGE

contributions arise through both de and CS (see App. B for details).7 In terms of the couplings

at µ = MW we have

ωThO

mrad/s
= Im

[

(16 + 4.0 cT )L
T,RR
eu

eeuu
− (8.0 + 2.0 cT )L

T,RR
ed

eedd

+ (5.7− 2.0 cT )L
T,RR
ed
eess

]

× 108 TeV2 ,

showing that the non-perturbative contributions are of similar size as those induced through

the RGEs. Using the experimental upper bound, ωThO ≤ 1.3 mrad/s [? ], we obtain ΛBSM &

5 × 103 TeV and ΛBSM & 3 × 103 TeV for the couplings to up and down quarks, respectively,

while for the interaction with strange quarks we have ΛBSM & 104 TeV.

The EDM of Mercury receives direct contributions from tensor interactions as it is a

diamagnetic system. Following the analysis of [80] for the atomic [81] and hadronic [82] input

and using the current experimental constraint [83, 84] leads to somewhat stronger constraints

on the up and down quark couplings. In particular, for the coupling to the up (down) quark,

the mercury EDM leads to ΛBSM & 6 (12) × 103 TeV, while it gives rise to a weaker limit

on the coupling to the strange quark, ΛBSM & 2 × 103 TeV. This implies that although the

tensor interactions contribute to the mercury EDM directly, the contributions to paramagnetic

molecular systems can be significant, in particular in the case of strange-quark couplings.

3.3 Comment on dark-matter interactions

A very similar situation to the semileptonic tensor operators arises in the context of dark-

matter interactions. For dark matter consisting of weakly interacting massive particles that

couple to SM particles only through a heavy mediator, an effective field theory can be used to

7Analogous to the case of µ → e conversion, there are additional contributions that appear at the same

order, O(e2/(4π)2). These consist of a spin-independent (N̄N)(ēe) interaction that is induced by the combina-

tion of the tensor operator with two electromagnetic currents, as well as chiral loops involving photon exchange

around the leading-order spin-dependent (N̄N)(ēe) interaction. We again neglect these contributions and use

the RGE-induced contribution as an estimate.
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describe the dark matter interaction with SM particles [85–88]. Under the assumption that

the dark matter particles carry a conserved quantum number, the dark matter fields always

appear in bilinears and give rise to operators that are similar to those in the LEFT. For

example, at dimension five the dipole operators

L
(5)
DM = C(5)χ̄Lσ

µνχRFµν + h.c. (3.8)

arise, where χ denotes the dark matter fermion. At dimension six, the EFT contains four-

fermion operators (χ̄Γχ)(q̄Γq), e.g. the tensor operators

L
(6)
DM = C(6)

q (χ̄Lσ
µνχR)(q̄LσµνqR) + h.c. (3.9)

For direct-detection experiments, the interaction of dark matter with nucleons has to be stud-

ied. The constraints of chiral symmetry have been analyzed in [86, 89] for the case of vector,

axial-vector, scalar, and pseudo-scalar interactions. The tensor operators (3.9) lead to spin-

dependent interactions that are not enhanced by A2. The leading contribution to the nucleon

tensor form factors [90, 91] is given by the tensor charges and requires lattice QCD input [82].

Through perturbative RGE mixing, the tensor operators induce the electromagnetic dipole op-

erators (3.8) [92], which leads to a spin-independent contribution to the cross section [93, 94].

In addition to these perturbative RGE effects, again a non-perturbative contribution is gener-

ated in analogy to the semileptonic dipole operators discussed in Sect. 2. Given the similarities

to the case of µ → eγ, the linear combination of the contributions due to the RGEs and those

due to cT is the same as those in the first row of Table 3 (where Leγ
eµ

and LT,RR
ed,eu
eµqq

are to be

identified with C(5) and C
(6)
q , respectively). As a result, for cT = O(1), the contributions of

the couplings to up and down quarks will be dominated by the non-perturbative piece, while

it is expected to be of similar size as the RGE term for the strange-quark couplings.

Apart from the contribution proportional to cT , another non-perturbative contribution is

given by the coupling of the tensor current to pion exchange between two nucleons or to pion

loops at the one-nucleon level.8 The coupling of the tensor current to the pion is parametrized

by the LEC Λ2 in (2.8), which can be estimated using the lattice result [32] for the pion tensor

charge, Λ2 = 6.0(3)MeV.

4 Conclusion

In this paper, we have discussed the non-perturbative contributions of semileptonic LEFT

operators to the purely leptonic process µ → eγ. Although scalar and vector operators do

not induce this process (without additional QED corrections), q2ℓ2 tensor interactions do

generate this decay through a non-perturbative contribution to the leptonic dipole operators,

Leγ ∼ e(F 2
π/Λχ)Lq2ℓ2 . To quantify this contribution we have matched the semileptonic tensor

operators to χPT, and estimated the required low-energy constant using NDA and the model

8We thank M. Hoferichter for pointing this out.
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estimate of Ref. [31]. These estimates show that the non-perturbative contribution is expected

to dominate over the perturbative RGE effects for the couplings to up and down quarks, while

it is of the same order of magnitude for the coupling to the strange quark. The constraints

on the scale of BSM physics that can be set using the experimental limit on the µ → eγ

branching ratio are of the order of ΛBSM & 450TeV, as discussed in Sect. 3. These limits are

of similar size as those obtained from µ → e conversion in nuclei for the couplings to up and

down quarks, while they currently provide the most stringent constraints on the couplings to

strange quarks.
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A µ → e conversion in nuclei

Here we discuss in more detail the contributions of the operators in Table 1 to µ → e conversion

in nuclei. The rate for this process can be written as [11, Eq. (3.5)]

Γ(µA → eA) =
m3

µ

4

∣

∣

∣

∣

DAL
∗
eγ
µe

+ 4mµ

∑

q=u,d,s
N=n,p

(

CSL
q

mN

mq
f
(q)
S,NS

(N)
A + CV R

q f
(q)
V,NV

(N)
A

) ∣

∣

∣

∣

2

+
m3

µ

4

∣

∣

∣

∣

DALeγ
eµ

+ 4mµ

∑

q=u,d,s
N=n,p

(

CSR
q

mN

mq
f
(q)
S,NS

(N)
A + CV L

q f
(q)
V,NV

(N)
A

) ∣

∣

∣

∣

2

. (A.1)

Here f
(q)
S,N and f

(q)
V,N are hadronic matrix elements, related to the scalar- and vector-charges of

the nucleons, respectively. DA, S
(N)
A , and V

(N)
A involve overlap integrals between the nuclear

and lepton wavefunctions and are taken from [11, Eq. (3.10)], while CSL,SR
q and CV L,V R

q are

the following combinations of couplings:

CSR
u = LS,RR

eu
eµuu

+ LS,RL
eu

eµuu
, CSR

d = LS,RR
ed

eµdd

+ LS,RL
ed

eµdd

, CSR
s = LS,RR

ed
eµss

+ LS,RL
ed

eµss

,

CV R
u = LV,RR

eu
eµuu

+ LV,LR
ue

uueµ
, CV R

d = LV,RR
ed

eµdd

+ LV,LR
de

ddeµ

, CV R
s = LV,RR

ed
eµss

+ LV,LR
de

sseµ

,

CV L
u = LV,LL

eu
eµuu

+ LV,LR
eu

eµuu
, CV L

d = LV,LL
ed

eµdd

+ LV,LR
ed

eµdd

, CV L
s = LV,LL

ed
eµss

+ LV,LR
ed

eµss

. (A.2)

The couplings CSL
q can be obtained from CSR

q by replacing the the labels eµqq → µeqq

and taking the complex conjugate. It is conventional to define a branching ratio through
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Br(A) = Γ(µA → eA)/Γcapt(A), where Γcapt is the muon capture rate. We follow Ref. [11] for

the hadronic [78, 79] and nuclear input [95].

In order to obtain the non-perturbative tensor operator contribution to µ → e conversion,

one has to substitute Leγ 7→ Leγ + δLeγ with δLeγ given in (2.16).

B Anomalous dimensions

The RGEs for the dipole, scalar and tensor operators relevant for µ → eγ from Ref. [3, 4]

are summarized below. We treat Leγ ∼ emµ/Λ
2
BSM

so that terms quadratic in Leγ have been

dropped. These equations agree with earlier results in Ref. [11]. There are some differences

with the results in Refs. [10, 41, 42].

L̇eγ
rs

=
[

(10− b0,e) e
2
]

Leγ
rs

+ 8e[Md]wvL
T,RR
ed

rsvw

− 16e[Mu]wvL
T,RR
eu

rsvw
− 2e[Me]wvL

S,RR
ee

rwvs
,

L̇S,RR
eu
prst

= −

[

26

3
e2 + 6g2CF

]

LS,RR
eu
prst

+ 64e2LT,RR
eu
prst

,

L̇T,RR
eu
prst

=
4

3
e2LS,RR

eu
prst

+

[

26

9
e2 + 2g2CF

]

LT,RR
eu
prst

,

L̇S,RL
eu
prst

= −

[

26

3
e2 + 6g2CF

]

LS,RL
eu
prst

,

L̇S,RR
ed
prst

= −

[

20

3
e2 + 6g2CF

]

LS,RR
ed
prst

− 32e2LT,RR
ed
prst

,

L̇T,RR
ed
prst

= −
2

3
e2LS,RR

ed
prst

+

[

20

9
e2 + 2g2CF

]

LT,RR
ed
prst

,

L̇S,RL
ed
prst

= −

[

20

3
e2 + 6g2CF

]

LS,RL
ed
prst

,

L̇S,RR
ee
prst

= 16e2LS,RR
ee
ptsr

− 4e2LS,RR
ee
prst

, (B.1)

where L̇ = 16π2µ d
dµL, CF = 4

3 , and b0,e = −4
3(ne +

1
3nd +

4
3nu) is the leading coefficient of

the QED β-function. Note that LS,RR
ee
prst

= LS,RR
ee
stpr

by symmetry of the operator OS,RR,
ee . The

flavor labels p, r, s, t, w, v in Eq. (B.1) run over generations.

References

[1] MEG Collaboration, J. Adam et al., New constraint on the existence of the µ+ → e+γ decay,

Phys. Rev. Lett. 110 (2013) 201801, [arXiv:1303.0754].

– 14 –

http://arxiv.org/abs/1303.0754


[2] MEG Collaboration, A. M. Baldini et al., Search for the lepton flavour violating decay

µ+ → e+γ with the full dataset of the MEG experiment, Eur. Phys. J. C76 (2016), no. 8 434,

[arXiv:1605.05081].

[3] E. E. Jenkins, A. V. Manohar, and P. Stoffer, Low-Energy Effective Field Theory below the

Electroweak Scale: Anomalous Dimensions, JHEP 01 (2018) 084, [arXiv:1711.05270].

[4] E. E. Jenkins, A. V. Manohar, and P. Stoffer, Low-Energy Effective Field Theory below the

Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016, [arXiv:1709.04486].

[5] W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor

Conservation, Nucl. Phys. B268 (1986) 621–653.

[6] B. Grzadkowski, M. Iskrzyński, M. Misiak, and J. Rosiek, Dimension-Six Terms in the

Standard Model Lagrangian, JHEP 10 (2010) 085, [arXiv:1008.4884].

[7] A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys.

B234 (1984) 189–212.

[8] A. Crivellin, S. Najjari, and J. Rosiek, Lepton Flavor Violation in the Standard Model with

general Dimension-Six Operators, JHEP 04 (2014) 167, [arXiv:1312.0634].

[9] G. M. Pruna and A. Signer, The µ → eγ decay in a systematic effective field theory approach

with dimension 6 operators, JHEP 10 (2014) 014, [arXiv:1408.3565].

[10] S. Davidson, µ → eγ and matching at mW , Eur. Phys. J. C76 (2016), no. 7 370,

[arXiv:1601.07166].

[11] A. Crivellin, S. Davidson, G. M. Pruna, and A. Signer, Renormalisation-group improved

analysis of µ → e processes in a systematic effective-field-theory approach, JHEP 05 (2017) 117,

[arXiv:1702.03020].

[12] D. Black, T. Han, H.-J. He, and M. Sher, τ − µ flavor violation as a probe of the scale of new

physics, Phys. Rev. D66 (2002) 053002, [hep-ph/0206056].

[13] M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J.

C70 (2010) 1071–1090, [arXiv:1008.0280].

[14] A. Celis, V. Cirigliano, and E. Passemar, Lepton flavor violation in the Higgs sector and the

role of hadronic τ-lepton decays, Phys. Rev. D89 (2014) 013008, [arXiv:1309.3564].

[15] A. Celis, V. Cirigliano, and E. Passemar, Model-discriminating power of lepton flavor violating

τ decays, Phys. Rev. D89 (2014), no. 9 095014, [arXiv:1403.5781].

[16] A. Crivellin, M. Hoferichter, and M. Procura, Improved predictions for µ → e conversion in

nuclei and Higgs-induced lepton flavor violation, Phys. Rev. D89 (2014) 093024,

[arXiv:1404.7134].

[17] A. Crivellin, G. D’Ambrosio, M. Hoferichter, and L. C. Tunstall, Violation of lepton flavor and

lepton flavor universality in rare kaon decays, Phys. Rev. D93 (2016), no. 7 074038,

[arXiv:1601.00970].

[18] D. E. Hazard and A. A. Petrov, Radiative lepton flavor violating B, D, and K decays, Phys.

Rev. D98 (2018), no. 1 015027, [arXiv:1711.05314].

[19] S. Davidson and A. Saporta, Constraints on 2ℓ2q operators from µ ↔ e flavour-changing meson

decays, arXiv:1807.10288.

– 15 –

http://arxiv.org/abs/1605.05081
http://arxiv.org/abs/1711.05270
http://arxiv.org/abs/1709.04486
http://arxiv.org/abs/1008.4884
http://arxiv.org/abs/1312.0634
http://arxiv.org/abs/1408.3565
http://arxiv.org/abs/1601.07166
http://arxiv.org/abs/1702.03020
http://arxiv.org/abs/hep-ph/0206056
http://arxiv.org/abs/1008.0280
http://arxiv.org/abs/1309.3564
http://arxiv.org/abs/1403.5781
http://arxiv.org/abs/1404.7134
http://arxiv.org/abs/1601.00970
http://arxiv.org/abs/1711.05314
http://arxiv.org/abs/1807.10288


[20] S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568–1577.

[21] J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984)

142.

[22] J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange

Quark, Nucl. Phys. B250 (1985) 465–516.

[23] H. Georgi, Weak Interactions and Modern Particle Theory. Benjamin/Cummings Pub. Co.,

Menlo Park, USA, 1984.

[24] O. Catà and V. Mateu, Chiral perturbation theory with tensor sources, JHEP 09 (2007) 078,

[arXiv:0705.2948].

[25] J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. 37B (1971)

95–97.

[26] E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B223 (1983) 422–432.

[27] A. Manohar and G. W. Moore, Anomalous Inequivalence of Phenomenological Theories, Nucl.

Phys. B243 (1984) 55–64.

[28] R. Kaiser and H. Leutwyler, Large Nc in chiral perturbation theory, Eur. Phys. J. C17 (2000)

623–649, [hep-ph/0007101].

[29] B. M. Gavela, E. E. Jenkins, A. V. Manohar, and L. Merlo, Analysis of General Power Counting

Rules in Effective Field Theory, Eur. Phys. J. C76 (2016), no. 9 485, [arXiv:1601.07551].

[30] Particle Data Group Collaboration, M. Tanabashi et al., Review of Particle Physics, Phys.

Rev. D98 (2018), no. 3 030001.

[31] V. Mateu and J. Portolés, Form-factors in radiative pion decay, Eur. Phys. J. C52 (2007)

325–338, [arXiv:0706.1039].

[32] I. Baum, V. Lubicz, G. Martinelli, L. Orifici, and S. Simula, Matrix elements of the

electromagnetic operator between kaon and pion states, Phys. Rev. D84 (2011) 074503,

[arXiv:1108.1021].

[33] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, The Role of Resonances in Chiral Perturbation

Theory, Nucl. Phys. B321 (1989) 311–342.

[34] O. Cata and V. Mateu, Novel patterns for vector mesons from the large-N(c) limit, Phys. Rev.

D77 (2008) 116009, [arXiv:0801.4374].

[35] J. A. Miranda and P. Roig, Effective-field theory analysis of the τ− → π−π0ντ decays,

arXiv:1806.09547.

[36] V. Cirigliano, R. Kitano, Y. Okada, and P. Tuzon, On the model discriminating power of µ → e

conversion in nuclei, Phys. Rev. D80 (2009) 013002, [arXiv:0904.0957].

[37] SINDRUM II Collaboration, W. H. Bertl et al., A Search for muon to electron conversion in

muonic gold, Eur. Phys. J. C47 (2006) 337–346.

[38] COMET Collaboration, Y. G. Cui et al., Conceptual design report for experimental search for

lepton flavor violating µ− − e− conversion at sensitivity of 10−16 with a slow-extracted bunched

proton beam (COMET), KEK-2009-10.

– 16 –

http://arxiv.org/abs/0705.2948
http://arxiv.org/abs/hep-ph/0007101
http://arxiv.org/abs/1601.07551
http://arxiv.org/abs/0706.1039
http://arxiv.org/abs/1108.1021
http://arxiv.org/abs/0801.4374
http://arxiv.org/abs/1806.09547
http://arxiv.org/abs/0904.0957


[39] R. K. Kutschke, The Mu2e Experiment at Fermilab, in Proceedings, 31st International

Conference on Physics in collisions (PIC 2011): Vancouver, Canada, August 28–September 1,

2011. arXiv:1112.0242.

[40] COMET Collaboration, Y. Kuno, A search for muon-to-electron conversion at J-PARC: The

COMET experiment, PTEP 2013 (2013) 022C01.

[41] A. Crivellin, S. Davidson, G. M. Pruna, and A. Signer, Complementarity in lepton-flavour

violating muon decay experiments, in 18th International Workshop on Neutrino Factories and

Future Neutrino Facilities Search (NuFact16) Quy Nhon, Vietnam, August 21–27, 2016.

arXiv:1611.03409.

[42] S. Davidson, Y. Kuno, and A. Saporta, Spin-dependent µ → e conversion on light nuclei, Eur.

Phys. J. C78 (2018), no. 2 109, [arXiv:1710.06787].

[43] V. Cirigliano, S. Davidson, and Y. Kuno, Spin-dependent µ → e conversion, Phys. Lett. B771

(2017) 242–246, [arXiv:1703.02057].

[44] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Measurement of the fine-structure

constant as a test of the standard model, Science 360 (2018) 191–195.

[45] T. Aoyama, T. Kinoshita, and M. Nio, Revised and Improved Value of the QED Tenth-Order

Electron Anomalous Magnetic Moment, Phys. Rev. D97 (2018), no. 3 036001,

[arXiv:1712.06060].

[46] D. Hanneke, S. Fogwell, and G. Gabrielse, New Measurement of the Electron Magnetic Moment

and the Fine Structure Constant, Phys. Rev. Lett. 100 (2008) 120801, [arXiv:0801.1134].

[47] Muon g-2 Collaboration, G. W. Bennett et al., Final Report of the Muon E821 Anomalous

Magnetic Moment Measurement at BNL, Phys. Rev. D73 (2006) 072003, [hep-ex/0602035].

[48] C. Gnendiger, D. Stckinger, and H. Stckinger-Kim, The electroweak contributions to (g − 2)µ
after the Higgs boson mass measurement, Phys. Rev. D88 (2013) 053005, [arXiv:1306.5546].

[49] J. Prades, E. de Rafael, and A. Vainshtein, The Hadronic Light-by-Light Scattering

Contribution to the Muon and Electron Anomalous Magnetic Moments, Adv. Ser. Direct. High

Energy Phys. 20 (2009) 303–317, [arXiv:0901.0306].

[50] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Hadronic contribution to the muon

anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B734 (2014)

144–147, [arXiv:1403.6400].

[51] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and P. Stoffer, Remarks on higher-order

hadronic corrections to the muon g2, Phys. Lett. B735 (2014) 90–91, [arXiv:1403.7512].

[52] A. Nyffeler, Hadronic light-by-light scattering in the muon g − 2, in International Workshop on

e+e− Collisions from Phi to Psi (PHIPSI17) Mainz, Germany, June 26–29, 2017.

arXiv:1710.09742.

[53] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Reevaluation of the hadronic vacuum

polarisation contributions to the Standard Model predictions of the muon g− 2 and α(m2
Z) using

newest hadronic cross-section data, Eur. Phys. J. C77 (2017), no. 12 827, [arXiv:1706.09436].

[54] F. Jegerlehner, Muon g − 2 theory: The hadronic part, EPJ Web Conf. 166 (2018) 00022,

[arXiv:1705.00263].

– 17 –

http://arxiv.org/abs/1112.0242
http://arxiv.org/abs/1611.03409
http://arxiv.org/abs/1710.06787
http://arxiv.org/abs/1703.02057
http://arxiv.org/abs/1712.06060
http://arxiv.org/abs/0801.1134
http://arxiv.org/abs/hep-ex/0602035
http://arxiv.org/abs/1306.5546
http://arxiv.org/abs/0901.0306
http://arxiv.org/abs/1403.6400
http://arxiv.org/abs/1403.7512
http://arxiv.org/abs/1710.09742
http://arxiv.org/abs/1706.09436
http://arxiv.org/abs/1705.00263


[55] A. Keshavarzi, D. Nomura, and T. Teubner, Muon g − 2 and α(M2
Z): a new data-based

analysis, Phys. Rev. D97 (2018), no. 11 114025, [arXiv:1802.02995].

[56] B. Ananthanarayan, I. Caprini, D. Das, and I. Sentitemsu Imsong, Precise determination of the

low-energy hadronic contribution to the muon g− 2 from analyticity and unitarity: An improved

analysis, Phys. Rev. D93 (2016), no. 11 116007, [arXiv:1605.00202].

[57] B. Chakraborty, C. T. H. Davies, P. G. de Oliviera, J. Koponen, G. P. Lepage, and R. S.

Van de Water, The hadronic vacuum polarization contribution to aµ from full lattice QCD,

Phys. Rev. D96 (2017), no. 3 034516, [arXiv:1601.03071].

[58] M. Della Morte, A. Francis, V. Gülpers, G. Herdoíza, G. von Hippel, H. Horch, B. Jäger, H. B.

Meyer, A. Nyffeler, and H. Wittig, The hadronic vacuum polarization contribution to the muon

g − 2 from lattice QCD, JHEP 10 (2017) 020, [arXiv:1705.01775].

[59] BMW Collaboration, S. Borsanyi et al., Hadronic vacuum polarization contribution to the

anomalous magnetic moments of leptons from first principles, Phys. Rev. Lett. 121 (2018),

no. 2 022002, [arXiv:1711.04980].

[60] RBC, UKQCD Collaboration, T. Blum, P. A. Boyle, V. Glpers, T. Izubuchi, L. Jin, C. Jung,

A. Jttner, C. Lehner, A. Portelli, and J. T. Tsang, Calculation of the hadronic vacuum

polarization contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 121

(2018), no. 2 022003, [arXiv:1801.07224].

[61] G. Colangelo, M. Hoferichter, and P. Stoffer, Two-pion contribution to hadronic vacuum

polarization, arXiv:1810.00007.

[62] J. Green, O. Gryniuk, G. von Hippel, H. B. Meyer, and V. Pascalutsa, Lattice QCD calculation

of hadronic light-by-light scattering, Phys. Rev. Lett. 115 (2015), no. 22 222003,

[arXiv:1507.01577].

[63] A. Grardin, H. B. Meyer, and A. Nyffeler, Lattice calculation of the pion transition form factor

π0 → γ∗γ∗, Phys. Rev. D94 (2016), no. 7 074507, [arXiv:1607.08174].

[64] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, and C. Lehner, Connected and

Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic

Moment with a Physical Pion Mass, Phys. Rev. Lett. 118 (2017), no. 2 022005,

[arXiv:1610.04603].

[65] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, Rescattering effects in the

hadronic-light-by-light contribution to the anomalous magnetic moment of the muon, Phys. Rev.

Lett. 118 (2017), no. 23 232001, [arXiv:1701.06554].

[66] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, Dispersion relation for hadronic

light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161, [arXiv:1702.07347].

[67] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, and C. Lehner, Using infinite

volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the

muon anomalous magnetic moment, Phys. Rev. D96 (2017), no. 3 034515, [arXiv:1705.01067].

[68] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, Pion-pole contribution to

hadronic light-by-light scattering in the anomalous magnetic moment of the muon, Phys. Rev.

Lett. 121 (2018), no. 11 112002, [arXiv:1805.01471].

– 18 –

http://arxiv.org/abs/1802.02995
http://arxiv.org/abs/1605.00202
http://arxiv.org/abs/1601.03071
http://arxiv.org/abs/1705.01775
http://arxiv.org/abs/1711.04980
http://arxiv.org/abs/1801.07224
http://arxiv.org/abs/1810.00007
http://arxiv.org/abs/1507.01577
http://arxiv.org/abs/1607.08174
http://arxiv.org/abs/1610.04603
http://arxiv.org/abs/1701.06554
http://arxiv.org/abs/1702.07347
http://arxiv.org/abs/1705.01067
http://arxiv.org/abs/1805.01471


[69] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, Dispersion relation for

hadronic light-by-light scattering: pion pole, arXiv:1808.04823.

[70] S. Alioli, W. Dekens, M. Girard, and E. Mereghetti, NLO QCD corrections to SM-EFT dilepton

and electroweak Higgs boson production, matched to parton shower in POWHEG, JHEP 08

(2018) 205, [arXiv:1804.07407].

[71] R. Gupta, Y.-C. Jang, B. Yoon, H.-W. Lin, V. Cirigliano, and T. Bhattacharya, Isovector

Charges of the Nucleon from 2+1+1-flavor Lattice QCD, Phys. Rev. D98 (2018) 034503,

[arXiv:1806.09006].

[72] Muon (g-2) Collaboration, G. W. Bennett et al., An Improved Limit on the Muon Electric

Dipole Moment, Phys. Rev. D80 (2009) 052008, [arXiv:0811.1207].

[73] Belle Collaboration, K. Inami et al., Search for the electric dipole moment of the tau lepton,

Phys. Lett. B551 (2003) 16–26, [hep-ex/0210066].

[74] ACME Collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric

Dipole Moment of the Electron, Science 343 (2014) 269–272, [arXiv:1310.7534].

[75] M. Denis and T. Fleig, In search of discrete symmetry violations beyond the standard model:

Thorium monoxide reloaded, The Journal of Chemical Physics 145 (2016), no. 21 214307.

[76] L. V. Skripnikov, A. N. Petrov, and A. V. Titov, Communication: Theoretical study of ThO for

the electron electric dipole moment search, The Journal of Chemical Physics 139 (2013), no. 22.

[77] L. V. Skripnikov, A. N. Petrov, and A. V. Titov, Theoretical study of ThO for electron electric

dipole moment search, arXiv:1308.0414.

[78] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G. Meißner, High-Precision Determination

of the Pion-Nucleon σ Term from Roy-Steiner Equations, Phys. Rev. Lett. 115 (2015) 092301,

[arXiv:1506.04142].

[79] P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD,

Phys. Rev. D87 (2013) 114510, [arXiv:1301.1114].

[80] W. Dekens, J. de Vries, M. Jung, and K. K. Vos, The phenomenology of electric dipole moments

in models of scalar leptoquarks, arXiv:1809.09114.

[81] T. Fleig and M. Jung, Model-independent determinations of the electron EDM and the role of

diamagnetic atoms, JHEP 07 (2018) 012, [arXiv:1802.02171].

[82] R. Gupta, B. Yoon, T. Bhattacharya, V. Cirigliano, Y.-C. Jang, and H.-W. Lin, Flavor diagonal

tensor charges of the nucleon from 2+1+1 flavor lattice QCD, arXiv:1808.07597.

[83] B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, Reduced Limit on the Permanent Electric

Dipole Moment of 199Hg, arXiv:1601.04339.

[84] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, et al., Improved

Limit on the Permanent Electric Dipole Moment of Hg-199, Phys. Rev. Lett. 102 (2009) 101601.

[85] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H.-B. Yu, Constraints on

Dark Matter from Colliders, Phys. Rev. D82 (2010) 116010, [arXiv:1008.1783].

[86] M. Hoferichter, P. Klos, and A. Schwenk, Chiral power counting of one- and two-body currents

in direct detection of dark matter, Phys. Lett. B746 (2015) 410–416, [arXiv:1503.04811].

– 19 –

http://arxiv.org/abs/1808.04823
http://arxiv.org/abs/1804.07407
http://arxiv.org/abs/1806.09006
http://arxiv.org/abs/0811.1207
http://arxiv.org/abs/hep-ex/0210066
http://arxiv.org/abs/1310.7534
http://arxiv.org/abs/1308.0414
http://arxiv.org/abs/1506.04142
http://arxiv.org/abs/1301.1114
http://arxiv.org/abs/1809.09114
http://arxiv.org/abs/1802.02171
http://arxiv.org/abs/1808.07597
http://arxiv.org/abs/1601.04339
http://arxiv.org/abs/1008.1783
http://arxiv.org/abs/1503.04811


[87] F. Bishara, J. Brod, B. Grinstein, and J. Zupan, From quarks to nucleons in dark matter direct

detection, JHEP 11 (2017) 059, [arXiv:1707.06998].

[88] J. Brod, A. Gootjes-Dreesbach, M. Tammaro, and J. Zupan, Effective Field Theory for Dark

Matter Direct Detection up to Dimension Seven, arXiv:1710.10218.

[89] V. Cirigliano, M. L. Graesser, and G. Ovanesyan, WIMP-nucleus scattering in chiral effective

theory, JHEP 10 (2012) 025, [arXiv:1205.2695].

[90] S. Weinberg, Charge symmetry of weak interactions, Phys. Rev. 112 (1958) 1375–1379.

[91] S. L. Adler, E. W. Colglazier, Jr., J. B. Healy, I. Karliner, J. Lieberman, Y. J. Ng, and H.-S.

Tsao, Renormalization Constants for Scalar, Pseudoscalar, and Tensor Currents, Phys. Rev.

D11 (1975) 3309. [,507(1975)].

[92] U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions

for dark matter direct detection, JCAP 1304 (2013) 050, [arXiv:1302.4454].

[93] T. Banks, J.-F. Fortin, and S. Thomas, Direct Detection of Dark Matter Electromagnetic Dipole

Moments, arXiv:1007.5515.

[94] V. Barger, W.-Y. Keung, and D. Marfatia, Electromagnetic properties of dark matter: Dipole

moments and charge form factor, Phys. Lett. B696 (2011) 74–78, [arXiv:1007.4345].

[95] R. Kitano, M. Koike, and Y. Okada, Detailed calculation of lepton flavor violating muon

electron conversion rate for various nuclei, Phys. Rev. D66 (2002) 096002, [hep-ph/0203110].

[Erratum: Phys. Rev. D76 (2007) 059902].

– 20 –

http://arxiv.org/abs/1707.06998
http://arxiv.org/abs/1710.10218
http://arxiv.org/abs/1205.2695
http://arxiv.org/abs/1302.4454
http://arxiv.org/abs/1007.5515
http://arxiv.org/abs/1007.4345
http://arxiv.org/abs/hep-ph/0203110

	Introduction
	Matching the LEFT to chiral perturbation theory
	Constraints on electromagnetic dipole interactions
	Lepton-flavor-violating processes
	Constraints on flavor-diagonal dipole moments
	Comment on dark-matter interactions

	Conclusion
	e conversion in nuclei
	Anomalous dimensions



